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On the rainbow matching conjecture for 3-uniform hypergraphs

Jun Gao∗ Hongliang Lu† Jie Ma‡ Xingxing Yu§

Abstract

Aharoni and Howard, and, independently, Huang, Loh, and Sudakov proposed the following
rainbow version of Erdős matching conjecture: For positive integers n, k,m with n ≥ km, if each of
the families F1, . . . , Fm ⊆

(

[n]
k

)

has size more than max{
(

n

k

)

−
(

n−m+1
k

)

,
(

km−1
k

)

}, then there exist
pairwise disjoint subsets e1, . . . , em such that ei ∈ Fi for all i ∈ [m]. We prove that there exists an
absolute constant n0 such that this rainbow version holds for k = 3 and n ≥ n0. We convert this
rainbow matching problem to a matching problem on a special hypergraph H . We then combine
several existing techniques on matchings in uniform hypergraphs: find an absorbing matching M
in H ; use a randomization process of Alon et al to find an almost regular subgraph of H − V (M);
and find an almost perfect matching in H−V (M). To complete the process, we also need to prove
a new result on matchings in 3-uniform hypergraphs, which can be viewed as a stability version of
a result of  Luczak and Mieczkowska and might be of independent interest.

Key words: Rainbow matching conjecture, Erdős matching conjecture, Stability

MSC2010: 05C65, 05D05.

1 Introduction

For a positive integer k and a set V , let [k] := {1, ..., k} and
(V
k

)

:= {A ⊆ V : |A| = k}. A hypergraph

H consists of a vertex set V (H) and an edge set E(H) ⊆ 2V (H). A hypergraph H is k-uniform if
all its edges have size k and we call it a k-graph for short. Throughout this paper, we often identify
E(H) with H when there is no confusion and, in particular, denote by |H| the number of edges in H.
Given a set T of edges in H, we use V (T ) to denote

⋃

e∈T e. Given a vertex subset S ⊆ V (H) in H,
we use H[S] to denote the subgraph of H induced on S, and let H − S = H[V (H) \ S].

A matching in a hypergraph H is a set of pairwise disjoint edges in H. We use ν(H) to denote
the maximum size of a matching in H. Let F = {F1, ..., Fm} be a family of hypergraphs on the same
vertex set. A set of m pairwise disjoint edges is called a rainbow matching for F if each edge is from
a different Fi. If such a matching exists, then we also say that F admits a rainbow matching.

A classical problem in extremal set theory asks for the maximum number of edges in n-vertex k-
graphs H with ν(H) < m. Let n, k,m be positive integers with n ≥ km. The k-graphs S(n,m, k) :=
([n]
k

)

\
([n]\[m−1]

k

)

and D(n,m, k) :=
([km−1]

k

)

on the same vertex set [n] do not have matchings of size
m. Erdős [6] conjectured in 1965 that among all k-graphs with no matching of size m, S(n,m, k) or
D(n,m, k) has the maximum number of edges: Any n-vertex k-graph H with ν(H) < m contains at
most

f(n,m, k) := max

{(

n

k

)

−
(

n−m + 1

k

)

,

(

km− 1

k

)}
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edges. This is often referred to as the Erdős matching conjecture in the literature, and there has been
extensive research on this conjecture, see, for instance, [3, 5, 8, 9, 10, 11, 12, 22]. In particular, the
special case for k = 3 was settled for large n by  Luczak and Mieczkowska [22] and completely resolved
by Frankl [9].

The following analogous conjecture, known as the rainbow matching conjecture, was made by
Aharoni and Howard [1] and, independently, by Huang, Loh, and Sudakov [15]. For related topics on
rainbow type problems, we refer the interested reader to [16, 18, 20, 23].

Conjecture 1.1 ([1, 15]). Let n, k,m be positive integers with n ≥ km. Let F = {F1, ..., Fm} be a
family of k-graphs on the same vertex set [n] such that |Fi| > f(n,m, k) for all i ∈ [m]. Then F
admits a rainbow matching.

The case k = 2 of this conjecture is in fact a direct consequence of an earlier result of Akiyama
and Frankl [2] (which was restated [7]). The following was obtained by Huang, Loh, and Sudakov [15].

Theorem 1.2 ([15], Theorem 3.3). Conjecture 1.1 holds when n > 3k2m.

Keller and Lifshitz [17] proved that Conjecture 1.1 holds when n ≥ f(m)k for some large constant
f(m) which only depends on m, and this was further improved to n = Ω(m logm)k by Frankl and
Kupavskii [13]. Both proofs use the junta method. Very recently, Lu, Wang, and Yu [21] showed that
Conjecture 1.1 holds when n ≥ 2km and n is sufficiently large.

The following is our main result, which proves Conjecture 1.1 for k = 3 and sufficiently large n.

Theorem 1.3. There exists an absolute constant n0 such that the following holds for all n ≥ n0. For
any positive integers n,m with n ≥ 3m, let F = {F1, ..., Fm} be a family of 3-graphs on the same
vertex set [n] such that |Fi| > f(n,m, 3) for all i ∈ [m]. Then F admits a rainbow matching.

Our proof of Theorem 1.3 uses some new ideas and combines different techniques from Alon-Frankl-
Huang-Rődl-Rucinski-Sudakov [3],  Luczak-Mieczkowska [22], and Lu-Yu-Yuan [19]. (For a high level
description of our proof, we refer the reader to Section 2 and/or Section 7.) In the process, we prove
a stability result on 3-graphs (see Lemma 4.2) that plays a crucial role in our proof and might be of
independent interest: If the number of edges in an n-vertex 3-graph H with ν(H) < m is close to
f(n,m, 3), then H must be close to S(n,m, 3) or D(n,m, 3).

The rest of the paper is organized as follows. In Section 2, we introduce additional notation, and
state and/or prove a few lemmas for later use. In Section 3, we deal with the families F in which most
3-graphs are close to the same 3-graph that is S(n,m, 3) or D(n,m, 3). To deal with the remaining
families, we need the above mentioned stability result for matchings in 3-graphs, which is done in
Section 4. In Section 5, we show that there exists an absolute constant c > 0 such that Theorem 1.3
holds for m > (1 − c)n/3. The proof of Theorem 1.3 for m ≤ (1 − c)n/3 is completed in Section 6.
Finally, we complete the proof of Theorem 1.3 in Section 7.

2 Previous results and lemmas

In this section, we define saturated families and stable hypergraphs, and state several lemmas that
we will use frequently. We begin with some notation. Suppose that H is a hypergraph and U, T are
subsets of V (H). Let NH(T ) := {A : A ⊆ V (H) \ T and A ∪ T ∈ E(H)} be the neighborhood of T
in H, and let dH(T ) := |NH(T )|. We write dH(v) for dH({v}). Let ∆(H) := maxv∈V (H) dH(v) and
∆2(H) := max

T∈(V (H)
2 ) dH(T ). In case T ⊆ U , we often identify dH[U ](T ) with dU (T ) when there is

no confusion.
It will be helpful to consider “maximal” counterexamples to Conjecture 1.1. Let n, k,m be positive

integers with n ≥ km and let F = {F1, ..., Fm} be a family of k-graphs on the same vertex set [n]. We
say that F is saturated, if F does not admit a rainbow matching, but for every F ∈ F and e /∈ F ,
the new family F(e, F ) := (F\{F}) ∪ {F ∪ {e}} admits a rainbow matching. The following lemma
says that the vertex degrees of every k-graph in a saturated family are typically small.
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Lemma 2.1. Let n, k,m be positive integers with n ≥ km. Let F = {F1, ..., Fm} be a saturated
family of k-graphs on the same vertex set [n]. Then for each v ∈ [n] and each i ∈ [m], dFi(v) ≤
(n−1
k−1

)

−
(n−1−k(m−1)

k−1

)

or dFi(v) =
(n−1
k−1

)

.

Proof. Suppose dFi(v) <
(

n−1
k−1

)

, where v ∈ [n] and i ∈ [m]. Then there exists e ∈
([n]
k

)

\ Fi such that
v ∈ e. Since F is saturated, the family F(e, Fi) admits a rainbow matching, say M ∪ {e}, with M
being a rainbow matching for the family F \ {Fi}.

If dFi(v) >
(n−1
k−1

)

−
(n−1−k(m−1)

k−1

)

=
∣

∣

∣

([n]\{v}
k−1

)

\
([n]\({v}∪V (M))

k−1

)

∣

∣

∣
, then there exists an edge f ∈ Fi

such that v ∈ f and f ∩ V (M) = ∅. Now M ∪ {f} is a rainbow matching for F , a contradiction. So

dFi(v) ≤
(

n−1
k−1

)

−
(n−1−k(m−1)

k−1

)

.

