On several partition problems of Bollobás and Scott

Jie Ma*
Pei-Lan Yen ${ }^{\dagger}$
Xingxing Yu^{\ddagger}

Abstract

Judicious partition problems on graphs and hypergraphs ask for partitions that optimize several quantities simultaneously. Let G be a hypergraph with m_{1} edges of size i for $i=1,2$. We show that for any integer $k \geq 1, V(G)$ admits a partition into k sets each containing at most $m_{1} / k+m_{2} / k^{2}+o\left(m_{2}\right)$ edges, establishing a conjecture of Bollobás and Scott. We also prove that $V(G)$ admits a partition into $k \geq 3$ sets, each meeting at least $m_{1} / k+m_{2} /(k-1)+o\left(m_{2}\right)$ edges, which for large graphs implies a conjecture of Bollobás and Scott (the conjecture is for all graphs). For $k=2$, we prove that $V(G)$ admits a partition into two sets each meeting at least $m_{1} / 2+3 m_{2} / 4+o\left(m_{2}\right)$ edges, which solves a special case of a more general problem of Bollobás and Scott.

[^0]
1 Introduction

Classical graph partition problems often ask for partitions of a graph that optimize a single quantity. For example, the well-known Max-Cut Problem asks for a partition V_{1}, V_{2} of $V(G)$, where G is a weighted graph, that maximizes the total weight of edges with an end in each V_{i}. This problem is NP-hard, see [13]. The unweighted version is often called the Maximum Bipartite Subgraph Problem: Given a graph G find a partition V_{1}, V_{2} of $V(G)$ that maximizes $e\left(V_{1}, V_{2}\right)$, the number of edges between V_{1} and V_{2}. This is also NP-hard. However, it is easy to prove that any graph with m edges has a partition V_{1}, V_{2} with $e\left(V_{1}, V_{2}\right) \geq m / 2$. Edwards [10,11] improved this lower bound to $m / 2+\frac{1}{4}(\sqrt{2 m+1 / 4}-1 / 2)$. This is best possible, as $K_{2 n+1}$ are extremal graphs.

In practice one often needs to find a partition of a given graph to optimize several quantities simultaneously. Such problems are called Judicious Partition Problems by Bollobás and Scott [4]. One such example is the problem of finding a partition V_{1}, V_{2} of the vertex set of a graph G that minimizes $\max \left\{e\left(V_{1}\right), e\left(V_{2}\right)\right\}$, where $e\left(V_{i}\right)$ denotes the number of edges of G with both ends in V_{i}. This problem is also known as the Bottleneck Bipartition Problem, raised by Entringer (see, for example, $[14,15]$). Shahrokhi and Székely [16] showed that this problem is NP-hard. Porter [14] proved that any graph with m edges has a partition into V_{1}, V_{2} with $e\left(V_{i}\right) \leq m / 4+O(\sqrt{m})$. Bollobás and Scott [6] improved this to $e\left(V_{i}\right) \leq m / 4+\frac{1}{8}(\sqrt{2 m+1 / 4}-1 / 2)$, and showed that $K_{2 n+1}$ are the only extremal graphs.

In fact, Bollobás and Scott [6] proved that any graph with m edges has a partition V_{1}, V_{2} such that $e\left(V_{1}, V_{2}\right) \geq m / 2+\frac{1}{4}(\sqrt{2 m+1 / 4}-1 / 2)$ and for $i=1,2, e\left(V_{i}\right) \leq m / 4+\frac{1}{8}(\sqrt{2 m+1 / 4}-1 / 2)$. Alon et al. [1] showed that there is a connection between the Maximum Bipartite Subgraph Problem and the Bottleneck Bipartition Problem. More precisely, they proved the following: Let G be a graph with m edges and largest cut of size $m / 2+\delta$. If $\delta \leq m / 30$ then $V(G)$ admits a partition V_{1}, V_{2} such that $e\left(V_{i}\right) \leq m / 4-\delta / 2+10 \delta^{2} / m+3 \sqrt{m}$; and if $\delta \geq m / 30$ then $V(G)$ admits a partition V_{1}, V_{2} such that $e\left(V_{i}\right) \leq m / 4-m / 100$. It would be interesting to know whether this result can be generalized to k-partitions.

One of the early problems about judicious partitions is the conjecture of Bollobás and Thomason (see $[3,5,7,8]$) that if G is an r-uniform hypergraph with m edges then $V(G)$ has a partition into V_{1}, \ldots, V_{r} such that $d\left(V_{i}\right) \geq r m /(2 r-1)$ for $i=1, \ldots, r$, where $d\left(V_{i}\right)$ denotes the number of edges of G meeting V_{i} (i.e., contains at least one vertex of V_{i}). A natural approach to this problem is to find a reasonable partition, and remove vertices of one set and try to partition the remaining vertices into $r-1$ parts in a better way. This approach is used in [7] by Bollobás and Scott to partition 3 -uniform hypergraphs.

In this paper, we study several judicious partition problems about graphs with requirement on edges as well as on vertices, and such problems are called mixed partition problems. We follow Bollobás and Scott [8] to use the term "hypergraphs with edges of size at most 2".

We show in Section 2 that if G is a hypergraph with m_{i} edges of size $i, i=1,2$, then $V(G)$ admits a partition V_{1}, V_{2} such that $d\left(V_{i}\right) \geq m_{1} / 2+3 m_{2} / 4+o\left(m_{2}\right)$ for $i=1,2$. This settles a problem of Bollobás and Scott [8] for large graphs, where they suggest the lower bound $\left(m_{1}-1\right) / 2+2 m_{2} / 3$ as a starting point for a more general problem. Note that if we take a random partition V_{1}, V_{2}, then $\mathbb{E}\left(d\left(V_{i}\right)\right)=m_{1} / 2+3 m_{2} / 4$.

In Section 3 we attempt to generalize the results in Section 2 to k-partitions. In particular, we prove that if $k \geq 3$ and G is a hypergraph with m_{i} edges of size $i, i=1,2$, then $V(G)$ admits a partition V_{1}, \ldots, V_{k} such that $d\left(V_{i}\right) \geq m_{1} / k+m_{2} /(k-1)+o\left(m_{2}\right)$ for $i=1, \ldots, k$. Again, if we take a random partition V_{1}, \ldots, V_{k}, then $\mathbb{E}\left(d\left(V_{i}\right)\right)=m_{1} / k+(2 k-1) m_{2} / k^{2}$. Bollobás and

Scott [7] conjectured that every graph with m edges has a partition into k sets, each meeting at least $2 m /(2 k-1)$ edges. Our result implies this conjecture for large graphs.

In Section 4 we consider a generalization of the Bottleneck Bipartition Problem. We show that if $k \geq 1$ and G is a hypergraph with m_{i} edges of size $i, i=1,2$, then $V(G)$ admits a partition V_{1}, \ldots, V_{k} such that $e\left(V_{i}\right) \leq m_{1} / k+m_{2} / k^{2}+o\left(m_{2}\right)$ for $i=1, \ldots, k$, establishing a conjecture of Bollobás and Scott [8]. Note that for a random partition V_{1}, \ldots, V_{k}, we have $\mathbb{E}\left(e\left(V_{i}\right)\right)=m_{1} / k+m_{2} / k^{2}$. Also when $m_{1}=o\left(m_{2}\right)$ this follows from equation (2) in [8].

The approach we take is similar to that of Bollobás and Scott [5]. We first partition a set of large degree vertices, then establish a random process to partition the remaining vertices, and finally apply a concentration inequality to bound the deviations. The key is to pick the probabilities appropriately so that the expectation of the process will be in a range that we want. This will be achieved by extremal techniques.

Some notation is in order. Let G be a hypergraph and $S \subseteq V(G)$. We use $G[S]$ to denote the subgraph of G consisting of S and all edges of G contained in S. Let A, B be subsets of $V(G)$ or subgraphs of G, we use (A, B) denote the set of edges of G that are contained in $A \cup B$ and intersect both A and B. For a set $X \subseteq V(G)$ we use $d(X)$ to denote the number of edges of G meeting X, i.e., containing at least one member of X.

We will actually prove partition results for weighted graphs. Let G be a graph and let $w: V(G) \cup E(G) \rightarrow \mathbf{R}^{+}$, where \mathbf{R}^{+}is the set of nongentive reals. For $X \subseteq V(G)$ we write

$$
w_{G}(X)=\sum_{u_{i} \in X} w\left(u_{i}\right)+\sum_{\{e \in E(G): e \subseteq X\}} w(e)
$$

and

$$
\tau_{G}(X)=\sum_{u_{i} \in X} w\left(u_{i}\right)+\sum_{\{e \in E(G): e \cap X \neq \emptyset\}} w(e) .
$$

If G is understood, we use $\tau(X), w(X)$ instead of $\tau_{G}(X), w_{G}(X)$, respectively. We point out that if H is an induced subgraph of G, then for any $X \subseteq V(H)$, we have $w_{H}(X)=w_{G}(X)$. Also, note that when $w(e)=1$ for all $e \in E(G)$ and $w(v)=0$ for all $v \in V(G)$, we have $\tau(X)=d(X)$.

2 Bipartitions

In this section we consider the following problem of Bollobás and Scott [8]: Given a hypergraph G with m_{i} edges of size $i, 1 \leq i \leq 2$, does there exist a partition of $V(G)$ into sets V_{1} and V_{2} such that $d\left(V_{i}\right) \geq \frac{m_{1}-1}{2}+\frac{2}{3} m_{2}$ for $i=1,2$. This problem was motivated by the Bollobás-Thomason conjecture on r-uniform hypergraphs. Bollobás and Scott [8] proved that if G is a hypergraph with m_{i} edges of size $i, i=1, \ldots, k$, then $V(G)$ admits a partition V_{1}, V_{2} such that for $i=1,2$,

$$
d\left(V_{i}\right) \geq \frac{m_{1}-1}{3}+\frac{2 m_{2}}{3}+\ldots+\frac{k m_{k}}{k+1} .
$$

They then used this to show that every 3 -uniform hypergraph with m edges can be partitioned into 3 -sets each of which meets at least $5 \mathrm{~m} / 9$ edges.

