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On two cycles of consecutive even lengths

Jun Gao∗ Binlong Li† Jie Ma‡ Tianying Xie§

Abstract

Bondy and Vince showed that every graph with minimum degree at least three contains two

cycles of lengths differing by one or two. We prove the following average degree counterpart that

every n-vertex graph G with at least 5

2
(n − 1) edges, unless 4|(n − 1) and every block of G is a

clique K5, contains two cycles of consecutive even lengths. Our proof is mainly based on structural

analysis, and a crucial step which may be of independent interest shows that the same conclusion

holds for every 3-connected graph with at least 6 vertices. This solves a special case of a conjecture

of Verstraëte. The quantitative bound is tight and also provides the optimal extremal number for

cycles of length two modulo four.

1 Introduction

The distribution of cycle lengths in a graph has been widely studied in the literature. Erőds [8, 9, 10, 11]

posted many early problems on this topic and one of such problems (see [2]) asks whether every graph

with minimum degree at least three contains two cycles whose lengths differ by one or two. This was

proved by Bondy and Vince [2] in the following stronger statement.

Theorem 1 (Bondy and Vince [2]). With the exception of K1 and K2, every graph having at most two

vertices of degree less than three contains two cycles of lengths differing by one or two.

There has been extensive research on generalizations (to k cycles of consecutive lengths) and exten-

sions of this result, see [15, 25, 12, 21, 18, 16, 13, 14, 4] (just to mention a few). In terms of the minimum

degree condition, the following result of [14] provides a good understanding on the distribution of con-

secutive cycle lengths that every graph with minimum degree at least k + 1 contains k cycles whose

lengths form an arithmetic progression with common difference one or two. This is tight by considering

the clique Kk+2 and complete bipartite graphs Kk+1,n. It is natural to consider the analogous problem

under the average degree condition. In this direction, Verstraëte [26] made the following conjecture.
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Conjecture 2 (Verstraëte [26]; see Conjecture X). If G is an n-vertex graph not containing k cycles

of consecutive even lengths, then e(G) ≤ 1
2(2k + 1)(n − 1), with equality only if every block of G is a

clique of order 2k + 1.

It is easy to see that if true, the bound is best possible. The case k = 1 is well known (i.e., any

n-vertex graph with at least 3
2 (n− 1) + 1 edges contains an even cycle; see [6]) and the other cases are

still open. In this paper, we prove the case k = 2 of this conjecture in the following result.

Theorem 3. Let G be a graph of order n with e(G) ≥ 5
2(n − 1). Then G contains two cycles of

consecutive even lengths, unless 4|(n − 1) and every block of G is a clique K5.

This can be viewed as the average degree counterpart of the theorem of Bondy-Vince [2]. We will

present the proof of Theorem 3 in Subsection 1.1 by reducing it to two results, one of which states that

any 3-connected graph on at least 6 vertices contains two cycles of consecutive even lengths. The proof

is mainly based on structural analysis on minimal graphs satisfying the edge-density condition.

Regarding to consecutive cycle lengths, a companion problem is to consider cycle lengths modulo a

fixed positive integer k. This was proposed by Burr and Erdős (see [8, 10]) in the following question.

Let k > ℓ ≥ 0 be integers such that the congruence class ℓ (mod k) contains some even integers. Is it

true that there exists a least constant cℓ,k such that every n-vertex graph with at least cℓ,k · n edges

contains a cycle of length ℓ modulo k? This was proved affirmatively by Bollobás [1], and there has

been a substantial body of subsequent research studying this topic, see [23, 24, 5, 20, 6, 3, 25, 12, 7,

18, 22, 16, 17, 14, 4, 19]. Erdős [10] asked for exact values of cℓ,k, however to date the only known case

is the folklore result c0,2 = 3/2. Using Theorem 3, one can get the following new case easily.

Corollary 4. It holds that c2,4 = 5/2.

1.1 Proof by reduction

We now present the proof of Theorem 3 by reducing to the following two results.

Theorem 5. Let G be a graph with x, y ∈ V (G) such that G+ xy is 2-connected. If every vertex of G

other than x and y has degree at least 3, and any edge uv ∈ E(G) with {u, v} ∩ {x, y} = ∅ has degree

sum dG(u) + dG(v) ≥ 7, then there exist two paths from x to y in G− xy whose lengths differ by two.

Theorem 6. Every 3-connected graph of order at least 6 contains two cycles of consecutive even lengths.