We will be removing vertices of degree
(

n−1
k−1

)

and use Lemma 2.1 to produce saturated family F =

{F1, ..., Fm} of k-graphs such that for each v ∈ V (Fi) and each i ∈ [m], dFi(v) ≤
(n−1
k−1

)

−
(n−1−k(m−1)

k−1

)

.
Next we define stable hypergraphs. Let n, k be positive integers with n ≥ k. Let e = {a1, ..., ak}

and f = {b1, ..., bk} be members of
([n]
k

)

with a1 < a2 < ... < ak and b1 < b2 < ... < bk. We write
e ≤ f if ai ≤ bi for all 1 ≤ i ≤ k, and e < f if e ≤ f and e 6= f .

A k-graph F ⊆
([n]
k

)

is said to be stable if e < f ∈ F implies e ∈ F . A family F of k-graphs on
the same vertex set [n] is stable if each k-graph in F is stable.

The following result of Huang, Loh, and Sudakov [15] will be used frequently, which enables us to
work with stable families when proving Conjecture 1.1.

Lemma 2.2 ([15], Lemma 2.1). Let n, k,m be positive integers with n ≥ km. If the family {F1, ..., Fm}
of k-graphs with V (Fi) = [n] for all i ∈ [m] has the property that it does not admit a rainbow matching,
then there exists a stable family {F ′

1, ..., F
′
m} of k-graphs with |Fi| = |F ′

i | and V (F ′
i ) = [n] for all i ∈ [m]

which still preserves this property.

Corollary 2.3. Let n, k,m be positive integers with n ≥ km. Let F = {F1, . . . , Fm} be a family of
k-graphs on the vertex set [n] that does not admit a rainbow matching. Then there exists a family
F ′ = {F ′

1, . . . , F
′
m} of k-graphs on the same vertex set [n] such that F ′ is both stable and saturated

and |F ′
i | ≥ |Fi| for i ∈ [m].

Proof. Let F∗ = {F ∗
1 , . . . , F

∗
m} be a family of k-graphs on the same vertex set [n] such that F∗ admits

no rainbow matching, |F ∗
i | ≥ |Fi| for i ∈ [m], and, subject to these,

∑

i∈[m] |F ∗
i | is maximum.

Then F∗ is saturated. Now apply Lemma 2.2 to F∗ we obtain a stable family F ′ = {F ′
1, . . . , F

′
m}

of k-graphs on the vertex set [n] such that F ′ admits no rainbow matching, and |F ′
i | = |F ∗

i | for i ∈ [m].
By the choice of F∗, we see that F ′ is also saturated.

We now describe an operation that converts a rainbow matching problem to a matching problem
on a single hypergraph. Let n, k,m, r be non-negative integers, with r = ⌊n/k⌋ − m and m ≥ 1.
Let F = {F1, . . . , Fm} be a family of k-graphs on the same vertex set [n], and let V = {v1, ..., vm}
and U = {u1, ..., ur} be two disjoint sets such that (V ∪ U) ∩ [n] = ∅. We use H(F) to denote the
(k + 1)-graph with vertex set [n]∪ V and edge set

⋃m
i=1{e ∪ {vi} : e ∈ Fi}, and use H∗(F) to denote

the (k+1)-graph with the vertex set [n]∪V∪U and the edge set E(H(F))∪⋃r
i=1{e∪{ui} : e ∈

([n]
k

)

}.
If F1 = ... = Fm = S(n,m, k) (respectively, F1 = ... = Fm = D(n,m, k)), then we write H(F) as
HS(n,m, k) (respectively, HD(n,m, k)).

It is easy to see that F admits a rainbow matching if and only if H(F) has a matching of size
m, which is also if and only if H∗(F) has a matching of size m + r. This allows us to access existing
approaches and tools invented for matching problems. For instance, we take the approach by con-
sidering whether or not the hypergraphs H(F) in question are close to the extremal configurations
HS(n,m, k) and HD(n,m, k). We will see in Section 3 that if H(F) is close to HD(n,m, k) and F is
stable, then F admits a rainbow matching.

Here we give an easy lemma concerning a case when H(F) is not close to HS(n,m, k), which will
be used along with Lemma 2.1. Let H1 and H2 be two k-graphs on the same vertex set V and let ǫ
be some positive real; we say that H2 is ǫ-close to H1 if |E(H1) \ E(H2)| ≤ ǫ|V |k.
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Lemma 2.4. For any given integer k ≥ 3, let ǫ, c be reals such that 0 < ǫ ≪ c ≪ 1.1 Let n,m be
integers such that n/3k2 ≤ m ≤ (1 − c)n/k. Let F = {F1, ..., Fm} be a family of k-graphs on vertex

set [n]. If for every i ∈ [m] and v ∈ [n], dFi(v) ≤
(

n−1
k−1

)

−
(n−k(m−1)−1

k−1

)

, then H(F) is not ǫ-close to
HS(n,m, k).

Proof. We note that S(n,m, k) has m−1 vertices of degree
(

n−1
k−1

)

. Since for every i ∈ [m] and v ∈ [n],

dFi(v) ≤
(n−1
k−1

)

−
(n−k(m−1)−1

k−1

)

, we have

|E(HS(n,m, k)) \ E(H(F))| ≥ m · (m− 1) ·
(

n− k(m− 1)− 1

k − 1

)

· 1

k
>

n2

10k5

(

cn

k − 1

)

> ǫnk+1,

where the second inequality is due to n/3k2 ≤ m ≤ (1 − c)n/k and the third inequality follows from
ǫ≪ c. This shows that H(F) is not ǫ-close to HS(n,m, k).

To deal with the case when H(F) is not close to HD(n,m, 3), we first find a small matching M
in H∗(F) such that M can “absorb” small vertex sets and H∗(F) − V (M) has an almost perfect
matching. When F is stable, the matching M can be found very easily by the following lemma and
its proof.

Lemma 2.5. Let k be a fixed positive integer and let 0 < γ′ ≪ γ ≪ c ≪ 1 be reals. Let n,m be
positive integers with n/3k2 ≤ m ≤ (1 − c)n/k. Let F = {F1, ..., Fm} be a stable family of k-graphs
such that V (Fi) = [n] and |Fi| > f(n,m, k) for all i ∈ [m]. Then for sufficiently large n, H∗(F)
has a matching M with |M | ≤ γn such that for any set S ⊆ V (H∗(F)) \ V (M) with |S| ≤ γ′n and
k|S ∩ (V ∪ U)| = |S ∩ [n]|, H∗(F)[V (M) ∪ S] has a perfect matching.

Proof. Recall that V = {v1, ..., vm} and U = {u1, ..., ur}, where r = ⌊n/k⌋ − m. Fix an integer t
satisfying γ′n < t < γn. Then t < γn ≤ ⌊cn/k⌋ ≤ ⌊n/k⌋ −m = r. Let s = ⌈n/3k2⌉ − 1.

By Theorem 1.2 (viewing all k-graphs as the same k-graph), since |Fi| > f(n,m, k) ≥ f(n, s, k) for
all i ∈ [m], every Fi has a matching of size s. Since Fi is stable, Fi[[s]] is a complete k-graph. Hence,

(i) for any i1, i2, ..., ik ≤ kt ≤ kγn < s and j ∈ [m], we have {vj , i1, i2, ..., ik} ∈ H∗(F).

From the definition of H∗(F), we have

(ii) for any i1, i2, ..., ik ∈ [n] and j ∈ [r], {uj , i1, i2, ..., ik} ∈ H∗(F).

Since t < r, we may choose a matching M of size t in H∗(F) with V (M) = {u1, ..., ut}∪ [kt]. Note
that |M | = t ≤ γn. We claim that this M is the desired matching. To see this, consider any subset S
with S ∩ V (M) = ∅, |S| ≤ γ′n, and k|S ∩ (V ∪ U)| = |S ∩ [n]|. Let t′ = |S ∩ (V ∪ U)|. So t′ ≤ γ′n < t.
Then by (i) and (ii), there is a perfect matching M1 in H∗(F)[S ∩ (V ∪ U)) ∪ [kt′]] . By (ii), there
exists a perfect matching M2 in H∗(F)[(V (M) ∪ S) \ V (M1)]. So M1 ∪M2 is a perfect matching in
H∗(F)[V (M) ∪ S].

For the “absorbing” matching M in H∗(F) in Lemma 2.5, we also want H∗(F) − V (M) to have
an almost perfect matching. For this we need to use the following result of Frankl and Rödl [14].

Theorem 2.6 ([14]). For every integer k ≥ 2 and any real σ > 0, there exist τ = τ(k, σ) and
d0 = d0(k, σ) such that for every integer n ≥ D ≥ d0 the following holds: Every n-vertex k-graph H
with (1 − τ)D < ∆1(H) < (1 + τ)D and ∆2(H) < τD contains a matching covering all but at most
σn vertices.

In order to obtain a k-graph H satisfying Theorem 2.6, we use the approach from [3] by conducting
two rounds of randomization on H∗(F) − V (M). We summarize part of the proof in [3] (more
precisely, the proof of Claim 4.1) as a lemma. A fractional matching in a k-graph H is a function
w : E(H) → [0, 1] such that for any v ∈ V (H),

∑

{e∈E(H):v∈e} w(e) ≤ 1. A fractional matching is
called perfect if

∑

e∈E(H)w(e) = |V (H)|/k.