In [7], Bollobás and Scott suggest that the following might hold: Given a hypergraph G with m_{i} edges of size $i, 1 \leq i \leq k$, there exists a partition of $V(G)$ into sets V_{1}, \ldots, V_{k} such that for $i=1, \ldots, k$,

$$
d\left(V_{i}\right) \geq \frac{m_{1}-1}{2}+\frac{2 m_{2}}{3}+\ldots+\frac{k m_{k}}{k+1} .
$$

In fact, they suggest in [8] that asymptotically the bound may be much larger:

$$
d\left(V_{i}\right) \geq \frac{m_{1}}{2}+\frac{3}{4} m_{2}+\ldots+\left(1-\frac{1}{2^{k}}\right) m_{k}+o\left(m_{1}+\ldots+m_{k}\right) .
$$

In this section we confirm this for $k=2$ (see Theorem 2.4). Note that by taking a random partition V_{1}, \ldots, V_{k}, we have $\mathbb{E}\left(d\left(V_{i}\right)\right)=\frac{m_{1}}{2}+\frac{3}{4} m_{2}+\ldots+\left(1-\frac{1}{2^{k}}\right) m_{k}$.

As mentioned in the previous section, we need a concentration inequality, the Azuma-Heoffding inequality $[2,12]$, to bound deviations. We use the version given in [5].

Lemma 2.1 Let Z_{1}, \ldots, Z_{n} be independent random variables taking values in $\{1, \ldots, k\}$, let $Z:=$ $\left(Z_{1}, \ldots, Z_{n}\right)$, and let $f:\{1, \ldots, k\}^{n} \rightarrow \mathbf{N}$ such that $\left|f(Y)-f\left(Y^{\prime}\right)\right| \leq c_{i}$ for any $Y, Y^{\prime} \in\{1, \ldots, k\}^{n}$ which differ only in the ith coordinate. Then for any $z>0$,

$$
\begin{aligned}
& \mathbb{P}(f(Z) \geq E(f(Z))+z) \leq \exp \left(\frac{-z^{2}}{2 \sum_{i=1}^{k} c_{i}^{2}}\right), \\
& \mathbb{P}(f(Z) \leq E(f(Z))-z) \leq \exp \left(\frac{-z^{2}}{2 \sum_{i=1}^{k} c_{i}^{2}}\right) .
\end{aligned}
$$

We also need a simple lemma to be used to choose probabilities in a random process.
Lemma 2.2 Let $a, b, n \in \mathbf{R}^{+}$with $a+b>0$. Then there exists $p \in[0,1]$ such that

$$
\min \{(n+b) p+a,(n+a)(1-p)+b\} \geq \frac{n}{2}+\frac{3}{4}(a+b)
$$

Proof. Setting $(n+b) p+a=(n+a)(1-p)+b$, we obtain

$$
p=\frac{n+b}{2 n+a+b} ;
$$

and hence

$$
(n+b) p+a=\frac{(n+b)^{2}}{2 n+a+b}+a .
$$

Clearly $p \in[0,1]$. It is straightforward to show that

$$
\frac{(n+b)^{2}}{2 n+a+b}+a-\left(\frac{n}{2}+\frac{3}{4}(a+b)\right)=\frac{(a-b)^{2}}{4(2 n+a+b)} \geq 0 .
$$

Hence, the assertion of the lemma holds.
Remark. We may take $p=\frac{n+b}{2 n+a+b}$ in Lemma 2.2.
We now prove the main result in this section. This is a partition result on weighted graphs. Recall the notation $\tau(X)$ defined in the previous section.

Theorem 2.3 Let G be a graph with n vertices and m edges and let $w: V(G) \cup E(G) \rightarrow \mathbf{R}^{+}$such that $w(e)>0$ for all $e \in E(G)$. Let $\lambda=\max \{w(x): x \in V(G) \cup E(G)\}, w_{1}=\sum_{v \in V(G)} w(v)$, and $w_{2}=\sum_{e \in E(G)} w(e)$. Then there is a partition $V(G)=X \cup Y$ such that

$$
\min \{\tau(X), \tau(Y)\} \geq \frac{1}{2} w_{1}+\frac{3}{4} w_{2}+\lambda \cdot O\left(m^{4 / 5}\right)
$$

Proof. We may assume that G is connected, since otherwise we may simply consider the individual components. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \cdots \geq d\left(v_{n}\right)$.

First, we need to deal with an appropriate number of vertices so that the remaining vertices will have small degree (and hence will be useful when applying the Azuma-Hoeffding inequality in Lemma 2.1). Since G is connected, $n-1 \leq m<\frac{1}{2} n^{2}$. Fix $0<\alpha<\frac{1}{2}$ (to be optimized later), and let $V_{1}=\left\{v_{1}, \ldots, v_{t}\right\}$ such that $t=\left\lfloor m^{\alpha}\right\rfloor$. (Note that, since $\alpha<1 / 2$ and $m<\frac{1}{2} n^{2}$, we have $t<n$.) Then $e\left(V_{1}\right) \leq\binom{ t}{2}<\frac{1}{2} t^{2} \leq \frac{1}{2} m^{2 \alpha}$. Since $\sum_{i=1}^{t+1} d\left(v_{i}\right) \leq 2 m, d\left(v_{t+1}\right) \leq \frac{2 m}{t+1} \leq 2 m^{1-\alpha}$. Let $V_{2}=V(G) \backslash V_{1}$, and rename the vertices in V_{2} as $\left\{u_{1}, u_{2}, \ldots, u_{n-t}\right\}$ such that $e\left(\left\{u_{i}\right\}, V_{1} \cup\right.$ $\left.\left\{u_{1}, \ldots, u_{i-1}\right\}\right)>0$ for $i=1, \ldots, n-t$; which can be done since we assume that G is connected.

We now partition the vertices of G. First, fix a random partition $V_{1}=X_{0} \cup Y_{0}$, and assign color 1 to all vertices in X_{0} and color 2 to all vertices in Y_{0}. The vertices $u_{i} \in V_{2}$ are independently colored 1 with probability p_{i}, and 2 with probability $1-p_{i}$. (The p_{i} 's are constants to be determined recursively.) Let Z_{i} denote the indicator random variable of the event of coloring u_{i}. Hence $Z_{i}=j, j \in\{1,2\}$, iff u_{i} is assigned the color j. When this process stops we obtain a bipartition of $V(G)$ into two sets X, Y, where X consists of all vertices with color 1 and Y consists of all vertices of color 2 (and hence $X_{0} \subseteq X$ and $Y_{0} \subseteq Y$).

We need additional notation to facilitate the choices of $p_{i}(1 \leq i \leq n-t)$, the computations of expectations of $\tau(X)$ and $\tau(Y)$, and the estimations of concentration bounds. Let $G_{i}=$ $G\left[V_{1} \cup\left\{u_{1}, u_{2}, \ldots, u_{i}\right\}\right]$ for $i=1, \ldots, n-t$, let $G_{0}=G\left[V_{1}\right]$, and let the elements of $V\left(G_{i}\right) \cup E\left(G_{i}\right)$ inherit their weights from G. Let $x_{0}=\tau\left(X_{0}\right)$ and $y_{0}=\tau\left(Y_{0}\right)$, and define, for $i=1, \ldots, n-t$,

$$
\begin{aligned}
& X_{i}=\left\{\text { vertices of } G_{i} \text { with color } 1\right\} \\
& Y_{i}=\left\{\text { vertices of } G_{i} \text { with color } 2\right\} \\
& x_{i}=\tau_{G_{i}}\left(X_{i}\right) \\
& y_{i}=\tau_{G_{i}}\left(Y_{i}\right) \\
& \Delta x_{i}=x_{i}-x_{i-1} \\
& \Delta y_{i}=y_{i}-y_{i-1} \\
& a_{i}=\sum_{e \in\left(u_{i}, X_{i-1}\right)} w(e) \\
& b_{i}=\sum_{e \in\left(u_{i}, Y_{i-1}\right)} w(e)
\end{aligned}
$$

Note that x_{i} and y_{i} are random variables determined by $\left(Z_{1}, Z_{2}, \ldots, Z_{i}\right)$; and a_{i} and b_{i} are random variables determined by $\left(Z_{1}, Z_{2}, \ldots, Z_{i-1}\right)$. Thus,

$$
\begin{aligned}
& \mathbb{E}\left(\Delta x_{i} \mid Z_{1}, \ldots, Z_{i-1}\right)=p_{i}\left(w\left(u_{i}\right)+b_{i}\right)+a_{i} \\
& \mathbb{E}\left(\Delta y_{i} \mid Z_{1}, \ldots, Z_{i-1}\right)=\left(1-p_{i}\right)\left(w\left(u_{i}\right)+a_{i}\right)+b_{i}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathbb{E}\left(\Delta x_{i}\right) & =\mathbb{E}\left(\mathbb{E}\left(\Delta x_{i} \mid Z_{1}, \ldots, Z_{i-1}\right)\right) \\
& =\sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right)\left(p_{i}\left(w\left(u_{i}\right)+b_{i}\right)+a_{i}\right) \\
& =p_{i}\left(w\left(u_{i}\right)+\sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) b_{i}\right)+\sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) a_{i} .
\end{aligned}
$$

Similarly,

$$
\mathbb{E}\left(\Delta y_{i}\right)=\left(1-p_{i}\right)\left(w\left(u_{i}\right)+\sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) a_{i}\right)+\sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) b_{i}
$$

Let

$$
\begin{aligned}
\alpha_{i} & =\sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) a_{i} \\
\beta_{i} & =\sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) b_{i}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathbb{E}\left(\Delta x_{i}\right)=p_{i}\left(w\left(u_{i}\right)+\beta_{i}\right)+\alpha_{i} \\
& \mathbb{E}\left(\Delta y_{i}\right)=\left(1-p_{i}\right)\left(w\left(u_{i}\right)+\alpha_{i}\right)+\beta_{i}
\end{aligned}
$$

Note that α_{i}, β_{i} are determined by p_{1}, \ldots, p_{i-1}, since a_{i} and b_{i} are determined by Z_{1}, \ldots, Z_{i-1}. Also note that $e_{i}:=a_{i}+b_{i}=\sum_{e \in\left(u_{i}, G_{i-1}\right)} w(e)$ is the total weight of edges in $\left(u_{i}, V\left(G_{i-1}\right)\right)$, which is independent of Z_{1}, \ldots, Z_{i-1} and is the same in both G and G_{i}. Further, $e_{i}>0$ by our choice of u_{i} and the assumption that $w(e)>0$ for all $e \in E(G)$. Hence,

$$
\begin{aligned}
\alpha_{i}+\beta_{i} & =\sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right)\left(a_{i}+b_{i}\right) \\
& =\sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) e_{i} \\
& =e_{i} \\
& >0
\end{aligned}
$$

