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Abstract

We consider the symmetric difference of two graphs on the same vertex set [n], which

is the graph on [n] whose edge set consists of all edges that belong to exactly one of the

two graphs. Let F be a class of graphs, and let MF (n) denote the maximum possible

cardinality of a family G of graphs on [n] such that the symmetric difference of any

two members in G belongs to F . These concepts are recently investigated by Alon,

Gujgiczer, Körner, Milojević, and Simonyi, with the aim of providing a new graphic

approach to coding theory. In particular, MF (n) denotes the maximum possible size of

this code.

Existing results show that as the graph class F changes, MF (n) can vary from n to

2(1+o(1))(n2). We study several phase transition problems related to MF (n) in general

settings and present a partial solution to a recent problem posed by Alon et. al.

1 Introduction

For decades the application of graph theory in coding theory has been a significant and

productive area of research. Gallager’s early work [15] in 1963 illustrated the potential of

using graphs to construct codes with desirable properties. This technique was significantly

advanced by Tanner [29] and further developed by Sipser and Spielman [28] (for constructing
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expander codes – the first explicit code of this kind). Since then, the application of graph-

based techniques has brought about many significant discoveries in coding theory (e.g. [5],

[7], [8], [9], [12], [20], [22], [23], [27], [31]), including the recent explicit construction of locally

testable codes with constant rate, constant distance, and constant locality [10], [25].

A recent study by Alon, Gujgiczer, Körner, Milojević and Simonyi [4] explores a graph-

theoretic variation of the following basic problem on code distance: how many binary

sequences of a given length can be found if any two of them differ in at least a given number

of coordinates? Instead of prescribing the minimum distance of two codewords, the authors

require the codewords differ in some specific structure. In particular, they are interested in

the largest family of graphs on the same vertex set such that the symmetric difference of

the edge sets of any two graphs in this family has certain desired property.

To be formal, let F be a fixed class of graphs. A family G of graphs on the same vertex

set [n], where [n] = {1, 2 . . . , n}, is called F-good if for any pair G,G′ ∈ G, their symmetric

difference G⊕G′, the graph with the vertex set [n] and the edge set

E(G⊕G′) = (E(G) \ E(G′)) ∪ (E(G′) \ E(G))

belongs to F . This family G is also called an F-code since it can be viewed as a {0, 1}-code of
length

(
n
2

)
. Let MF (n) denote the maximum possible size of an F-good family on [n]. When

the graph class F consists of all the graphs containing a fixed graph L, we use L-code and

ML(n) instead of F-code and MF (n). It is worth noting that there is a hidden relationship

between F-codes and expander codes that are extensively utilized. In an expander code,

each codeword corresponds to a {0, 1}-edge-coloring of an expander graph (i.e., a highly

connected sparse graph) such that the codeword induced by the edges adjacent to the same

vertex belongs to a specified linear code. Therefore if every graph in class F is a spanning

subgraph of an n-vertex expander graph, then an F-code can be considered as a variation

of expander codes.

The authors of [4] provided accurate estimations on MF (n) for various natural families

F of graphs. One of their main results determines the asymptotic behaviors of the rate of

maximum L-codes for any fixed graph L with at least one edge. Let χ(L) be the chromatic

number of L. The authors proved that

lim
n→∞

logML(n)(
n
2

) =
1

χ(L)− 1
, (1)

where logarithms here and in the rest of this paper are base 2. They also studied the basic

problem when F consists of graphs containing a given spanning tree. Let FHP
denote the

class of graphs containing a Hamiltonian path and FS denote the class of graphs containing

a spanning star. The authors of [4] showed that MFHP
(n) = 2n−1 for infinitely many n

and MFS
(n) ∈ {n, n+ 1} for all positive integers n. In particular, the above results reveal
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that as the graph family F changes, the value of MF (n) can have a significant discrepancy,

ranging from n to 2(1+o(1))(n2).1 Inspired by this intriguing phenomenon, in this paper we

aim to investigate phase transition problems on MF (n) in general settings.

Observe the aforementioned results on tress are about two extreme cases of spanning

trees. The authors of [4] raised the following problem.