1Here and throughout the rest of the paper, the notation a ≪ b means that a is sufficiently small compared with b

which need to satisfy finitely many inequalities in the proof.
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Lemma 2.7 ([3], retained from the proof of Claim 4.1). Let k ≥ 3 and H be a k-graph on at most
2n vertices. Suppose that there are subsets Ri ⊆ V (H) for i = 1, ..., n1.1 satisfying the following:

(a). every vertex v ∈ V (H) satisfies that |{i : v ∈ Ri}| = (1 + o(1))n0.2,

(b). every pair {u, v} ⊆ V (H) is contained in at most two sets Ri,

(c). every edge e ∈ H is contained in at most one set Ri, and

(d). for every i = 1, ..., n1.1, Ri has a perfect fractional matching wi.

Then H has a spanning subgraph H ′ such that dH′(v) = (1+o(1))n0.2 for all v ∈ V (H ′) and ∆2(H
′) ≤

n0.1.

We will also need to control the indepence number of random subgraphs of H∗(F) − V (M). The
intuition is that when H(F) is not close to HD(n,m, k) or HS(n,m, k), H∗(F)−V (M) does not have
very large independence number. The following lemma in [19] was proved by Lu, Yu, and Yuan using
the container method.

Lemma 2.8 ([19], Lemma 5.4). Let d, ǫ′, α be positive reals and let k, n be positive integers. Let H be
an n-vertex k-graph such that e(H) ≥ dnk and e(H[S]) ≥ ǫ′e(H) for all S ⊆ V (H) with |S| > αn. Let
R ⊆ V (H) be obtained by taking each vertex of H uniformly at random with probability n−0.9. Then
for any positive real γ ≪ α, the size of maximum independent sets in H[R] is at most (α+γ)n0.1 with
probability at least 1− (nO(1)e−Ω(n0.1))

We need an inequality on the function f(n,m, k) proved by Frankl in [9].

Lemma 2.9 ([9], Proposition 5.1). Let n,m, k be positive integers with n ≥ km−1. Then f(n,m, k) ≥
f(n− 1,m− 1, k) +

(n−1
k−1

)

.

We conclude this section with the well known Chernoff inequality.

Lemma 2.10 (Chernoff Inequality, see [4]). Suppose X1, ...,Xn are independent random variables
taking values in {0, 1}. Let X =

∑n
i=1Xi and µ = E(X). Then for any 0 < δ ≤ 1,

P[X ≥ (1 + δ)u] ≤ e−δ2u/3 and P[X ≤ (1− δ)u] ≤ e−δ2u/3. (1)

In particular, if X ∼ Bin(n, p) and λ < 3
2np, then

P([|X − np|] ≥ λ) ≤ e−Ω(λ2/np). (2)

3 Extremal configuration HD(n,m, 3)

From Lemma 2.1 and Lemma 2.4, we see that if F is a saturated family of k-graphs on vertex set [n]
and H(F) is close to the extremal configuration HS(n,m, k) then there exist F ∈ F and v ∈ [n] such
that dF (v) =

(

n−1
k−1

)

. Such vertices v can be removed from all k-graphs in F \ {F} to obtain a smaller
family F ′, so that F ′ admits a rainbow matching if and only if F admits a rainbow matching.

In this section, we consider the case when H(F) is close to HD(n,m, 3) and F is stable.

Lemma 3.1. Let ǫ, c be reals such that 0 < ǫ ≪ c ≪ 1. Let n,m be positive integers such that
n/27 ≤ m ≤ (1 − c)n/3. Let F = {F1, ..., Fm} be a stable family of 3-graphs on vertex set [n] such
that |Fi| > f(n,m, 3) for all i ∈ [m]. If H(F) is ǫ-close to HD(n,m, 3), then F admits a rainbow
matching.
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Proof. Let b = 6ǫ1/6n. If Fi is
√
ǫ-close to D(n,m, 3), then Fi contains a complete subgraph of size

3m− b; for, otherwise, as Fi is stable, we have |E(D(n,m, 3)) \E(Fi)| ≥
(

b
3

)

>
√
ǫn3, a contradiction.

We claim that for any i ∈ [m] and j ∈ {0, ..., b}, {2j + 1, 2j + 2, 3m − j} ∈ Fi. To prove this
claim we fix i ∈ [m]. Suppose for a contradiction that there exists an integer 0 ≤ t ≤ b such that
{2t + 1, 2t + 2, 3m − t} /∈ Fi. Since |Fi| >

(3m−1
3

)

and Fi is stable, we have {1, 2, 3m} ∈ Fi. So t ≥ 1.
We now count the edges in Fi: Let q1 be the number of edges of Fi in [3m− 1], and q2 be the number
of edges of Fi not contained in [3m − 1]. Since Fi is stable and {2t + 1, 2t + 2, 3m − t} /∈ Fi, we see
that {a, b, c} /∈ Fi when 2t + 2 ≤ a < b < 3m − t ≤ c ≤ 3m − 1. So q1 ≤

(3m−1
3

)

− t
(3m−3t−3

2

)

. Since
{2t + 1, 2t + 2, 3m − t} /∈ Fi, we have, for any e ∈ Fi with e ∩ ([n] \ [3m− 1]) 6= ∅, e ∩ [2t] 6= ∅. This
shows q2 ≤ 2t(n − 3m + 1)n. First suppose that n ≤ 7

2m. Then we have

|Fi| ≤
(

3m− 1

3

)

− t

(

3m− 3t− 3

2

)

+ 2tn(n− 3m + 1)

≤
(

3m− 1

3

)

− t

[(

3m− 3t− 3

2

)

− 7m(m/2 + 1)

]

<

(

3m− 1

3

)

,

where the second inequality holds since n ≤ 7
2m, and the last inequality holds since t ≤ b = 6ǫ1/6n≪

m, a contradiction. So we may assume n > 7
2m. Let m = αn; then 1/27 ≤ α < 2/7. We assert that

(

n
3

)

−
(

n−m+1
3

)

>
(

3m−1
3

)

+ 2tn2. To see this, let f(x) = 1− (1− x)3 − (3x)3, so

6

n3

((

n

3

)

−
(

n−m + 1

3

)

−
(

3m− 1

3

))

= f(α) + o(1).

Since f ′(x) = 3(1− 2x− 26x2) is decreasing in [1/27, 2/7] with f ′(1/27) > 0 and f ′(2/7) < 0, we have
f(α) ≥ min{f(1/27), f(2/7)} = f(2/7) = 2

343 for 1/27 ≤ α < 2/7. This shows that
(n
3

)

−
(n−m+1

3

)

−
(3m−1

3

)

= f(α)
6 n3 + o(n3) ≥ 2tn2, as asserted. Then it follows that

|Fi| ≤
(

3m− 1

3

)

− t

(

3m− 3t− 3

2

)

+ 2tn(n− 3m + 1) <

(

3m− 1

3

)

+ 2tn2 <

(

n

3

)

−
(

n−m + 1

3

)

,

a contradiction as |Fi| > f(n,m, 3). This finishes the proof of Claim.

Recall V = {v1, ..., vm} from the definition of H(F). By the above claim, M1 := {{vi, 2i −
1, 2i, 3m − i + 1} : i ∈ [b]} is a matching in H(F). Without loss of generality, let F1, ..., Fa be
all k-graphs in F which are not

√
ǫ-close to D(n,m, 3). Since H(F) is ǫ-close to HD(n,m, 3), we

have a ≤ √ǫn < b. Then for any j ∈ [m]\[b], since Fj is
√
ǫ-close to D(n,m, 3), Fj contains a

complete subgraph with size at least 3m − b. Hence we have {2j − 1, 2j, 3m − j + 1} ∈ Fj . So
M2 := {{vj , 2j − 1, 2j, 3m − j + 1} : b < j ≤ m} is a matching in H(F) which is disjoint from M1.
Then M1 ∪M2 forms a matching of size m in H(F). So F admits a rainbow matching, completing
the proof of Lemma 3.1.

4 A stability lemma

In this section, we prove a result for stable 3-graphs, which may be viewed as a stability version of
the following result of  Luczak and Mieczkowska proved in [22].

Theorem 4.1 ([22]). There exists positive integer n1 such that for integers m,n with n ≥ n1 and
1 ≤ m ≤ n/3, if H is an n-vertex 3-graph with e(H) > f(n,m, 3), then ν(H) ≥ m.

Building on the proof in [22], we prove the following.

