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Abstract

An r-uniform hypergraph is uniquely k-colorable if there exists exactly one par-
tition of its vertex set into k parts such that every edge contains at most one vertex
from each part. For integers k ≥ r ≥ 2, let Φk,r denote the minimum real num-
ber such that every n-vertex k-partite r-uniform hypergraph with positive codegree
greater than Φk,r · n and no isolated vertices is uniquely k-colorable. A classic result
by of Bollobás [Bol78] established that Φk,2 = 3k−5

3k−2 for every k ≥ 2.
We consider the uniquely colorable problem for hypergraphs. Our main result

determines the precise value of Φk,r for all k ≥ r ≥ 3. In particular, we show that
Φk,r exhibits a phase transition at approximately k = 4r−2

3 , a phenomenon not seen
in the graph case. As an application of the main result, combined with a classic
theorem by Frankl–Füredi–Kalai, we derive general bounds for the analogous problem
on minimum positive i-degrees for all 1 ≤ i < r, which are tight for infinitely many
cases.

Keywords: hypergraph, homomorphism, positive codegree, uniquely colorable.

1 Introduction

Given an integer r ≥ 2, an r-uniform hypergraph (henceforth r-graph)H is a collection
of r-subsets of some finite set V . We identify a hypergraph H with its edge set and use
V (H) to denote its vertex set. The size of V (H) is denoted by v(H).

Given an r-graph H, the shadow of H is

∂H :=

{
e ∈

(
V (H)

r − 1

)
: exists E ∈ H such that e ⊆ E

}
.

∗Research supported by ERC Advanced Grant 101020255. Email: xizhi.liu.ac@gmail.com
†Research supported by National Key Research and Development Program of China 2023YFA1010201

and National Natural Science Foundation of China grant 12125106. Email: jiema@ustc.edu.cn
‡Research supported by Innovation Program for Quantum Science and Technology 2021ZD0302902.

Email: wth1115060377@mail.ustc.edu.cn
§Research supported by Innovation Program for Quantum Science and Technology 2021ZD0302902.

Email: zhutianming@mail.ustc.edu.cn

1

ar
X

iv
:2

40
9.

01
65

4v
1 

 [
m

at
h.

C
O

] 
 3

 S
ep

 2
02

4



For every (r − 1)-set S ⊆ V (H), the neighborhood of S in H is

NH(S) := {v ∈ V (H) : S ∪ {v} ∈ H} ,

and the degree of S in H is dH(S) := |NH(S)|. Following the definition of Balogh–
Lemons–Palmer [BLP21], the minimum positive codegree of H is given by

δ+r−1(H) := min {dH(e) : e ∈ ∂H} .

Given a vertex v ∈ V (H), the link of v in H is

LH(v) := {e ∈ ∂H : e ∪ {v} ∈ H} ,

and the degree of v in H is dH(v) := |LH(v)|. The minimum degree of H is denoted
by δ(H). Note that δ+1 (G) = δ(G) for every graph G without isolated vertices.

Given two r-graphs H and G, a map ψ : V (H) → V (G) is a homomorphism1 from H to G
if ψ(e) ∈ G for all e ∈ H. An automorphism of H is simply a surjective homomorphism
from H to itself. We use Hom(H,G) to denote the collection of all homomorphisms from H
to G, and use Aut(H) to denote the collection of all automorphisms of H. We say H is G-
colorable if Hom(H,G) ̸= ∅. Two homomorphisms ψ1, ψ2 ∈ Hom(H,G) are equivalent,
denoted by ψ1

∼= ψ2, if there exists an automorphism η ∈ Aut(G) such that η ◦ ψ1 = ψ2.

Given integers k ≥ r ≥ 2, we use Kr
k to denote the complete r-graph on k vertices. For

convenience, we always assume that the vertex set of Kr
k is [k]. We say an r-graph H

is k-colorable if it is Kr
k-colorbale. In other words, H is k-colorable if and only if it is

k-partite. A k-colorable r-graph H is called uniquely k-colorable if ψ1
∼= ψ2 for all

ψ1, ψ2 ∈ Hom(H,Kr
k).

A classical theorem by Bollobás [Bol78] from 1970s established the tight minimum degree
(equivalently, the minimum positive codegree) bound that forces an n-vertex k-partite
graph to be uniquely k-colorable.

Theorem 1.1 (Bollobás [Bol78]). Let n ≥ k ≥ 2 be integers. Suppose that G is a k-partite
graph on n vertices with

δ(G) >
3k − 5

3k − 2
n.

Then G is uniquely k-colorable. Moreover, the constant 3k−5
3k−2 is optimal.

In this work, we extend the theorem of Bollobás to r-graphs for all r ≥ 3. More specifically,
for integers k ≥ r ≥ 2, we study the minimum real number Φk,r such that for n ≥ k, every
k-partite r-graph on n vertices without isolated vertices and with δ+r−1(H) > Φk,r · n is

uniquely k-colorable. Note that Bollobás’ theorem can be restated as Φk,2 = 3k−5
3k−2 for

every k ≥ 2.

In the following theorem, we determine the exact value of Φk,r for all integers k ≥ r ≥ 3.
In particular, our results reveal an interesting phenomenon: for each fixed r ≥ 3, Φk,r as
a function of k exhibits a phase transition around 4r−2

3 (see Figure 1), a feature not seen
in the case of graphs.

1 To avoid any ambiguity, every hypergraph considered in this paper is vertex-labeled, with each vertex
having a unique label.
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Theorem 1.2. Let n ≥ k ≥ r ≥ 2 be integers. Suppose that H is a k-partite r-graph on
n vertices with no isolated vertices, and

δ+r−1(H) >

{
k−r+1
k+2 n, if k < 4r−2

3 ,
3k−3r+1
3k−2 n, if k ≥ 4r−2

3 .
(1)

Then H is uniquely k-colorable. Moreover, both constants k−r+1
k+2 and 3k−3r+1

3k−2 are optimal.

Remarks.

• The assumption that H has no isolated vertices cannot be omitted, as there exist
n-vertex k-partite r-graphs satisfying (1) that contain isolated vertices, which are
clearly not uniquely k-colorable.

• Theorem 1.2 can be restated as

Φk,r = max

{
k − r + 1

k + 2
,
3k − 3r + 1

3k − 2

}
for all k ≥ r ≥ 3.

The witnesses for the lower bounds come from the constructions Hk,r(1,m) and
Hk,r(3,m), defined below.

• The theorem of Bollobás (Theorem 1.1) employs a straightforward induction on k.
Our proofs, however, differ significantly. In addition to the induction on the unifor-
mity r, our approach relies on several technical innovations, notably Propositions 2.2
and 2.4. Proposition 2.2 asserts the existence of special edges containing specified
vertices and colors, while Proposition 2.4 provides a useful certificate for the equiva-
lence of two homomorphisms. It is worth noting that Proposition 2.4, together with
some additional arguments, provides a different proof of Bollobás’ theorem (see the
remark after Proposition 2.5).

• In general, beyond the uniquely Kr
k-colorable problem, one could also explore the

uniquely F -colorable problem, where F is a fixed r-graph (see Section 4). This type
of problem was studied in [Lai87, Lai89] for odd cycles and in [HLZ24] for general
hypergraphs. However, for r ≥ 3, the complete r-graphs Kr

k are the only family for
which the tight bound is known.

Construction Hk,r(α,m) : Let k ≥ r ≥ 3,m ≥ 1 be integers, and α > 0 be a real
number. Let V1, . . . , Vk−2, Vk−1,1, Vk−1,2, Vk,1, Vk,2 be pairwise disjoint sets with

|V1| = · · · = |Vk−2| = ⌊αm⌋ and |Vk−1,1| = |Vk−1,2| = |Vk,1| = |Vk,2| = m.

Let V := V1 ∪ · · · ∪ Vk−2 ∪ Vk−1,1 ∪ Vk−1,2 ∪ Vk,1 ∪ Vk,2, U1 := V \ (Vk−1,2 ∪ Vk,2), and
U2 := V \ (Vk−1,1 ∪ Vk,1). Let Hk,r(α,m) denote the r-graph on V whose edge set is the
union of the following two sets :{

e ∈
(
U1

r

)
: |e ∩ Vi| ≤ 1 for i ∈ [k − 2], |e ∩ Vk−1,1| ≤ 1, and |e ∩ Vk,1| ≤ 1

}
,{

e ∈
(
U2

r

)
: |e ∩ Vi| ≤ 1 for i ∈ [k − 2], |e ∩ Vk−1,2| ≤ 1, and |e ∩ Vk,2| ≤ 1

}
.

It is clear from the definition that Hk,r(α,m) is a k-partite r-graph without isolated
vertices, and it has two non-equivalent k-colorings as follows:

ψ1(Vi) = i for i ∈ [k − 2], ψ1(Vk−1,1) = ψ1(Vk−1,2) = k − 1, ψ1(Vk,1) = ψ1(Vk,2) = k.

ψ2(Vi) = i for i ∈ [k − 2], ψ2(Vk−1,1) = ψ2(Vk,2) = k − 1, ψ2(Vk−1,2) = ψ2(Vk,1) = k.

3
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Figure 1: Φk,6 for k ∈ [6, 11].

Given integers r > i ≥ 1, the i-th shadow ∂iH of an r-graph H is defined inductively by
letting ∂iH := ∂∂i−1H with ∂1H := ∂H. For every i-set S ⊆ V (H), the link of S in H is

LH(S) := {e ∈ ∂iH : S ∪ e ∈ H} ,

and the degree of S is dH(S) := |LH(S)|. Similar to the definition of δ+r−1(H), the
positive minimum i-degree of H is defined as

δ+i (H) := min {dH(e) : e ∈ ∂r−iH} .

For integers k ≥ r > i ≥ 1, let Φk,r,i denote the minimum real number such that for n ≥ k,
every n-vertex k-partite r-graph H without isolated vertices and with δ+i (H) > Φk,r,i ·nr−i

is uniquely k-colorable.

We establish the following inequality concerning Φk,r,i using a classical Kruskal–Katona-
type theorem by Frankl–Füredi–Kalai [FFK88].

Theorem 1.3. Suppose that k ≥ r1 ≥ r2 > i ≥ 1 are integers. Then(
Φk,r1,i(
k−i
r1−i

))1/(r1−i)

≤

(
Φk,r2,i(
k−i
r2−i

))1/(r2−i)

.

As an application of the main theorem (i.e. Theorem 1.2), we provide the following general
upper bound for Φk,r,i, which is tight when k ≤ 4i+2

3 .

Corollary 1.4. Suppose that k ≥ r > i ≥ 1 are integers. Then

Φk,r,i ≤
(
k − i

r − i

)
·
(

1

k − i
·max

{
k − i

k + 2
,
3k − 3i− 2

3k − 2

})r−i

.

In particular,

Φk,r,i =

(
k − i

r − i

)(
1

k + 2

)r−i

for all k ≤ 4i+ 2

3
.

The remainder of this paper is organized as follows: The proof of Theorem 1.2 is presented
in Section 2. Proofs for Theorem 1.3 and Corollary 1.4 are presented in Section 3. Section 4
includes some remarks and open questions.
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2 Proof of Theorem 1.2

2.1 Preliminaries

In this subsection, we present several necessary definitions and preliminary results.