Proof of Theorem 3. Let G be a minimum counterexample of Theorem 3. That is, G is a graph of

order n with e(G) ≥ 5(n−1)
2 which does not satisfy Theorem 3, but any graph H with |V (H)| < n and

e(H) ≥ 5(|V (H)|−1)
2 holds for Theorem 3. It is easy to see that G is connected with minimum degree

δ(G) ≥ 3. One can also show that any edge uv ∈ E(G) satisfies dG(u) + dG(v) ≥ 7. To see this, say

there exists an edge uv with dG(u) + dG(v) ≤ 6. Then the subgraph G− {u, v} has n− 2 vertices and

at least 5(n − 3)/2 edges; by the minimality choice of G, either G − {u, v} (and thus G) contains two

cycles of consecutive even lengths, or 4|(n−3) and every block of G−{u, v} is a clique K5. In the latter

case, we can infer that dG(u) + dG(v) = 6 and G is connected with every block being K5, so when we

put the edge uv back, one can easily find two cycles of consecutive even lengths in G, a contradiction.

We now claim that G is 2-connected. Suppose not. Then there exists a cut-vertex v of G. Let B be

a component of G− v. Let G2 = G−B and G1 = G− V (G2 − v). We must have e(G1) ≤
5(|V (G1)|−1)

2
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and e(G2) ≤
5(|V (G2)|−1)

2 , with equality if and only if every block of G1 and G2 is a clique K5 (otherwise,

by the minimum assumption on G, some Gi and thus G contains two cycles of consecutive even lengths,

a contradiction). Then 5(n−1)
2 ≤ e(G) = e(G1) + e(G2) ≤ 5(n−1)

2 , so the equality holds, which easily

implies that every block of G is a clique K5, a contradiction.

By Theorem 6, we have G is not 3-connected. So there exists a 2-cut {x, y} such that G−{x, y} has

at least two components, say F1, F2. Let Hi be the graph induced by V (Fi)∪{x, y} for i ∈ {1, 2}. Since

G is 2-connected, each Hi+xy is 2-connected and satisfies the conditions of Theorem 5. By Theorem 5,

there exist two paths from x to y in H1 − xy whose lengths differ by two. If H2 − xy is not bipartite,

then there exist an odd path and an even path between x and y in H2 − xy. So G contains two cycles

of consecutive even lengths, a contradiction. Now we assume H2−xy is bipartite. Then by Theorem 1,

H2 − xy (and thus G) contains two cycles of consecutive even lengths, finishing the proof.

1.2 Notation and organization

All graphs in this paper are finite, undirected, and simple. Let G be a graph and H be its subgraph.

Define NG(H) :=
(

⋃

v∈V (H) NG(v)
)

\V (H) and NG[H] := NG(H)∪V (H). Let S be a subset of V (G).

We define G[S] to be the subgraph induced by S in G, and G−S to be the subgraph G[V (G) \S]. We

say that a graph G′ is obtained from G by contracting S into a vertex s, if V (G′) = (V (G) \ S) ∪ {s}

and E(G′) = E(G − S) ∪ {vs : v ∈ V (G) \ S is adjacent to some vertex of S in G}. For two distinct

vertices x, y of G, let G + xy denote the graph obtained from G by adding a new edge xy, and let

G − xy denote the graph obtained from G by removing the edge xy. A vertex is a leaf of G if it has

degree one in G. We say a vertex subset A of G is a cut of G if G−A contains more components than

G. A vertex is called a cut-vertex of G if it forms a cut of G. A block B of G is a maximal connected

subgraph of G such that B contains no cut-vertex. So, a block is either an isolated vertex, an edge or a

2-connected graph. A block in G is an end-block if and only it containing at most one cut-vertex of G.

A theta-graph is a graph consisting of three internally vertex-disjoint paths between two fixed ver-

tices. For a cycle C, we use
−→
C to express this cycle with a prescribed orientation, and for vertices

u, v ∈ V (C), the notation
−→
C [u, v] denotes the subpath of C from u to v following the given orientation.

If P is a walk, a path or a cycle, then we use ℓ(P ) to denote the length of P , i.e., the number of edges

of P . Two edges are called independent if they share no common vertex. Throughout the rest of the

paper, we will reserve the word disjoint for vertex-disjoint.

The rest of the paper is organized as follows. In Section 2, we prove Theorem 5. In Section 3, we

prove Theorem 6. In Section 4, we present a generalization of Theorem 5 and discuss several related

open problems.

2 Proof of Theorem 5

Let G be a graph with two vertices x, y ∈ V (G) such that G + xy is 2-connected, every vertex of G

other than x and y has degree at least 3, and any edge uv ∈ E(G) with {u, v} ∩ {x, y} = ∅ has degree

sum dG(u)+dG(v) ≥ 7. We aim to show that there exist two paths from x to y in G−xy whose lengths

differ by two. Without loss of generality, we may assume that dG(y) ≥ dG(x) and xy /∈ E(G).

We prove by induction on |V (G)|. By the condition we have |V (G)| ≥ 5. It is easy to check that

Theorem 5 holds for the base case |V (G)| = 5. Now let us assume that Theorem 5 holds for any graph

3



H with |V (H)| < |V (G)|. We will divide the rest of the proof into two cases.

Case 1. There exists a cycle of length four containing x in G− y.