Lemma 4.2. For any real ǫ > 0, there exists positive integer n1(ǫ) such that the following holds. Let
m,n be integers with n ≥ n1(ǫ) and 1 ≤ m ≤ n/3, and let H be a stable 3-graph on the vertex set [n].
If e(H) > f(n,m, 3)− ǫ4n3 and ν(H) < m, then H is ǫ-close to S(n,m, 3) or D(n,m, 3).
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Proof. Suppose that e(H) > f(n,m, 3) − ǫ4n3 and s := ν(H) < m. Let M = {(iℓ, jℓ, kℓ) : ℓ ∈ [s]} be
a largest matching in H and partition V (M) = I ∪ J ∪K such that every edge (i, j, k) ∈ E(M) with
i < j < k satisfies i ∈ I, j ∈ J and k ∈ K. Since H is stable, we may choose V (M) to be [3s].

Let V ′ = [n]\[3s]. For x ∈ [3s], let e(x) denote the edge in M containing x. Let F1 = {{v} ∈
([3s]

1

)

: dV ′(v) ≥ 20n}, F2 = {{v,w} ∈
([3s]

2

)

: e(v) 6= e(w) and dV ′(v,w) ≥ 20}, and F3 = {{u, v, w} ∈
(

[3s]
3

)

: e(u), e(v) and e(w) are pairwise distinct}. Let H∗ = ([3s], F ) be the hypergraph with vertex
set [3s] and edge set F = M ∪ F1 ∪ F2 ∪ F3.

Call an edge e ∈ H traceable if e ∩ [3s] ∈ F , and untraceable otherwise. Since M is a maximum
matching in H, V ′ is independent in H. So the number of untraceable edges of H is bounded from
above by

(

3s

1

)

· 20n +

((

s

2

)(

3

1

)(

3

1

)

× 19 +

(

s

1

)(

3

2

)

n

)

+

(

s

1

)(

3

2

)(

3s− 3

1

)

≤ 32n2 = o(n3),

where we use s < m ≤ n/3. We point out that those edges (there being o(n3) of them) will be
negligible in the following proof.

Let T be a triple of edges from M . We say T is bad if V (T ) contains three pairwise disjoint edges
of H∗ whose union intersects I in at most 2 vertices, and good otherwise. For each i ∈ [3], let fi(T )
denote the number of edges of Fi contained in V (T ). Note that f3(T ) ≤ 27. The following two claims
are explicit in [22].

Claim 1. There exist no three pairwise disjoint bad triples (of edges in M). Hence, there exist at
most six edges in M such that each bad triple contains one of these edges.

Claim 2. Let T be a good triple.
(i) If f3(T ) ≥ 24, then f1(T ) = f2(T ) = 0.
(ii) If f3(T ) = 20, then f1(T ) ≤ 1 and f2(T ) ≤ 12.
(iii) If f3(T ) ≤ 19, then f1(T ) ≤ 3 and f2(T ) ≤ 15. Moreover, the only triples T for which f3(T ) = 19,
f2(T ) = 15, and f1(T ) = 3, are those in which each edge of H∗ contained in V (T ) intersects I.
(iv) If f3(T ) = 21, then f1(T ) ≤ 1 and f2(T ) ≤ 10
(v) If 22 ≤ f3(T ) ≤ 23, then f1(T ) = 0 and f2(T ) ≤ 7

We remove exactly six edges from M such that the resulting matching M ′ only contains good
triples. Since H has at most 18n2 edges intersecting V (M\M ′) and 32n2 untraceable edges, we have

e(H) ≤ |F1|
(

n− 3s

2

)

+ |F2|(n− 3s) + |F3|+ 50n2.

To bound |Fi|, let us consider the summation of fi(T ) over all T ∈
(

M ′

3

)

. Since each edge from Fi is

counted exactly
((s−6)−i

3−i

)

times in this sum, we have |Fi|
((s−6)−i

3−i

)

=
∑

T∈(M
′

3 )
fi(T ). Therefore,

e(H) ≤
∑

T∈(M
′

3 )

(

f1(T )

(n−3s
2

)

(

s−7
2

) + f2(T )
n− 3s

s− 8
+ f3(T )

)

+ 50n2

≤
∑

T∈(M
′

3 )

(

f1(T )
(n− 3s)2

s2
+ f2(T )

n− 3s

s
+ f3(T )

)

+ O(n2).

Here, the last inequality is trivial when s ≤ 15, and it holds when s > 15 because the difference
between the above two summations is at most

∑

T∈(M
′

3 )

(

f1(T )
15(n − 3s)2

s(s2 − 15s)
+ f2(T )

8(n − 3s)

s(s− 8)

)

≤
(

s− 6

3

)(

45(n − 3s)2

s(s2 − 15s)
+

120(n − 3s)

s(s− 8)

)

= O(n2),
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where 3s < n, f1(T ) ≤ 3, and f2(T ) ≤ 15 (from Claim 2).
To further bound e(H), we partition good triples T depending on f3(T ) and f1(T ). Let Ti = {T ∈

(M ′

3

)

: f3(T ) = i} for i ∈ [27] and X = {T ∈
(M ′

3

)

: f1(T ) = 3}. Consider any T ∈ X; so T is a good
triple.2 Since f1(T ) = 3, the three edges of F1 contained in V (T ) are precisely the three vertices in
V (T ) ∩ I, and each edge of H∗ contained in V (T ) intersects I. Since H is stable and V (M) = [3s],
using the definition of F1, it is not hard to see that X ⊆ T19.

Define x1 =
∑18

i=1 |Ti|+ |T19 \X|, x2 = |T20|, x3 = |T21|, x4 = |T22|+ |T23|, x5 =
∑26

i=24 |Ti|, x = |X|,
and y = |T27|. So

∑5
i=1 xi + x + y =

(

s−6
3

)

. From now on, we let t = (n− 3s)/s. By Claim 2 and the
fact X ⊆ T19, we can derive from the above upper bound on e(H) that

e(H) ≤ (3x + 2x1 + x2 + x3)t
2 + (15x + 15x1 + 12x2 + 10x3 + 7x4)t

+ (19x + 19x1 + 20x2 + 21x3 + 23x4 + 26x5 + 27y) + O(n2).

For convenience, we write

ft(x1, x2, x3, x4, x5, x, y) =

5
∑

i=1

αi(t) · xi + β1(t) · x + β2(t) · y,

where α1(t) = 2t2 + 15t + 19, α2(t) = t2 + 12t + 20, α3(t) = t2 + 10t + 21

α4(t) = 7t + 23, α5(t) = 26, β1(t) = 3t2 + 15t + 19, and β2(t) = 27.

Then it follows that
e(H) ≤ ft(x1, x2, x3, x4, x5, x, y) + O(n2).

Next, we derive properties of the functions αi(t) and βj(t).

Claim 3. For any t ≥ 0, max{β1(t), β2(t)} ≥ max{α1(t), α2(t), α3(t), α4(t), α5(t)}+ 0.2.

Proof. We have β2(t) = 27. It is easy to see that for each i ∈ [5], the functions αi(t), β1(t) − αi(t)
and β1(t) are increasing for t ≥ 0. Note that β1(0.5) = 27.25, α2(0.5) = 26.25, α3(0.5) = 26.25 and
α4(0.5) = 26.5; so max{β1(t), 27} ≥ αi(t) + 0.2 for t ≥ 0 and i = 2, 3, 4. Since β1(t)− α1(t) = t2, and
α1(
√

0.2) < 27− 0.2, we see max{β1(t), 27} ≥ α1(t) + 0.2 for all t ≥ 0.

Since β1(t)
(s−6

3

)

≤ 1
2(n−3s)2s+5

2(n−3s)s2+19
6 s

3 = 1
6n

3−1
6(n−s)3, we see max{β1(t), β2(t)}

(s−6
3

)

≤
max

{(n
3

)

−
(n−s+1

3

)

,
(3s−1

3

)}

+O(n2) = f(n, s, 3) +O(n2). By Claim 3 and because
∑5

i=1 xi +x+ y =
(s−6

3

)

, we have

ft(x1, x2, x3, x4, x5, x, y) ≤
(

max{β1(t), β2(t)} − 0.2

) 5
∑

i=1

xi + β1(t)x + β2(t)y

≤max{β1(t), β2(t)}
(

s− 6

3

)

− 0.2

5
∑

i=1

xi ≤ f(n, s, 3)− 0.2

5
∑

i=1

xi + O(n2).

(3)

Let ∪X (respectively, ∪T27) denote the set of edges each of which belongs to some triple in X
(respectively, in T27). Now we show the following claim.

Claim 4. s > m− ǫn/4, and x >
(

s−6
3

)

− 10ǫ4n3 −
(

ǫn/24
3

)

or y >
(

s−6
3

)

− 10ǫ4n3 −
(

ǫn/12
3

)

.