Problem 1.1 (Problem 3 in [4]). For what “natural” sequences {Ti}i≥1 of trees (with Ti

having exactly i vertices for every i) will the value of MTn(n) grow only linearly in n? A

similar question is valid if Ti is replaced by Ti, some “natural” family of i-vertex trees.

Our first result provides a partial solution to this problem, by indicating that the above

problem is closely related to the number of leaves of the trees. Let Fℓ denote the family of

graphs containing a spanning tree that has exactly ℓ leaves.

Theorem 1.2. For infinitely many n and all integers 3 ≤ ℓ ≤ n−1
12 logn + 2, we have

MFℓ
(n) ≥ 2n−2

In particular, this holds whenever n ≥ 64 and n = p or n = 2p− 1 for odd primes p.

Let Fc denote the class of all connected graphs. It was proved in [4] that MFc(n) =

2n−1, which implies that MFℓ
(n) ≤ 2n−1 holds for all 2 ≤ ℓ ≤ n− 1. Hence, Theorem 1.2 is

tight up to a factor of two. It is interesting to determine the precise values of MFℓ
(n). We

will discuss in the concluding remark that the proof of Theorem 1.2 in fact shows that the

family Tℓ consisting of all spanning trees with ℓ leaves for any 2 ≤ ℓ ≤ n+9
6 can not provide

a positive answer to Problem 1.1.

We now consider some “robust” generalizations of (1). For a given graph L, let

ML(n, k) denote the largest cardinality of a family G of graphs on [n], such that the sym-

metric difference of any two members of G contains at least k copies of L. Let v(L) and

e(L) denote the number of vertices and edges in L, respectively. The following result

shows that there is a phase transition in terms of k = k(n) for the asymptotic behavior of

limn→∞ logML(n, k)/
(
n
2

)
.

Theorem 1.3. Let L be any graph with at least one edge. If k = o(nv(L)), then we have

lim
n→∞

logML(n, k)(
n
2

) =
1

χ(L)− 1
.

If k = cnv(L) for some constant c > 0, then we have

lim
n→∞

logML(n, k)(
n
2

) ≤ 1

χ(L)− 1
− 2c

e(L)
.

1If L is a bipartite graph, then (1) gives the latter bound 2(1+o(1))(n2).
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We also consider the corresponding version for vertex-disjoint copies and obtain the

following phase transition. For a given graph L, let Mk·L(n) denote the largest cardinality

of a family G of graphs on [n], such that the symmetric difference of any two members of G
contains at least k vertex-disjoint copies of L.

Theorem 1.4. Let L be any graph with at least one edge. If k = o(n), then we have

lim
n→∞

logMk·L(n)(
n
2

) =
1

χ(L)− 1
.

If k = cn for some constant c > 0, then we have

lim
n→∞

logMk·L(n)(
n
2

) ≤ (1− c)2

χ(L)− 1
.

For bipartite graphs, we can obtain the following analogs, which also provide some

improvements over (1).

Theorem 1.5. If t = o(log n), then we have

lim
n→∞

logMKt,t(n)(
n
2

) = 1.

If t = c log n for some constant c > 0, then we have

lim
n→∞

logMKt,t(n)(
n
2

) ≤ 1− 2−
2
c .

Theorem 1.6. Let L(r,m) = (A∪B,E) be a connected bipartite graph on m vertices such

that any vertex in A has at most r neighbors in B. If m = O(n1−ε) for some constant

ε > 0, then for any constant integer r, we have

lim
n→∞

logML(r,m)(n)(
n
2

) = 1.

Since any graph on vertex set [n] can be viewed as a spanning subgraph of Kn, what if

we replace Kn with some alternative graphs on [n]? This raises the question of determining

the maximum number of spanning subgraphs of a fixed graph G, with the restriction that

the symmetric difference of any two of them belongs to a fixed graph class F . The most

natural instance of this problem that comes to mind is when F denotes the family of all

connected graphs and G denotes an m× n grid. Here, an m× n grid, denoted by Gm,n, is

the graph with vertex set [m] × [n] and with edges between (u, v) and (i, j) if and only if

u = i and v ≡ j ± 1(mod n) or v = j and u ≡ i± 1(mod m). We have the following.