Given an r-graph H and a vertex v ∈ V (H), the neighborhood of v is

NH(v) := {u ∈ V (H) \ {v} : exists e ∈ H such that {u, v} ⊆ e} .

Throughout this subsection, we will assume the following conditions :

(a) n, k, r are integers satisfying n ≥ k ≥ r ≥ 2.

(b) H is a k-colorable n-vertex r-graph without isolated vertices and satisfies

δ+r−1(H) > max

{
3k − 3r + 1

3k − 2
n,

k − r + 1

k + 2
n

}
. (2)

Given a vertex set S ⊆ V (H), we classify S as follows:

• S is good if |S| ≥ n
k+2 ; otherwise, it is bad.

• S is large if |S| ≥ 3n
3k−2 ; otherwise, it is small.

For every φ ∈ Hom(H,Kr
k), define

Iφ :=
{
j ∈ [k] : φ−1(j) is good

}
and Jφ :=

{
j ∈ [k] : φ−1(j) is large

}
.

Note that, by definition, every large set is good, and hence, Jφ ⊆ Iφ.

For every vertex v ∈ V (H), let

[v]φ := {u ∈ V (H) : φ(u) = φ(v)} .

For a subset A ⊆ V (H), we denote by φ(A) the set of all colors φ(v) for v ∈ A. It
will be convenient later to set S := [k] \ S for every S ⊆ [k]. In particular, for every
φ ∈ Hom(H,Kr

k), we have Iφ = [k] \ Iφ, Jφ = [k] \ Jφ, and φ(e) = [k] \ φ(e) for every
e ∈ H.

Proposition 2.1. The following statements hold for every φ ∈ Hom(H,Kr
k).

(i)
∣∣φ−1(J)

∣∣ ≥ |J |
k−r+1 · δ+r−1(H) for every set J ⊆ [k] of size at least k − r + 1.

(ii) φ is surjective.

(iii) |Jφ| ≤ r − 2.

Proof of Proposition 2.1. First we prove Proposition 2.1 (i). Note that it suffices to show

this for every J ∈
( [k]
k−r+1

)
, as the other cases follow from a standard averaging argument.

Fix a set J ⊆ [k] of size k− r+1. Let e ∈ H be an edge such that |φ(e)∩J | is maximized.
Since |J | = r − 1, there exists a vertex v ∈ e \ φ−1(J). Let e′ := e \ {v}. It follows from
the maximality of e that NH(e

′) ⊆ φ−1(J). Therefore, |φ−1(J)| ≥ dH(e
′) ≥ δ+r−1(H).
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Next, we prove Proposition 2.1 (ii). The case k = r is trivially true, so we may assume
that k ≥ r + 1. Suppose to the contrary that φ is not surjective. Then there exists a
homomorphism ψ ∈ Hom(H,Kr

k−1). Let Vi := ψ−1(i) for i ∈ [k − 1]. Proposition 2.1 (i)
applied to ψ yields

n =
∑

i∈[k−1]

|Vi| = |ψ−1([k − 1])| ≥ k − 1

(k − 1)− r + 1
· δ+r−1(H),

which implies that δ+r−1(H) ≤ k−r
k−1n. Simple calculations show that k−r

k−1 <
3k−3r+1
3k−2 , which

contradicts Inequality (2).

Now we prove Proposition 2.1 (iii). Suppose to the contrary that |Jφ| ≥ r − 1. Fix an
edge e ∈ H such that |φ(e) ∩ Jφ| is maximized.

Suppose that |φ(e)∩Jφ| ≥ r−1. Then there exists a vertex v ∈ e such that φ(e\{v}) ⊆ Jφ.
It follows from the definition of Jφ that

dH(e \ {v}) ≤ n−
∑

j∈φ(e\{v})

|Vj | ≤ n− (r − 1) · 3n

3k − 2
=

3k − 3r + 1

3k − 2
n,

contradicting Inequality (2).

Suppose that |φ(e) ∩ Jφ| ≤ r − 2. Then fix a vertex v ∈ e such that φ(v) /∈ Jφ. Note
that the set M := Jφ ∪ φ(e \ {v}) satisfies |M | ≥ |φ(e \ {v})|+ 1 ≥ r. It follows from the
maximality of e and the definition of Jφ that

dH(e \ {v}) =
∑
j∈M

|φ−1(j)| ≤ (k − r) · 3n

3k − 2
<

3k − 3r + 1

3k − 2
n,

contradicting Inequality (2).

The following simple but crucial proposition will be used extensively throughout the paper.

Proposition 2.2. The following statements hold for every φ ∈ Hom(H,Kr
k), i ∈ [k], and

v ∈ φ−1(i).

(i) Suppose that i ∈ Jφ. Then for every (r−|Jφ|)-set I ⊆ Jφ, there exists an edge e ∈ H
containing v such that φ(e) = Jφ ∪ I.

(ii) Suppose that i ∈ Jφ. Then for every (r − 1 − |Jφ|)-set I ⊆ Jφ, there exists an edge
e ∈ H containing v such that φ(e) = Jφ ∪ I ∪ {i}.

(iii) For every j ∈ [k] \ {i}, there exists an edge e ∈ H containing v such that j ∈ φ(e)
and

min
{
|φ−1(ℓ)| : ℓ ∈ φ(e) \ {i, j}

}
≥ max

{
|φ−1(ℓ)| : ℓ ∈ φ(e)

}
.

(iv) Suppose that Jφ = ∅. Then for every (r − 1)-set I ⊆ [k] there exists an edge e ∈ H
containing v such that I ⊆ φ(e).

Proof of Proposition 2.2. We will present the proof for Proposition 2.2 (i) only, as the proof
for Proposition 2.2 (ii) is nearly identical. Additionally, Proposition 2.2 (iii) and (iv) follow
directly from Proposition 2.2 (i) (ii) and the fact that |Jφ| ≤ r−2 (see Proposition 2.1 (iii)).
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Fix φ ∈ Hom(H,Kr
k), i ∈ Jφ, and v ∈ φ−1(i). Fix an arbitrary set I ⊆ Jφ of size r− |Jφ|.

First, we show that there exists an edge e ∈ H containing {v} such that Jφ ⊆ φ(e).

Let e ∈ H be an edge containing v such that |φ(e) ∩ Jφ| is maximized. Suppose to the
contrary that |φ(e) ∩ Jφ| ≤ |Jφ| − 1. Then it follows from Proposition 2.1 (iii) that there
exists a vertex u ∈ e such that [u]φ is small. Similar to the proof of Proposition 2.1 (iii),
the set M ′ := Jφ ∪ φ(e \ {u}) has size at least r. Thus, by the maximality of e, we have

dH(e \ {u}) ≤
∑
j∈M ′

|φ−1(j)| ≤ (k − r) · 3n

3k − 2
<

3k − 3r + 1

3k − 2
n,

contradicting Inequality (2). Therefore, we have Jφ ⊆ φ(e).

Let ẽ ∈ H be an edge that contains v and satisfies Jφ ⊆ φ(ẽ), such that |φ(ẽ) ∩ I| is
maximized among all such edges. Suppose to the contrary that |φ(ẽ)∩ I| ≤ |I| − 1. Then
there exists a vertex w ∈ ẽ such that φ(w) ∈ I ∪ Jφ. In particular, [w]φ is small. Similar to
the argument above, the set M := I ∪φ(e\{w}) has size least r. Thus, by the maximality
of ẽ, we have

dH(e \ {w}) ≤
∑
j∈M

|φ−1(j)| ≤ (k − r) · 3n

3k − 2
<

3k − 3r + 1

3k − 2
n,

contradicting Inequality (2).

The following result provides a lower bound for the size of Iφ.

Proposition 2.3. We have |Iφ| ≥ r for every φ ∈ Hom(H,Kr
k).

Proof of Proposition 2.3. Suppose to the contrary that |Iφ| ≤ r−1 for some φ ∈ Hom(H,Kr
k).

Then it follows from Proposition 2.2 (i) (or (ii)) and the fact Jφ ⊆ Iφ that there exists an

edge e ∈ H such that Iφ ⊆ φ(e). In particular, |φ−1(j)| ≤ n
k+2 for every j ∈ φ(e). Since

|Iφ| ≤ r − 1, there exists a vertex u ∈ e such that φ(u) ∈ Iφ. It follows that

dH(e \ {u}) ≤
∑

j∈φ(e\{u})

|φ−1(j)| ≤ (k − r + 1) · n

k + 2
,

contradicting Inequality (2).

2.2 Two key propositions

In this subsection, we present two technical but crucial results that are necessary for the
proof of Theorem 1.2. The proofs of these results are deferred to Sections 2.4 and 2.5.

We continue to assume that Assumptions (a) and (b) hold throughout this subsection.
Recall that two homomorphisms φ, ϑ ∈ Hom(H,Kr

k) are equivalent (denoted by ϑ ∼= φ) if
there exists an automorphism η ∈ Aut(Kr

k) such that η ◦ φ = ϑ.

Proposition 2.4. Let φ, ϑ ∈ Hom(H,Kr
k). If |ϑ(φ−1(i))| ≤ 2 for all i ∈ [k], then ϑ ∼= φ.

We say a homomorphism φ ∈ Hom(H,Kr
k) is small if φ−1(i) is small (i.e. |φ−1(i)| < 3n

3k−2)
for every i ∈ [k]. Note that φ is small if and only if Jφ = ∅.
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Proposition 2.5. Suppose that every homomorphism in Hom(H,Kr
k) is small. Then

for every pair of homomorphisms ϑ, φ ∈ Hom(H,Kr
k) and for every i ∈ [k], we have

|ϑ(φ−1(i))| ≤ 2. Consequently, H is uniquely k-colorable.

Remark. Notice that in the case where r = 2 (i.e. for graphs), for every φ ∈ Hom(H,Kr
k)

we have |Jφ| ≤ r−2 = 0 (by Proposition 2.1 (iii)), meaning that φ is small. Consequently,
it follows from Proposition 2.5 that H is uniquely k-colorable. This provides an alternative
proof of Bollobás’ theorem (Theorem 1.1).

2.3 Proof of Theorem 1.2

We present the proof of Theorem 1.2 in this subsection, addressing it in two separate
cases :

Proposition 2.6. Theorem 1.2 holds for k ≥ (4r − 2)/3.

Proposition 2.7. Theorem 1.2 holds for k < (4r − 2)/3.

First, we prove Theorem 1.2 for the case k ≥ (4r − 2)/3.

Proof of Proposition 2.6. By contradiction, let r be the smallest integer for which Propo-
sition 2.6 fails. By Theorem 1.1, we may assume that r ≥ 3. Let H be an n-vertex
k-partite r-graph without isolated vertices, and with δ+r−1(H) > 3k−3r+1

3k−2 n, which is not
uniquely k-colorable. Let V := V (H).

Fix φ ∈ Hom(H,Kr
k) such that |Jφ| is maximized. Let Vi := φ−1(i) for i ∈ [k]. Let

q := |Jφ|. By relabelling vertices in Kr
k , we may assume that Jφ = [q], i.e. V1, . . . , Vq are

large sets. We may assume that q ≥ 1, since otherwise, by Proposition 2.5, we are done.
Recall from Proposition 2.1 (iii) that we have q ≤ r − 2 as well.