Proof. If s ≤ m− ǫn/4, then by (3) we have

e(H) ≤ ft(x1, x2, x3, x4, x5, x, y) + O(n2) ≤ f(n, s, 3) + O(n2)

≤ f(n,m, 3)−
(

ǫ/4n

3

)

+ O(n2) ≤ f(n,m, 3)− ǫ4n3,

2Since T is good, the union of any three disjoint edges of H∗ in V (T ) must contain the three vertices in V (T ) ∩ I .
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a contradiction. So s > m − ǫn/4. First we see that x + y >
(

s−6
3

)

− 10ǫ4n3; for, otherwise,
∑5

i=1 xi ≥ 10ǫ4n3, which together with (3) implies

e(H) ≤ ft(x1, x2, x3, x4, x5, x, y) + O(n2) ≤ f(n,m, 3)− 2ǫ4n3 + O(n2) ≤ f(n,m, 3)− ǫ4n3,

a contradiction. Now suppose that x >
(

ǫn/12
3

)

and y >
(

ǫn/24
3

)

. Then | ∪X| > ǫn/12 and | ∪ T27| >
ǫn/24. For any edge e = (i, j, k) ∈ ∪X with i < j < k, by the previous discussion, we have i ∈ F1. For
any edge e = (i, j, k) ∈ ∪T27 with i < j < k, by Claim 2 we see i /∈ F1. Thus (∪X) ∩ (∪T27) = ∅. The
triples T = {e1, e2, e3} with e1 ∈ ∪X and e2, e3 ∈ ∪T27 cannot satisfy both f3(T ) = 27 and f1(T ) = 3.
This shows x+y <

(s−6
3

)

−|∪X|
(|∪T27|

2

)

≤
(s−6

3

)

− ǫn
12

(ǫn/24
2

)

, contradicting that x+y >
(s−6

3

)

−10ǫ4n3.

Hence, we have that either x ≤
(ǫn/12

3

)

or y ≤
(ǫn/24

3

)

.

Suppose x >
(s−6

3

)

−10ǫ4n3−
(ǫn/24

3

)

. So x >
(s−6

3

)

−
(ǫn/12

3

)

and thus |∪X| > s−6−ǫn/12. Recall
that for any T ∈ X, T is a good triple and, hence, each edge of H∗ contained in V (T ) intersects I.
Hence any traceable edge which intersects V (∪X) must also intersect I. Thus, the number of edges of
H not intersecting I is at most |V (M ′)\V (∪X)|

(

n
2

)

+50n2 ≤ ǫn
4

(

n
2

)

+50n2 ≤ ǫ
4n

3. As |I| = s ≤ m−1,

|E(S(n,m, 3))\E(H)| = |E(H)\E(S(n,m, 3))| + e(S(n,m, 3)) − e(H) ≤ ǫ

4
n3 + ǫ4n3 < ǫn3.

So in this case we see that H is ǫ-close to S(n,m, 3).
By Claim 4, it remains to consider y >

(

s−6
3

)

− 10ǫ4n3 −
(

ǫn/12
3

)

. We claim that there exists a
complete 3-graph K on more than 3m − 3ǫn/2 vertices and V (K) ⊆ V (M ′). Suppose to contrary
that V (M ′) does not contain such a complete 3-graph K. Since |V (M ′)| − (3m− 3ǫn/2) = 3(s− 6)−
3m + 3ǫn/2 > ǫn

2 and H is stable, V (M ′) contains an independent set of size ǫn
2 , say A. Note that if

T = {e1, e2, e3} with ei ∩A 6= ∅ for all i ∈ [3], then f3(T ) < 27. Since there are at least |A|/3 ≥ ǫn/6
edges in M ′ which intersect with A, we see that y ≤

(s−6
3

)

−
(ǫn/6

3

)

, a contradiction.
Then |E(D(n,m, 3)\E(H)| ≤ |E(D(n,m, 3)\E(K)| ≤ 3

2ǫn
(n
2

)

< ǫn3, i.e., H is ǫ-close to D(n,m, 3).
This finishes the proof of Lemma 4.2.

5 Almost perfect rainbow matchings

In this section, we prove a lemma about almost perfect rainbow matchings that we will need. In fact,
this result holds for families of k-graphs, for any k ≥ 3.

Lemma 5.1. For any given integer k ≥ 3, there exist positive reals c and n2 such that the following
holds. Let n,m be integers with n ≥ km and n ≥ n2, and let F = {F1, ..., Fm} be a stable family of
k-graphs on the same vertex set [n] such that |Fi| >

(km−1
k

)

for each i ∈ [m]. If m > (1− c)n/k, then
F admits a rainbow matching.

Proof. We choose c′ = c′(k) and c = c(k) small enough such that 0 < c≪ c′ ≪ 1. Let n be sufficiently
large and n/k ≥ m > (1− c)n/k. Suppose to the contrary that |Fi| >

(

km−1
k

)

for each i ∈ [m] and F
does not admit a rainbow matching.

By Corollary 2.3, we may additionally assume F is saturated. Let Ui be the vertex set of a largest
complete k-graph in Fi for i ∈ [m]. Since Fi is stable, we may choose Ui = [|Ui|] such that [n] \ Ui is
an independent set in Fi. For each i ∈ [m], we have |Ui| > (1 − c′)km, for, otherwise, we have the
following contradiction for some i ∈ [m]:

|Fi| ≤
(

n

k

)

−
(

c′km

k

)

≤
(

n

k

)

− (cn + 1)

(

n− 1

k − 1

)

≤
(

n

k

)

− (n− km + 1)

(

n− 1

k − 1

)

<

(

km− 1

k

)

,

where the second inequality holds since c≪ c′ ≪ 1 and m > (1−c)n/k), the third inequality holds since
n−km < cn, and the last inequality holds since

(n
k

)

−
(km−1

k

)

=
∑n−km+1

i=1

(n−i
k−1

)

< (n−km+ 1)
(n−1
k−1

)

.
Let U =

⋂m
i=1 Ui. By the above paragraph, we see that |U | ≥ (1 − c′)km. If |U | ≥ km, then it is

clear that F admits a rainbow matching. So we may assume that Um = U ⊆ [km − 1]. Because Um
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is the vertex set of a largest complete k-subgraph of Fm and since Fm is stable and |Fm| >
(

km−1
k

)

,
there exists some k-set e /∈ Fm such that |e ∩ U | = k − 1 and km ∈ e. Since F is saturated, there
exists a rainbow matching M in F \ Fm such that M ∪ {e} is a rainbow matching in F(e, Fm). Since
Fi is stable for each i ∈ [m], we may assume that V (M) ∪ e = [km]. Let M ′ = {e′ ∈M : e′ 6⊆ U}.
Claim. (a) |M ′| < c′km,
(b) Each edge of Fm is contained in U or intersects an edge of V (M ′), and

(c) For any v ∈ V (M) \ U , dFm[U ](v) ≤ c′k2m
( |U |
k−2

)

.

Proof. To prove (a), just observe that |M ′| ≤ |V (M) \ U | = (km− 1)− |U | < c′km.
Suppose (b) fails. That is, there exists an edge f ∈ Fm such that f\U 6= ∅ and f∩V (M ′) = ∅. Note

that f ∩ (U\V (M ′)) 6= ∅, as [n] \U is independent in Fm. In particular, |f ∩ (U\V (M ′))| ≤ k− 1. Let
|M ′| = m− t for some t ≥ 1. Recall that U ∪ V (M ′) = V (M) = [km− 1]. Hence |U\V (M ′)| = kt− 1
and, thus, U\(V (M ′)∪ f) induces a common complete k-graph of size at least k(t− 1) in all Fi. Then
we see that M ′∪{f} together with a matching of size t−1 in U\(V (M ′)∪f) form a rainbow matching
for F . So we may assume that (b) holds.

Now we prove (c). For any v ∈ V (M)\U ⊆ [km], by the maximality of U , there exists f ∈
([n]
k

)

\Fm

such that v ∈ f and |f ∩ U | = k − 1. So there exists a rainbow matching N in F \ Fm such that
N ∪ {f} is a rainbow matching in F ′(f, Fm). Since Fi is stable for i ∈ [m], we may assume that
V (N) ∪ f = [km]. Let N ′ = {e′ ∈ N : e′ 6⊆ U}. By applying (b) to N ′, every edge of Fm containing v

intersects V (N ′). Since V (N ′) ≤ k|N ′| ≤ k(km − |U |) ≤ c′k2m, there are at most c′k2m
( |U |
k−2

)

edges
e′ in Fm containing v such that e′ ⊆ U ∪ {v}. Hence (c) holds. This proves the claim.

Note that |e∩U | = k−1 and V (M)∪U = [km−1]. Let q1 be the number of edges of Fm contained
in [km − 1], and q2 be the number of edges of Fm with at least one vertex in [n] \ [km − 1]. By (c),
we have

q1 ≤
(

km− 1

k

)

− |V (M) \ U |
( |U |
k − 1

)

+ |V (M) \ U | · c′k2m
( |U |
k − 2

)

.