Let $p_{i}=\frac{w\left(u_{i}\right)+\beta_{i}}{2 w\left(u_{i}\right)+\alpha_{i}+\beta_{i}}$. Note that p_{i} is recursively defined (by p_{1}, \ldots, p_{i-1}), since α_{i} and β_{i} are determined by p_{1}, \ldots, p_{i-1}. It follows from Lemma 2.2 that $p_{i} \in[0,1]$ and

$$
\min \left\{\mathbb{E}\left(\Delta x_{i}\right), \mathbb{E}\left(\Delta y_{i}\right)\right\} \geq \frac{1}{2} w\left(u_{i}\right)+\frac{3}{4}\left(\alpha_{i}+\beta_{i}\right)=\frac{1}{2} w\left(u_{i}\right)+\frac{3}{4} e_{i}
$$

We can now bound the expectations of x_{n-t} and y_{n-t} :

$$
\begin{aligned}
& \mathbb{E}\left(x_{n-t}\right)=\mathbb{E}\left(x_{0}\right)+\sum_{i=1}^{n-t} \mathbb{E}\left(\Delta x_{i}\right) \geq \mathbb{E}\left(x_{0}\right)+\frac{1}{2} \sum_{i=1}^{n-t} w\left(u_{i}\right)+\frac{3}{4} \sum_{i=1}^{n-t} e_{i} \\
& \mathbb{E}\left(y_{n-t}\right)=\mathbb{E}\left(y_{0}\right)+\sum_{i=1}^{n-t} \mathbb{E}\left(\Delta y_{i}\right) \geq \mathbb{E}\left(y_{0}\right)+\frac{1}{2} \sum_{i=1}^{n-t} w\left(u_{i}\right)+\frac{3}{4} \sum_{i=1}^{n-t} e_{i}
\end{aligned}
$$

Let $X=X_{n-t}$ and $Y=Y_{n-t}$. Then $X \cup Y=V(G)$ and $X \cap Y=\emptyset$. Note that $\tau(X)=$ $x_{n-t}, \tau(Y)=y_{n-t}, \tau\left(X_{0}\right)=x_{0}=\mathbb{E}\left(x_{0}\right)$, and $\tau\left(Y_{0}\right)=y_{0}=\mathbb{E}\left(y_{0}\right)$. Also note that $w_{2}=$ $\sum_{e \subseteq V_{1}} w(e)+\sum_{i=1}^{n-t} e_{i}$. Hence

$$
\begin{aligned}
\mathbb{E}(\tau(X)) & \geq \frac{1}{2}\left(w_{1}-\sum_{i=1}^{t} w\left(v_{i}\right)\right)+\frac{3}{4}\left(w_{2}-\sum_{e \subseteq V_{1}} w(e)\right)+\tau\left(X_{0}\right) \\
& \geq \frac{1}{2} w_{1}+\frac{3}{4} w_{2}-\left(\frac{1}{2} \sum_{i=1}^{t} w\left(v_{i}\right)+\frac{3}{4} \sum_{e \subseteq V_{1}} w(e)\right) \\
& \geq \frac{1}{2} w_{1}+\frac{3}{4} w_{2}-\lambda\left(\frac{1}{2} t+\frac{3}{4} e\left(V_{1}\right)\right) \\
& \geq \frac{1}{2} w_{1}+\frac{3}{4} w_{2}-\lambda\left(\frac{1}{2} m^{\alpha}+\frac{3}{8} m^{2 \alpha}\right)
\end{aligned}
$$

Similarly,

$$
\mathbb{E}(\tau(Y)) \geq \frac{1}{2} w_{1}+\frac{3}{4} w_{2}-\lambda\left(\frac{1}{2} m^{\alpha}+\frac{3}{8} m^{2 \alpha}\right)
$$

Next we show that $\tau(X)$ and $\tau(Y)$ are concentrated around their respective means. Note that changing the color of some u_{i} would affect $\tau(X)$ and $\tau(Y)$ by at most $d\left(u_{i}\right) \lambda+w\left(u_{i}\right) \leq\left(d\left(u_{i}\right)+1\right) \lambda$. Hence by applying Lemma 2.1, we have

$$
\begin{aligned}
\mathbb{P}(\tau(X)<\mathbb{E}(\tau(X))-z) & \leq \exp \left(-\frac{z^{2}}{2 \lambda^{2} \sum_{i=1}^{n-t}\left(d\left(u_{i}\right)+1\right)^{2}}\right) \\
& \leq \exp \left(-\frac{z^{2}}{2 \lambda^{2} \sum_{i=1}^{n-t}\left(d\left(u_{i}\right)+1\right) \cdot\left(d\left(v_{t+1}\right)+1\right)}\right) \\
& <\exp \left(-\frac{z^{2}}{2 \lambda^{2}\left(1+2 m^{1-\alpha}\right) \cdot(2 m+n-1)}\right) \\
& <\exp \left(-\frac{z^{2}}{4 \lambda^{2} 2 m^{1-\alpha} \cdot(2 m+m)}\right) \\
& =\exp \left(-\frac{z^{2}}{24 \lambda^{2} m^{2-\alpha}}\right)
\end{aligned}
$$

Let $z=\lambda \sqrt{24 \ln 2} m^{1-\frac{\alpha}{2}}$. Then

$$
\mathbb{P}(\tau(X)<\mathbb{E}(\tau(X))-z)<\frac{1}{2}
$$

and

$$
\mathbb{P}(\tau(Y)<\mathbb{E}(\tau(Y))-z)<\frac{1}{2} .
$$

So there exists a partition $V(G)=X \cup Y$ such that

$$
\tau(X) \geq \mathbb{E}(\tau(X))-z \geq \frac{1}{2} w_{1}+\frac{3}{4} w_{2}+\lambda \cdot o(m)
$$

and

$$
\tau(Y) \geq \mathbb{E}(\tau(Y))-z \geq \frac{1}{2} w_{1}+\frac{3}{4} w_{2}+\lambda \cdot o(m) .
$$

The $o(m)$ term in the above expressions is

$$
-\left(\frac{1}{2} m^{\alpha}+\frac{3}{8} m^{2 \alpha}+\sqrt{24 \ln 2} m^{1-\frac{\alpha}{2}}\right) .
$$

So picking $\alpha=2 / 5$ to minimize $\max \left\{2 \alpha, 1-\frac{\alpha}{2}\right\}$, we have

$$
\max \{\tau(X), \tau(Y)\} \geq \frac{1}{2} w_{1}+\frac{3}{4} w_{2}+\lambda \cdot O\left(m^{4 / 5}\right) .
$$

When G is a hypergraph with edges of size 1 or 2 , we may view G as a weighted graph with weight function w such that $w(e)=1$ for all $e \in E(G)$ with $|e|=2, w(v)=1$ for all $v \in V(G)$ with $\{v\} \in E(G)$, and $w(v)=0$ for all $v \in V(G)$ with $\{v\} \notin E(G)$. Theorem 2.3 then gives the following result.

Theorem 2.4 Let G be a hypergraph with m_{i} edges of size $i, i=1,2$. Then there is a partition V_{1}, V_{2} of $V(G)$ such that for $i=1,2$,

$$
d\left(V_{i}\right) \geq \frac{1}{2} m_{1}+\frac{3}{4} m_{2}+O\left(m_{2}^{4 / 5}\right) .
$$

As mentioned before a random bipartition shows that the expected value of $d\left(V_{i}\right)$ is $m_{1} / 2+$ $3 m_{2} / 4$.

$3 k$-Partitions - bounding edges meeting each set

In [7], Bollobás and Scott conjecture that every graph with m edges has a partition into k sets each of which meets at least $2 m /(2 k-1)$ edges. Note that in any k-partition of $K_{2 k-1}$, one set consists of just one vertex, which meets $2 m /(2 k-1)$ edges; so the conjectured bound is best possible. For large graphs, it is likely that the bound is much better: a random k-partition V_{1}, \ldots, V_{k} of a graph with m edges shows that $\mathbb{E}\left(d\left(V_{i}\right)\right)=(2 k-1) m / k^{2}$.

For $k=2$, the above conjecture is the $r=2$ case of the Bollobás-Thomason conjecture on r uniform hypergraphs; and it follows from the fact that every graph with m edges has a bipartition V_{1}, V_{2} such that for $i \in\{1,2\}$, each vertex in V_{i} has at least as many neighbors in V_{3-i} as in V_{i}. In this section, we prove this Bollobás-Scott conjecture for graphs when m is sufficiently large.

We use a similar approach as in the previous section, namely: First, partition an appropriate set of vertices of lager degree, then establish a martingale process to bound expectations, and
finally apply the Azuma-Hoeffding inequality to bound deviations. As before, we need to pick probabilities for that process. To this end we need several lemmas. Our first lemma will be used to take care of critical points when applying the method of Lagrange multipliers to optimize a function.

Lemma 3.1 Let $a_{i}=a>0$ for $i=1, \ldots, l$, and let $a_{j}=0$ for $j=l+1, \ldots, k$, where $k \geq l \geq 2$. Let $\delta \geq 0$ and $\alpha_{i}=\left(\sum_{j=1}^{k} a_{j}\right)+\delta-a_{i}$. Then

$$
1+\sum_{i=1}^{k} \frac{a_{i}}{\alpha_{i}} \geq\left(\frac{\delta}{k}+\frac{2 k-1}{k^{2}} \sum_{i=1}^{k} a_{i}\right) \sum_{i=1}^{k} \frac{1}{\alpha_{i}} .
$$

Proof. By the assumptions of the lemma, we have $\alpha_{i}=(l-1) a+\delta>0$ for $1 \leq i \leq l$, and $\alpha_{i}=l a+\delta>0$ for $l+1 \leq i \leq k$. Let

$$
f:=1+\sum_{i=1}^{k} \frac{a_{i}}{\alpha_{i}}-\left(\frac{\delta}{k}+\frac{2 k-1}{k^{2}} \sum_{i=1}^{k} a_{i}\right) \sum_{i=1}^{k} \frac{1}{\alpha_{i}} .
$$

We need to prove $f \geq 0$. For convenience, let $\delta=a \varepsilon$. Then $\varepsilon \geq 0$ and

$$
f=1+\frac{l}{l-1+\varepsilon}-\left(\frac{\varepsilon}{k}+\frac{2 k-1}{k^{2}} l\right)\left(\frac{l}{l-1+\varepsilon}+\frac{k-l}{l+\varepsilon}\right) .
$$

A straightforward calculation shows that

$$
(l-1+\varepsilon)(l+\varepsilon) f=\frac{l}{k^{2}}(k-1)(k-l) \geq 0 .
$$

Hence the assertion of the lemmas holds.
Note that in the lemma below we are unable to gurantee $p_{i} \geq 0$ for all $i=1, \ldots, k$; and hence these p_{i} cannot serve as probabilities in a random process. However, this lemma is needed in order to prove the next lemma.
Lemma 3.2 Let $\delta \geq 0$ and, for $i=1, \ldots$, k, let $a_{i} \geq 0$ and $\alpha_{i}=\left(\sum_{j=1}^{k} a_{j}\right)+\delta-a_{i}$. Then there exist $p_{i}, i=1, \ldots, k$, such that $\sum_{i=1}^{k} p_{i}=1$ and, for $1 \leq i \leq k$,

$$
\alpha_{i} p_{i}+a_{i} \geq \frac{\delta}{k}+\frac{2 k-1}{k^{2}} \sum_{i=1}^{k} a_{i} .
$$

Proof. For convenience let $f_{i}\left(p_{1}, \ldots, p_{k}\right):=\alpha_{i} p_{i}+a_{i}, i=1, \ldots, k$. If $a_{i}=0$ for $i=1, \ldots, k$, then the assertion of the lemma holds by picking $p_{i}=1 / k$ for $i=1, \ldots, k$. So without loss of generality we may assume $a_{1}>0$.