Let C = xx1ax2x be a cycle of length four in G−y. Let F be the component of G−V (C) containing

y. If F is adjacent to x1, let P be a path from x1 to y in G. Then xx1 ∪ P and xx2ax1 ∪ P are two

paths from x to y whose lengths differ by two. So F is not adjacent to x1. Similarly we know that F

is not adjacent to x2. Let G′ = G − V (F ). Then G′ together with vertices x, a satisfy the induction

hypothesis. So there exist two paths from x to a in G′ whose lengths differ by two. Since G + xy is

2-connected (note that F is not adjacent to x1 and x2), F must be adjacent to a. Let P ′ be a path

form a to y with all internal vertices in F . Concatenating those paths, we can get two paths from x to

y in G whose lengths differ by two, as desired.

Case 2. There does not exist a cycle of length four containing x in G− y.

Let X = NG(x). Note that y /∈ X. Let G∗ be the graph obtained from G − x by contracting X

into a new vertex x∗. Since G− y does not have a cycle of length four containing x, we know that any

vertex v other than x∗ and y has degree dG∗(v) = dG(v). If G
∗ + x∗y is not 2-connected, then x∗ is the

only cut-vertex of G∗ and we let B be the block of G∗ containing y. If G∗ + x∗y is 2-connected, we let

B = G∗ + x∗y.

If |V (B)| ≥ 3, then B is 2-connected. In this case, B together with vertices x∗, y satisfy the induction

hypothesis. So there exist two paths P1 and P2 from x∗ to y in B whose lengths differ by two. Putting

back to G, we see that there exist x1, x2 ∈ X (which may be the same) and paths P ′
i from xi to y for

i ∈ {1, 2} in G with ℓ(P ′
2) = ℓ(P ′

1) + 2. Then xx1 ∪ P ′
1 and xx2 ∪ P ′

2 are two paths from x to y in G of

lengths differing by two.

It remains to consider the case when |V (B)| = 2, i.e., B = x∗y. This gives that NG(y) ⊆ X. Since

dG(y) ≥ dG(x) and xy /∈ E(G), we have NG(y) = X = NG(x). Since G − y does not have a cycle

of length four containing x, any vertex in X have at most one neighbor in X. Since every vertex of

G other than x and y has degree at least 3 and any edge uv ∈ E(G) with {u, v} ∩ {x, y} = ∅ has

dG(u) + dG(v) ≥ 7, we can see that G \ (X ∪ {x, y}) 6= ∅, which implies G∗ 6= B.

Hence, there exists a block D′ of G∗ other than B. Let D be obtained from D′ by removing x∗.

Since G+ xy is 2-connected, we have |X| ≥ 2 and |NG(D) ∩X| ≥ 2. Let u1 be a vertex in NG(D)∩X

and G1 be the graph obtained from G[X ∪D] by contracting X \ {u1} into a new vertex u2. For any

vertex v ∈ D, we have dG1
(v) = dG(v). Since D′ is 2-connected, we see G1 + u1u2 is 2-connected.

Then G1 +u1u2 together with vertices u1, u2 satisfy the induction hypothesis. So there exist two paths

P1 and P2 from u1 to u2 in G1 of lengths differing by two. Back to G, we see there exist vertices

x1, x2 ∈ X \ {u1} (which may be the same) and paths P ′
i from xi to u1 for i ∈ {1, 2} in G with

ℓ(P ′
2) = ℓ(P ′

1) + 2. Then xx1 ∪ P ′
1 ∪ u1y and xx2 ∪ P ′

2 ∪ u1y are two paths from x to y in G of lengths

differing by two. This completes the proof of Theorem 5.

3 Proof of Theorem 6

This section will be devoted to the proof of Theorem 6, stating that every 3-connected graph G with at

least 6 vertices contains two cycles of consecutive even lengths. We will start with a series of lemmas.
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Lemma 7. Let G be a 3-connected graph and let D be a fixed connected subgraph of G such that

G − V (D) contains an even cycle. If C is an even cycle of G − V (D) such that the component of

G − V (C) containing D is maximal, then G − V (C) is connected. Moreover, such C has at most one

chord, and if u0v0 is a chord of C, then both paths
−→
C [u0, v0] and

−→
C [v0, u0] have even lengths.

Proof. Let C be an even cycle of G−V (D) such that the component (say F ) of G−V (C) containing D is

maximal. We first show that G−V (C) is connected. Suppose not. Then there is another component H

of G−V (C). Since G is 3-connected, there exists at least three neighbors of H on C, say v0, v1, v2, such

that there are three internal disjoint paths P0, P1, P2 from a vertex u ∈ V (H) to v0, v1, v2, respectively,

with all internal vertices in H. Let
−→
C denote the orientation of C such that v0, v1, v2 appear in C in this

cyclic order. Suppose that F has a neighbor in V (C)\{v0, v1, v2}, say v ∈ V (
−→
C [v2, v0]) \ {v2, v0}. Note

that the theta-graph P0 ∪ P1 ∪ P2 ∪
−→
C [v0, v2] contains an even cycle C ′. The component of G− V (C ′)