By (b), we see q2 ≤ |V (M ′)| · (n− km + 1)
(n−2
k−2

)

. So we have

|Fm| ≤
(

km− 1

k

)

− |V (M) \ U |
[( |U |

k − 1

)

+ c′k2m

( |U |
k − 2

)]

+
∣

∣V (M ′)
∣

∣ (n− km + 1)

(

n− 2

k − 2

)

≤
(

km− 1

k

)

− |V (M) \ U |
[( |U |

k − 1

)

+ c′k2m

( |U |
k − 2

)]

+ k|V (M) \ U |(cn + 1)

(

n− 2

k − 2

)

=

(

km− 1

k

)

− |V (M) \ U | ·
[( |U |

k − 1

)

− c′k2m

( |U |
k − 2

)

− k(cn + 1)

(

n− 2

k − 2

)]

<

(

km− 1

k

)

,

where the second inequality holds since n− km < cn and |M ′| ≤ |V (M) \ U |, and the last inequality
holds since c′, c are small enough and |U | > (1 − c′)km > (1 − c′)(1 − c)n. This is a contradiction,
finishing the proof of Lemma 5.1.

6 Non-extremal configurations

Note that if there exist F ∈ F and v ∈ [n] such that dF (v) =
(n−1
k−1

)

then v can be removed from all
k-graphs in F \ {F} to obtain a smaller family F ′ so that F ′ admits a rainbow matching if and only
if F admits a rainbow matching. Hence, if such vertex does not exist in a saturated family F , then
from Lemma 2.1, we see that dF (v) ≤

(n−1
k−1

)

−
(n−k(m−1)−1

k−1

)

for all v ∈ F and F ∈ F . This leads us
to the following result.

Lemma 6.1. Given reals 0 < ǫ ≪ c ≪ 1, let n ≥ n(ǫ, c) be a sufficiently large integer and m be an
integer such that n/27 < m < (1 − c)n/3. Let F = {F1, ..., Fm} be a stable family of 3-graphs on
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vertex set [n] such that for every i ∈ [m], |Fi| > f(n,m, 3) and dFi(v) ≤
(

n−1
2

)

−
(

n−3(m−1)−1
2

)

for
each v ∈ [n]. If H(F) is ǫ-close to neither HS(n,m, 3) nor HD(n,m, 3), then F admits a rainbow
matching.

Proof. Given 0 < ǫ ≪ c ≪ 1, let n′,m′ be integers such that n′ is sufficiently large and n′/27 <
m′ < (1 − c)n′/3. Let F = {F1, ..., Fm′} be a family of 3-graphs on the vertex set [n′] such that

|Fi| > f(n′,m′, 3) and dFi(v) ≤
(n′−1

2

)

−
(n′−1−3(m′−1)

2

)

for i ∈ [m′] and v ∈ [n′]. Suppose that H(F)
is not ǫ-close to HS(n′,m′, 3) or HD(n′,m′, 3). Our ultimate goal is to find a rainbow matching in F .

Let n′ = 3m′ + 3r′ + s where 0 ≤ s < 3. Recall the definitions of H(F) and H∗(F) such that
V (H(F)) = [n′] ∪ V ′ and V (H∗(F)) = [n′] ∪ V ′ ∪ U ′, where |V ′| = m′ and |U ′| = r′. By Lemma 2.5,
for 0 < γ′ ≪ γ ≪ ǫ ≪ c ≪ 1, there exists a matching Ma in H∗(F) with |Ma| ≤ γn′ such that for
any S ⊆ V (H∗(F))\V (Ma) with |S| ≤ γ′n′ and 3|S ∩ (V ′ ∪ U ′)| = |S ∩ [n′]|, H∗(F)[V (Ma) ∪ S] has a
perfect matching. In the rest of the proof, without loss of generality, we use the following notation:

H = H∗(F)−V (Ma), [n] = [n′]\V (Ma),V = V ′ \V (Ma) = {v1, ..., vm},U = U ′ \V (Ma) = {u1, ..., ur}.

Then n = 3m+ 3r+ s. Using the above property of the matching Ma, it now suffices for us to find
an almost perfect matching in H. To find this almost perfect matching, our plan is to show that there
exists an almost regular subgraph of H with bounded maximum co-degree so that Theorem 2.6 can be
applied. To that end, in what follows we will use the two-round randomization technique developed
in [3].

Let R be chosen from V (H) by taking each vertex independently with probability n−0.9. We
take n1.1 independent copies of R and denote them by Ri for 1 ≤ i ≤ n1.1. For S ⊆ V (H), denote
YS = |{i : S ⊆ Ri}|. First we have the following claim.

Claim A. With probability 1− o(1), the following hold:
(i) for every v ∈ V (H), Y{v} = (1 + o(1))n0.2,
(ii) every pair {u, v} ⊆ V (H) is contained in at most two sets Ri, and
(iii) every edge e ∈ H is contained in at most one set Ri.

Proof. Note that YS ∼ Bin(n1.1, n−0.9|S|) for any S ⊆ V (H). Thus, E[Y{v}] = n0.2 for every v ∈ V (H).

By Lemma 2.10 (2), we have P (|Y{v} − n0.2| > n0.15) ≤ e−Ω(n0.1). By union bound, we see (i) holds.
To prove (ii) and (iii), let

Z2 =

∣

∣

∣

∣

{

{u, v} ∈
(

V (H)

2

)

: Y{u,v} ≥ 3

}∣

∣

∣

∣

and Z3 =

∣

∣

∣

∣

{

S ∈
(

V (H)

3

)

: YS ≥ 2

}∣

∣

∣

∣

.

Then E[Z2] =
(|V (H)|

2

)

P (Y{u,v} ≥ 3) ≤
(n
2

)

(n1.1)3(n−1.8)3 ≤ 4n−0.1 and E[Z3] ≤
(n
3

)

(n1.1)2(n−2.7)2 ≤
8n−0.2. By Markov’s inequality, we have

P(Z2 = 0) > 1− 4n−0.1 and P(Z3 = 0) > 1− 8n−0.2.

That implies that (ii) and (iii) hold with probability at least 1−4n−0.1 and 1−8n−0.2, respectively.

Next we want to prove that there exists a perfect (or, rather, maximum) fractional matching in
each H[Ri]. To do so, we define a maximal subset R′i ⊆ Ri that satisfies R′i ∩ [n] = 3|R′i ∩ (V ∪ U))|
as follows. If |Ri ∩ [n]| ≥ 3|Ri ∩ (V ∪ U))|, we take a subset of Ri denote by R′i, which is chosen from
Ri by deleting |Ri∩ [n]|−3|Ri ∩ (V ∪U))| vertices in Ri∩ [n] independently and uniformly at random.
Otherwise |Ri∩ [n]| < 3|Ri∩ (V ∪U))|, we take a subset of Ri denote by R′i by the following two step:
First we delete at most 3 vertices (chosen independently and uniformly at random) in Ri ∩ [n] so that
the number ℓ of the remaining vertices is a multiple of 3; then we delete |Ri ∩ (V ∪U))| − ℓ/3 vertices
in Ri ∩ (V ∪ U)) independently and uniformly at random.

For S ⊆ V (H), define Y ′
S = |{i : S ⊆ R′i}|. Note that E(Ri ∩ [n]) = n0.1, E(Ri ∩ V ∪ U) = n0.1/3,

and E(Ri ∩ V) = n−0.9m. For each i, let Ai be the event
∣

∣|Ri ∩ [n]| − n0.1
∣

∣ < n0.095, Bi be the event
∣

∣|Ri ∩ (V ∪ U))| − n0.1/3
∣

∣ < n0.095, and Ci be the event
∣

∣|Ri ∩ V| − n−0.9m
∣

∣ < n0.095.
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Claim B. With probability 1− o(1), the following hold:
(i)
∧

i(Ai ∧Bi ∧ Ci) holds,
(ii) for every v ∈ V (H), Y ′

{v} = (1 + o(1))n0.2,

(iii) every pair {u, v} ⊆ V (H) is contained in at most two sets R′i, and
(iv) every edge e ∈ H is contained in at most one set R′i.

Proof. Since R′i ⊆ Ri, it is clear from Claim A that (iii) and (iv) hold with probability 1− o(1). Next
we consider (i). By Lemma 2.10 (2) (with λ = n0.095), for each 1 ≤ i ≤ n1.1, we have

P(Ai) ≤ e−Ω(n0.09) , P(Bi) ≤ e−Ω(3n0.09) = e−Ω(n0.09) and P(Ci) ≤ e−Ω( n
m
n0.09) = e−Ω(n0.09).

Thus by union bound, P(
∧

i(Ai ∧Bi ∧ Ci)) = 1− o(1), proving (i).
Assuming Ai ∧ Bi ∧ Ci, we see |Ri \ R′i| < 2n0.095. Then by the choice of R′i, for all v ∈ V (H),

the probability P({v ∈ Ri \R′i
∣

∣(Ai ∧Bi ∧ Ci) ∧ (v ∈ Ri)}) is at most

max

{ |Ri \R′i|
|Ri ∩ [n]| ,

|Ri \R′i|
|Ri ∩ (V ∪ U))|

}

≤ |R
i \R′i|
|Ri|/4

<
2n0.095

(n0.1 − n0.095)/3
< 7n−0.005.