Now assume $a_{i}=0$ for $i=2, \ldots, k$. Then $f_{1}=\delta p_{1}+a_{1}$ and $f_{i}=\left(a_{1}+\delta\right) p_{i}$ for $2 \leq$ $i \leq k$. Setting $f_{i}=f_{1}$ for $i=2, \ldots, k$, we get $p_{i}=\frac{\delta p_{1}+a_{1}}{a_{1}+\delta}$. Setting $\sum_{i=1}^{k} p_{i}=1$, we have $p_{1}=\frac{(2-k) a_{1}+\delta}{a_{1}+k \delta}$. Hence for $i=1, \ldots, k$,

$$
f_{i}=\delta p_{1}+a_{1}=\frac{\left(\delta+a_{1}\right)^{2}}{a_{1}+k \delta}
$$

and so,

$$
f_{i}-\left(\frac{\delta}{k}+\frac{2 k-1}{k^{2}} \sum_{i=1}^{k} a_{i}\right)=\frac{(k-1)^{2} a_{1}^{2}}{\left(a_{1}+k \delta\right) k^{2}} \geq 0 .
$$

Therefore, we may further assume that $a_{2}>0$. Hence $\alpha_{i}>0$ for all $i=1, \ldots, k$. Setting $f_{i}=f_{1}$ for $i=2, \ldots, k$, we get $p_{i}=\frac{\alpha_{1} p_{1}+a_{1}-a_{i}}{\alpha_{i}}$ for $i=1, \ldots, k$. Requiring $\sum_{i=1}^{k} p_{i}=1$ and noting that $a_{i}-a_{1}=\alpha_{1}-\alpha_{i}$ for $1 \leq i \leq k$, we have

$$
p_{1}=\frac{1+\sum_{i=1}^{k} \frac{a_{i}-a_{1}}{\alpha_{i}}}{\alpha_{1} \sum_{i=1}^{k} \frac{1}{\alpha_{i}}}=\frac{1+\sum_{i=1}^{k} \frac{\alpha_{1}-\alpha_{i}}{\alpha_{i}}}{\alpha_{1} \sum_{i=1}^{k} \frac{1}{\alpha_{i}}}=1-\frac{k-1}{\alpha_{1} \sum_{i=1}^{k} \frac{1}{\alpha_{i}}} .
$$

Indeed, for $j=1, \ldots, k$,

$$
p_{j}=1-\frac{k-1}{\alpha_{j} \sum_{i=1}^{k} \frac{1}{\alpha_{i}}} .
$$

Note that $\alpha_{j}+a_{j}=\alpha_{i}+a_{i}$ for any $1 \leq i, j \leq k$. Hence for $j=1,2, \ldots, k$, we have

$$
\begin{aligned}
f_{j} & =\alpha_{j} p_{j}+a_{j} \\
& =\frac{\sum_{i=1}^{k} \frac{\alpha_{j}+a_{j}}{\alpha_{i}}-(k-1)}{\sum_{i=1}^{k} \frac{1}{\alpha_{i}}} \\
& =\frac{\sum_{i=1}^{k} \frac{\alpha_{i}+a_{i}}{\alpha_{i}}-(k-1)}{\sum_{i=1}^{k} \frac{1}{\alpha_{i}}} \\
& =\frac{1+\sum_{i=1}^{k} \frac{a_{i}}{\alpha_{i}}}{\sum_{i=1}^{k} \frac{1}{\alpha_{i}}} .
\end{aligned}
$$

Now define

$$
f\left(a_{1}, a_{2}, \ldots, a_{k}\right):=1+\sum_{i=1}^{k} \frac{a_{i}}{\alpha_{i}}-\left(\frac{\delta}{k}+\frac{2 k-1}{k^{2}} \sum_{i=1}^{k} a_{i}\right) \sum_{i=1}^{k} \frac{1}{\alpha_{i}} .
$$

To complete the proof of this lemma, we need to show $f\left(a_{1}, \ldots, a_{k}\right) \geq 0$.
Case 1. $\delta=0$.

Then $\alpha_{i}+a_{i}=\sum_{j=1}^{k} a_{j}$ for $i=1, \ldots, k$. Set $\alpha=\sum_{j=1}^{k} a_{j}$; then $\sum_{i=1}^{k} \alpha_{i}=(k-1) \alpha$. Moreover,

$$
\begin{aligned}
f\left(a_{1}, \ldots, a_{k}\right) & =1+\sum_{i=1}^{k} \frac{a_{i}}{\alpha_{i}}-\frac{(2 k-1) \alpha}{k^{2}} \sum_{i=1}^{k} \frac{1}{\alpha_{i}} \\
& =1+\sum_{i=1}^{k} \frac{\alpha-\alpha_{i}}{\alpha_{i}}-\frac{(2 k-1) \alpha}{k^{2}} \sum_{i=1}^{k} \frac{1}{\alpha_{i}} \\
& =\frac{(k-1)^{2} \alpha}{k^{2}} \sum_{i=1}^{k} \frac{1}{\alpha_{i}}-(k-1) \\
& \geq \frac{(k-1)^{2} \alpha}{k^{2}} \frac{k^{2}}{\sum_{i=1}^{k} \alpha_{i}}-(k-1) \\
& =0 .
\end{aligned}
$$

Here the inequality follws from Cauchy-Schwarz, and the last equality follows from the fact that $\sum_{i=1}^{k} \alpha_{i}=(k-1) \alpha$.

Case 2. $\delta>0$.
Then $\alpha_{i}>0$ for $i=1, \ldots, k$. (So in this case we need not require $a_{1}>0$ and $a_{2}>0$.) Set $\alpha=\sum_{j=1}^{k} a_{j}$.

Let $g_{l}\left(a_{1}, \ldots, a_{l}\right)=f\left(a_{1}, \ldots, a_{l}, 0, \ldots, 0\right)$. It then suffices to show that $g_{l}\left(a_{1}, \ldots, a_{l}\right) \geq 0$ on the domain $D_{l}:=[0, \alpha]^{l}$ for $l=1, \ldots, k$.

First, we prove that for $l \in\{1, \ldots, k\}, g_{l} \geq 0$ at all possible critical points of g_{l} in D_{l}, subject to $\sum_{j=1}^{k} a_{j}-\alpha=0$. For $j=1, \ldots, l$,

$$
\frac{\partial g_{l}}{\partial a_{j}}=-\sum_{i=1}^{k} \frac{a_{i}}{\alpha_{i}^{2}}+\frac{a_{j}}{\alpha_{j}^{2}}+\frac{1}{\alpha_{j}}+\frac{\delta}{k}\left(\sum_{i=1}^{k} \frac{1}{\alpha_{i}^{2}}-\frac{1}{\alpha_{j}^{2}}\right)-\frac{2 k-1}{k^{2}}\left(\sum_{i=1}^{k} \frac{1}{\alpha_{i}}-\sum_{i=1}^{k} a_{i} \sum_{i=1}^{k} \frac{1}{\alpha_{i}^{2}}+\sum_{i=1}^{k} \frac{a_{i}}{\alpha_{j}^{2}}\right) .
$$

Using the method of Lagrange multipliers, we have $\frac{\partial g_{l}}{\partial a_{j}}=\lambda$ for all $j=1, \ldots, l$. So $\frac{\partial g_{l}}{\partial a_{j}}=\frac{\partial g_{l}}{\partial a_{1}}$, which gives

$$
\frac{a_{j}}{\alpha_{j}^{2}}+\frac{1}{\alpha_{j}}-\frac{\delta}{k} \frac{1}{\alpha_{j}^{2}}-\frac{2 k-1}{k^{2}} \sum_{i=1}^{k} \frac{a_{i}}{\alpha_{j}^{2}}=\frac{a_{1}}{\alpha_{1}^{2}}+\frac{1}{\alpha_{1}}-\frac{\delta}{k} \frac{1}{\alpha_{1}^{2}}-\frac{2 k-1}{k^{2}} \sum_{i=1}^{k} \frac{a_{i}}{\alpha_{1}^{2}} .
$$

Since $\alpha_{j}+a_{j}=\alpha_{1}+a_{1}=\sum_{i=1}^{k} a_{i}+\delta$, we have

$$
\frac{1}{\alpha_{j}^{2}}\left(\frac{(k-1)^{2}}{k^{2}} \sum_{i=1}^{n} a_{i}+\frac{k-1}{k} \delta\right)=\frac{1}{\alpha_{1}^{2}}\left(\frac{(k-1)^{2}}{k^{2}} \sum_{i=1}^{n} a_{i}+\frac{k-1}{k} \delta\right) .
$$

Hence $1 / \alpha_{j}^{2}=1 / \alpha_{1}^{2}$ for all $j=1, \ldots, l$. Therefore, $\alpha_{j}=\alpha_{1}$ for $j=1, \ldots, l$, which implies $a_{j}=a_{1}$ for $j=1, \ldots, l$. It follows from Lemma 3.1 that $g_{l} \geq 0$ at all possible critical points of g_{l} in $[0, \alpha]^{l}$.

