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Extremal problems of Erdős, Faudree, Schelp and Simonovits on paths

and cycles

Binlong Li∗ Jie Ma† Bo Ning‡

Abstract

For positive integers n > d ≥ k, let φ(n, d, k) denote the least integer φ such that every n-vertex

graph with at least φ vertices of degree at least d contains a path on k+1 vertices. Many years ago,

Erdős, Faudree, Schelp and Simonovits proposed the study of the function φ(n, d, k), and conjectured

that for any positive integers n > d ≥ k, it holds that φ(n, d, k) ≤ ⌊k−1

2
⌋⌊ n

d+1
⌋+ ǫ, where ǫ = 1 if k

is odd and ǫ = 2 otherwise. In this paper we determine the value of the function φ(n, d, k) exactly.

This confirms the above conjecture of Erdős et al. for all positive integers k 6= 4 and in a corrected

form for the case k = 4. Our proof utilizes, among others, a lemma of Erdős et al. [3], a theorem of

Jackson [6], and a (slight) extension of a very recent theorem of Kostochka, Luo and Zirlin [7], where

the latter two results concern maximum cycles in bipartite graphs. Besides, we construct examples

to provide answers to two closely related questions raised by Erdős et al.

1 Introduction

We consider the following extremal problem asked by Erdős, Faudree, Schelp and Simonovits in [3]: for

given positive integers n > d ≥ k, what is the minimum value ℓ such that every n-vertex graph with

at least ℓ vertices of degree at least d contains a path Pk+1 on k + 1 vertices? The goal of the present

paper is to provide a complete solution for all positive integers n > d ≥ k.

One of the best known results in extremal graph theory is the Erdős-Gallai Theorem [4], which

states that any n-vertex graph with more than (k−1)n/2 edges contains a path on k+1 vertices. Since

then, there has been many other extremal results on the existence of long paths in graphs with a large

number of edges or vertices of high-degree. In this paper we investigate the following function, whose

study was proposed by Erdős, Faudree, Schelp and Simonovits [3].

Definition 1.1. For positive integers n > d ≥ k, define φ(n, d, k) to be the smallest integer φ such that

every n-vertex graph with at least φ vertices of degree at least d contains a path Pk+1 on k+1 vertices.

In this language, the well-known theorem of Dirac [2] asserts that φ(n, d, d) ≤ n and by that,

we see that the function φ(n, d, k) is well-defined if and only if d ≥ k. A result of Bazgan, Li and

Woźniak [1] shows that φ(n, d, d) ≤ n
2 . For the general case, Erdős, Faudree, Schelp and Simonovits [3]

announced that for any k, there exists a constant c such that if n is large enough with respect to k,

then φ(n, d, k) ≤ ⌊k−1
2 ⌋⌊ n

d+1⌋+ c. They [3] further made the following conjecture (also see [5]).
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Conjecture 1.2 (Erdős, Faudree, Schelp and Simonovits, [3]). Let n, d and k be any positive integers

with n > d ≥ k. Then φ(n, d, k) ≤ ⌊k−1
2 ⌋⌊ n

d+1⌋+ ǫ, where ǫ = 1 if k is odd and ǫ = 2 otherwise.

Much attention in [3] was devoted to the special case when d + 1 ≤ n ≤ 2d + 1. In this case,

the authors [3] showed that approximately k/2 vertices of degree at least d are enough to ensure the

existence of Pk+1. They also commented that “unfortunately, even for this interval of values we are

not able to prove the exact statement of the conjecture.” However, as we shall see later, this case (i.e.,

d+1 ≤ n ≤ 2d+1) is a major difficulty that we face to and where several novel ideas take place in our

proof.

Our main result determines the function φ(n, d, k) completely in the following statement.

Theorem 1.3. For any positive integers n, d and k with n > d ≥ k, the followings are true:

(i) If k is odd, then φ(n, d, k) = k−1
2 q + 1, where n = q(d+ 1) + r with 0 ≤ r ≤ d.

(ii) If k is even, then

(a) for k = 2, φ(n, d, 2) = 1;

(b) for k = 4, φ(n, d, 4) =

{

2q + 1, 0 ≤ r ≤ d;

2q + 2, d < r < 2d,
where n = 2qd+ r with 0 ≤ r < 2d;

(c) for k ≥ 6, φ(n, d, k) =

{

k−2
2 q + 1, 0 ≤ r ≤ d− k

2 ;
k−2
2 q + 2, d− k

2 < r ≤ d,
where n = q(d+ 1) + r with 0 ≤ r ≤ d.