Fix an arbitrary homomorphism ϑ ∈ Hom(H,Kr
k).

Claim 2.8. For every i ∈ [q] and v ∈ Vi, the following statements hold :

(i) |ϑ(NH(v) ∩ Vj)| = 1 for every j ∈ [k] \ {i},

(ii) ϑ(NH(v) ∩ Vj) ̸= ϑ(v) for every j ∈ [k] \ {i}, and

(iii) ϑ(NH(v) ∩ Vj) ̸= ϑ(NH(v) ∩ Vj′) for all distinct j, j′ ∈ [k] \ {i}.

Proof of Claim 2.8. Fix i ∈ [q] and v ∈ Vi. We may assume that ϑ(v) = i; otherwise, we
can replace ϑ with η ◦ϑ, where η ∈ Aut(Kr

k) satisfies η ◦ϑ(v) = i. Let N := NH(v), noting
that N ⊆ V \ Vi. Since i ∈ [q], we have |N | ≤ n− |Vi| ≤ n− 3n

3k−2 . Additionally, it follows

from the assumption k ≥ 4r−2
3 that k − 1 ≥ 4(r−1)−2

3 . We consider the link LH(v) as an
(r − 1)-graph on N , and, in particular, LH(v) contains no isolated vertices. Since LH(v)
satisfies

δ+r−2(LH(v)) ≥ δ+r−1(H) >
3k − 3r + 1

3k − 2
n =

3k − 3r + 1

3k − 5

(
n− 3n

3k − 2

)
≥ 3k − 3r + 1

3k − 5
|N |,

it follows from the minimality of r that LH(v) is uniquely (k−1)-colorable. Therefore, the
induced maps φ|N , ϑ|N (viewed as homomorphisms from LH(v) to K

r−1
k−1) are equivalent.

This implies Claim 2.8 (i), (ii), and (iii).
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Our next step is to show that |ϑ(Vi)| ≤ 2 for every i ∈ [k]. By Proposition 2.4, this will
complete the proof of Proposition 2.6. We will achieve this in two cases, addressed in
Claims 2.9 and 2.10, respectively.

small partslarge parts

v

u

X

Figure 2: auxiliary figure for the proof of Claim 2.9.

Claim 2.9. We have |ϑ(Vi)| ≤ 2 for every i ∈ [q + 1, k].

Proof of Claim 2.9. Fix i ∈ [q+1, k] and v ∈ Vi. By Proposition 2.2, there exists an edge
e ∈ H containing v such that [q] ⊆ φ(e) (see Figure 2). Let

X := Vi ∩NH(e \ {v}) = NH(e \ {v}) \
⋃

j∈φ(e)

Vj .

Since Vj is small for j ∈ φ(e) ⊆ [q + 1, k], we have

|X| ≥ dH(e \ {v})−
∑

j∈φ(e)

|Vj | >
3k − 3r + 1

3k − 2
n− (k − r) · 3n

3k − 2
=

n

3k − 2
.

Let u denote the vertex in e ∩ V1, noting that X ⊆ NH(u). Claim 2.8 (i) applied to u
shows that |ϑ(X)| = 1, and hence, X ⊆ [v]ϑ (recall from the definition that v ∈ X). It
follows that

|[v]ϑ ∩ Vi| ≥ |X| > n

3k − 2
≥ |Vi|

3
.

Since v was chosen arbitrarily, we conclude that |ϑ(Vi)| < |Vi|
|Vi|/3 = 3.

Claim 2.10. We have |ϑ(Vi)| ≤ 2 for every i ∈ [q].

Proof of Claim 2.10. Suppose to the contrary that there exists i ∈ [q] such that |ϑ(Vi)| ≥
3. By symmetry, we may assume that i = 1. Let v1, v2, v3 ∈ V1 be three vertices such
that ϑ(v1), ϑ(v2), ϑ(v3) are pairwise distinct. Let N i

j := Vj ∩ NH(vi) for (i, j) ∈ [3] ×
[k]. By Claim 2.8, there exists a unique pair {i∗, j∗} ⊆ [2, k] with i∗ ̸= j∗ such that
(ϑ(N1

i∗), ϑ(N
1
j∗)) = (ϑ(v2), ϑ(v3)). In addition (by Claim 2.8 (ii)), we have N1

i∗ ∩N
2
i∗ = ∅

and N1
j∗ ∩N

3
j∗ = ∅ (see Figure 3).

Fix a (k − r)-set S := {i1, . . . , ik−r} ⊆ {1, i∗, j∗} such that

max {|Vj | : j ∈ S} ≤ min
{
|Vj | : j ∈ {1, i∗, j∗} \ S

}
.
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v1 u

v2

v3

N1
i∗ N1

j∗

N2
i∗

N3
j∗

V1 Vi∗ Vj∗ small parts

Figure 3: auxiliary figure for the proof of Claim 2.10.

Let (m, ℓ) ∈ {(i∗, 1), (i∗, 2), (j∗, 1), (j∗, 3)} be a member such that

|N ℓ
m| = min

{
|N1

i∗ |, |N
2
i∗ |, |N

1
j∗ |, |N

3
j∗ |
}
.

In particular, |N ℓ
m| ≤ (|Vi∗ |+ |Vj∗ |)/4.

Since there are q ≤ r − 2 large parts and V1 is large, each Vj is small for j ∈ S. By
Proposition 2.2, there exists e ∈ H containing vℓ such that φ(e) = S (see Figure 2 for the
case (ℓ,m) = (1, i∗)). Let u denote the vertex in e ∩ Vm, noting that u ∈ N ℓ

m. Observe
that NH(e \ {u}) ⊆ N ℓ

m ∪ Vi1 ∪ · · · ∪ Vik−r
. Hence,

dH(e \ {u}) ≤ |N ℓ
m|+ |Vi1 |+ · · ·+ |Vik−r

| ≤ |Vi∗ |+ |Vj∗ |
4

+ |Vi1 |+ · · ·+ |Vik−r
|.

Let I :=
{
j ∈ {1, i∗, j∗} : Vj is small

}
and p := |I|, noting that p ≥ k − 2 − q ≥ k − r

(recall that V1 is large). In addition, since k ≥ 4r−2
3 , we have p ≤ k − 3 < 4k − 4r. It

follows from the definition of S and a simple averaging argument that |Vi1 |+ · · ·+ |Vik−r
| ≤

k−r
p ·

∑
j∈I |Vj |. Therefore, the inequality above for dH(e \ {u}) continues as

dH(e \ {u}) ≤
|Vi∗ |+ |Vj∗ |

4
+
k − r

p
·
∑
j∈I

|Vj |,

which implies that |Vi∗ |+|Vj∗ |+
4(k−r)

p

∑
j∈I |Vj | ≥ 4·δ+r−1(H) > 4· 3k−3r+1

3k−2 n. Consequently,

n =
∑
i∈[k]

|Vi|

= |V1|+

|Vi∗ |+ |Vj∗ |+
4(k − r)

p
·
∑
j∈I

|Vj |

− 4(k − r)− p

p
·
∑
j∈I

|Vj |+
∑

j∈{1,i∗,j∗}\I

|Vj |

>
3n

3k − 2
+ 4 · 3k − 3r + 1

3k − 2
n− 4(k − r)− p

p
· p · 3n

3k − 2
+

3(k − 3− p)

3k − 2
n = n,

a contradiction.

Claims 2.9 and 2.10, together with Proposition 2.4, imply that H is uniquely k-colorable,
contradicting the assumption that H is not uniquely k-colorable.
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Next, we prove Theorem 1.2 for the case k < 4r−2
3 . The proof closely parallels that of

Proposition 2.6.

Proof of Proposition 2.7. By contradiction, let r be the smallest integer for which Propo-
sition 2.7 fails. Note that the case r = 2 is is vacuously true, as 2 = r ≤ k < 4r−2

3 = 2.
So we may assume that r ≥ 3. Let H be an n-vertex k-partite r-graph without isolated
vertices and with δ+r−1(H) > k−r+1

k+2 n that is not uniquely k-colorable.

Fix φ ∈ Hom(H,Kr
k) and let Vi := φ−1(i) for i ∈ [k]. Let p := |Iφ| and recall from

Proposition 2.3 that p ≥ r. By relabelling vertices in Kr
k we may assume that Iφ = [p],

i.e. V1, . . . , Vp are good sets.

Fix an arbitrary homomorphism ϑ ∈ Hom(H,Kr
k).

Claim 2.11. For every i ∈ [p] and v ∈ Vi, the following statements hold :

(i) |ϑ(NH(v) ∩ Vj)| = 1 for every j ∈ [k] \ {i},

(ii) ϑ(NH(v) ∩ Vj) ̸= ϑ(v) for every j ∈ [k] \ {i}, and

(iii) ϑ(NH(v) ∩ Vj) ̸= ϑ(NH(v) ∩ Vj′) for all distinct j, j′ ∈ [k] \ {i}.

Proof of Claim 2.11. The proof is similar to that of Claim 2.8. Fix i ∈ [q] and v ∈ Vi. We
may assume that ϑ(v) = i. Let N := NH(v), noting that N ⊆ V \ Vi. Since i ∈ [p], we
have |N | ≤ n− |Vi| ≤ n− n

k+2 . Since both k and r are integers, the assumption k < 4r−2
3

implies that k ≤ 4r−3
3 . Thus, we have k − 1 ≤ 4(r−1)−2

3 .

We consider the link LH(v) as an (r − 1)-graph on N , and, in particular, LH(v) contains
no isolated vertices. Notice that LH(v) satisfies

δ+r−2(LH(v)) ≥ δ+r−1(H) >
k − r + 1

k + 2
n =

k − r + 1

k + 1

(
n− n

k + 2

)
≥ k − r + 1

k + 1
|N |.

If k − 1 = 4(r−1)−2
3 , then 3(k−1)−3(r−1)+1

3(k−1)−2 = (k−1)−(r−1)+1
(k−1)+2 , and it follows from Proposi-

tion 2.6 that LH(v) is uniquely (k − 1)-colorable. If k − 1 < 4(r−1)−2
3 , then it follows

from the minimality of r that LH(v) is uniquely (k − 1)-colorable. Thus, in both cases,
LH(v) is uniquely (k − 1)-colorable. Therefore, the induced maps φ|N , ϑ|N (viewed as
homomorphisms from LH(v) to Kr−1

k−1) are equivalent. This implies Claim 2.11 (i), (ii),
and (iii).

Next, we show that |ϑ(Vi)| ≤ 2 for every i ∈ [k]. By Proposition 2.4, this will complete
the proof of Proposition 2.7. We will achieve this in two cases, addressed in Claims 2.12
and 2.13, respectively.

Claim 2.12. We have |ϑ(Vi)| ≤ 2 for every i ∈ [p+ 1, k].