containing D clearly contains F ∪{v}, contradicting the property of C. Since G is 3-connected, we can

conclude that NC(F ) = {v0, v1, v2} = NC(H). For i ∈ {0, 1, 2}, let Ci =
−→
C [vi, vi+1] ∪ Pi ∪ Pi+1, where

the subscript is modulo 3. Then we have

∑

0≤i≤2

ℓ(Ci) = ℓ(C) + 2
∑

0≤i≤2

ℓ(Pi)

is even. It follows that at least one of the three cycles (say Ci) is even. Then the component of G−V (Ci)

containing F also contains the vertex vi+2, again contradicting the property of C. This finishes the

proof that G− V (C) is connected.

If there is an even cycle C ′ with V (C ′) ( V (C), then the component F ′ of G−V (C ′) containing D

also contains F . As F is maximal (subject to the choice of C), we conclude that F ′ = F and thus C ′ is

also an even cycle G− V (D) such that the component of G− V (C ′) containing D is maximal. By the

above proof, G− V (C ′) is connected, implying that |V (F ′)| > |V (F )|, a contradiction. So there exists

no even cycle C ′ with V (C ′) ( V (C). It follows that C has at most one chord, and if C has a chord

u0v0, then both paths
−→
C [u0, v0] and

−→
C [v0, u0] have even lengths.

For an even cycle C, two vertices u, v ∈ V (C) are quasi-diagonal in C if ℓ(
−→
C [u, v]) = ℓ(C)/2− 1 or

ℓ(C)/2 + 1. Note that every vertex in C has exactly two quasi-diagonal vertices.

Lemma 8. Let G be a graph. Let B be an even cycle and D be an odd cycle in G. If one of the

following two situations is met:

(1). B and D are disjoint and there exist two disjoint paths P1, P2 between B and D such that their

endpoints in B are quasi-diagonal, or

(2). B and D have exactly one common vertex u and there exists a path between B − u and D − u

such that its origin in B are quasi-diagonal with u,

then there are two cycles of consecutive even lengths in G.

Proof. First let us show the proof for (1). For i ∈ {1, 2}, let ui be the endpoint of Pi in B and vi be its

endpoint in D. As D is odd, the two paths Q1 := P1∪P2∪
−→
D [v1, v2] and Q2 := P1∪P2∪

−→
D [v2, v1] have

lengths with different parity. Then one of these paths, say Qj , satisfies ℓ(Qj) ≡ ℓ(B)/2 − 1(mod 2).

Since u1, u2 are quasi-diagonal in B, the two cycles Qj ∪
−→
B [u1, u2] and Qj ∪

−→
B [u2, u1] are two cycles of

consecutive even lengths. The proof for (2) is identical to (1).
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In the following three lemmas, we show that two cycles of consecutive even lengths can be con-

structed in 3-connected graphs using two disjoint (or almost disjoint) cycles of prescribed parities.

Lemma 9. Let G be a 3-connected graph. If there are two disjoint cycles one of which is even and the

other is odd, then G contains two cycles of consecutive even lengths.

Proof. By the condition, there exists an odd cycle D in G such that G− V (D) contains an even cycle.

Fix such D. Let C be an even cycle in G− V (D) such that the component F of G− V (C) containing

D is maximal. Using Lemma 7, we see that F = G− V (C) is connected. Moreover, C has at most one

chord, and if u0v0 is a chord of C, then both paths
−→
C [u0, v0] and

−→
C [v0, u0] have even lengths.

By the 3-connectedness of G, there are three disjoint paths P1, P2, P3 between C and D in G. If

C is a C4, then there exist two paths Pi, Pj such that their endpoints in C are adjacent, which are

quasi-diagonal. Thus by Lemma 8, G has two cycles of consecutive even lengths. From now on, we

may assume that ℓ(C) ≥ 6.

We construct an auxiliary graph Qdi(C) on V (C) such that two vertices are adjacent in Qdi(C) if

and only if they are quasi-diagonal in C. Note that if ℓ(C) = 0 (mod 4), then Qdi(C) is a cycle, and if

ℓ(C) = 2 (mod 4), then Qdi(C) is a disjoint union of two odd cycles. We consider two cases as follows.

Case 1. ℓ(C) = 2 (mod 4).

Write C = x1x2...x4t+2x1 for some t ≥ 1. Then in this case, Qdi(C) is a disjoint union of two odd

cycles (say C1, C2) of equal length such that V (C1) = {x1, x3, ..., x4t+1} and V (C2) = {x2, x4, ..., x4t+2}.

If C has a chord u0v0, then as pointed out above, both paths
−→
C [u0, v0] and

−→
C [v0, u0] have even lengths,

implying that both u0, v0 are contained in either V (C1) or V (C2). Let Q be the cycle of Qdi(C) not

containing u0, v0. If C has no chord, then let Q be any cycle of Qdi(C).