4



Proposition 1.7. For any integers m,n ≥ 3, let MFc(Gm,n) denote the maximum possible

size of a family G of spanning subgraphs of Gm,n such that the symmetric difference of any

two members in G is connected, then we have MFc(Gm,n) ≤ 16. Especially, we also have

MFc(Gm,n) = 16 for m = n = 3.

The rest of the paper is organized as follows. In Section 2, we present necessary

preliminaries, including some definitions and known results. In Section 3, we give the full

proofs of our results. Finally, in Section 4, we discuss some concluding remarks.

2 Preliminaries

We first state the following important definition from [4].

Definition 2.1. Let F be a family of graphs. Let DF denote the maximum possible size

of a family G of graphs on [n] such that the symmetric difference of no two members of G
belongs to F .

As pointed out in [4], determining DF (n) can be referred to as the dual problem of

determiningMF (n) (see [3] for more results about DF (n)). This is because that if we denote

by F the class containing exactly those graphs that do not belong to F , then we have

DF (n) = MF (n).

Moreover, the authors of [4] established the following useful relation between MF (n) and

DF (n).

Lemma 2.2 (Alon et. al, [4]). For any graph family F and any positive integer n, we have

MF (n)DF (n) ≤ 2(
n
2).

Fix a graph L. A graph G is called L-free if G does not contain L as a subgraph.

Let the Turán number of L, denoted by ex(n,L), be the maximum number of edges in an

n-vertex L-free graph. We will need the following classical results on Turán numbers.

Theorem 2.3 (Erdös-Stone [13]). For any graph L with at least one edge, we have

ex(n,L) = (1− 1

χ(L)− 1
+ o(1))

(
n

2

)
.

Theorem 2.4 (Kövari-Sós-Turán [21]). For any integer t ≥ s ≥ 2, we have

ex(n,Ks,t) ≤
1

2
(t− 1)1/sn2−1/s +

1

2
(s− 1)n.
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Let Fn(L) denote the number of L-free graphs on [n]. This is asymptotically determined

by the chromatic number χ(L) of L in the following theorem.

Theorem 2.5 (Erdös-Frankl-Rödl [11]). Suppose that χ(L) ≥ 3. Then

Fn(L) = 2
(1− 1

χ(L)−1
+o(1))(n2).

Lastly, we need two powerful tools from Extremal Graph Theory, known as Graph

Removal Lemma and Dependent Random Choice.

Lemma 2.6 (Graph Removal Lemma [11]). Given any fixed graph L, for any ε > 0, there

exists δ > 0 such that for any n-vertex graph G which contains at most δnv(L) copies of L,

we can remove at most εn2 edges of G to get an L-free graph.

Lemma 2.7 (Dependent Random Choice [14]). Let α ∈ (0, 1), t, r,m, u, n be integers such

that αtn−
(
n
r

)
(mn )

t ≥ u. Then for any n-vertex graph G with at least α
2n

2 edges, there exists

U ⊆ V (G) with |U | ≥ u such that any r-set S ⊆ U has at least m common neighbors in G.

3 Proofs

3.1 Proof of Theorem 1.2

The proof of Theorem 1.2 is closely related to the following famous conjecture of Kotzig [19].

By a perfect 1-factorization, we mean the partition of the edge set of a graph into perfect

matchings such that the union of any two of them forms a Hamiltonian cycle.

Conjecture 3.1 (Perfect 1-factorization Conjecture, Kotzig [19]). The complete graph Kn

has a perfect 1-factorization for any even n > 2.

This conjecture is still open in general, but it is known to hold in several special cases.

For example, whenever n = p+1(Kotzig [19]) or n = 2p for some odd prime p (Anderson [1]

and Nakamura [24], cf. also Kobayashi [18]).

Proof of Theorem 1.2. Let n ≥ 65 be an odd integer such that Conjecture 3.1 holds for

n+1, then we can partition the edge set of Kn+1 into n perfect matchings M1,M2, . . . ,Mn

such that the union of any two of them forms a Hamiltonian cycle in Kn+1. For each

1 ≤ i ≤ n, we delete the edge adjacent to n + 1 in Mi, then for any i ̸= j ∈ [n], Mi ∪Mj

forms a Hamiltonian path in Kn.