We now show that $g_{l} \geq 0$ on $[0, \alpha]^{l}$ by applying induction on l. Suppose $l=1$. Then $\alpha=a_{1}$. So $\alpha_{1}=\delta$, and $\alpha_{i}=a_{1}+\delta$ for $i=2, \ldots, k$. Hence

$$
g_{1}\left(a_{1}\right)=1+\frac{a_{1}}{\delta}-\left(\frac{\delta}{k}+\frac{(2 k-1) a_{1}}{k^{2}}\right)\left(\frac{1}{\delta}+\frac{k-1}{a_{1}+\delta}\right)=\frac{(k-1)^{2}}{k^{2}}\left(\frac{a_{1}^{2}}{\delta\left(a_{1}+\delta\right)}\right) \geq 0
$$

So we may assume $l \geq 2$ and $g_{i} \geq 0$ for all $i=1, \ldots, l-1$. We now show $g_{l} \geq 0$ on the domain $[0, \alpha]^{l}$ by proving it for all points in the boundary of $[0, \alpha]^{l}$ (since $g_{l} \geq 0$ at all possible critical points of $\left.g_{l}\right)$. Let $\left(a_{1}, \ldots, a_{l}\right)$ be in the boundary of $[0, \alpha]^{l}$. Then $a_{j}=0$ or $a_{j}=\alpha$ for some $j \in\{1, \ldots, l\}$. Note that g_{l} is a symmetric function. So we may assume without loss of generality that $a_{l}=0$ or $a_{1}=\alpha$. If $a_{l}=0$ then $g_{l}\left(a_{1}, \ldots, a_{l}\right)=g_{l-1}\left(a_{1}, \ldots, a_{l-1}\right) \geq 0$ by induction hypothesis. If $a_{1}=\alpha$ then $a_{j}=0$ for $j=2, \ldots, l$, and so, $g_{l}\left(a_{1}, \ldots, a_{l}\right)=g_{1}\left(a_{1}\right) \geq 0$. Again, we have $g_{l}\left(a_{1}, \ldots, a_{l}\right) \geq 0$.

Note that, in the proof of Lemma 3.2, when $\alpha_{i}>0$ for all $1 \leq i \leq k$ we have

$$
p_{j}=1-\frac{k-1}{\alpha_{j} \sum_{i=1}^{k} \frac{1}{\alpha_{i}}}
$$

for $j=1, \ldots, k$, which may be negative. We now apply Lemma 3.2 to prove the next result which gives the p_{i} 's needed in a random process.

Lemma 3.3 Let $\delta \geq 0$. For $i=1, \ldots, k$, where $k \geq 3$, let $a_{i} \geq 0$ and $\alpha_{i}=\left(\sum_{j=1}^{k} a_{j}\right)+\delta-a_{i}$. Then there exist $p_{i} \in[0,1], 1 \leq i \leq k$, such that $\sum_{i=1}^{k} p_{i}=1$ and for $1 \leq i \leq k$,

$$
\alpha_{i} p_{i}+a_{i} \geq \frac{\delta}{k}+\frac{1}{k-1} \sum_{i=1}^{k} a_{i} .
$$

Proof. If $a_{i}=0$ for $1 \leq i \leq k$, then $\alpha_{i}=\delta$ for $1 \leq i \leq k$, and it is easy to check that the assertion of the lemma holds by taking $p_{i}=1 / k, i=1, \ldots, k$. So we may assume without loss of generality that $a_{1}>0$. If $a_{i}=0$ for $2 \leq i \leq k$ and $\delta=0$, then $\alpha_{1}=0$ and $\alpha_{i}=a_{1}$ for $2 \leq i \leq k$; and the assertion of the lemma holds by setting $p_{1}=0$ and $p_{i}=\frac{1}{k-1}$ for $i=2, \ldots, k$. Therefore, we may further assume that $a_{2}>0$ or $\delta>0$. As a consequence, we have $\alpha_{i}>0$ for $1 \leq i \leq k$.

We prove the assertion of this lemma by induction on k. For $1 \leq i \leq k$, let

$$
f_{i}\left(p_{1}, \ldots, p_{k}\right):=\alpha_{i} p_{i}+a_{i} .
$$

For $k=3$, it follows from Lemma 3.2 (and the remark following its proof) that there exist $p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}$ such that $p_{1}^{\prime}+p_{2}^{\prime}+p_{3}^{\prime}=1$ and for $i=1,2,3$,

$$
p_{i}^{\prime}=1-\frac{2}{\alpha_{i} \sum_{i=1}^{3} \frac{1}{\alpha_{j}}} \text { and } f_{i}\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}\right) \geq \frac{\delta}{3}+\frac{5}{9} \sum_{i=1}^{3} a_{i}
$$

If $p_{i}^{\prime} \geq 0$ for $i=1,2,3$, then the assertion of the lemma holds by taking $p_{i}:=p_{i}^{\prime}, i=1,2,3$. So we may assume without loss of generality that $p_{3}^{\prime}<0$, which implies $a_{3}>\alpha_{3} p_{3}^{\prime}+a_{3}=f_{3}\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}\right) \geq$ $\frac{\delta}{3}+\frac{5}{9} \sum_{i=1}^{3} a_{i}$. By Lemma $2.2\left(\right.$ with $\left.n:=a_{3}+\delta\right)$, there exist $p_{1}, p_{2} \in[0,1]$ such that $p_{1}+p_{2}=1$ and

$$
\begin{aligned}
& f_{1}\left(p_{1}, p_{2}, 0\right)=\left(a_{2}+a_{3}+\delta\right) p_{1}+a_{1} \geq \frac{a_{3}+\delta}{2}+\frac{3}{4}\left(a_{1}+a_{2}\right), \\
& f_{2}\left(p_{1}, p_{2}, 0\right)=\left(a_{1}+a_{3}+\delta\right) p_{2}+a_{2} \geq \frac{a_{3}+\delta}{2}+\frac{3}{4}\left(a_{1}+a_{2}\right) .
\end{aligned}
$$

Now, let $p_{3}=0$. Then $p_{1}+p_{2}+p_{3}=1, p_{i} \in[0,1]$ for all $1 \leq i \leq 3$, and

$$
\begin{aligned}
f_{1}\left(p_{1}, p_{2}, p_{3}\right)=\alpha_{1} p_{1}+a_{1} & \geq \frac{\delta}{3}+\frac{1}{2}\left(a_{1}+a_{2}+a_{3}\right), \\
f_{2}\left(p_{1}, p_{2}, p_{3}\right)=\alpha_{2} p_{2}+a_{2} & \geq \frac{\delta}{3}+\frac{1}{2}\left(a_{1}+a_{2}+a_{3}\right), \\
f_{3}\left(p_{1}, p_{2}, p_{3}\right)=a_{3} & \geq \frac{\delta}{3}+\frac{1}{2}\left(a_{1}+a_{2}+a_{3}\right) .
\end{aligned}
$$

Hence Lemma 3.3 holds for $k=3$.
Now let $n \geq 3$ be an integer, and assume that the assertion of the lemma holds when $k=n$. We prove the assertion of the lemma also holds when $k=n+1$. By Lemma 3.2 (and the remark following its proof), there exist $p_{i}^{\prime}, 1 \leq i \leq n+1$, such that $\sum_{i=1}^{n+1} p_{i}^{\prime}=1$ and for $i=1, \ldots, n+1$,

$$
p_{i}^{\prime}=1-\frac{n}{\alpha_{i} \sum_{j=1}^{n+1} \frac{1}{\alpha_{j}}} \leq 1,
$$

and

$$
f_{i}\left(p_{1}^{\prime}, \ldots, p_{n+1}^{\prime}\right) \geq \frac{\delta}{n+1}+\frac{2 n+1}{(n+1)^{2}} \sum_{i=1}^{n+1} a_{i} .
$$

If $p_{i}^{\prime} \geq 0$ for $1 \leq i \leq n+1$, then let $p_{i}:=p_{i}^{\prime}$; and the lemma holds (since $\frac{2 n+1}{(n+1)^{2}}>\frac{1}{n}$ when $n \geq 3$). So we may assume without loss of generality that $p_{n+1}^{\prime}<0$. Then

$$
\begin{aligned}
a_{n+1} & >\alpha_{n+1} p_{n+1}^{\prime}+a_{n+1} \\
& =f_{n+1}\left(p_{1}^{\prime}, \ldots, p_{n+1}^{\prime}\right) \\
& \geq \frac{\delta}{n+1}+\frac{2 n+1}{(n+1)^{2}} \sum_{i=1}^{n+1} a_{i} \\
& \geq \frac{\delta}{n+1}+\frac{1}{n} \sum_{i=1}^{n+1} a_{i}
\end{aligned}
$$

Let $\delta^{\prime}=\delta+a_{n+1}$. Then for $1 \leq i \leq n$ we have $\alpha_{i}=\left(\sum_{j=1}^{n} a_{j}\right)+\delta^{\prime}-a_{i}$. Hence by the induction hypothesis, there exist $p_{i} \in[0,1], 1 \leq i \leq n$, such that $\sum_{i=1}^{n} p_{i}=1$ and, for $i=1, \ldots, n$,

$$
\begin{aligned}
\alpha_{i} p_{i}+a_{i} & \geq \frac{\delta^{\prime}}{n}+\frac{1}{n-1} \sum_{i=1}^{n} a_{i} \\
& =\frac{\delta}{n}+\frac{a_{n+1}}{n}+\frac{1}{n-1} \sum_{i=1}^{n} a_{i} \\
& \geq \frac{\delta}{n+1}+\frac{1}{n} \sum_{i=1}^{n+1} a_{i} .
\end{aligned}
$$

Let $p_{n+1}=0$. Then $\sum_{i=1}^{n+1} p_{i}=1$ and $p_{i} \in[0,1]$ for all $1 \leq i \leq n+1$. Also,

$$
\begin{aligned}
& f_{i}\left(p_{1}, \ldots, p_{n+1}\right) \geq \frac{\delta}{n+1}+\frac{1}{n} \sum_{i=1}^{n+1} a_{i}, \text { for } 1 \leq i \leq n, \\
& f_{n+1}\left(p_{1}, \ldots, p_{n+1}\right)=a_{n+1} \geq \frac{\delta}{n+1}+\frac{1}{n} \sum_{i=1}^{n+1} a_{i} .
\end{aligned}
$$

Hence, Lemma 3.3 holds for $k=n+1$, completing the proof of this lemma.
We can now prove the following partition result on weighted graphs.
Theorem 3.4 Let $k \geq 3$ be an integer, let G be a graph with m edges, and let $w: V(G) \cup$ $E(G) \rightarrow \mathbf{R}^{+}$such that $w(e)>0$ for all $e \in E(G)$. Let $\lambda=\max \{w(x): x \in V(G) \cup E(G)\}$, $w_{1}=\sum_{v \in V(G)} w(v)$ and $w_{2}=\sum_{e \in E(G)} w(e)$. Then there is a partition U_{1}, \ldots, U_{k} of $V(G)$ such that for $1 \leq i \leq k$,

$$
\tau\left(U_{i}\right) \geq \frac{1}{k} w_{1}+\frac{1}{k-1} w_{2}+\lambda \cdot O\left(m^{4 / 5}\right) .
$$

Proof. We may assume that G is connected. We use the same notation as in the proof of Theorem 2.3. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ such that $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \ldots \geq d\left(v_{n}\right)$. Let $V_{1}=\left\{v_{1}, \ldots, v_{t}\right\}$ with $t=\left\lfloor m^{\alpha}\right\rfloor$, where $0<\alpha<1 / 2$; and let $V_{2}:=V(G) \backslash V_{1}=\left\{u_{1}, \ldots, u_{n-t}\right\}$ such that $e\left(u_{i}, V_{1} \cup\left\{u_{1}, \ldots, u_{i-1}\right\}\right)>0$ for $i=1, \ldots, n-t$. Then $e\left(V_{1}\right) \leq \frac{1}{2} m^{2 \alpha}$ and $d\left(v_{t+1}\right) \leq 2 m^{1-\alpha}$.