Let Q = u1u2 . . . uk. So k = ℓ(Q) = ℓ(C)/2 is odd. As C has at most one chord, by the choice of

Q, every vertex ui has exactly two neighbors in V (C) and thus has a neighbor vi ∈ V (F ) in the graph

G. Let T0 be a spanning tree of F and T be the tree obtained from T0 by adding the k edges uivi. Let

Pi and P ′
i be the paths of C between ui and ui+1 of length ℓ(C)/2 − 1 and ℓ(C)/2 + 1, respectively,

and let Qi be the unique path of T between ui and ui+1. Thus Ci = Pi ∪Qi and C ′
i = P ′

i ∪Qi are two

cycles of lengths differing by two.

Let W = u1Q1u2Q2 . . . ukQku1 be a closed walk in T . If we view T as a rooted tree with any fixed

root r, then the parity of each ℓ(Qi) agrees with the parity of dT (ui, r) − dT (ui+1, r), where dT (ui, r)

denotes the length of the unique path of T between ui and r. This shows that ℓ(W ) must be even.

Clearly each Pi have length k − 1 and every edge of C is contained in k − 1 many paths Pi. Thus

k
∑

i=1

ℓ(Ci) =

k
∑

i=1

ℓ(Pi) +

k
∑

i=1

ℓ(Qi) = (k − 1)ℓ(C) + ℓ(W ),

which is even (as k is odd and ℓ(W ) is even). This implies that at least one cycle Ci is even. Thus Ci

and C ′
i are two cycles of consecutive even lengths in G, as desired.

Case 2. ℓ(C) = 0 (mod 4).

If F = G− V (C) is 2-connected, let B = F ; otherwise, let B be the block of F containing the odd

cycle D. For any vertex v ∈ V (B), let Hv be the induced subgraph of F with vertex set

V (Hv) = {u ∈ V (F ) : there is a path between u and v with all edges in E(F )\E(B)}.

6



So Hv be the component of F −E(B) containing v, and possibly V (Hv) = {v}. (In fact |V (Hv)| ≥ 2 if

and only if v is a cut-vertex of F .) We call such graphs B-branches. We claim that for any two vertices

u1, u2 ∈ V (F ), there are two disjoint paths between {u1, u2} and V (D) in F if and only if u1, u2 are in

distinct B-branches. If u1, u2 are in a same B-branch Hv, then each path between {u1, u2} and V (D)

passes through v. Suppose now u1 ∈ V (Hv1), u2 ∈ V (Hv2) with v1 6= v2. Let Pi be a path of Hvi

between ui and vi. Since B is 2-connected, there are two disjoint paths Q1, Q2 from v1, v2, respectively

to D. Then P1 ∪Q1 and P2 ∪Q2 are two disjoint paths between {u1, u2} and V (D) in F .

Let u1, u2 be any two quasi-diagonal vertices in C. If each ui has a neighbor wi for i ∈ {1, 2} such

that w1, w2 belong to distinct B-branches, then there are two disjoint paths between C and D such that

their endpoints in C are quasi-diagonal. By Lemma 8, G has two cycles of consecutive even lengths.

So we conclude that for any two quasi-diagonal vertices u1, u2 in C (i.e., an edge u1u2 in Qdi(C)), their

neighbors in F all belong to a common B-branch. Recall that Qdi(C) is a cycle here. If C has no

chord, then every vertex of C has at least one neighbor in F and thus all neighbors of C are contained

in a common B-branch say Hv. Then v is a cut-vertex of G, a contradiction. It remains to consider

when C has a unique chord u0v0. Then Qdi(C)−{u0, v0} has at most two components, say L1, L2. For

each i ∈ {1, 2}, NG(V (Li))∩V (F ) is contained in a common B-branch, say Hvi . If v1 6= v2, then by the

above proof, NG({u0, v0})∩V (F ) = ∅; otherwise v1 = v2, then NG({u0, v0})∩V (F ) is contained in Hv1

as well. Putting all together, we see that {v1, v2} is a cut of G with size at most two, a contradiction

to the 3-connectedness of G. This proves Lemma 9.

Lemma 10. Let G be a 3-connected graph. If G has an even cycle and an odd cycle which share exactly

one common vertex, then G contains two cycles of consecutive even lengths.

Proof. Let B be an even cycle and D an odd cycle in G such that V (B) ∩ V (D) = {u}. By Lemma 7,

there is an even cycle C of G − V (D − u) such that F = G − V (C) is connected. If u /∈ V (C), then

C and D are two disjoint cycles with opposite parities and thus by Lemma 9, G contains two cycles of

consecutive even lengths. Thus we may assume that u ∈ V (C).