Let G be the graph family consists of the unions of even number of matchings in

M = {M1,M2, . . . ,Mn−1}, then |G| = 2n−2. Note that Mn is moved out from M because

we will then add some edges in Mn to the members of G in order to guarantee that the
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symmetric difference of any two members of G is the disjoint union of at least 2 matching

in M and at least 3ℓ− 5 additional edges.

Firstly, we want to partition G into several parts, with the property that the symmetric

difference of any two graphs in the same part is the union of at least 4 matchings in M. Let

G be the union of 2k matchings in M, then the number of different graphs G′ in G, such
that the symmetric difference of G and G′ is exactly the union of two matchings in M, is(
2k
2

)
+ 2k(n − 1 − 2k) +

(
n−1−2k

2

)
=

(
n−1
2

)
. Let F denote the graph whose vertices are the

members of G and two members are connected in F if and only if their symmetric difference

is exactly the union of 2 matchings in M. Then F is an
(
n−1
2

)
-regular graph and our desired

partition of G equals to a proper vertex coloring of F . Since χ(F ) ≤ ∆(F ) + 1 =
(
n−1
2

)
+1,

we can partition G into s =
(
n−1
2

)
+ 1 parts G1, . . . ,Gs such that the symmetric difference

of any two graphs in the same part is the union of at least 4 matchings in M.

Secondly, we want to find a family H of subgraphs of Mn such that the symmetric

difference of any two members in H contains at least 3ℓ − 5 different edges. Since Mn

consists of n−1
2 disjoint edges, we are going to find a Hamming Code H with length n−1

2

and minimum distance 3ℓ − 5. By the famous Gilbert–Varshamov bound (due to Edgar

Gilbert [16] and independently Rom Varshamov [30]), there exists an H with cardinality at

least
2

n−1
2∑3ℓ−6

i=0

(n−1
2
i

) .
Therefore, we have

|H| ≥ 2
n−1
2

(3ℓ− 6)(n−1
2 )3ℓ−6

.

Let m = n−1
2 and t = 3ℓ− 6. To get |H| ≥

(
n−1
2

)
+ 1, we only need to prove that

2m

tmt
≥ 2m2.

That is

m− t logm− log t− 2 logm− 1 ≥ 0.

Since ℓ ≤ n−1
12(logn) + 2, we have t ≤ n−1

4(logn) ≤
m

2 logm . Therefore,

m− t logm− log t− 2 logm− 1 ≥ m

2
− 3 logm+ log logm ≥ 0

due to m = n−1
2 ≥ 32.

So we can take s =
(
n−1
2

)
+ 1 different subgraphs H1, H2, . . . ,Hs of Mn such that

the symmetric difference of any two of them contains at least 3ℓ − 5 disjoint edges. Let

G′
i = {G ∪Hi|G ∈ Gi} for all 1 ≤ i ≤

(
n−1
2

)
+ 1 and G′ =

⋃(n−1
2 )+1

i=1 G′
i. Then the symmetric
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difference of any two members of G′ contains at least 2 matchaings in M and 3ℓ−5 disjoint

additional edges.

Finally, we only need to find a spanning tree with exactly ℓ leaves in the union graph G,

which consists of 2 matchings in M and 3ℓ−5 disjoint additional edges. Let T = v1v2 . . . vn

be the Hamiltonian path consists of 2 matchings in M and let EA be the set of 3ℓ − 5

additional edges. We first remove the edge adjacent to vn from EA if there exists such an

edge in EA and then do the following operation:

• Take an edge {vi, vj} in EA, where i < j and i is as small as possible, add this edge

to T and remove it from EA. Delete the edge {vi, vi+1} from the T and remove any

edges that are adjacent to vi+1 or vj−1 from EA.

Note that after this operation, the number of leaves in the spanning tree T increases exactly

one, and we remove at most 3 edges from EA. So we can repeat this operation ℓ− 2 times

and then T becomes a spanning tree with exactly ℓ leaves.