Using coupling and applying Lemma 2.10 (2) to Bin(|Yv|, 7n−0.005) with λ = 3n0.195, we have

P

({

Y{v} − Y ′
{v} > 10n0.195

∣

∣

∣

∣

∧

i

(Ai ∧Bi ∧ Ci) ∧
(

Y{v} = (1 + o(1))n0.2
)

})

≤ e−Ω(n0.195).

Note that with probability 1− o(1),
∧

i(Ai ∧Bi ∧Ci) and Y{v} = (1 + o(1))n0.2 hold for all v ∈ V (H).
By union bound, we can derive that 0 ≤ Y{v} − Y ′

{v} ≤ 10n0.195 = o(n0.2) for all v ∈ V (H) with

probability 1− o(1). Hence (ii) holds with probability 1− o(1). This proves Claim B.

Let ni = |R′i ∩ [n]| and mi = |R′i ∩V|. Using (i) of Claim B, we see that with probability 1− o(1),
mi = (1 + o(1))mn−0.9 = Θ(n0.1) = Θ(ni) for all 1 ≤ i ≤ n1.1.

Claim C. With probability 1− o(1), the following hold for all 1 ≤ i ≤ n1.1:
(a) H[R′i \ U ] is not ǫ4/4-close to HS(ni,mi, 3) or HD(ni,mi, 3), and
(b) there exists a perfect fractional matching in H[R′i].

Proof. For each T ∈
(V (H)

≤2

)

, let Degi(T ) := |NH(T ) ∩
( R′i

4−|T |

)

|. By definition of H, we have that

• for any vj ∈ V, dH(vj) ≥ f(n′,m′, 3)− (γn′)
(n′

2

)

≥ f(n,m, 3)− γn3, and

• for any T = {vj , u} with vj ∈ V and u ∈ [n],

dH(T ) = dFj (u) ≤
(

n′ − 1

2

)

−
(

n′ − 1− 3(m′ − 1)

2

)

≤
(

n− 1

2

)

−
(

n− 1− 3(m− 1)

2

)

+ γn2.

Assume that
∧

i(Ai ∧Bi ∧ Ci) holds. Then ni = (1 + o(1))n0.1 and mi = (1 + o(1))mn−0.9. Since

Ri \R′i = o(ni), for each T ∈
(V (R′i)

t

)

with t ∈ [2], we have

E[Degi(T )] = (1 + o(1))dH (T )(n−0.9)4−t.

Thus, for any v ∈ V ∩Ri,

E[Degi(v)] ≥ (1 + o(1))(f(n,m, 3) − γn3)(n−0.9)3 ≥ f(ni,mi, 3)− 2γn3
i ,

and, for any T = {u, v} with v ∈ V and u ∈ [n], E[Degi(T )] is at most

(1 + o(1))

[(

n− 1

2

)

−
(

n− 1− 3(m− 1)

2

)

+ γn2

]

(n−0.9)2 ≤
(

ni − 1

2

)

−
(

ni − 1− 3(mi − 1)

2

)

+ 2γn2
i .
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We apply Janson’s Inequality (Theorem 8.7.2 in [4]) to bound the deviation of Degi(T ) for |T | ≤ 2.
Write Degi(T ) =

∑

e∈NH(T )Xe, where Xe = 1 if e ⊆ R′i and Xe = 0 otherwise. Let t = |T | ∈ {1, 2}
and p = n−0.9. Then

∆∗ =
∑

ei∩ej 6=∅, ei,ej∈(V (H)
4−t )

P(Xei = Xej = 1) ≤
4−t
∑

ℓ=1

p2(4−t)−ℓ

(

n− t

4− t

)(

4− t

ℓ

)(

n− 4

4− t− ℓ

)

= O(n0.1(2(4−t)−1)).

By Janson’s inequality, for v ∈ V ∩Ri,

P(Degi(v) ≤ (1− γ)E[Degi(v)]) ≤ e−γ2
E[Degi(v)]/(2+∆∗/E[Degi(v)]) ≤ e−Ω(n0.1),

and, for the pair {v, u} with v ∈ V and u ∈ [n] (by considering the complement of H), we can have

P(Degi({v, u}) ≥ (1 + γ)E[Degi({v, u})]) ≤ e−Ω(n0.1)

By union bound, with probability 1− o(1) we derive from above that for all 1 ≤ i ≤ n1.1

1). for any v ∈ V ∩Ri, Degi(v) ≥ (1− γ)E[Degi(v)]) ≥ f(ni,mi, 3)− 3γn3
i , and

2). for any pair {u, vj} ⊆ R′i with vj ∈ V and u ∈ [n],

Degi({u, v}) ≤
(

ni − 1

2

)

−
(

ni − 1− 3(mi − 1)

2

)

+ 3γn2
i ≤

(

ni − 1

2

)

−Ω(n2
i ),

which implies that Fj [R
′i ∩ [n]] is not ǫ3/2-close to S(ni,mi, 3), since mi = (1 + o(1))mn0.9 and

m < (1− c)n/3.

This shows that H[R′i \ U ] is not ǫ4/4-close to HS(ni,mi, 3), where γ ≪ ǫ.
Let V0 := {vj ∈ V : Fi[[n]] is not ǫ-close to D(n,m, 3)}. We claim that |V0| > ǫn. Otherwise

|V0| ≤ ǫn, then we have

|E(HD(n′,m′, 3)) \ E(H(F))| ≤ ǫn

(

n

3

)

+ (m− ǫn)ǫn3 + γ(n′)4 ≤ ǫ(n′)4,

a contradiction as H(F) is not ǫ-close to HD(n′,m′, 3)). As |V0| > ǫn, with probability 1 − o(1) we
have (using Lemma 2.10) that

3). |R′i ∩ V0| ≥ ǫni
2 for all 1 ≤ i ≤ n1.1.

For vj ∈ R′i∩V0, we consider Fj [[n]]. Let G be the complement of Fj [[n]]. Then for any S ⊆ V (G)
with |S| > 3m− ǫn, we have e(G[S]) ≥ ǫe(G). This is because otherwise |E(D(n,m, 3))\E(Fj [[n]])| ≤
ǫn
(n
2

)

+ ǫe(G) < ǫn3, contradicting vj ∈ V0. By Lemma 2.8, the maximum size of the complete
3-graph in Fj [R

i ∩ [n]] is no more than (3m/n − ǫ + γ)n0.1 ≤ 3mi − ǫni/2 with probability at least

1 − (nO(1)e−Ω(n0.1)). Assuming
∧

i(Ai ∧ Bi ∧ Ci), this implies that Fj [R
′i ∩ [n]] is not ǫ3/2-close to

D(ni,mi, 3). By union bound, with probability 1− o(1), we have

4). for all 1 ≤ i ≤ n1.1 and vj ∈ R′i ∩ V0, Fj [R
′i ∩ [n]] is not ǫ3/2-closed to D(ni,mi, 3).

By 3) and 4), we see that, with probability 1 − o(1), H[R′i \ U ] is not ǫ4/4-close to HD(ni,mi, 3),
proving part (a) of Claim C.

It remains to show part (b) of Claim C, that is, to construct a perfect fractional matching wi in
H[R′i] for each 1 ≤ i ≤ n1.1. Our main tool is the stability result, Lemma 4.2.

Fix some 1 ≤ i ≤ n1.1. We write R′i ∩ [n] = {xi1, ..., xini
} with xi1 < xi2 < ... < xini

and define
[d]i := {xi1, xi2, ..., xid} for any integer d. We now state two simple inequalities for later use:

f(x, y, 3) ≥ f(x, y − a, 3) +

(

a

3

)

and f(x, y, 3) ≥ f(x, y + a, 3)− 3ax2 (4)
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hold for any positive integers x, y, a with a < y.
To construct a perfect fractional matching wi in H[R′i], first we consider vj ∈ R′i ∩ V0 and assign

weights to the edges of H[R′i] containing vj. Using 1), and by (4) and the fact that γ ≪ ǫ≪ 1,

|Fj [R
′i ∩ [n]]| = Degi(vj) ≥ f(ni,mi, 3) − 3γn3

i ≥ f(ni,mi + ǫ20ni, 3)− ǫ16n3
i .

By 2) and 4), Fj [R
′i ∩ [n]] is not ǫ3/2-close to S(ni,mi, 3) or D(ni,mi, 3). Since |E(S(ni,mi +

ǫ20ni, 3)) \ E(S(ni,mi, 3))| ≤ ǫ20n3
i and |E(D(ni,mi + ǫ20ni, 3)) \ E(D(ni,mi, 3))| ≤ 3ǫ20n3

i , we see
that Fj [R

′i ∩ [n]] is not ǫ4-close to S(ni,mi + ǫ20ni, 3) or D(ni,mi + ǫ20ni, 3). Then by Lemma 4.2
and the fact that Fj is stable, Fj [R

′i ∩ [n]] contains a matching Mj with V (Mj) = [3mi + 3ǫ20ni]i.
Now we assign weights wi(e) to all edges e of H[R′i] with vj ∈ e as follows: If e \ vj ∈ Mj , then let
wi(e) = 1

mi+ǫ20ni
, and otherwise let wi(e) = 0.