Let u1, u2 be the two vertices in C each of which is quasi-diagonal with u. If ui has a neighbor v

in F , then there exists a path P in F from v to V (D − u), implying that uiv ∪ P is a path between

C and D whose endpoint in C is quasi-diagonal with u. By Lemma 8, G has two cycles of consecutive

even lengths. So u1, u2 have no neighbors in F . Then u1u2 must be a chord of C (i.e., the only chord

of C). We also have ℓ(C) ≥ 6; as otherwise C is a C4 say C = uu1wu2u, then {u,w} is a 2-cut of G,

a contradiction to the 3-connectedness of G. Let u3 be a neighbor of u on C and u4 be the common

neighbor of u1, u2 on C. As u3 has a neighbor (say v) in F , there exists a path Q in F from v to

V (D − u). Now uu3v ∪ Q ∪D forms a theta-graph and thus contains an even cycle C ′. Clearly C ′ is

disjoint with the triangle u1u2u4u1. By Lemma 9, G contains two cycles of consecutive even lengths.

Lemma 11. Let G be a 3-connected graph. If there are two disjoint odd cycles, then G contains two

cycles of consecutive even lengths.

Proof. We choose two disjoint odd cycles B,D in G such that |V (B)| is minimum. Let F = G−V (B).

If F has an even cycle, then G contains two cycles of consecutive even lengths by Lemma 9. So F has

no even cycle. This also says that F contains no theta-graph, hence every block of F is either K1, K2

or an odd cycle. In particular, D is a block of F .
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We claim that F = D. Suppose not, then there exists an end-block D′ of F other than D. If

D′ = K1, let v be this isolated vertex. If D′ = K2, let v ∈ V (D′) be a non-cut-vertex of F . Since G is

3-connected, v has at least two neighbors u1, u2 in B. Then B ∪ {u1v, u2v} is a theta-graph and thus

contains an even cycle disjoint with the odd cycle D. By Lemma 9, G contains two cycles of consecutive

even lengths. Now we consider when D′ is an odd cycle. Denote the unique cut-vertex of F contained

in D′ by v (if it exists). Since G is 3-connected, there are two independent edges u1v1, u2v2 between B

and D′− v. Let P be the path of D′− v between v1 and v2. Then B∪P ∪{u1v2, u2v2} is a theta-graph

which is disjoint with D, and by Lemma 9 again, G contains two cycles of consecutive even lengths.

Note that V (G) = V (B)∪V (D) and both B and D are induced odd cycles in G. If there is a vertex

u ∈ V (B) having at least two neighbors in D, then G[V (D)∪{u}] has a theta-graph and thus contains

an even cycle which shares exactly one common vertex with B. By Lemma 10, G contains two cycles

of consecutive even lengths. Hence we may assume that every x ∈ V (B) has exactly one neighbor,

denoted by x′, in D. By the same analysis we see that every y ∈ V (D) has exactly one neighbor,

denoted by y′, in B. It follows that |V (B)| = |V (D)| and G is a cubic graph with |V (G)| = 2 (mod 4).

For any edge uv ∈ E(B), let Do(uv) be the unique odd path in D with endpoints u′, v′ and De(uv)

be the unique even path in D with the endpoints u′, v′. Similarly we can define Bo(uv) and Be(uv) for

every uv ∈ E(D). If every edge uv ∈ E(B) has ℓ(Do(uv)) = 1, then it is easy to find C4 and C6 in

G, as desired. If there exists some uv ∈ E(B) with ℓ(Do(uv)) ≥ 5, then D∗ := De(uv) ∪ {uu′, uv, vv′}

is an odd cycle; note that Do(uv) \ {u′, v′} has at least three vertices each of which has a neighbor

in V (B) \ {u, v}, thus the induced subgraph of G on
(

V (Do(uv)) ∪ V (B)
)

\ {u′, v′, u, v} contains a

theta-graph, which contains an even cycle that is disjoint with the odd cycle D∗; so by Lemma 9, G

contains two cycles of consecutive even lengths. Therefore we may assume that there exists uv ∈ E(B)

with ℓ(Do(uv)) = 3. Note that Do(uv) ∪ {uu′, uv, vv′} is a C6 in G. If there is some f ∈ E(B) with

ℓ(Do(f)) = 1, then G contains C4 and C6. Hence from now on, we may assume that any edge f ∈ E(B)

has ℓ(Do(f)) = 3. At this point let us notice that as B and D are symmetric, all above assertions hold

for edges in D as well. Write Do(uv) = u′abv′. Recall that a′, b′ are the vertices in B adjacent to a, b,

respectively. Similarly we have ℓ(Bo(u
′a)) = ℓ(Bo(ab)) = ℓ(Bo(v

′b)) = 3. If Bo(u
′a) does not contain

v, then Bo(u
′a) ∪ {a′a, ab, bv′, v′v, vu} is a C8 and so G contains C6 and C8. So Bo(u

′a) contains v.

Similarly, we infer that Bo(bv
′) contains u. But this gives ℓ(Bo(ab)) = 5, a contradiction.

Finally we are ready to present the proof of Theorem 6.