3.2 Proof of Theorem 1.3

Proof of Theorem 1.3. First we prove the case k = o(nv(L)). Let Fn(L, k) denote the num-

ber of graphs containing at most k − 1 copies of L on [n]. Let G be such a graph. By

Lemma 2.6, we can delete at most o(n2) edges of G to get an L-free graph. So we have

Fn(L, k) ≤ Fn(L)

( (
n
2

)
o(n2)

)
= 2o(1)(

n
2)Fn(L).

On the other hand, we also have Fn(L, k) ≥ Fn(L). Then by Theorem 2.5 and Theorem

2.3 we have

Fn(L, k) = 2
(1− 1

χ(L)−1
+o(1))(n2).

Let GL,k denote the graph whose vertices are all possible graphs on [n] and two are

connected if and only if their symmetric difference contains at most k − 1 copies of L.

Then ML(n, k) equals to the independence number α(GL,k) of GL,k. Moreover, GL.k is an

FL(n, k)-regular graph. So we have

ML(n, k) = α(GL,k) ≥
v(GL,k)

∆(GL,k) + 1
=

2(
n
2)

Fn(L, k) + 1
= 2

( 1
χ(L)−1

+o(1))(n2).

Since ML(n, k) ≤ ML(n) = 2
( 1
χ(L)−1

+o(1))(n2), we have

lim
n→∞

logML(n, k)(
n
2

) =
1

χ(L)− 1

for k = o(nv(L)).
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Then we prove the case when k = cnv(L) for some constant c > 0. Let G be an

arbitrary graph. When we add an edge to G, the number of copies of L in G increases at

most e(L)nv(L)−2. So we can construct a graph H which contains at most k− 1 copies of L

by adding 2c
e(L)

(
n
2

)
edges to an extremal L-free graph (i.e., an L-free graph with maximum

number of edges). Then e(H) = ex(n,L) + 2c
e(L)

(
n
2

)
and we can obtain a lower bound of the

corresponding dual concept DL(n, k) by constructing a family consisting of all subgraphs

of H. Therefore, by Lemma 2.2, we have

ML(n, k) ≤ 2(
n
2)−e(H).

Then by Theorem 2.3, we have that for k = cnv(L),

lim
n→∞

logML(n, k)(
n
2

) ≤ 1

χ(L)− 1
− 2c

e(L)

as desired.

3.3 Proof of Theorem 1.4

Proof of Theorem 1.4. We first prove the case k = o(n). Let Fn(k · L) denote the number

of graphs containing k vertex-disjoint copies of L on [n]. Let G be an arbitrary graph,

a copy of L in G intersects at most v(L)nv(L)−1 other copies of L. So we have Fn(k ·
L) ≤ FL(n, k(v(L)n

v(L)−1 + 1)). Since k = o(n), k(v(L)nv(L)−1 + 1) = o(nv(L)). Using

Fn(L) ≤ Fn(k · L) ≤ FL(n, k(v(L)n
v(L)−1 + 1)), we have

Fn(k · L) = 2
(1− 1

χ(L)−1
+o(1))(n2).

Then by the same argument in the proof of Theorem 1.3, we have that for k = o(n)

lim
n→∞

logMk·L(n)(
n
2

) =
1

χ(L)− 1
.

Next we consider the case when k = cn for some constant c > 0. Let G be a graph on

n labeled vertices which satisfies the following two properties:

(i) If S denotes the first k − 1 vertices of G, then G[S] is a clique and G[V (G) \ S] is an
extremal L-free graph, and

(ii) G contains all possible edges between S and V (G) \ S.

Because any copy of L in G must contains at least one vertex in S, we see that G contains

at most k − 1 vertex-disjoint copies of L. Moreover, we have

e(G) =

(
cn− 1

2

)
+ (cn− 1)(n− cn+ 1) + ex(n− cn+ 1, L) = (1− (1− c)2

χ(L)− 1
+ o(1))

(
n

2

)
.
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Since the family consisting of all subgraphs ofG provides a lower bound to the corresponding

dual concept Dk·L(n), by Lemma 2.2, we have

Mk·L(n) ≤ 2(
n
2)−e(G) = 2

(
(1−c)2

χ(L)−1
+o(1))(n2).

Therefore, it follows that for k = cn,

lim
n→∞

logMk·L(n)(
n
2

) ≤ (1− c)2

χ(L)− 1
,

completing the proof.