Proof of Claim 2.12. The proof is similar to that of Claim 2.9. Fix i ∈ [p+1, r] and v ∈ Vi.
By Proposition 2.2 (iii), there exists e ∈ H containing v such that

min {|[u]φ| : u ∈ e \ {v}} ≥ max
{
|Vj | : j ∈ φ(e)

}
.
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Since |Jφ| ≤ r − 2 (by Proposition 2.1 (iii)), we have Jφ ⊆ φ(e). Thus, φ(e) ⊆ Jφ. Let

X := NH(e \ {v}) ∩ Vi = NH(e \ {v}) \
⋃

j∈φ(e)

Vj .

Then simple calculations show that

|X| ≥ dH(e \ {v})−
∑

j∈φ(e)

|Vj | >
k − r + 1

k + 2
n− (k − r) · 3n

3k − 2

=
1

3
· n

k + 2
+

6
(
4r
3 − 2

9 − k
)

(3k − 2)(k + 2)
n >

1

3
· n

k + 2
≥ |Vi|

3
.

Fix j ∈ φ(e) ∩ Iφ and let u denote the vertex in Vj ∩ e. The existence of such a j is
guaranteed by the definition of e; in fact, by Proposition 2.3, we have φ(e) \ {i} ⊆ Iφ.
Note that X ⊆ NH(u) and v ∈ X. It follows from Claim 2.11 (i) that |ϑ(X)| = 1. In
particular, X ⊆ [v]ϑ. Therefore,

|[v]ϑ ∩ Vi| ≥ |X| > |Vi|
3
.

Since v was chosen arbitrarily, we conclude that |ϑ(Vi)| < |Vi|
|Vi|/3 = 3.

Claim 2.13. We have |ϑ(Vi)| ≤ 2 for every i ∈ [p].

Proof of Claim 2.13. The proof is similar to that of Claim 2.10. Suppose to the contrary
that there exists i ∈ [p] such that |ϑ(Vi)| ≥ 3. By symmetry, we may assume that i = 1.
Let v1, v2, v3 ∈ V1 be three vertices such that ϑ(v1), ϑ(v2), ϑ(v3) are pairwise distinct.
Let N i

j := Vj ∩ NH(vi) for (i, j) ∈ [3] × [k]. By Claim 2.11, there exists a unique pair

{i∗, j∗} ⊆ [2, k] with s ̸= t such that (ϑ(N1
i∗), ϑ(N

1
j∗)) = (ϑ(v2), ϑ(v3)). In addition (by

Claim 2.11 (ii)), we have N1
i∗ ∩N

2
i∗ = ∅ and N1

j∗ ∩N
3
j∗ = ∅ (see Figure 3).

Let (m, ℓ) ∈ {(i∗, 1), (i∗, 2), (j∗, 1), (j∗, 3)} be a member such that

|N ℓ
m| = min

{
|N1

i∗ |, |N
2
i∗ |, |N

1
j∗ |, |N

3
j∗ |
}
.

In particular, |N ℓ
m| ≤ (|Vi∗ |+ |Vj∗ |)/4.

By Proposition 2.2 (iii), there exists e ∈ H containing vℓ such that

m ∈ φ(e) and min
{
|φ−1(j)| : j ∈ φ(e) \ {1,m}

}
≥ max

{
|φ−1(j)| : j ∈ φ(e)

}
.

Assume that φ(e) = {i1, . . . , ik−r}. Let u denote the vertex in e∩Vm, noting that u ∈ N ℓ
m.

Observe that NH(e \ {u}) ⊆ N ℓ
m ∪ Vi1 ∪ · · · ∪ Vik−r

. Therefore,

dH(e \ {u}) ≤ |N ℓ
m|+ |Vi1 |+ · · ·+ |Vik−r

| ≤ |Vi∗ |+ |Vj∗ |
4

+ |Vi1 |+ · · ·+ |Vik−r
|,

which implies that

|Vi∗ |+ |Vj∗ |+ 4
(
|Vi1 |+ · · ·+ |Vik−r

|
)
≥ 4 · δ+r−1(H) ≥ 4(k − r + 1)

k + 2
n.

12



Consequently,

n =
∑
i∈[k]

|Vi| = |V1|+

|Vi∗ |+ |Vj∗ |+ 4
∑

j∈[k−r]

|Vij |

− 4
∑

j∈[k−r]

|Vij |+
∑

j∈{1,i∗,j∗}

|Vj |

>
n

k + 2
+

4(k − r + 1)

k + 2
n− 4

∑
j∈[k−r]

|Vij |+
∑

j∈{1,i∗,j∗}

|Vj |. (3)

Since both k and r are integers, the assumption k < 4r−2
3 implies that k ≤ 4r−3

3 , which

is equivalent to 4(k − r) ≤ k − 3. Therefore, we can choose a set S ⊆ {1, i∗, j∗} of size
4k − 4r such that

max {|Vj | : j ∈ S} ≤ min
{
|Vj | : j ∈ {1, i∗, j∗} \ S

}
.

Let T := {1, i∗, j∗}\S, noting that |T | = 4r−3k−3 ≤ r−3 ≤ |Iφ|−3 (the second inequality
is due to Proposition 2.3). So, by the definition of S, we have T ⊆ Iφ. Therefore,∑

j∈{1,i∗,j∗}

|Vj | − 4
∑

j∈[k−r]

|Vij | ≥
∑

j∈{1,i∗,j∗}

|Vj | −
∑
j∈S

|Vj | ≥
∑
j∈T

|Vj | ≥
4r − 3k − 3

k + 2
n.

Combining this with (3), we obtain

n >
n

k + 2
+ 4 · k − r + 1

k + 2
n+

4r − 3k − 3

k + 2
n = n,

a contradiction.

Claims 2.12 and 2.13, together with Proposition 2.4, imply that H is uniquely k-colorable,
contradicting the assumption that H is not uniquely k-colorable.

2.4 Proof of Proposition 2.5

We prove Proposition 2.5 in this subsection. The following structure will be crucial for
the proof.

Let m ≥ r ≥ 2 be integers and q :=
⌊
m−1
r−1

⌋
. Given an ordered vertex set (v1, . . . , vm),

the r-uniform quasi-sunflower on (v1, . . . , vm), denoted by Sr(v1, . . . , vm), is the r-graph
with edge set{

{v1, · · · , vr−1, vm}, · · · , {v(q−1)(r−1)+1, · · · , vq(r−1), vm}, {vm−r+1, · · · , vm}
}
.

The following fact about quasi-sunflowers can be derived through a simple inductive ar-
gument (see Figure 4).

Fact 2.14. Let k ≥ m ≥ r ≥ 2 be integers and V := (v1, . . . , vm) be an ordered vertex set.
Suppose that H is an r-graph on V such that Sr(v1, . . . , vj) ⊆ H for every j ∈ [r,m]. Then
every pair of vertices in V is contained in some edge of H. In particular, φ(v1), . . . , φ(vm)
are pairwise distinct for every homomorphism φ ∈ Hom(H,Kr

k).

Now we are ready to prove Proposition 2.5.

13



1

2

3

4

5

6

7

6

55

1

2

3

4

1

2

3

4

Figure 4: S3(1, . . . , 5) → S3(1, . . . , 6) → S3(1, . . . , 7).

Proof of Proposition 2.5. Let n ≥ k ≥ r ≥ 2 be integers. Let q and s be integers satisfying
k−1 = q(r−1)+s and 0 ≤ s ≤ r−2. Assume that every homomorphism in Hom(H,Kr

k) is
small. Fix ϑ, φ ∈ Hom(H,Kr

k) and let Vi := φ−1(i) for i ∈ [k]. Note from the assumption
that Jφ = Jϑ = ∅. The key step in this proof is to show that |ϑ(

⋃
i∈I Vi)| ≤ r for every

(s+ 1)-set I ⊆ [k] (i.e. Claim 2.17).

Claim 2.15. Let I ⊆ [k] be a set of size s+1. For every i ∈ I and v ∈ Vi, there exists an
ordered vertex set (v1, · · · , vk−s) ⊆

⋃
j∈I\{i} Vj with v1 = v such that

Sr(v1, · · · , vℓ) ⊆ H for every ℓ ∈ [r, k − s].

In particular, by Fact 2.14, ϑ(v), ϑ(v2), . . . , ϑ(vk−s) are pairwise distinct.

Proof of Claim 2.15. Fix I ∈
(
[k]
s+1

)
, i ∈ I, and v ∈ Vi. We will find inductively the ordered

vertex set (v1, · · · , vk−s) ⊂
⋃

j∈I\{i} Vj with v1 = v such that Sr(v1, · · · , vℓ) ⊆ H for every

ℓ ∈ [r, k − s].

The base case ℓ = r is guaranteed by Proposition 2.2 (iv), so it suffices to focus on the
inductive step. Suppose that we have found an ordered vertex set (v1, . . . , vℓ) ∈

⋃
j∈I\{i} Vj

with v1 = v for some ℓ ∈ [r, k− s− 1] such that Sr(v1, . . . , vj) ⊆ H for every j ∈ [r, ℓ]. Let

t :=
⌊
ℓ−1
r−1

⌋
≤ q − 1. Let

ej :=
{
v(r−1)j+1, . . . , v(r−1)(j+1)

}
for j ∈ [0, t− 1], and et := {vℓ−r+2, . . . , vℓ} .

Since Sr(v1, . . . , vℓ) ⊆ H, we have ej ∈ ∂H for every j ∈ [0, t] (see the red pairs in Figure 4
for the case r = 3). Let

U := NH(e0) ∩ · · · ∩NH(et).

Consider the number of pairs (ej , u) with j ∈ [t] and u ∈ V (H) such that ej ∪ {u} ∈ H.
For each ej , by the assumption on δ+r−1(H), the number of possible choices for u is greater

than 3k−3r+1
3k−2 n. On the other hand, for each u ∈ V (H) \U , there are at most t choices for

ej ; and for each u ∈ U , there are at most t+ 1 choices for ej . Therefore, we obtain

|U | · (t+ 1) + (n− |U |) · t > (t+ 1) · 3k − 3r + 1

3k − 2
n.

It follows that

|U | > 3k − 3r + 1

3k − 2
n− t · 3(r − 1)

3k − 2
n ≥ 3k − 3r + 1

3k − 2
n− (q − 1) · 3(r − 1)

3k − 2
n =

3s+ 1

3k − 2
n, (4)
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which is greater than s · 3n
3k−2 ≥

∑
j∈I\{i} |Vj |. Therefore, U \

⋃
j∈I\{i} Vj ̸= ∅.

Fix a vertex vℓ+1 ∈ U \
⋃

j∈I\{i} Vj . It follows from the definition of U that the set
{ej ∪ {vℓ+1} : j ∈ [0, t]} ⊆ H forms the quasi-sunflower Sr(v1, . . . , vℓ+1) (see Figure 4).
This concludes the proof of the inductive step, and hence, the proof of Claim 2.15.

1
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3

4

5

6

7

1

2

3

4

5

6

7

u

Figure 5: S3(1, . . . , 7) → S3(3, 4, 5, 6, 2, 7, u).