We see immediately that φ(n, d, k) = ⌊k−1
2 ⌋⌊ n

d+1⌋+1 when k is odd, and φ(n, d, k) ≤ ⌊k−1
2 ⌋⌊ n

d+1⌋+2

when k 6= 4 is even. However, the case k = 4 is different. In summary, we have the following.

Corollary 1.4. Conjecture 1.2 is true for any integer k 6= 4 and false for k = 4.

Our proof of Theorem 1.3 is inductive in its nature. For that it is crucial for us to manage the

base case when d + 1 ≤ n ≤ 2d + 1. It turns out in the proof of the base case that we make use of

results on maximum cycles in bipartite graphs due to Jackson [6] and Kostochka, Luo and Zirlin [7]

(see Theorems 3.1 and 3.2, respectively). To be precise, we partition the vertex set into two parts X

and Y , where X consists of vertices of degree at least d, and then apply the above results on maximum

cycles to find few number of disjoint paths in the bipartite subgraph G(X,Y ) to cover all vertices in

X; finally, an application of a lemma of Erdős et al. in [3] (see Lemma 3.6) will ensure the desired

long path. We would like to point out that it seems to be an incredible coincidence that the bounds

we need in this argument are exactly what the recent result of Kostochka, Luo and Zirlin [7] provided.

The case when n ≥ 2d+ 2 will be handled differently, which is essentially reduced to the base case.

The remainder of this paper is organized as follows. In Section 2, we construct extremal graphs for

the function φ(n, d, k) and establish the lower bound of Theorem 1.3. In Section 3, we introduce the

notation, a lemma of Erdős et al., and results of Jackson and Kostochka, Luo and Zirlin on maximum

cycles in bipartite graphs; we also provide some variance and extension of these cycle results for the

coming proof. In Section 4, we complete the proof of Theorem 1.3. In Section 5, we give better

constructions to answer two questions in [3] which are closely related to Conjecture 1.2.

2 Extremal graphs

In this section, we construct extremal graphs for the function φ(n, d, k). This will give the matched

lower bound of φ(n, d, k) in Theorem 1.3.

We start with some notation. Let n > d ≥ k be positive integers and let G,H be two graphs. By

G+H we mean the disjoint union of G and H, and we use k ·G to denote the union of k disjoint copies

2



of the same graph G.1 Let Kn be the n-vertex clique, In be the graph induced by an independent set of

n vertices, and K1,n be the star with n leaves. We define two special yet important graphs as following

(see Figure 1):

• The graph Hd,k is obtained from the disjoint union of K⌊k−1

2
⌋ and I

d+1−⌊k−1

2
⌋ by joining every

vertex of K⌊k−1

2
⌋ to every vertex of I

d+1−⌊k−1

2
⌋.

• For even integers k ≥ 4, let H∗
d,k be the graph obtained from Hd,k by adding a disjoint copy of

Id+1− k
2

and joining every vertex in Id+1− k
2

to a fixed vertex of degree k
2 − 1 in Hd,k.

Note that Hd,k has d+1 vertices in total and ⌊k−1
2 ⌋ vertices of degree at least d, while H∗

d,k has 2d+2− k
2

vertices in total and k
2 vertices of degree at least d. In particular, H∗

d,4 is the graph obtained from two

disjoint stars on d vertices by joining the two centers (we will also call it a double-star).

With the above notation, now we define the extremal graph G(n, d, k) for the function φ(n, d, k).

Definition 2.1. For positive integers n > d ≥ k, we define the graph G(n, d, k) as follows.

• For k ∈ {1, 2}, let G(n, d, k) = In.

• For k = 4, write n = 2qd+ r with 0 ≤ r < 2d and let

G(n, d, k) =

{

q ·H∗
d,4 + Ir, if r ≤ d;

q ·H∗
d,4 +K1,d + Ir−d−1, otherwise.

• For odd k ≥ 3, write n = q(d+ 1) + r with 0 ≤ r ≤ d and let G(n, d, k) = q ·Hd,k + Ir.

• For even k ≥ 6, write n = q(d+ 1) + r with 0 ≤ r ≤ d and let

G(n, d, k) =

{

q ·Hd,k + Ir, if r ≤ d− k
2 ;

(q − 1) ·Hd,k +H∗
d,k + Ir−d+ k

2
−1, otherwise.

It is straightforward to check the following fact on G(n, d, k).

Lemma 2.2. For any positive integers n > d ≥ k, the n-vertex graph G(n, d, k) contains no Pk+1 and

thus the lower bound of Theorem 1.3 holds.