3.4 Proof of Theorem 1.5

Proof of Theorem 1.5. First we prove the case t = o(log n). By Theorem 2.4, we have

ex(n,Kt,t) ≤
1

2
(t− 1)

1
t n2− 1

t +
1

2
(t− 1)n.

Let t = ε log n, then we have

ex(n,Kt,t) ≤ 2−1− 1
ε (ε log n− 1)

1
ε
logn 2n2 + o(n2).

Let ε → 0, we have ex(n,Kt,t) = o(n2). Therefore, the number of Kt,t-free graph on n

labeled vertices is at most
( (n2)
o(n2)

)
= 2o(1)(

n
2). Moreover, Fn(Kt,t) ≥ 2ex(n,Kt,t). So we have

Fn(Kt,t) = 2o(1)(
n
2).

Let GKt,t denote the graph whose vertices are all possible graphs on n labeled vertices

and two vertices are connected if and only if their symmetric difference contains a copy of

Kt,t. Then MKt,t(n) = α(GKt,t) and GKt,t is Fn(Kt,t)-regular. So we have

MKt,t(n) = α(GKt,t) ≥
v(GKt,t)

∆(GKt,t) + 1
=

2(
n
2)

Fn(Kt,t) + 1
= 2(1+o(1))(n2).

Since MKt,t(n) ≤ 2(
n
2), for t = o(log n) we have

lim
n→∞

logMKt,t(n)(
n
2

) = 1.

It remains to consider the case when t = c log n for some constant c > 0. In this case,

we only need to construct an n-vertex Kt,t-free graph G with at least 2−
2
c

(
n
2

)
edges. If such

graph G exists, then the family consisting of all subgraphs of G provides a lower bound to

the corresponding dual concept DKt,t(n). So by Lemma 2.2, we have MKt,t(n) ≤ 2(
n
2)−e(G).

Therefore, we have

lim
n→∞

logMKt,t(n)(
n
2

) ≤ 1− 2−
2
c

10



for k = c log n.

Now we use probabilistic methods to construct such a graph G. Let δ = 2−
2
c and

consider the Erdös-Rényi random graph G(n, δ) (i.e. an n-vertex graph in which each

possible edge is present independently with probability δ). Let X be the number of Kt,t in

G(n, δ), we have

E[X] =
1

2

(
n

2t

)(
2t

t

)
δt

2
< n2tδt

2
= (n2δt)t.

Since δt = 2−
2
c
c logn = n−2, we have E[X] < 1. By average, there exists a graph G′ such

that e(G′)−X ≥ E[e(G(n, δ))−X] > δ
(
n
2

)
− 1. Let G be obtained from G′ by deleting one

edge for each copy of Kt,t in G′, then G is an n-vertex Kt,t-free graph with at least 2−
2
c

(
n
2

)
edges. We have completed the proof.

3.5 Proof of Theorem 1.6

Proof of Theorem 1.6. Firstly, we claim that ex(n,L(r,m)) = o(n2).

Let α = n− ε2

2r , t = r
ε and u = m. Then for sufficiently large n, we have αtn−

(
n
r

)
(mn )

t ≥

u. So, for sufficiently large n and any n-vertex graph G with at least 1
2n

2− ε2

r edges, there

exists U ⊆ V (G) with |U | ≥ u such that any r-set S ⊆ U has at least m common neighbors.

Now we are going to find an L(r,m) = (A ∪ B,E) in such G. Let ϕ be any injection

from B to U , we only need to extend it to an injection from A ∪ B to V (G) such that for

any edge ab in L(r,m), ϕ(a)ϕ(b) is an edge in G. Let A′ be a subset of A and assume that

we have already extend ϕ to an injection from A′ ∪ B to V (G) such that for any edge ab

between A′ and B, ϕ(a)ϕ(b) is an edge in G. Take an vertex v ∈ A \A′, then ϕ(NL(r,m)(v))

is a subset of U with cardinality at most r. Take an r-set S ⊆ U with S′ ⊆ S and let T

denote the set of common neighbors of S in G. Then |T | ≥ m = |V (L(r,m))|. Therefore

T \ ϕ(A′ ∪B) is not empty. We can choose an vertex x in T \ ϕ(A′ ∪B) and let ϕ(v) = x.