Claim 2.16. Let I ⊆ [k] be a set of size s+ 1. For every v ∈
⋃

j∈I Vj, we have∣∣∣∣∣∣[v]ϑ ∩

⋃
j∈I

Vj

∣∣∣∣∣∣ > n

3k − 2
. (5)

Proof of Claim 2.16. Fix I ∈
(
[k]
s+1

)
, i ∈ I, and v ∈ Vi. Let (v1, · · · , vk−s) ⊆

⋃
j∈I\{i} Vj be

an ordered vertex set, with v1 = v, as guaranteed by Claim 2.15. Let

e′j := {v(r−1)j+1, . . . , v(r−1)(j+1)} for j ∈ [q − 1] and e′q := {v2, v3, . . . , vr−1, vk−s}.

Since Sr(v1, · · · , vk−s) ⊆ H, we have e′j ∈ ∂H for j ∈ [q] (see the yellow pairs in Figure 5
for the case r = 3). Let

M := NH(e
′
1) ∩ · · · ∩NH(e

′
q).

It follows from the definition of M that for every vertex u ∈ M , the set {e′j ∪ {u} : j ∈
[q]} ⊆ H forms the quasi-sunflower Sr(v2, . . . , vk−s, u) (see Figure 5). Therefore, similar
to Claim 2.15, we obtain

ϑ(u) ∈ [k] \ {ϑ(v2), . . . , ϑ(vk−s)} for every u ∈M.

In particular, ϑ(M) ⊆ [k] \ {ϑ(v2), . . . , ϑ(vk−s)} has size at most s+ 1.

A proof similar to that of (4) yields

|M | > 3s+ 1

3k − 2
n. (6)

On the other hand, since ϑ is small, we have

|ϑ−1(j) ∩M | ≤ |ϑ−1(j)| ≤ 3n

3k − 2
for every j ∈ ϑ(M). (7)

Combining this with (6), we obtain ϑ(M) ≥ s+1, and hence, ϑ(M) = s+1. This implies
that ϑ(M) = [k] \ {ϑ(v2), . . . , ϑ(vk−s)}. Since ϑ(v1) ∈ [k] \ {ϑ(v2), . . . , ϑ(vk−s)} = ϑ(M),
it follows from (7) that

|[v1]ϑ ∩M | ≥ |M | − s · 3n

3k − 2
>

n

3k − 2
.

Recall that v1 = v and M ⊆
⋃

j∈I Vj . Therefore, the inequality above implies (5).
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Claim 2.17. We have |ϑ(
⋃

j∈I Vj)| ≤ r for every (s + 1)-set I ⊆ [k]. In particular,
|ϑ(Vi)| ≤ r for every i ∈ [k].

Proof of Claim 2.17. Suppose to the contrary that |ϑ(
⋃

j∈I Vj)| ≥ r + 1 ≥ s+ 3 for some
(s + 1)-set I ⊆ [k]. Fix i ∈ I and v ∈ Vi. Let (v1, · · · , vk−s) ⊆

⋃
j∈I\{i} Vj be an

ordered vertex set, with v1 = v, as guaranteed by Claim 2.15. Let M be be defined
as in the proof of Claim 2.16. Recall that ϑ(M) = [k] \ {ϑ(v2), . . . , ϑ(vk−s)} has size
s + 1. So, there exist two vertices w1, w2 ∈

⋃
j∈I Vj with ϑ(w1) ̸= ϑ(w2) such that

{ϑ(w1), ϑ(w2)} ⊆ {ϑ(v2), . . . , ϑ(vk−s)}. In particular, M ∩ [w1]ϑ = M ∩ [w2]ϑ = ∅. So, it
follows from (5) and (6) that∣∣∣∣∣∣

⋃
j∈I

Vj

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣[w1]ϑ ∩

⋃
j∈I

Vj

∣∣∣∣∣∣+
∣∣∣∣∣∣[w2]ϑ ∩

⋃
j∈I

Vj

∣∣∣∣∣∣+ |M | > 3(s+ 1)

3k − 2
n.

However, since ϑ is small, we have
∣∣∣⋃j∈I Vj

∣∣∣ ≤ (s+ 1) · 3n
3k−2 , a contradiction.

By Proposition 2.5, to finish the proof, it suffices to prove that |ϑ(Vi)| ≤ 2 for every i ∈ [k].
Suppose to the contrary that |ϑ(Vi)| = p ≥ 3 for some i ∈ [k]. Then, by averaging, there

exists a vertex v ∈ Vi such that |[v]ϑ ∩ Vi| ≤ |Vi|
p < 3n

(3k−2)p ≤ n
3k−2 . Since |ϑ(Vi)| ≤ r (due

to Claim 2.17), Proposition 2.2 (iv) ensures the existence of an edge e ∈ H containing v
such that ϑ(Vi) ⊆ ϑ(e). This implies that NH(e \ {v}) ∩ Vi ⊆ [v]θ ∩ Vi. Therefore,

dH(e \ {v}) ≤ |[v]ϑ ∩ Vi|+
∑

j∈φ(e)

|Vj | <
|Vi|
p

+ (k − r) · 3n

3k − 2
<

3k − 3r + 1

3k − 2
n,

contradicting Inequality (2).

2.5 Proof of Proposition 2.4

We prove Proposition 2.4 in this subsection. The following results will be useful.

Recall from Section 1 that the (r−2)-th shadow ∂r−2H of an r-graph H is a graph, where
{u, v} ∈ ∂r−2H if and only if it is contained in some edge of H.

Proposition 2.18. Let n ≥ k ≥ r ≥ 2 be integers and H be an n-vertex r-graph satisfying
Assumption (b). Let φ ∈ Hom(H,Kr

k). For every pair {u, v} ∈ ∂r−2H, there exists an
edge e ∈ H containing {u, v} such that

min {|[w]φ| : w ∈ e \ {u, v}} ≥ max
{
|φ−1(i)| : i ∈ φ(e)

}
.

In particular, by Proposition 2.1 (iii), φ−1(i) is small for every i ∈ φ(e).

Proof of Proposition 2.18. The proof is analogous to that of Proposition 2.2. Fix φ ∈
Hom(H,Kr

k) and {u, v} ∈ ∂r−2H. Recall from Proposition 2.1 (iii) that |Jφ| ≤ r − 2.

First, we claim that there exists an edge ẽ ∈ H containing {u, v} such that Jφ ⊆ φ(ẽ).
Indeed, choose an edge ẽ ∈ H containing {u, v} such that |φ(ẽ)∩Jφ| is maximized. Suppose
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to the contrary that Jφ ̸⊆ φ(ẽ). Then there exists a vertex w ∈ ẽ such that [w]φ is small.
Similar to the proof of Proposition 2.1, it follows from the maximality of ẽ that

dH(ẽ \ {w}) ≤
∑

j∈Jφ∪φ(ẽ\{w})

|φ−1(j)| ≤ (k − r) · 3n

3k − 2
<

3k − 3r + 1

3k − 2
n,

contradicting Inequality (2). Therefore, we have Jφ ⊆ φ(ẽ).

Fix a set I ⊆ Jφ ∪ {φ(u), φ(v)} of size r − |Jφ ∪ {φ(u), φ(v)}| such that

min
{
|φ−1(i)| : i ∈ I

}
≥ max

{
|φ−1(j)| : j ∈ I ∪ Jφ ∪ {φ(u), φ(v)}

}
.

It suffices to show that there exists an edge e ∈ H containing {u, v} such that φ(e) =
I ∪ Jφ ∪ {φ(u), φ(v)}. Let e ∈ H be an edge containing Jφ ∪ {φ(u), φ(v)} such that
|φ(e) ∩ I| is maximized. Suppose to the contrary that |φ(e) ∩ I| ≤ |I| − 1. Then there
exists a vertex w ∈ e such that φ(w) ∈ I ∪ Jφ ∪ {φ(u), φ(v)}. In particular, [w]φ is small.
Therefore, similar to the argument above, we obtain

dH(e \ {w}) ≤
∑

j∈I∪φ(e\{w̃})

|φ−1(j)| ≤ (k − r) · 3n

3k − 2
<

3k − 3r + 1

3k − 2
n,

contradicting Inequality (2).

V1

V2V3

U1 U2

U3

Vk, Uk

B1C1

C2

B2C3

B3
· · ·

Figure 6: the intersection of two homomorphisms has cyclic structures.

Proposition 2.19. Let n ≥ k ≥ r ≥ 2 be integers and H be an n-vertex r-graph satisfying
Assumption (b). Suppose that φ, ϑ ∈ Hom(H,Kr

k) satisfy |ϑ(φ−1(i))| ≤ 2 for every i ∈ [k].
Then the following statements hold.

(i) There exists a t-set T ⊆ [k] for some t ≥ 2, and by symmetry, we may assume that
T = [t], such that ϑ(Vi) = {ki, ki+1} for i ∈ [t], where {k1, . . . , kt} ⊆ [k] is a t-set,
and kt+1 := k1 (see Figure 6).

(ii) Every set T ⊆ [k] satisfying the conclusion above must have |T | ≥ 3.

Proof of Proposition 2.19. Let H, φ, ϑ be as assumed in Proposition 2.19. Let Vi := φ−1(i)
and Ui := ϑ−1(i) for i ∈ [k]. We begin by proving Proposition 2.19 (i). Note that it suffices
to show that if |ϑ(Vi)| = 2 for some i ∈ [k] (which is ensured by the assumption that ϑ ≇ φ),
then there exists j ∈ [k] \ {i} with |ϑ(Vj)| = 2 such that |ϑ(Vi) ∩ ϑ(Vj)| ≥ 1.

Fix an i ∈ [k] such that ϑ(Vi) = {p, q} for some distinct p, q ∈ [k]. This is equivalent to
saying that Vi∩Up ̸= ∅ and Vi∩Uq ̸= ∅. Fix a vertex v ∈ Vi∩Uq. By Proposition 2.2 (iii),
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there exists an edge e ∈ H containing v such that p ∈ ϑ(e), i.e. e ∩ Up ̸= ∅. Let u
denote the vertex in e ∩ Up. Since e ∩ Vi ̸= ∅, the index j ∈ [k] such that u ∈ Vj must
be different from i, i.e. j ∈ [k] \ {i}. Note that u ∈ Vj ∩ Up and ϑ(u) = p. So we obtain
p ∈ ϑ(Vi) ∩ ϑ(Vj), and hence, |ϑ(Vi) ∩ ϑ(Vj)| ≥ 1.

Now fix a vertex w ∈ Vi∩Up. By Proposition 2.2 (iii), there exists an edge ẽ ∈ H containing
w such that j ∈ φ(ẽ), i.e. ẽ ∩ Vj ̸= ∅. This implies that ϑ(ẽ ∩ Vj) ̸= ϑ(w) = p. Therefore,
ϑ(Vj) has size at least two, and based on the assumption, we conclude that |ϑ(Vj)| = 2.
This completes the proof for Proposition 2.19 (i).

Next, we prove Proposition 2.19 (ii). Suppose to the contrary that there exists a set
T ⊆ [k] of size two satisfying Proposition 2.19 (i). Let {k1, k2} ⊆ [k] be the corresponding
set guaranteed by Proposition 2.19 (i). By relabeling the vertices in Kr

k , we may assume
that T = {1, 2}. We may also assume that (k1, k2) = (1, 2), since otherwise, we can replace
ϑ with η ◦ ϑ, where η ∈ Aut(Kr

k) satisfies (η(k1), η(k2)) = (1, 2).

v

V1 V2

U1

U2

Figure 7: auxiliary figure for the proof of Proposition 2.19 (ii).