Fix a random partition $V_{1}=Y_{1} \cup Y_{2} \cup \cdots \cup Y_{k}$ and, for each $i \in\{1, \ldots, k\}$, assign the color i to all vertices in Y_{i}. We extend this coloring to $V(G)$ such that each vertex $u_{i} \in V_{2}$ is independently assigned the color j with probability p_{j}^{i}, where $\sum_{j=1}^{k} p_{j}^{i}=1$. Let Z_{i} be the indicator random variable of the event of coloring u_{i}, i.e., $Z_{i}=j$ iff u_{i} is colored j. Let $G_{i}=G\left[V_{1} \cup\left\{u_{1}, \cdots, u_{i}\right\}\right]$ for $i=1, \ldots, n-t$, and let $G_{0}=G\left[V_{1}\right]$. Let $X_{j}^{0}=Y_{j}$ and $x_{j}^{0}=\tau\left(X_{j}^{0}\right)$, and for $i=1, \ldots, n-t$ and $j=1, \ldots, k$, define

$$
\begin{aligned}
& X_{j}^{i}=\left\{\text { vertices of } G_{i} \text { with color } j\right\}, \\
& x_{j}^{i}=\tau_{G_{i}}\left(X_{j}^{i}\right), \\
& \Delta x_{j}^{i}=x_{j}^{i}-x_{j}^{i-1}, \\
& a_{j}^{i}=\sum_{e \in\left(u_{i}, X_{j}^{i-1}\right)} w(e) .
\end{aligned}
$$

Note that a_{l}^{i} is a random variable determined by $\left(Z_{1}, \ldots, Z_{i-1}\right)$. Hence, for $1 \leq i \leq n-t$ and $1 \leq j \leq k$,

$$
\mathbb{E}\left(\Delta x_{j}^{i} \mid Z_{1}, \ldots, Z_{i-1}\right)=p_{j}^{i}\left(\sum_{l=1}^{k} a_{l}^{i}+w\left(u_{i}\right)-a_{j}^{i}\right)+a_{j}^{i} .
$$

So

$$
\mathbb{E}\left(\Delta x_{j}^{i}\right)=p_{j}^{i}\left(\sum_{l=1}^{k} b_{l}^{i}+w\left(u_{i}\right)-b_{j}^{i}\right)+b_{j}^{i},
$$

where for $1 \leq l \leq k$,

$$
b_{l}^{i}=\sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) a_{l}^{i}
$$

Since a_{l}^{i} is determined by $\left(Z_{1}, \ldots, Z_{i-1}\right), b_{l}^{i}$ is determined by $p_{j}^{s}, 1 \leq s \leq i-1$ and $1 \leq j \leq k$.
By Lemma 3.3 (with $\delta=w\left(u_{i}\right)$), there exist $p_{j}^{i} \in[0,1], 1 \leq j \leq k$, such that $\sum_{j=1}^{k} p_{j}^{i}=1$ and

$$
\mathbb{E}\left(\Delta x_{j}^{i}\right) \geq \frac{w\left(u_{i}\right)}{k}+\frac{1}{k-1} \sum_{j=1}^{k} b_{j}^{i} .
$$

Clearly, each p_{j}^{i} is dependent only on $b_{l}^{i}, 1 \leq l \leq k$, and hence is determined (recursively) by p_{l}^{s}, $1 \leq l \leq k$ and $1 \leq s \leq i-1$. Note that $e_{i}:=\sum_{j=1}^{k} a_{j}^{i}=\sum_{e \in\left(u_{i}, G_{i-1}\right)} w(e)$ is the total weight of the edges in $\left(u_{i}, G_{i-1}\right)$, which is independent of Z_{1}, \ldots, Z_{n-t}. Thus,

$$
\begin{aligned}
\mathbb{E}\left(\Delta x_{j}^{i}\right) & \geq \frac{w\left(u_{i}\right)}{k}+\frac{1}{k-1} \sum_{j=1}^{k} \sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) a_{j}^{i} \\
& =\frac{w\left(u_{i}\right)}{k}+\frac{1}{k-1} \sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)}\left(\mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) \sum_{j=1}^{k} a_{j}^{i}\right) \\
& =\frac{w\left(u_{i}\right)}{k}+\frac{1}{k-1} \sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) e_{i} \\
& =\frac{w\left(u_{i}\right)}{k}+\frac{1}{k-1} e_{i} .
\end{aligned}
$$

Therfore, noting that $w_{2}=\sum_{e \subseteq V_{1}} w(e)+\sum_{i=1}^{n-t} e_{i}$, we have

$$
\begin{aligned}
\mathbb{E}\left(x_{j}^{n-t}\right) & =\sum_{i=1}^{n-t} \mathbb{E}\left(\Delta x_{j}^{i}\right)+\mathbb{E}\left(x_{j}^{0}\right) \\
& \geq \frac{1}{k} \sum_{i=1}^{n-t} w\left(u_{i}\right)+\frac{1}{k-1} \sum_{i=1}^{n-t} e_{i}+x_{j}^{0} \\
& \geq \frac{1}{k}\left(w_{1}-\sum_{i=1}^{t} w\left(v_{i}\right)\right)+\frac{1}{k-1}\left(w_{2}-\sum_{e \subseteq V_{1}} w(e)\right) \\
& \geq \frac{1}{k} w_{1}+\frac{1}{k-1} w_{2}-\left(\frac{1}{k} \sum_{i=1}^{t} w\left(v_{i}\right)+\frac{1}{k-1} \sum_{e \subseteq V_{1}} w(e)\right) \\
& \geq \frac{1}{k} w_{1}+\frac{1}{k-1} w_{2}-\lambda\left(\frac{1}{k} t+\frac{1}{k-1} e\left(V_{1}\right)\right) .
\end{aligned}
$$

Now changing the color of u_{i} only affects x_{j}^{n-t} by at most $d\left(u_{i}\right) \lambda+w\left(u_{i}\right) \leq\left(d\left(u_{i}\right)+1\right) \lambda$. Hence, as in the proof of Theorem 2.3 we apply Lemma 2.1 to conclude that for $j=1, \ldots, k$,

$$
\mathbb{P}\left(x_{j}^{n-t}\right)<\mathbb{E}\left(x_{j}^{n-t}\right)-z \leq \exp \left(-\frac{z^{2}}{24 \lambda^{2} m^{2-\alpha}}\right) .
$$

Pick $z=\sqrt{24 \ln k} m^{1-\frac{\alpha}{2}}$; then

$$
\mathbb{P}\left(x_{j}^{n-t}<\mathbb{E}\left(x_{j}^{n-t}\right)-z\right)<\exp (-\ln k)=\frac{1}{k} .
$$

So there exists a partition $V(G)=X_{1} \cup X_{2} \cup \cdots \cup X_{k}$ such that for $j=1, \ldots, k$,

$$
\begin{aligned}
\tau\left(X_{j}\right) & \geq \mathbb{E}\left(x_{j}^{n-t}\right)-z \\
& \geq \frac{1}{k} w_{1}+\frac{1}{k-1} w_{2}-\lambda\left(\frac{1}{k} t+\frac{1}{k-1} e\left(V_{1}\right)\right)-z \\
& \geq \frac{1}{k} w_{1}+\frac{1}{k-1} w_{2}+\lambda \cdot o(m),
\end{aligned}
$$

where the $o(m)$ term in the expression is

$$
-\left(\frac{1}{k} m^{\alpha}+\frac{1}{2(k-1)} m^{2 \alpha}+\sqrt{24 \ln k} m^{1-\frac{\alpha}{2}}\right) .
$$

Picking $\alpha=\frac{2}{5}$ to minimize $\max \{2 \alpha, 1-\alpha / 2\}$, the $o(m)$ term becomes $O\left(m^{\frac{4}{5}}\right)$.
Suppose G is a hypergraph whose edges have size 1 or 2 . We may view G as a weighted graph with weight function w such that $w(e)=1$ for all $e \in E(G)$ with $|e|=2, w(v)=1$ for all $v \in V(G)$ with $\{v\} \in E(G)$, and $w(v)=0$ for all $v \in V(G)$ with $\{v\} \notin E(G)$. Theorem 3.4 then gives the following result.

Theorem 3.5 Let $k \geq 3$ be an integer and let G be a hypergraph with m_{i} edges of size $i, i=1,2$. Then there is a partition V_{1}, \ldots, V_{k} of $V(G)$ such that for $i=1, \ldots, k$,

$$
d\left(V_{i}\right) \geq \frac{m_{1}}{k}+\frac{m_{2}}{k-1}+O\left(m_{2}^{4 / 5}\right) .
$$

Note that if X_{1}, \ldots, X_{k} is a random k-partition in a hypergraph with m_{i} edges of size i for $i=1,2$, then $\mathbb{E}\left(d\left(X_{i}\right)\right)=m_{1} / k+(2 k-1) m_{2} / k^{2}$.

We have the following corollary, which establishes a conjecture of Bollobás and Scott [7] for large graphs.

Corollary 3.6 Let G be a graph with m edges and let $k \geq 3$ be an integer. Then there is an integer $f(k)$ such that if $m \geq f(k)$ then $V(G)$ has a partition V_{1}, \ldots, V_{k} such that $d\left(V_{i}\right) \geq 2 m /(2 k-1)$ for $i=1, \ldots, k$.