Then we can check that ϕ is an injection from A′ ∪{v}∪B to V (G) with the property that

for any edge ab between A′ ∪ {v} and B, ϕ(a)ϕ(b) is an edge in G. By induction, we get a

desired ϕ.

Since for sufficiently large n, any n-vertex graph G with at least 1
2n

2− ε2

r edges contains

a copy of L(r,m), we know that ex(n,L(r,m)) = O(n2− ε2

r ) = o(n2). Then by the same

argument in Theorem 1.5, we have limn→∞
logML(r,m)(n)

(n2)
= 1.

3.6 Proof of Proposition 1.7

Proof of Proposition 1.7. For any integers m,n ≥ 3, Gm,n is a 4-regular graph. Let G =

{G1, G2, . . . , Gs} be a family of spanning subgraphs of Gm,n such that the symmetric dif-

ference of any two members in G is connected. For each 1 ≤ i ≤ s, let Ni denote the set of

11



the neighbors of (1, 1) in Gi. Then N1, N2, . . . , Ns must be pairwise distinct. If not, we may

assume that N1 = N2, then (1, 1) will be an isolated vertex in the symmetric difference of

G1 and G2, which contradicts to the definition of G. Note that N1, N2, . . . , Ns are all subsets

of {(1, 2), (1, n), (2, 1), (m, 1)}. So we have s ≤ 24 = 16. Therefore, MFc(Gm,n) ≤ 16.

The tight construction for the case m = n = 3 can be found in the Appendix.

4 Concluding Remarks

• Theorem 1.2 shows that for all 3 ≤ ℓ ≤ n−1
12 logn + 2, the family Tℓ could not provide a

positive answer to Problem 1.1. Actually, this is also true for all n−1
12 logn+2 ≤ ℓ ≤ n+9

6 .

To be more precise, if n = 2k − 1 for some positive integer k and Conjecture 3.1 holds

for n+ 1, then for any integer ℓ ∈ [3, n+9
6 ], we have MFTℓ

(n) ≥ 2n−k−1. The proof of

this statement is nearly the same as the proof of Theorem 1.2. Firstly, we partition

the edge set of Kn+1 into n perfect matchings M1,M2, . . . ,Mn such that the union of

any two of them forms a Hamiltonian cycle in Kn+1. Then we delete the edge adjacent

to n + 1 in Mi for each 1 ≤ i ≤ n. Secondly, we take a subfamily G of the power

set 2{M1,...,Mn} with cardinality 2n−k−1 such that the symmetric difference of any two

members in G contains at least 3 matchings in {M1, . . . ,Mn}. This is guaranteed by

the existence of Hamming code of length 2k − 1 for k ≥ 2 (for a nice quick account

on Hamming codes see e.g. [6]). Finally, we only need to find a spanning tree with

exactly ℓ leaves in the union of 3 matchings, two of which forms a Hamiltonian path

in Kn and the other one is viewed as a set of n−1
2 additional edges.

• We prove the phase transitions in Theorems 1.3 and 1.4. However, it seems that to

find the precise rate limit for all values of k is a difficult task. To do so, one needs to

obtain further knowledge about the extremal structure of n-vertex graphs that contain

at most cnv(L) copies (or cn vertex-disjoint copies) of L. However, this remains an

open problem in extremal graph theory and only very few cases of determining the

extremal structures are currently known (e.g. [26], [2] and [17]).

• The construction in Proposition 1.7 shows that the general upper boundMFc(Gm,n) ≤
16 is sharp for m = n = 3. It would be of interest to investigate whether this can

occur for other values of m and n. We leave this as an open problem.

Problem 4.1. Is it true that MFc(Gm,n) = 16 holds for all m,n ≥ 3?

12
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Canadian Journal of Mathematics, 67(4) (2015), 721–758.

[3] N. Alon, Graph Codes, arXiv preprint, arXiv:2301.13305, 2023.

[4] N. Alon, A. Gujgiczer, J. Körner, A. Milojević and G. Simonyi, Structured Codes of
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