Case 1 : k ≥ 4r−2
3 .

Let s := |Jφ \ {1, 2}| ≤ |Jφ| ≤ r − 2 (due to Proposition 2.1 (iii)). By symmetry, we may
assume

|V1 ∩ U1| = min {|Vi ∩ Uj | : (i, j) ∈ [2]× [2]} .

In particular, |V1∩U1| ≤ (|V1|+ |V2|)/4. Fix a vertex v ∈ V1∩U1. By Proposition 2.2 (iii),
there exists an edge e ∈ H (see Figure 7) containing v such that

2 ∈ φ(e) and max
{
|Vi| : i ∈ φ(e)

}
≤ min {|Vi| : i ∈ φ(e) \ {1, 2}} .

Since |Jφ∪{1, 2}| ≤ r−2+2 = r, it follows from the definition of e that Jφ ⊆ φ(e), which

implies that φ(e) ⊆ Jφ ∪ {1, 2}. Additionally, it follows from a simple averaging argument
that ∑

j∈φ(e)

|Vj | ≤
|φ(e)|

|Jφ ∪ {1, 2}|
·

∑
j∈Jφ∪{1,2}

|Vj | =
k − r

k − s− 2
·

∑
j∈Jφ∪{1,2}

|Vj | .

Therefore,

3k − 3r + 1

3k − 2
n < dH (e \ {v}) ≤ |V1 ∩ U1|+

∑
j∈φ(e)

|Vj |

≤ |V1|+ |V2|
4

+
k − r

k − s− 2
·

∑
j∈Jφ∪{1,2}

|Vj | .
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Consequently,

n = |V1|+ · · ·+ |Vk|

= 4

 |V1|+ |V2|
4

+
k − r

k − s− 2
·

∑
j∈Jφ∪{1,2}

|Vj |


− 3k − (4r − 2− s)

k − s− 2
·

∑
j∈Jφ∪{1,2}

|Vj |+
∑

j∈Jφ\{1,2}

|Vj |

> 4 · 3k − 3r + 1

3k − 2
n− 3k − (4r − 2− s)

k − s− 2
· (k − s− 2) · 3n

3k − 2
+

3s

3k − 2
n = n,

a contradiction. Here we used the fact that 4 · k−r
k−s−2 − 1 = 3k−(4r−2−s)

k−s−2 ≥ 0, which follows

from the assumption that k ≥ 4r−2
3 .

Case 2 : k ≤ 4r−2
3 .

Let s := |Iφ \ {1, 2}| ≥ |Iφ| − 2 ≥ r − 2 (due to Proposition 2.3). By symmetry, we may
assume

|V1 ∩ U1| = min {|Vi ∩ Uj | : (i, j) ∈ [2]× [2]} .

In particular, |V1∩U1| ≤ (|V1|+ |V2|)/4. Fix a vertex v ∈ V1∩U1. By Proposition 2.2 (iii),
there exists an edge e ∈ H containing v such that

2 ∈ φ(e) and max
{
|Vi| : i ∈ φ(e)

}
≤ min {|Vi| : i ∈ φ(e) \ {1, 2}} .

Note that

k − r + 1

k + 2
n < dH (e \ {v}) ≤ |V1 ∩ U1|+

∑
i∈φ(e)

|Vi| ≤
|V1|+ |V2|

4
+
∑

i∈φ(e)

|Vi| .

Therefore,

n =
∑
i∈[k]

|Vi| = 4

 |V1|+ |V2|
4

+
∑

i∈φ(e)

|Vi|

− 4
∑

i∈φ(e)

|Vi|+
∑

i∈[3,k]

|Vi|

> 4 · k − r + 1

k + 2
n− 4

∑
i∈φ(e)

|Vi|+
∑

i∈[3,k]

|Vi|. (8)

Since both k and r are integers, the assumption k < 4r−2
3 implies that k ≤ 4r−3

3 . It follows

that k − 3 ≥ 4(k − r) = 4 · |φ(e)|. The choice of e implies that

∑
i∈[3,k]

|Vi| − 4
∑

i∈φ(e)

|Vi| ≥ max
T∈( [3,k]

4r−2−3k)

{∑
i∈T

|Vi|

}
≥ (4r − 3k − 2) · n

k + 2
,

where the last inequality follows from the fact that |Iφ ∩ [3, k]| ≥ r − 2 ≥ 4r − 3k − 2.
Therefore, Inequality (8) continues as

n > 4 · k − r + 1

k + 2
n+ (4r − 3k − 2) · n

k + 2
= n,

a contradiction.
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Now we are ready to prove Proposition 2.4, and we will proceed by considering two cases
based on the value of k.

Proof of Proposition 2.4 for k ≥ 4r−2
3 . Let n ≥ k ≥ r ≥ 2 be integers satisfying k ≥ 4r−2

3 .
Let H be an n-vertex k-partite r-graph with no isolated vertices and with δ+r−1(H) >
3k−3r+1
3k−2 n. Fix φ, ϑ ∈ Hom(H,Kr

k) such that |ϑ(φ−1(i))| ≤ 2 for every i ∈ [k]. Let

Vi := φ−1(i) and Ui := ϑ−1(i) for i ∈ [k]. Suppose to the contrary that φ ≇ ϑ.

V1

V2V3

U1 U2

U3

V4

u v

w4

w

Figure 8: auxiliary figure for the proof of Claim 2.20.

Let T ⊆ [k] and {k1, . . . , kt} ⊆ [k] be the t-sets guaranteed by Proposition 2.19, where
t ≥ 3. Similar to the proof of Proposition 2.19 (ii), we may assume that T = [t] and
(k1, . . . , kt) = (1, . . . , t). For convenience, let Bi := Vi ∩ Ui+1 and Ci := Vi ∩ Ui for i ∈ [t],
with the indices taken modulo t (see Figure 6).

Claim 2.20. We have {v, u} ̸∈ ∂r−2H for every pair (v, u) ∈ C2 ×Bt.

Proof of Claim 2.20. Suppose to the contrary that there exists a pair of vertices (v, u) ∈
C2 × Bt such that {v, u} ∈ ∂r−2H. By Proposition 2.18, there exists an edge e ∈ H
containing {v, u} such that Vj is small for every j ∈ φ(e). Since V1 = (U1 ∩V1)∪ (U2 ∩V1)
and {v, u} ⊆ e, it follows that 1 ̸∈ φ(e) (see Figure 8). If there exists a vertex w ∈ e\{v, u}
such that [w]φ is small, then we would have

dH(e \ {w}) ≤
∑

j∈φ(e\{w})∪{1}

|Vj | < (k − r) · 3n

3k − 2
<

3k − 3r + 1

3k − 2
n,

a contradiction. Therefore [w]φ is large for every w ∈ e \ {v, u}. Together with Proposi-
tion 2.1 (iii), this implies that |Jφ| = r − 2 and φ(e) = Jφ ∪ {2, t}.

For every i ∈ Jφ, let wi denote the vertex in e ∩ Vi. From the inequality

3k − 3r + 1

3k − 2
n < dH(e \ {wi}) ≤ |Vi|+

∑
j∈φ(e)∪{1}

|Vj | < |Vi|+ (k − r − 1) · 3n

3k − 2
,

it follows that |Vi| > 4n
3k−2 . Combining this with Proposition 2.1 (i), we obtain

n =
∑
j∈[k]

|Vj | =
∑
j∈Jφ

|Vj |+
∑
j∈Jφ

|Vj | > (r − 2) · 4n

3k − 2
+
k − r + 2

k − r + 1
· 3k − 3r + 1

3k − 2
n

=

(
1 +

(r − 2)k − (r2 − 3r + 4)

(3k − 2)(k − r + 1)

)
n.

Since k ≥
⌈
4r−2
3

⌉
, simple calculations show that (r−2)k−(r2−3r+4)

(3k−2)(k−r+1) ≥ 0 for all r ≥ 3, implying
that the inequality above is a contradiction.
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V1

V2V3

U1 U2

U3

v

u

Figure 9: auxiliary figure for the proof of Claim 2.21.

Claim 2.21. We have

min {|Bi|+ |Bi+1|, |Ci|+ |Ci+1|} >
4n

3k − 2
for every i ∈ [t].

In particular,

|Vi|+ |Vi+1| >
8n

3k − 2
for every i ∈ [t].

Here, the indices are taken modulo t.

Proof of Claim 2.21. Suppose to the contrary that this is not true. By symmetry, we may
assume that |C1|+ |Ct| ≤ 4n

3k−2 . Fix a vertex v ∈ C2. By Proposition 2.2 (iii), there exists
an edge e ∈ H containing v such that

t ∈ φ(e) and Vj is small for every j ∈ φ(e) ∪ {1} (see Figure 9).

Additionally, we may assume that 1 ̸∈ φ(e). Indeed, suppose that 1 ∈ φ(e). Then let w
denote the vertex in e∩V1. Observe that w must be contained in C1 (see Figure 9). Since
k ≥

⌈
4r−2
3

⌉
, simple calculations show that 3k−3r+1 ≥ 4 for all integers r ≥ 3. Therefore,

dH(e \ {w}) >
3k − 3r + 1

3k − 2
n ≥ 4n

3k − 2
≥ |C1|,

which means that there exists a vertex w̃ ∈ V (H) \ C1 such that (e \ {w}) ∪ {w̃} ∈ H. It
is easy to see that w̃ cannot lie in V1. Thus, we can replace e with (e \ {w}) ∪ {w̃}, and
this new edge will have empty intersection with V1, as desired. Therefore, we may initially
assume that 1 ̸∈ φ(e).

Let u denote the vertex in e∩Vt, noting that u must lie in Ct (see Figure 9). Additionally,
observe that NH(e \ {u}) ∩ V1 ⊆ C1 and NH(e \ {u}) ∩ Vt ⊆ Ct. Therefore, similar to the
proof of Claim 2.20, we obtain

3k − 3r + 1

3k − 2
n < dH(e \ {u}) ≤ |C1|+ |Ct|+

∑
j∈φ(e)∪{1}

|Vj |

≤ 4n

3k − 2
+ (k − r − 1) · 3n

3k − 2
=

3k − 3r + 1

3k − 2
n,

a contradiction.

Claim 2.22. All but at most two sets in {V1, . . . , Vt} are large. In particular, by Propo-
sition 2.1 (iii),

t ≤ |Jφ|+ 2 ≤ r.
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Proof of Claim 2.22. Suppose to the contrary that there exist three sets in {V1, . . . , Vt}
with size smaller than 3n

3k−2 . By Claim 2.21, |Vi|+|Vi+1| > 8n
3k−2 for every i ∈ [t]. Therefore,

there exist three sets Vi1 , Vi2 , Vi3 with size greater than 8n
3k−2 − 3n

3k−2 = 5n
3k−2 (note that

this implies that |Jφ| ≥ 3, and hence, r ≥ 5). Combining this with Proposition 2.1 (i), we
obtian∑

j∈[k]

|Vj | = |Vi1 |+ |Vi2 |+ |Vi3 |+
∑

j∈{i1,i2,i3}

|Vj |

> 3 · 5n

3k − 2
+

k − 3

k − r + 1
· 3k − 3r + 1

3k − 2
n =

(
1 +

2(3k − 4r + 7)

(3k − 2)(k − r + 1)

)
n > n,

a contradiction.

v

V1

V2V3

U1 U2

U3

Figure 10: auxiliary figure for the proof of Proposition 2.4.