Proof of Theorem 6. Let G be a 3-connected graph with at least 6 vertices. Clearly, δ(G) ≥ 3. If G

is bipartite, then by Theorem 1, G contains two cycles of consecutive even lengths. So we assume that

G is non-bipartite. Let D be a shortest odd cycle of G. So D has no chord.

If G−V (D) contains a cycle, then by Lemma 9 or Lemma 11, G contains two cycles of consecutive

even lengths. So we may assume that G − V (D) is a forest. Let F be a component (i.e., a tree) of

G− V (D) with maximum number of vertices. If D has a vertex v that has three neighbors in F , then

G[V (F )∪{v}] contains a theta-graph and thus contains an even cycle which shares exactly one common

vertex v with the odd cycle D. By Lemma 10, G contains two cycles of consecutive even lengths. So we

assume that every vertex in D has at most two neighbors in F . Now we distinguish among two cases.

Case I. D is a triangle, say D = v1v2v3v1.
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We note that every leaf of F has at least two neighbors in D. So it is easy to see that G has a C4.

In what follows we prove by showing that G contains a C6.

Consider when |V (F )| ≤ 4. If F = K1, then all vertices in G−V (D) are isolated and adjacent to all

three vertices ofD (as δ(G) ≥ 3). As |V (G)| ≥ 6, it is easy to see that G has a C6. Suppose that F = K2.

Let F = u1u2. Then each of u1, u2 has at least two neighbors in D, and as G is 3-connected, we have

ND(u1)∪ND(u2) = V (D). Without loss of generality, let us assume that u1v2, u1v3, u2v1, u2v3 ∈ E(G).

Since |V (G)| ≥ 6, G − V (D) has a second component which is a K1 or K2. Let u3 be any vertex in

this component, which has at least two neighbors in D. In any case of ND(u3) one can find a C6 in

G[{u1, u2, u3, v1, v2, v3}] easily. If |V (F )| = 3 (i.e., F is a path u1wu2), then there are two independent

edges between {u1, u2} and V (D), say u1v1, u2v2, providing that u1wu2v2v3v1u1 is a C6 in G. Now

suppose that |V (F )| = 4. Let u1, u2 be two leaves of F and P be the path of F between u1 and u2.

Then ℓ(P ) = 2 or 3. There are two independent edges between {u1, u2} and V (D), say u1v1, u2v2,

implying that u1Pu2v2v3v1u1 (if ℓ(P ) = 2) or u1Pu2v2v1u1 (if ℓ(P ) = 3) is a C6 in G.

Finally suppose that F has order at least 5. Then there are at least 3|V (F )|−2(|V (F )|−1) ≥ 7 edges

between D and F , implying that one vertex in D has at least three neighbors in F , a contradiction.

Case II. D has length at least 5.

Let D = v1v2 . . . vkv1, where k ≥ 5 is odd. If F consists of one vertex u, then u has at least three

neighbors in D and there exists a shorter odd cycle than D in G[V (D)∪{u}], a contradiction. So F is a

tree with at least two vertices. Then F has at least two leaves, each of which has at least two neighbors

in D. Let u be an arbitrary leaf of F . We claim that u has exactly two neighbors in D, and its two

neighbors has distance 2 in D. Suppose to the contrary that there exists two neighbors v1, v2 of u has

distance in D not equal to 2. If dD(v1, v2) = 1, then uv1v2u is a triangle, contradicting the choice of

D. Now assume that dD(v1, v2) ≥ 3. Then both cycles
−→
D [v1, v2]∪{uv1, uv2} and

−→
D [v2, v1]∪{uv1, uv2}

have length less than ℓ(D), but one of them is odd, a contradiction. This proves the claim.

Without loss of generality we assume that ND(u) = {v1, v3}. Note that G has a 4-cycle v1v2v3uv1.

We further claim that there are no edges between V (D)\{v1, v2, v3} and F . Suppose not. Let viu1 be

such an edge, where i ∈ [4, k] and u1 ∈ V (F )\{u}. Let P be the unique path of F between u and u1.

Let C1 = uv3v4v5 . . . viu1 ∪ P and C2 = uv1vkvk−1 . . . viu1 ∪ P . Then

ℓ(C1) + ℓ(C2) = ℓ(C) + 2 + 2ℓ(P )

is odd. This implies that one of Ci’s is even. Without loss of generality we assume that C1 is even. Let

C ′
1 = uv1v2v3 . . . viu1 ∪ P . Then C1, C

′
1 are two cycles of consecutive even lengths.

Let u′ be a second leaf of F . Recall that u′ has two neighbors in D with distance 2. By the previous

claim, we have ND(u
′) = {v1, v3}. Since every vertex in D has at most two neighbors in F , F has

exactly two leaves, i.e., F is a path. Moreover, for every vertex w ∈ V (F )\{u, u′}, w has at least

one neighbors in D and thus ND(w) = {v2}. If |V (F )| ≥ 4, then v2 is adjacent to every vertex in

V (F )\{u, u′} and thus G has a triangle, contradicting the choice of D. If F = K2, then uv1v2v3u
′u is a

C5, implying that ℓ(D) = k = 5. Thus uv1v5v4v3u
′u is a C6. Finally if F is a path with three vertices,

then uv1v2v3u
′ ∪ F is a C6. Recall that G has a C4. So G has two cycles of consecutive even lengths.