Note that our proof of Theorem 3.4 gives $f(k)=O\left(k^{10}(\log k)^{5 / 2}\right)$.

$4 \quad k$-Partitions - bounding edges inside each set

Bollobás and Scott [4] proved that every graph with m edges can be partitioned into k sets each of which contains at most $m /\binom{k+1}{2}$ edges, with K_{k+1} as the unique extremal graph. For large graphs, they prove in [6] that this bound can be improved to $(1+o(1)) m / k^{2}$.

Bollobás and Scott conjecture in [8] that any hypergraph with m_{i} edges of size $i, i=1,2$, admits a partition into k sets each of which contains at most $m_{1} / k+m_{2} /\binom{k+1}{2}+O(1)$ edges. We now prove this conjecture, using a similar approach as before. The following two lemmas will enable us to choose appropriate probabilities in a random process.

Lemma 4.1 Let $\delta \geq 0$ and, for integers $k \geq l \geq 1$, let $a_{i}=a>0$ for $i=1, \ldots, l$ and $a_{j}=0$ for $j=l+1, \ldots, k$. Suppose $\delta+a_{i}>0$ for all $1 \leq i \leq k$. Then

$$
\frac{1}{\sum_{i=1}^{k} \frac{1}{\delta+a_{i}}} \leq \frac{\delta}{k}+\frac{1}{k^{2}} \sum_{i=1}^{k} a_{i} .
$$

Proof. If $l=k$ then the inequality holds with equality (both sides equal to $(\delta+a) / k)$. So we may assume $k>l$. Then $\delta>0$, since $\delta+a_{k}>0$ by assumption. Thus $\sum_{i=1}^{k} \frac{1}{\delta+a_{i}}=\frac{l}{\delta+a}+\frac{k-l}{\delta}$ and $\sum_{i=1}^{k} a_{i}=l a$. Hence

$$
\frac{1}{\sum_{i=1}^{k} \frac{1}{\delta+a_{i}}}-\left(\frac{\delta}{k}+\frac{1}{k^{2}} \sum_{i=1}^{k} a_{i}\right)=\frac{-l(k-l) a^{2}}{k^{2}(k \delta+(k-l) a)} \leq 0 .
$$

Thus the assertion of the lemma holds.
Lemma 4.2 Let $\delta \geq 0$ and let $a_{i} \geq 0$ for $i=1, \ldots, k$. Then there exist $p_{i} \in[0,1], i=1, \ldots, k$, such that $\sum_{i=1}^{k} p_{i}=1$ and, for $1 \leq i \leq k$,

$$
\left(\delta+a_{i}\right) p_{i} \leq \frac{\delta}{k}+\frac{1}{k^{2}} \sum_{i=1}^{k} a_{i} .
$$

Proof. If there exists some $1 \leq i \leq k$ such that $\delta+a_{i}=0$, then $\delta=a_{i}=0$. In this case let $p_{i}=1$ and $p_{j}=0$ for $j \neq i, 1 \leq j \leq k$. Then $\left(\delta+a_{i}\right) p_{i}=0$ for $i=1, \ldots, k$; and clearly the assertion of the lemma holds.

Therefore, we may assume that $\delta+a_{i}>0,1 \leq i \leq k$. Setting $\left(\delta+a_{i}\right) p_{i}=\left(\delta+a_{1}\right) p_{1}$ for $i=2, \ldots, k$, we have $p_{i}=\frac{\delta+a_{1}}{\delta+a_{i}} p_{1}$. Requiring $\sum_{i=1}^{k} p_{i}=1$ we have

$$
\left(\delta+a_{1}\right) p_{1} \sum_{i=1}^{k} \frac{1}{\delta+a_{i}}=1 .
$$

Hence for $i=1, \ldots, k$,

$$
\left(\delta+a_{i}\right) p_{i}=\frac{1}{\sum_{i=1}^{k} \frac{1}{\delta+a_{i}}}
$$

Let

$$
f\left(a_{1}, a_{2}, \ldots, a_{k}\right):=\frac{1}{\sum_{i=1}^{k} \frac{1}{\delta+a_{i}}}-\left(\frac{\delta}{k}+\frac{1}{k^{2}} \sum_{i=1}^{k} a_{i}\right) .
$$

We need to show $f \leq 0$. This is clear if $a_{i}=0$ for $i=1, \ldots, k$, since $f(0, \ldots, 0)=0$. Set $\alpha=\sum_{j=1}^{k} a_{j}$.

Let $g_{l}\left(a_{1}, \ldots, a_{l}\right):=f\left(a_{1}, \ldots, a_{l}, 0, \ldots, 0\right)$ for $l=1, \ldots, k$. We now show that $g_{l} \leq 0$ on $D_{l}:=[0, \alpha]^{l}$ for all $1 \leq l \leq k$; and hence $f=g_{k} \leq 0$. We apply induction on l.

Suppose $l=1$. Clearly, $g_{1}(0)=f(0,0, \ldots, 0)=0$; and if $a_{1}=a>0$ then by Lemma 4.1, $g_{1}\left(a_{1}\right)=f\left(a_{1}, 0, \ldots, 0\right) \leq 0$.

Therefore, we may assume $l \geq 2$. It suffices to prove $g_{l}\left(a_{1}, \ldots, a_{l}\right) \leq 0$ for all points $\left(a_{1}, \ldots, a_{l}\right)$ that are on the boundary of D_{l} or critical points of g_{l} in D_{l}.

Let $\left(a_{1}, \ldots, a_{l}\right)$ be a point on the boundary of D_{l}. Then there exists $j \in\{1, \ldots, l\}$ such that $a_{j}=0$ or $a_{j}=\alpha$. Since g_{l} is a symmetric function, we may assume $a_{l}=0$ or $a_{1}=\alpha$. If $a_{l}=0$ then $g_{l}\left(a_{1}, \ldots, a_{l-1}, 0\right)=g_{l-1}\left(a_{1}, \ldots, a_{l-1}\right) \leq 0$, by induction hypothesis. If $a_{1}=\alpha$ then $a_{2}=\ldots=a_{k}=0$, and so $g_{l}\left(a_{1}, \ldots, a_{l}\right)=g_{1}\left(a_{1}\right) \leq 0$ by induction basis.

Hence it remains to prove $g_{l} \leq 0$ at its critical points in D_{l}, subject to $\sum_{j=1}^{l} a_{j}-\alpha=0$. Note that for all $j=1, \ldots, l$,

$$
\frac{\partial f}{\partial a_{j}}=\frac{1}{\left(\sum_{i=1}^{k} \frac{1}{\delta+a_{i}}\right)^{2}} \cdot \frac{1}{\left(\delta+a_{j}\right)^{2}}-\frac{1}{k^{2}} .
$$

Note that $\frac{\partial g_{l}}{\partial a_{j}}$ is obtained from $\frac{\partial f}{\partial a_{j}}$ by setting $a_{l+1}=\ldots=a_{k}=0$. Thus, letting $\frac{\partial g_{l}}{\partial a_{j}}=\lambda$ (the Lagrange multiplier) for $j=1, \ldots, l$, we have for $1 \leq s \neq t \leq l$,

$$
\frac{1}{\left(\sum_{i=1}^{k} \frac{1}{\delta+a_{i}}\right)^{2}} \cdot \frac{1}{\left(\delta+a_{s}\right)^{2}}-\frac{1}{k^{2}}=\frac{1}{\left(\sum_{i=1}^{k} \frac{1}{\delta+a_{i}}\right)^{2}} \cdot \frac{1}{\left(\delta+a_{t}\right)^{2}}-\frac{1}{k^{2}} .
$$

As a consequence, $\left(\delta+a_{s}\right)^{2}=\left(\delta+a_{t}\right)^{2}$ for $1 \leq s \neq t \leq l$, which implies $a_{s}=a_{t}$. Thus, if $\left(a_{1}, a_{2}, \ldots, a_{l}\right)$ is a critical point of g_{l} in D_{l}, then there exists $a>0$ such that $a_{i}=a>0$ for $i=1, \ldots, l$. So $g_{l} \leq 0$ by Lemma 4.1.

We now prove the following partition result for weighted graphs.
Theorem 4.3 Let G be a graph with m edges, and let $w: V(G) \cup E(G) \rightarrow \mathbf{R}^{+}$such that $w(e)>0$ for all $e \in E(G)$. Let $\lambda:=\max \{w(x): x \in V(G) \cup E(G)\}, w_{1}=\sum_{v \in V(G)} w(v)$ and $w_{2}=\sum_{e \in E(G)} w(e)$. Then for any integer $k \geq 1$ there is a partition X_{1}, \ldots, X_{k} of $V(G)$ such that for $i=1, \ldots, k$,

$$
e\left(X_{i}\right) \leq \frac{1}{k} w_{1}+\frac{1}{k^{2}} w_{2}+\lambda \cdot O\left(m^{4 / 5}\right) .
$$

Proof. We may assume that G is connected. We use the same notation as in the proof of Theorem 2.3. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ such that $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \ldots \geq d\left(v_{n}\right)$. Let $V_{1}=\left\{v_{1}, \ldots, v_{t}\right\}$ with $t=\left\lfloor m^{\alpha}\right\rfloor$, where $0<\alpha<1 / 2$; and let $V_{2}:=V(G) \backslash V_{1}=\left\{u_{1}, \ldots, u_{n-t}\right\}$ such that $e\left(u_{i}, V_{1} \cup\left\{u_{1}, \ldots, u_{i-1}\right\}\right)>0$ for $i=1, \ldots, n-t$. Then $e\left(V_{1}\right) \leq \frac{1}{2} m^{2 \alpha}$ and $d\left(v_{t+1}\right) \leq 2 m^{1-\alpha}$.

Fix a random k-partition $V_{1}=Y_{1} \cup Y_{2} \cup \cdots \cup Y_{k}$, and assign each member of Y_{i} the color $i, 1 \leq i \leq k$. Extend this coloring to $V(G)$, where each vertex $u_{i} \in V_{2}$ is independently assigned the color j with probability p_{j}^{i}, where $\sum_{j=1}^{k} p_{j}^{i}=1$. Let Z_{i} denote the indicator random variable of the event of coloring u_{i}. Hence $Z_{i}=j$ iff u_{i} is assigned the color j.