3 Preliminaries and some results on bipartite graphs

Let G be a graph. For disjoint subsets X,Y ⊆ V (G), we use G(X,Y ) to denote the bipartite subgraph

of G induced by two parts X and Y . Let P be a path or a cycle. By |P |, we mean the number of

vertices in P . For x, y ∈ V (P ), let xPy be a subpath of P between x and y. When P is associated

with an orientation, the successor and predecessor of x along the direction are denoted by x+ and x−

(if exist), respectively. We also denote by x++ := (x+)+ and x−− := (x−)−. For a subset S ⊆ V (G),

we define N(S) to be the set of all vertices x ∈ V (G)\S which is adjacent to some vertex in S. If S

consists of a single vertex x, then we write N(S) as N(x).

We now introduce two theorems on the existence of maximum cycles in bipartite graphs, which

provide crucial tools for the proof of our main result. The first one is due to Jackson [6].

1Throughout this paper, the word disjoint always mean for vertex-disjoint unless otherwise specified.
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Figure 1: Hd,k (for all k) and H∗
d,k (for even k)

Theorem 3.1 (Jackson, [6, Theorem 1]). Let G be a bipartite graph with two parts X and Y . If

2 ≤ |X| ≤ d, |Y | ≤ 2d− 2, and every vertex in X has degree at least d, then G has a cycle containing

all vertices in X.

The following theorem, conjectured by Jackson [6] and proved by Kostochka, Luo and Zirlin [7]

recently, extends the above theorem of Jackson to the setting of 2-connected graphs.

Theorem 3.2 (Kostochka et al., [7, Theorem 1.6]). Let G be a 2-connected bipartite graph with two

parts X and Y . If 2 ≤ |X| ≤ d, |Y | ≤ 3d− 5, and every vertex in X has degree at least d, then G has

a cycle containing all vertices in X.

Our proof actually needs some intermediate statements from the proof of [7]. Let us give some

notation used in [7] first. Let G be bipartite with parts X and Y which is not a forest. For a cycle C

and a vertex x in G, we say (C, x) is a tight pair if C is a longest cycle in G, x ∈ X\V (C), and subject

to these, dC(x) := |N(x) ∩ V (C)| is maximum. Clearly G has a tight pair if and only if G has no cycle

containing all vertices in X. The followings are collected from the proof of Theorem 1.6 in [7].

Lemma 3.3 (Kostochka et al., [7]). Let G be a bipartite graph with two parts X and Y such that

|X| ≤ d ≤ min{d(x) : x ∈ X}. Let (C, x) be a tight pair in G with c = |C|/2. Then the followings hold:

(i) If dC(x) ≤ 1 and there is a path connecting two vertices in C and passing through x, then

|Y | ≥ 3d− 4 (see Case 1 in the proof of Theorem 1.6 in [7]);

(ii) If 2 ≤ dC(x) < c, then |Y | ≥ 3d− 4 (i.e., Lemma 2.6 in [7]);

(iii) If dC(x) = c, then for each xi ∈ X ∩ V (C) and each y ∈ NG−C(xi), xi is a cut-vertex separating

y from V (C)− xi (i.e., Lemma 2.7 in [7]).

Let G be a connected graph which is not a forest. We say that G is essentially-2-connected, if

G− V1 is 2-connected, where V1 denotes the set of vertices of degree one in G. We need a variance of

Theorem 3.2 for essentially-2-connected graphs.

Lemma 3.4. Let G be an essentially 2-connected bipartite graph with parts X and Y . Suppose that

2 ≤ |X| ≤ d − 1, |Y | ≤ 3d − 5, and every vertex in X has degree at least d. Then G has a cycle

containing all vertices in X.
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Proof. Suppose for a contradiction that G has no cycle containing all vertices in X. Let (C, x) be a

tight pair of G and c = |C|/2. So c < |X|. Since every vertex in X has degree at least d ≥ 3, we see that

X ∪ V (C) are contained in the 2-connected subgraph G− V1 and thus there is a path connecting two

vertices in C and passing through x. If dC(x) < c, then by Lemma 3.3 (i) and (ii), we get |Y | ≥ 3d− 4,

a contradiction. So we assume that dC(x) = c, i.e., x is adjacent to all vertices in Y ∩ V (C).