Let β be the real number such that
∑

i∈[t] |Vi| =
βn

3k−2 . It follows from Claim 2.21 that
β ≥ 4t. By symmetry, we may assume that B1 is the smallest among {Bi : i ∈ [t]} ∪
{Ci : i ∈ [t]}. In particular, |B1| ≤ 1

2t

∑
i∈[t] |Vi| =

βn
2t(3k−2) . Fix a vertex v ∈ B1. By

Proposition 2.2 (i), (ii), and Claim 2.22, there exists an edge e (see Figure 10) containing
v such that

[t] ⊆ φ(e) and max
{
|Vj | : j ∈ φ(e)

}
≤ min {|Vj | : j ∈ φ(e \ {v})} .

In particular, it follows from a simple averaging argument that∑
j∈φ(e)

|Vj | ≤
k − r

k − t
·
∑

j∈[t+1,k]

|Vj | ≤
k − r

k − t
·
(
n− βn

3k − 2

)
.

Since B1 ∩ e ̸= ∅ and [t] ⊆ φ(e), it is easy to see inductively that Vi ∩ e ⊆ Bi for i ∈ [2, t]
(see Figure 10). Therefore, NH(e \ {v}) ∩ V1 ⊆ B1. It follows that

dH(e \ {v}) ≤ |B1|+
∑

j∈φ(e)

|Vj | ≤
βn

2t(3k − 2)
+
k − r

k − t
·
(
n− βn

3k − 2

)

=
k − r

k − t
n−

(
k − r

k − t
− 1

2t

)
· βn

3k − 2
.

Since k ≥ 4r−2
3 and t ≥ 3, we have

k − r

k − t
− 1

2t
=

(2k − 2r + 1)t− k

2t(k − t)
≥ 3(2k − 2r + 1)− k

2t(k − t)
=

5k − 6r + 3

2t(k − t)
> 0.
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Therefore, the inequality above for dH(e \ {v}) continues as

dH(e \ {v}) ≤
k − r

k − t
n−

(
k − r

k − t
− 1

2t

)
· 4tn

3k − 2

=
3k − 3r + 1

3k − 2
n− (k − r + 1)t+ k − 2r

(3k − 2)(k − t)
n

≤ 3k − 3r + 1

3k − 2
n− 4k − 5r + 3

(3k − 2)(k − t)
n <

3k − 3r + 1

3k − 2
n

a contradiction. This completes the proof of Proposition 2.4 for the case k ≥ 4r−2
3 .

Next, we consider the case k < 4r−2
3 .

Proof of Proposition 2.4 for k < 4r−2
3 . Let n ≥ k ≥ r ≥ 2 be integers satisfying k < 4r−2

3 .
Let H be an n-vertex k-partite r-graph with no isolated vertices and with δ+r−1(H) >
k−r+1
k+2 n. Fix φ, ϑ ∈ Hom(H,Kr

k) such that |ϑ(φ−1(i))| ≤ 2 for every i ∈ [k]. Let Vi :=

φ−1(i) and Ui := ϑ−1(i) for i ∈ [k]. Suppose to the contrary that φ ≇ ϑ.

Let T ⊆ [k] and {k1, . . . , kt} ⊆ [k] be the t-sets guaranteed by Proposition 2.19, where
t ≥ 3. Similar to the proof of Proposition 2.19 (ii), we may assume that T = [t] and
(k1, . . . , kt) = (1, . . . , t). For convenience, let Bi := Vi ∩ Ui+1 and Ci := Vi ∩ Ui for i ∈ [t],
with the indices taken modulo t (see Figure 6).

Claim 2.23. We have {v, u} ̸∈ ∂r−2H for every pair (v, u) ∈ C2 ×Bt.

Proof of Claim 2.23. Suppose to the contrary that there exists a pair (v, u) ∈ C2 × Bt

such that {u, v} ∈ ∂r−2H. Notice that every edge containing {u, v} must have empty
intersection with V1. Therefore, we have k ≥ r + 1. By Proposition 2.18, there exists an
edge e ∈ H containing {u, v} such that

max
{
|Vi| : i ∈ φ(e)

}
≤ min {|Vi| : i ∈ φ(e) \ {2, t}} .

Fix i∗ ∈ φ(e) \ {2, t} such that

|Vi∗ | = min {|Vj | : j ∈ φ(e) \ {2, t}} .

Let w denote the vertex in e∩Vi∗ . Let K := [k] \ {1, 2, t} and T := φ(e \ {w}) ∪ {1} ⊆ K.
Since NH(e \ {w}) ∩ V1 = ∅, we obtain

k − r + 1

k + 2
n < dH (e \ {w}) ≤

∑
j∈T

|Vj | .

Choose a set S ⊆ [k] of size 2(k− r+ 1) such that {1, 2, t} ⊆ S. Note that this is possible
since k ≥ r+ 1 (implying 2(k− r+ 1) ≥ 4) and k < 4r−2

3 (implying 2(k− r+ 1) ≤ k). By

Proposition 2.1 (i), we have
∑

j∈S |Vj | ≥ 2 · δ+r−1(H) ≥ 2 · k−r+1
k+2 n. On the other hand, it

follows from the definition of e and w that

max {|Vj | : j ∈ T} ≤ max {|Vj | : j ∈ K \ T} ,

Since S ⊆ K and |S| = k− 2(k− r+1) ≥ k− r = |T |, a simple averaging argument shows
that ∑

j∈S

|Vj | ≥
k − 2(k − r + 1)

k − r
·
∑
j∈T

|Vj | >
2r − 2− k

k − r
· k − r + 1

k + 2
n.
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Consequently,∑
j∈[k]

|Vj | =
∑
j∈S

|Vj |+
∑
j∈S

|Vj | > 2 · k − r + 1

k + 2
n+

2r − 2− k

k − r
· k − r + 1

k + 2
n

=

(
1 +

4r − 2− 3k

(k + 2)(k − r)

)
n ≥ n,

a contradiction.

Fix a vertex v ∈ Bt ⊆ Vt. By Proposition 2.2 (iii), there exists an edge e ∈ H containing
v such that

2 ∈ φ(e) and max
{
|Vi| : i ∈ φ(e)

}
≤ min {|Vi| : i ∈ φ(e) \ {2, t}} . (9)

Let u denote the vertex in e ∩ V2. It follows from Claim 2.23 that u ∈ B2. Let K :=
[k] \ {1, 2, t}. Note that {2, t} ⊆ φ(e).

Claim 2.24. There exists a (k − r − 1)-set I ⊆ φ(e) ∪ {1} ⊆ K such that

|B1|+ |B2|+
∑
j∈I

|Vj | >
k − r + 1

k + 2
n. (10)

Proof of Claim 2.24. Define an edge ẽ ∈ H and a (k− r− 1)-set I ⊆ [k] \ {1, 2} according
to the following rules :

• If 1 /∈ φ(e), then let ẽ := e and I := φ(e) ∪ {1}.

• If 1 ∈ φ(e) and |B1| > k−r+1
k+2 n, then let ẽ := e and I ⊆ φ(e) be an arbitrary set of

size k − r − 1.

• Suppose that 1 ∈ φ(e) but |B1| ≤ k−r+1
k+2 n. Then let w denote the vertex in e ∩ V1.

Note that w is contained in B1 since e ∩ Bt ̸= ∅. For the same reason, we have
NH(e \ {w})∩ V1 ⊆ B1. Since dH(e \ {w}) > k−r+1

k+2 ≥ |B1|, the set NH(e \ {u}) \B1

is nonempty. Fix a vertex w̃ ∈ NH(e \ {u}) \ B1, noting that w̃ ̸∈ V1. Let ẽ :=
(e \ {w}) ∪ {w̃} and I := φ(ẽ) ∪ {1} ⊆ φ(e), noting that 1 ̸∈ φ(ẽ).

Note that in all three cases we have 1 ̸∈ I and I ⊆ φ(e), and hence, I ⊆ φ(e) ∪ {1}.
Additionally, in all three cases we have {v} = ẽ ∩ Bt. Therefore, NH(ẽ \ {u}) ∩ V1 ⊆ B1.
Furthermore, by Claim 2.23, we have NH(ẽ \ {u}) ∩ V2 ⊆ B2. Therefore, it follows from
the definition of ẽ and I that

either |B1| >
k − r + 1

k + 2
n or

k − r + 1

k + 2
n < dH(e \ {u}) ≤ |B1|+ |B2|+

∑
i∈I

|Vi|.

In both cases, we have k−r+1
k+2 n < |B1|+ |B2|+

∑
i∈I |Vi|.

Let I ⊆ φ(e) ∪ {1} ⊆ K be the (k − r − 1)-set guaranteed by Claim 2.24. By symmetry,
there exists a (k − r − 1)-set J ⊆ K such that

|C1|+ |C2|+
∑
j∈J

|Vj | >
k − r + 1

k + 2
n. (11)
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Claim 2.25. There exists a (k − r − 1)-set Q ⊆ K \ J such that
∑

j∈Q |Vj | ≥
∑

j∈I |Vj |.

Proof of Claim 2.25. Note that |K\J | ≥ k−3−(k−r−1) = r−2 ≥ k−r (since k < 4r−2
3 ).

So there exists a (k − r)-set Q̂ ⊆ K \ J . Fix i∗ ∈ Q̂ such that |Vi∗ | = min
{
|Vj | : j ∈ Q̂

}
.

Fix j∗ ∈ φ(e) such that |Vj∗ | = min
{
|Vj | : j ∈ φ(e)

}
. Let Q := Q̂ \ {i∗}. Since φ(e) ⊆ K,

it follows from (9) that∑
j∈Q

|Vj | ≥
∑

j∈φ(e)\{j∗}

|Vj | =
∑

j∈φ(e)

|Vj | −min
{
|Vj | : j ∈ φ(e)

}
.

Since I ⊆ φ(e) has size |φ(e)| − 1, we have∑
j∈I

|Vj | ≤
∑

j∈φ(e)

|Vj | −min
{
|Vj | : j ∈ φ(e)

}
,

which implies that
∑

j∈Q |Vj | ≥
∑

j∈I |Vj |.

Let Q ⊆ K \ J be the (k − r − 1)-set ensured by Claim 2.25. Let R := J ∪Q ∪ {1, 2}.
Since |R| = k− 2− (k− r− 1)− (k− r− 1) = 2r− k ≥ k− r− 1 (by k < 4r−2

3 ), it follows
from Proposition 2.1 (i) that∑

j∈R
|Vj | ≥

2r − k

k − r + 1
· k − r + 1

k + 2
n =

2r − k

k + 2
n.