Next we consider vj ∈ R′i ∩ (V\V0). By 1) and (4), we have

|Fj [R
′i ∩ [n]]| ≥ f(ni,mi, 3)− 3γn3

i ≥ f(ni,mi − 6γ
1
3ni, 3).

By Theorem 4.1 and the fact that Fj is stable, Fj [R
′i ∩ [n]] contains a matching Mj with V (Mj) =

[3mi − 18γ
1
3ni]i. Then we assign weights wi(e) to all edges e of H[R′i] with vj ∈ e as follows: If

e \ vj ∈Mj, then let wi(e) = 1
mi−6γ1/3ni

; and otherwise let wi(e) = 0.

Note that for every vj ∈ R′i∩V, we have defined weights wi(e) for all edges e ∈ H[R′i] with vj ∈ e,
whose total weights equal one. In the remaining proof, we want to extend this function wi to entire
H[R′i] to form a perfect fractional matching. We complete this in two steps.

First, we define a perfect fractional matching w (as the projection of wi) in the complete 3-graph
K on vertex set R′i ∩ [n]. Note that a function w : E(K) → [0, 1] is a perfect fractional matching
if and only if w(v) :=

∑

v∈f∈K w(f) = 1 holds for every v ∈ V (K). Initially, we define a function

w′ : E(K) → [0, 1] such that, for each f ∈ E(K), w′(f) :=
∑

ewi(e) over all edges e ∈ H[R′i] with
f ⊆ e and |e ∩ V| = 1. Since |V0| > ǫn and γ ≪ ǫ, it follows from the above definitions on wi that for
any v ∈ R′i ∩ [n],

w′(v) :=
∑

v∈f∈K

w′(f) ≤ |V0|
mi + ǫ20ni

+
mi − |V0|
mi − 6γ

1
3ni

≤ ǫni

mi + ǫ20ni
+

mi − ǫni

mi − 6γ
1
3ni

< 1.

Since ǫ ≪ c, we have 3mi + 3ǫ20ni < ni − 4. So there exists a vertex set {a1, a2, a3, a4} in K such
that w′(ai) = 0, for i ∈ [4]. Let K ′ be the 3-graph obtained from K by deleting vertices a1, a2, a3, a4.
Starting with w := w′, we increase w using the following iterations: (i) pick a vertex v in V (K ′)
with maximum w(v);3 (ii) pick any edge f ∈ K ′ containing v and update w(f) ← w(f) + 1 − w(v);
(iii) delete all vertices u ∈ V (K ′) with w(u) = 1 (which must include the vertex v) from K ′; (iv)
if |V (K ′)| ≤ 2, then terminate; otherwise go to (i) again. This must terminate in finitely many
iterations and when it terminates, we obtain a fractional matching w in K such that w(ai) = 0
for i ∈ [4] and |K ′| ≤ 2. So there exist two vertices b1, b2 in V (K) \ {a1, a2, a3, a4} such that for
any vertex v in V (K) \ {a1, a2, a3, a4, b1, b2}, w(v) = 1. We may suppose 1 ≥ w(b1) ≥ w(b2). Let

w(a1, a2, b1) = 1 − w(b1), w(a1, a2, b2) = w(b1)−w(b2)
2 , w(a3, a4, b2) = 1 − w(b1) + w(b1)−w(b2)

2 , and

w(a1, a2, a3) = w(a1, a2, a4) = w(a1, a3, a4) = w(a2, a3, a4) = w(b1)+w(b2)
6 . It is easy to check that w is

a perfect fractional matching in K.
Now we notice that

∑

f∈K w′(f) =
∑

{e∈H[R′i]:|e∩V|=1}wi(e) = |R′i ∩ V| and,
∑

f∈K w(f) =
|R′i∩[n]|

3 = |R′i ∩ (V ∪ U)|. Moreover, the neighborhood of any uj ∈ R′i ∩ U in H[R′i] is the com-
plete 3-graph K. So we can partition the total weight

∑

f∈K(w(f)−w′(f)) = |R′i ∩ U| into |R′i ∩ U|
copies of 1’s (say each is represented by a set Ej of edges in K), and then for each uj ∈ R′i ∩ U , we
assign the weight of each f ∈ Ej to be wi(f ∪ {uj}). One can easily check that we obtain a perfect
fractional matching wi in H[R′i]. This completes the proof of Claim C.

3Note that this maximum w(v) is strictly less than 1.
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From Claims B and C, we see that the sets R′i for 1 ≤ i ≤ n1.1 satisfy (a)-(d) in Lemma 2.7. Then
by Lemma 2.7, there exists a spanning subgraph H ′ of H such that for each v ∈ V (H), dH′(v) = (1 +
o(1))n0.2, and ∆2(H ′) ≤ n0.1. By Theorem 2.6, H contains a matching Mb such that S = V (H)\V (Mb)
contains at most γ′n′ vertices. Since |S∪Ma∪Mb| = n′ = 3r′+3m′+s where 0 ≤ s ≤ 2, we can delete
at most s elements from S to get a subset S′ such that 3|S′ ∩ (V ′ ∪U ′)| = |S′ ∩ [n′]|. By the setting at
the beginning of the proof, Lemma 2.5 assures that H∗(F)[V (Ma)∪S′] has a perfect matching, which
together with Mb form a matching in H∗(F) of size r′ + m′. Equivalently, this says that F admits a
rainbow matching, finishing the proof of Lemma 6.1.

7 Proof of Theorem 1.3

Let n be a sufficiently large integer. Let m be a positive integer with n ≥ 3m and let F = {F1, ..., Fm}
be a family of 3-graphs on the same vertex set [n], such that |Fi| > f(n,m, 3) for each i ∈ [m].
Suppose to the contrary that F does not admit a rainbow matching. In view of Lemma 2.2, we may
assume that F is stable. Then by Lemma 5.1, there exists an absolute constant c = c(3) > 0 such
that m ≤ (1− c)n/3. By Theorem 1.2, m ≥ n/27. Hence,

n/27 ≤ m ≤ (1− c)n/3. (5)

We now apply the following algorithm. Initially, let F0 = F , n0 = n and m0 = m. We repeat the
following iterations. Suppose that we have defined Fi, which contains mi many 3-graphs on the same
vertex set [ni].

• Step 1: Apply Corollary 2.3 to Fi, we obtain a family Fi+1 of 3-graphs on the vertex set [ni]
that is both stable and saturated, and set ni+1 = ni and mi+1 = mi.

• Step 2: If for any F ∈ Fi+1 and any v ∈ [ni+1], dF (v) <
(ni+1−1

2

)

, then set t := i+ 1 and output
Ft, nt,mt.

• Step 3: If there exist F ∈ Fi+1 and v ∈ [ni+1] such that dF (v) =
(ni+1−1

2

)

, then set n′
i+1 = ni+1−

1, m′
i+1 = mi+1 − 1, and F ′

i+1 := {F ′ − v : F ′ ∈ Fi \ {F}}. Relabel the vertices if necessary so
that all 3-graphs in F ′

i+1 have the same vertex set [n′
i+1]. Set Fi := F ′

i+1, ni := n′
i+1,mi := m′

i+1

and go to Step 1.

Let Ft be the resulting family of 3-graphs, which contains mt 3-graphs on the same vertex set [nt]
and admits no rainbow matching. By (5), we see that nt ≥ n−m > cn is sufficiently large. We also
see from Lemma 2.9 that

|F | > f(nt,mt, 3) holds for any F ∈ Ft.

By definition, we see that Ft is stable and saturated such that for any F ∈ Ft and v ∈ Vt,
dF (v) <

(nt−1
2

)

. On the other hand, by Lemma 2.1, it further holds that

dF (v) ≤
(

nt − 1

2

)

−
(

nt − 1− 3(mt − 1)

2

)

for any F ∈ Ft and v ∈ Vt.

Since nt is sufficiently large, using Lemma 5.1 and Theorem 1.2 again, we may assume that

nt/27 ≤ mt ≤ (1− c)nt/3.

Now we choose 0 < ǫ ≪ c. Since Ft satisfies the above properties, by applying Lemmas 2.4, 3.1
and 6.1, we can conclude that Ft admits a rainbow matching. This is a contradiction, completing the
proof of Theorem 1.3.
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conjecture, arXiv:1707.02643.

[18] S. Kiselev and A. Kupavskii, Rainbow matchings in k-partite hypergraphs, Bull. London Math.
Soc., https://doi.org/10.1112/blms.12423

[19] H. Lu, X. Yu and X. Yuan, Nearly perfect matchings in uniform hypergraphs, arXiv:1911.07431.

[20] H. Lu, X. Yu and X. Yuan, Rainbow matchings for 3-uniform hypergraphs, arXiv:2004.12558.

[21] H. Lu, Y. Wang and X. Yu, A better bound on the size of rainbow matchings, arXiv:2004.12561.
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