Let $G_{i}=G\left[V_{1} \cup\left\{u_{1}, \cdots, u_{i}\right\}\right]$ for $i=1, \ldots, n-t$, and let $G_{0}=G\left[V_{1}\right]$. For $j=1, \ldots, k$, let
$X_{j}^{0}=Y_{j}$ and $x_{j}^{0}=w\left(X_{j}^{0}\right)$; and for $i=1, \ldots, n-t$ and $j=1, \ldots, k$, define

$$
\begin{aligned}
& X_{j}^{i}=\left\{\text { vertices of } G_{i} \text { with color } j\right\}, \\
& x_{j}^{i}=w\left(X_{j}^{i}\right), \\
& \Delta x_{j}^{i}=x_{j}^{i}-x_{j}^{i-1}, \\
& a_{j}^{i}=\sum_{e \in\left(u_{i}, X_{j}^{i-1}\right)} w(e) .
\end{aligned}
$$

Note that a_{j}^{i} is determined by $\left(Z_{1}, \ldots, Z_{i-1}\right)$. Hence for $1 \leq i \leq n-t$ and $1 \leq j \leq k$,

$$
\mathbb{E}\left(\Delta x_{j}^{i} \mid Z_{1}, \ldots, Z_{i-1}\right)=\left(w\left(u_{i}\right)+a_{j}^{i}\right) p_{j}^{i},
$$

and so

$$
\mathbb{E}\left(\Delta x_{j}^{i}\right)=\left(w\left(u_{i}\right)+b_{j}^{i}\right) p_{j}^{i},
$$

where here

$$
b_{j}^{i}=\sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) a_{j}^{i}
$$

Since a_{j}^{i} is determined by $\left(Z_{1}, \ldots, Z_{i-1}\right), b_{j}^{i}$ is determined by $p_{j}^{s}, 1 \leq j \leq k$ and $1 \leq s \leq i-1$. Note that $e_{i}:=\sum_{j=1}^{k} a_{j}^{i}=\sum_{e \in\left(u_{i}, G_{i-1}\right)} w(e)>0$, which is independent of Z_{1}, \ldots, Z_{n-t}. By Lemma 4.2, there exist $p_{j}^{i} \in[0,1], 1 \leq j \leq k$, such that $\sum_{j=1}^{k} p_{j}^{i}=1$ and, for $1 \leq i \leq n-t$ and $j=1, \ldots, k$,

$$
\begin{aligned}
\mathbb{E}\left(\Delta x_{j}^{i}\right) & \leq \frac{w\left(u_{i}\right)}{k}+\frac{1}{k^{2}} \sum_{j=1}^{k} b_{j}^{i} \\
& =\frac{w\left(u_{i}\right)}{k}+\frac{1}{k^{2}} \sum_{j=1}^{k} \sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) a_{j}^{i} \\
& =\frac{w\left(u_{i}\right)}{k}+\frac{1}{k^{2}} \sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)}\left(\mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) \sum_{j=1}^{k} a_{j}^{i}\right) \\
& =\frac{w\left(u_{i}\right)}{k}+\frac{1}{k^{2}} \sum_{\left(Z_{1}, \ldots, Z_{i-1}\right)} \mathbb{P}\left(Z_{1}, \ldots, Z_{i-1}\right) e_{i} \\
& =\frac{w\left(u_{i}\right)}{k}+\frac{1}{k^{2}} e_{i} .
\end{aligned}
$$

Note that each p_{j}^{i} is determined by $b_{l}^{i}, 1 \leq l \leq k$; and hence each p_{j}^{i} is recursively defined by
$p_{l}^{s}, 1 \leq l \leq k$ and $1 \leq s \leq i-1$. Also note that $w_{2}=\sum_{e \in E\left(G_{0}\right)} w(e)+\sum_{i=1}^{n-t} e_{i}$. Now

$$
\begin{aligned}
\mathbb{E}\left(x_{j}^{n-t}\right) & =\sum_{i=1}^{n-t} \mathbb{E}\left(\Delta x_{j}^{i}\right)+\mathbb{E}\left(x_{j}^{0}\right) \\
& \leq \frac{1}{k} \sum_{i=1}^{n-t} w\left(u_{i}\right)+\frac{1}{k^{2}} \sum_{i=1}^{n-t} e_{i}+x_{j}^{0} \\
& \leq \frac{1}{k} w_{1}+\frac{1}{k^{2}} w_{2}+\sum_{i=1}^{t} w\left(v_{i}\right)+\sum_{e \subseteq V_{1}} w(e) \\
& \leq \frac{1}{k} w_{1}+\frac{1}{k^{2}} w_{2}+\lambda\left(t+e\left(V_{1}\right)\right) .
\end{aligned}
$$

Clearly, changing the color of u_{i} affects x_{j}^{n-t} by at most $d\left(u_{i}\right) \lambda+w\left(u_{i}\right) \leq\left(d\left(u_{i}\right)+1\right) \lambda$. As in the proof of Theorem 2.3, we apply Lemma 2.1 to conclude that

$$
\mathbb{P}\left(x_{j}^{n-t}>\mathbb{E}\left(x_{j}^{n-t}\right)+z\right) \leq \exp \left(-\frac{z^{2}}{2 \lambda^{2} \sum_{i=1}^{n-t}\left(d\left(u_{i}\right)+1\right)^{2}}\right) \leq \exp \left(-\frac{z^{2}}{24 \lambda^{2} m^{2-\alpha}}\right)
$$

Let $z=\lambda \sqrt{24 \ln k} m^{1-\frac{\alpha}{2}}$. Then

$$
\mathbb{P}\left(x_{j}^{n-t}>\mathbb{E}\left(x_{j}^{n-t}\right)+z\right)<\exp (-\ln k)=\frac{1}{k} .
$$

So there exists a partition $V(G)=X_{1} \cup X_{2} \cup \cdots \cup X_{k}$, such that for $1 \leq j \leq k$,

$$
\begin{aligned}
e\left(X_{j}\right) & \leq \mathbb{E}\left(x_{j}^{n-t}\right)+z \\
& \leq \frac{1}{k} w_{1}+\frac{1}{k^{2}} w_{2}+\lambda\left(t+e\left(V_{1}\right)\right)+z \\
& \leq \frac{1}{k} w_{1}+\frac{1}{k^{2}} w_{2}+\lambda \cdot o(m) .
\end{aligned}
$$

The $o(m)$ term in the expression is

$$
m^{\alpha}+\frac{1}{2} m^{2 \alpha}+\sqrt{24 \ln k} m^{1-\frac{\alpha}{2}} .
$$

Picking $\alpha=\frac{2}{5}$ to minimize $\max \{2 \alpha, 1-\alpha / 2\}$, the $o(m)$ term becomes $O\left(m^{\frac{4}{5}}\right)$.
For a hypergraph G with edges of size 1 or 2 , we may view G as a weighted graph with weight function w such that $w(e)=1$ for all $e \in E(G)$ with $|e|=2, w(v)=1$ for all $v \in V(G)$ with $\{v\} \in E(G)$, and $w(v)=0$ for $v \in V(G)$ with $\{v\} \notin E(G)$. Then Theorem 4.3 gives the following result, establishing a conjecture of Bollobás and Scott [8] (the case $m_{1}=o\left(m_{2}\right)$ is implied by equation (2) in [8]).

Theorem 4.4 Let G be a hypergraph with m_{i} edges of size $i, i=1,2$. Then for any integer $k \geq 1$, there is a partition X_{1}, \ldots, X_{k} of $V(G)$ such that for $i=1, \ldots, k$,

$$
e\left(X_{i}\right) \leq \frac{m_{1}}{k}+\frac{m_{2}}{k^{2}}+O\left(m_{2}^{4 / 5}\right)
$$

Note that the term $m_{1} / k+m_{2} / k^{2}$ is the expected value of $e\left(X_{i}\right)$ if X_{1}, \ldots, X_{k} is a random partition. Bollobás and Scott further ask in [8] whether $O\left(m_{2}^{4 / 5}\right)$ in Theorem 4.4 can be imporved to $O\left(\sqrt{m_{1}+m_{2}}\right)$.

References

[1] N. Alon, B. Bollobás, M. Krivelevich and B. Sudakov, Maximum cuts and judicious partitions in graphs without short cycles, J. Combin. Theory Ser. B 88 (2003) 329-346.
[2] K. Azuma, Weighted sums of certain dependent random variables, Tokuku Math. J. 19 (1967) 357-367.
[3] B. Bollobás, B. Reed and A. Thomason, An extremal function for the achromatic number in Graph Structure Theory (Eds. N. Robertson and P. Seymour) pp. 161-165, American Mathematical Society, Providence, Rhode Island, 1993.
[4] B. Bollobás and A. D. Scott, On judicious partitions, Period. Math. Hungar. 26 (1993) 127-139.
[5] B. Bollobás and A.D. Scott, Judicious partitions of hypergraphs, J. Combin. Theory Ser. A 78 (1997) 15-31.
[6] B. Bollobás and A. D. Scott, Exact bounds for judicious partitions of graphs, Combinatorica 19 (1999) 473-486.
[7] B. Bollobás and A.D. Scott, Judicious partitions of 3-uniform hypergraphs, Europ. J. Combinatorics, 21 (2000), 289-300.
[8] B. Bollobás and A. D. Scott, Problems and results on judicious partitions, Random Structures and Algorithms, 21(2002)414-430.
[9] B. Bollobás and A. D. Scott, Better bounds for Max Cut, in Contemporary Comb, Bolyai Soc Math Stud 10, János Bolyai Math Soc, Budapest, 2002, pp. 185-246.
[10] C. S. Edwards, Some extremal properties of bipartite graphs, Canadian J. math. 25 (1973) 475-485.
[11] C. S. Edwards, An improved lower bound for the number of edges in a largest bipartite subgraph, in Proc. 2nd Czechoslovak Symposium on Graph Theory, Prague (1975) 167-181.
[12] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963) 13-30.
[13] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, (R. Miller and J. Thatcher, eds) Plenum Press, New York, 1972, pp. 85-103.
[14] T. D. Porter, On a bottleneck bipartition conjecture of Erdös, Combinatorica 12 (1992) 317-321.
[15] T. D. Porter and B. Yang, Graph partitions II, J. Combin. Math. Combin. Comput. 37 (2001) 149-158.
[16] F. Shahrokhi and L. A. Székely, The complexity of the bottleneck graph bipartition problem, J. Combin. Math. Combin. Comp. 15 (1994) 221-226.

[^0]: *School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA
 ${ }^{\dagger}$ Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC
 ${ }^{\ddagger}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA; Partially supported by NSA, and by NSFC Project 10628102