Combining this with (10), (11), and Claim 2.25, we obtain

∑
j∈[k]

|Vj | =

|B1|+ |B2|+
∑
i∈Q

|Vi|

+

(
|C1|+ |C2|+

∑
i∈J

|Vi|

)
+
∑
i∈R

|Vi|

≥

(
|B1|+ |B2|+

∑
i∈I

|Vi|

)
+

(
|C1|+ |C2|+

∑
i∈J

|Vi|

)
+
∑
i∈R

|Vi|

>
k − r + 1

k + 2
n+

k − r + 1

k + 2
n+

2r − k

k + 2
n = n,

a contradiction. This completes the proof of Proposition 2.4 for the case k < 4r−2
3 .

3 Proofs for Theorem 1.3 and Corollary 1.4

We prove Theorem 1.3 and Corollary 1.4 in this section.

We will use the following result, proved by Frankl–Füredi–Kalai [FFK88] and later ex-
tended in [LM21, LM23].

Theorem 3.1 ([FFK88], [LM21, Theorem 1.17]). Let k ≥ r > i ≥ 1 be integers. Suppose
that H is a k-partite r-graph. Then(

|H|(
k
r

))1/r

≤

(
|∂iH|(

k
r−i

))1/(r−i)

.

25



Proof of Theorem 1.3. Let n ≥ k ≥ r > i ≥ 1 be integers. It suffices to show that(
Φk,r,i(
k−i
r−i

))1/(r−i)

≤

(
Φk,r−1,i(

k−i
r−1−i

))1/(r−1−i)

.

Suppose to the contrary that the inequality above is not true. Then there exists a k-partite
n-vertex r-graph H with

δ+i (H) >

(
k − i

r − i

)(
Φk,r−1,i(

k−i
r−1−i

)) r−i
r−1−i

nr−i

and without isolated vertices that is not uniquely k-colorable.

Take an arbitrary e ∈ ∂r−iH. Since H is k-partite, the link LH(e) is (k − i)-partite. Note
that ∂LH(e) = L∂H(e), so it follows from Theorem 3.1 that

d∂H(e) = |L∂H(e)| = |∂LH(e)| ≥
(

k − i

r − i− 1

)(
|LH(e)|(

k−i
r−i

) ) r−i−1
r−i

≥
(

k − i

r − i− 1

)(
δ+i (H)(

k−i
r−i

) ) r−i−1
r−i

>

(
k − i

r − i− 1

)(Φk,r−1,i(
k−i

r−1−i

)) r−i
r−1−i

nr−i


r−i−1
r−i

= Φk,r−1,i · nr−1−i.

This implies that ∂H is a k-partite n-vertex (r−1)-graph with δ+i (∂H) > Φk,r−1,i ·nr−1−i.
Since H has no isolated vertices, ∂H has no isolated vertices as well. Therefore, ∂H is
uniquely k-colorable. Consequently, H is uniquely k-colorbale, a contradiction.

Proof of Corollary 1.4. Applying Theorem 1.3 with (r1, r2) = (r, i+ 1), we obtain

Φk,r,i ≤
(
k − i

r − i

)(
Φk,i+1,i

k − i

)r−i

=

(
k − i

r − i

)
·
(

1

k − i
·max

{
k − i

k + 2
,
3k − 3i− 2

3k − 2

})r−i

.

On the other hand, simply calculations show that the construction Hk,r(1,m) defined in
Section 1 satisfies

δ+i (Hk,r(1,m)) =

(
k − i

r − i

)(
1

k + 2

)r−i

· (v(Hk,r(1,m)))r−i .

SinceHk,r(1,m) is not uniquely k-colorable, we have Φk,r,i ≥
(
k−i
r−i

) (
1

k+2

)r−i
for all k ≥ r >

i ≥ 1. Therefore, Φk,r,i =
(
k−i
r−i

) (
1

k+2

)r−i
for all k ≥ r > i ≥ 1 that satisfy k−i

k+2 ≥ 3k−3i−2
3k−2 ,

which is equivalent to k ≤ 4i+2
3 .

4 Concluding remarks

In general, given two r-graphs H and G, let SHom(H,G) denote the collection of all
surjective homomorphisms from H to G. We say H is surjectively G-colorable if
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SHom(H,G) ̸= ∅. Similarly, an r-graph H is uniquely surjectively G-colorable if
for every pair ψ1, ψ2 ∈ SHom(H,G) there exists an automorphism η ∈ Aut(G) such that
η ◦ ψ1 = ψ2.

As one way to extend Theorem 1.1, Lai [Lai87, Lai89] considered the minimum degree
constraint that forces a graph to be uniquely surjectively C2k+1-colorable.

Theorem 4.1 (Lai [Lai87]). Let k ≥ 2 and n ≥ 2k + 1 be integers. Suppose that G is a
surjectively C2k+1-colorable graph on n vertices with

δ(G) ≥ n

k + 1
.

Then G is uniquely surjectively C2k+1-colorable. Moreover, the constant 1
k+1 is optimal.

Extensions of Theorems 1.1 and 4.1 to general graphs were explored in recent work [HLZ24],
but Kk and C2k+1 remain the only two classes of graphs for which tight bounds are known.

One could also explore extensions of Theorems 1.1 and 4.1 to r-graphs with r ≥ 3. In
particular, the following question concerning the tight cycles seems durable.

Problem 4.2. Let k ≥ r ≥ 3 and 1 ≤ i ≤ r− 1 be integers. Determine the minimum real
number Ψk,r,i such that for n ≥ k, every surjectively Cr

k-colorable r-graph without isolated
vertices, and satisfying δ+i (H) > Ψk,r,i · nr−i, is uniquely surjectively Cr

k-colorable. Here,
Cr
k denotes the r-uniform tight cycle on k vertices.

Corollary 1.4 suggests that the extremal constructions for Φk,r,i, when k > 4i+2
3 , might

come from r-graphs Hk,r(α,m). Hence, we propose the following conjecture.

Conjecture 4.3. Suppose that k ≥ r > i ≥ 1 are integers satisfying k > 4i+2
3 . Then

Φk,r,i = sup

{
δ+i (Hk,r(α,m))

(v(Hk,r(α,m)))r−i
: α > 0 and m ∈ N+

}
.

Heuristically, Conjecture 4.3 becomes more challenging as i decreases, with the hardest
case likely being i = 1. In the following theorem, we determine Φ3,3,1, providing weak
evidence in support of Conjecture 4.3.

Theorem 4.4. We have Φ3,3,1 =
1
18 .

Proof of Theorem 4.4. The lower bound Φ3,3,1 ≥ 1
18 comes from the constructionH3,3(2,m).

So it suffices to prove the upper bound. Let H be an n-vertex 3-partite 3-graph with
δ(H) > n2

18 . We will show that H is uniquely 3-colorable.

Suppose to the contrary that there exist two non-equivalent homomorphisms φ, ϑ ∈
Hom(H,K3

3 ). By symmetry, we may assume that

max
{
|φ−1(i)| : i ∈ [3]

}
≥ max

{
|ϑ−1(i)| : i ∈ [3]

}
.

Let Vi := φ−1(i) for i ∈ [3] and by relabelling the vertices in K3
3 , we may assume |V1| ≥

|V2| ≥ |V3|. So |V1| ≥ n
3 .

Claim 4.5. For every pair of distinct vertices v1, v2 ∈ V1, there exist vertices u ∈ V2 and
w ∈ V3 such that {v1, u, w} ∈ H and {v2, u, w} ∈ H.
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Proof of Claim 4.5. Suppose to the contrary that this is not true. Then for every u ∈ V2
we have NH(v1u) ∩NH(v2u) = ∅. Notice that NH(v1u) ⊆ V3 and NH(v2u) ⊆ V3, hence,

2 · δ(H) ≤ dH(v1) + dH(v2) =
∑
u∈V2

(|NH(v1u)|+ |NH(v2u)|)

≤
∑
u∈V2

|V3| = |V2| · |V3| ≤
(
n− |V1|

2

)2

≤ n2

9
,

a contradiction.

It follows from Claim 4.5 that ϑ(v1) = ϑ(v2) for every pair {v1, v2} ⊆ V1, i.e. |ϑ(V1)| =
1. By symmetry, we may assume ϑ(V1) = {1}. Let Vi,j := Vi ∩ ϑ−1(j) and ni,j :=
|Vi,j | for (i, j) ∈ {2, 3} × [3]. Note that n2,1 = n3,1 = 0, since otherwise we would have
max{|φ−1(i)| : i ∈ [3]} < max{|ϑ−1(i)| : i ∈ [3]}, a contradiction. So ϕ−1(1) = V1 =
ϑ−1(1).

Claim 4.6. We have ni,j > 0 for every (i, j) ∈ {2, 3} × {2, 3}.

Proof of Claim 4.6. Let us present only the proof for the case (i, j) = (2, 2) since the other
cases are analogous. Suppose to the contrary that n2,2 = 0. Then we must have n3,3 > 0
since otherwise we would have φ ∼= ϑ, a contradiction. Let v ∈ V3,3 be a vertex. Suppose
that {u,w} is an element in LH(v). Then either (u,w) ∈ V1 × V2 or (w, u) ∈ V1 × V2. By
symmetry, we may assume that (u,w) ∈ V1 ×V2. Then {ϑ(w)} = [3] \ {ϑ(v), ϑ(u)} = {2},
meaning that w ∈ V2 ∩W2, contradicting the assumption that n2,2 = 0.

Let n1 := |V1|. Fix a vertex u ∈ V2,2. Note that δ(H) ≤ dH(u) ≤ n1 · n3,3. Similarly, we
have

δ(H) ≤ n1 · ni,j for every (i, j) ∈ {2, 3} × {2, 3}. (12)

Summing them up, we obtain

δ(H) ≤ n1 ·
n2,2 + n2,3 + n3,2 + n3,3

4
=
n1(n− n1)

4
≤ n2

16
.

Fix a vertex v ∈ V1. Then

δ(H) ≤ dH(v) ≤ n2,2 · n3,3 + n2,3 · n3,2 ≤
(
n2,2 + n3,3

2

)2

+

(
n2,3 + n3,2

2

)2

.

Let x := min
{

n2,2+n3,3

2 ,
n2,3+n3,2

2

}
and A := n−n1

2 . Note that x ≤ n−n1
4 and x ≥ δ(H)

n1
(due

to (12)). Since the function x2 + (A− x)2 is decreasing when x ≤ A
2 = n−n1

4 , we obtain

δ(H) ≤ x2 + (A− x)2 ≤
(
δ(H)

n1

)2

+

(
n− n1

2
− δ(H)

n1

)2

.

Rearrange this inequality and using the fact n1 ≥ n
3 , we obtain

0 ≤ (n− n1)
2n1

4
+

2 · δ2(H)

n1
− n · δ(H)

≤ n3

27
+

6 · δ2(H)

n
− n · δ(H) =

6

n

(
δ(H)− n2

18

)(
δ(H)− n2

9

)
< 0,

a contradiction. Here the last inequality is due to the fact n2

18 < δ(H) ≤ n2

16 . This finishes
the proof of Theorem 4.4.
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Remark. From the above proof, we see that the unique extremal 3-graph achieving
Φ3,3,1 =

1
18 is the 3-graph H3,3(2,m).
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