This finishes the proof of Theorem 6.
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4 Concluding remarks

4.1 A generalization of Theorem 5

Following [14], we say k paths P1, P2, . . . , Pk are admissible, if ℓ(P1) ≥ 2 and ℓ(P1), . . . , ℓ(Pk) form an

arithmetic progression of length k with common difference one or two. The following is key in [14].

Theorem 12 (Gao, Huo, Liu and Ma, [14]; see Theorem 3.1). Let G be a graph with x, y ∈ V (G) such

that G+xy is 2-connected. If every vertex of G other than x and y has degree at least k+1, then there

exist k admissible paths from x to y in G.

We can prove a generalization of Theorem 5 as follows, which may be useful for the general case of

Conjecture 2.

Theorem 13. Let G be a graph with x, y ∈ V (G) such that G + xy is 2-connected. If every vertex of

G other than x and y has degree at least k + 1, and any edge uv ∈ E(G) with {u, v} ∩ {x, y} = ∅ has

dG(u) + dG(v) ≥ 2k + 3, then G− xy contains either k + 1 paths from x to y of consecutive lengths or

k paths from x to y whose lengths form an arithmetic progression with common difference two.

This can be proved by following the original proof of Theorem 12 in [14] with some necessary

modifications. Here we give a sketch. We prove by induction on V (G) +E(G) and k. The base case is

just Theorem 5. For the inductive proof, the main idea is to consider a new graph G′ obtained from

G by contracting some special set W of vertices such that dG′(v) ≥ dG(v) − t holds for some integer

t > 0 and vertices v /∈ {x, y}; then we can apply induction hypothesis for k− t to G′. To get the set W ,

in the proof of Theorem 12 we need to find some local structure containing x, which is either a clique

(see Lemma 3.6) or a complete bipartite graph (see Lemma 3.7). In the case that a complete bipartite

graph contains x, one can always concatenate consecutive even paths and admissible paths, so this part

of proof (after Lemma 3.7) does not need any modification. So let us assume that there exists a clique

K of size k+1 containing x. Here we need more extra discussions. In this case, since any edge uv with

{u, v}∩ {x, y} = ∅ satisfies dG(u)+ dG(v) ≥ 2k+3, we have V (G) \ (K ∪{y}) 6= ∅. If there is no vertex

u with at least two neighbors in K \ {x}, then we contract K \ {x} and the proof is similar to that of

Theorem 12; otherwise, let K ′ = K ∪ {u} and P be a path from y to K ′ not through x, then we can

get k + 1 consecutive paths from x to y in G.

4.2 Related open problems

Our main result provides the tight average degree condition for forcing two cycles of consecutive even

lengths and thus settles the case k = 2 of Conjecture 2. It would be very intersecting and natural

to pursue the remaining cases (for k ≥ 3) of the conjecture. In fact there also is a slightly stronger

conjecture made by Sudakov and Verstraëte [22].

Conjecture 14 (Sudakov and Verstraëte [22]; see Conjecture 8). Let k ≥ 1. If G is a graph with a

maximum number of edges that does not contain cycles of k consecutive even lengths, then every block

of G is a complete graph of order at most 2k + 1.

Recall the definition of cℓ,k, that is the least constant such that every n-vertex graph with at least

cℓ,k · n edges contains a cycle of length ℓ modulo k. Erdős [10] asked for the exact value of cℓ,k for
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all integers k > ℓ ≥ 0. For any k > ℓ ≥ 3, Sudakov and Verstraëte [22] determined the value of cℓ,k

up to a constant factor, by showing that dℓ,k ≤ cℓ,k ≤ 96 · dℓ,k, where dℓ,k denotes the largest possible

average degree of any k-vertex Cℓ-free graph. For the case when ℓ ≥ 4 is even, the above result of

Sudakov-Verstraëte shows that determining the order of the magnitude of cℓ,k is as hard as the famous

extremal problem of determining the Turán number of the even cycle Cℓ; and in this case, Sudakov

and Verstraëte [22] further conjectured that limk→∞ cℓ,k/dℓ,k = 1. For the case when ℓ = 2, we like to

make the following conjecture.

Conjecture 15. For any integer k ≥ 2, it holds that c2,2k = (2k + 1)/2.

Note that the case k = 2 is given by Corollary 4, and Conjecture 2 (or Conjecture 14) would imply

the above conjecture. For the case when ℓ = 0, it seems hard to make a reasonable prediction. The

best bounds for c0,4 that we are aware only give that 11/7 ≤ c0,4 ≤ 2 (see [6] for the upper bound). For

other related interesting problems, we direct readers to [22, 26].
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