We claim that every vertex y ∈ Y \V (C) has degree one in G. Suppose otherwise that there exists

some y ∈ Y \V (C) with d(y) ≥ 2. Since G is essentially 2-connected, there is a path P connecting two

vertices in C and passing through y. By Lemma 3.3 (iii), the end-vertices of P are both in Y ∩ V (C)

and |P | ≥ 5 as G is bipartite. Let y1, y2 be the end-vertices of P . If there exists a subpath Q between

y1 and y2 in C of length two, then replacing Q with the path P in C, we can get a longer cycle than

C, a contradiction. Fix an orientation of C. Then we have that y2 6= y++
1 (and also y1 6= y++

2 ) in

C. If x ∈ V (P ), then y ∈ V (xPyi) for some i ∈ {1, 2}. Without loss of generality, suppose that

y ∈ V (xPy1). Replacing y1y
+
1 y

++
1 with the path y1Px ∪ xy++

1 in C, again we have a longer cycle

than C, a contradiction. So x /∈ V (P ). Let C ′ be the cycle obtained from C by deleting the edges

in y1y
+
1 y

++
1 ∪ y2y

+
2 y

++
2 and adding the paths P and y++

1 xy++
2 . Then C ′ is a longer cycle than C, a

contradiction. This proves the claim.

Note that every vertex in X has at least d − c neighbors outside C. By the previous claim, these

neighbors all have degree one in G and thus are distinct for different vertices in X. This shows that

|Y | ≥ c+ |X|(d− c) ≥ c+ (c+1)(d− c) = c(d− c)+ d. Since 2 ≤ c ≤ |X| − 1 ≤ d− 2, now we can infer

that |Y | ≥ 3d− 4, a contradiction. This completes the proof of the lemma.

We remark that the condition |X| ≤ d− 1 in Lemma 3.4 cannot be relaxed to that |X| ≤ d by the

following examples. Let H = H(X,Y1) be a complete bipartite graph with |X| = d and |Y1| = d − 1.

Let G be the bipartite graph obtained from H by adding at least one new vertex x′ for each vertex

x ∈ X and then adding the edge xx′ for every new vertex x′. Let Y be the part of G other than X.

Then the size of Y can be any integer at least 2d− 1, every vertex in X has degree at least d in G, and

G is essentially 2-connected but has no cycle containing all vertices in X.

The following lemma will be pivotal for the proof of our main result Theorem 1.3.

Lemma 3.5. Let G be a bipartite graph with parts X and Y . Suppose every vertex in X has degree at

least d. Then the followings are true:

(i) If |X| ≤ d+ 1 and |Y | ≤ 2d− 1, then G has a path containing all vertices in X;

(ii) If G is connected, |X| ≤ d and |Y | ≤ 3d− 3, then G has a path containing all vertices in X;

(iii) Let t ≥ 1 be any integer. If |X| ≤ d + t and |Y | ≤ 3d + 2t − 3, then there exist at most t + 1

disjoint paths in G containing all vertices in X.

Proof. (i). It is obvious when |X| = 1. So assume |X| ≥ 2. Let G′ be the graph obtained from G by

adding a new vertex y and joining y to every vertex in X. Then every vertex in X has degree at least

d + 1 in G′. Since |X| ≤ d + 1 and |Y ∪ {y}| ≤ 2d = 2(d + 1) − 2. By Theorem 3.1, G′ has a cycle C

containing all vertices in X. The vertex y may be contained in C or not. In either case, one can find a

path in G containing all vertices in X (by considering C − y). This proves (i).

(ii). Similarly we may assume |X| ≥ 2. Let G′ be obtained from G by adding a new vertex y and

joining y to every vertex in X. Let Y ′ = Y ∪ {y}. Then we have that 2 ≤ |X| ≤ d, |Y ′| ≤ 3d − 2,

and every vertex in X has degree at least d+ 1 in G′. We claim that G′ is essentially 2-connected. To

see this, consider a spanning tree T in G (note that G is connected). Let G′′ be obtained from T by

adding the vertex y and joining y to every vertex in X. Clearly we have G′′ ⊆ G′, and by definition,
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G′′ is essentially 2-connected. This implies that G′ is essentially 2-connected. Now applying Lemma

3.4, we can conclude that G′ has a cycle C containing all vertices in X. The vertex y lies on C or not.

In either case, C − y (and thus G) contains a path containing all vertices in X. This proves (ii).

(iii). Let G′ be obtained from G by deleting all isolated vertices in Y , adding t new vertices y1, ..., yt
and then joining every yi for i ∈ [t] to all vertices in X. Let Y0 be the set of all isolated vertices of G

in Y and let Y ′ = (Y \Y0)∪ {y1, ..., yt}. So G
′ is a connected bipartite graph with parts X and Y ′ such

that |X| ≤ d+ t, |Y ′| ≤ |Y | + t ≤ 3(d + t)− 3, and every vertex in X has degree at least d + t in G′.

By (ii), G′ has a path P containing all vertices in X. By deleting the vertices y1, ..., yt, we can obtain

at most t+ 1 disjoint paths (in G) from P containing all vertices of X. This proves Lemma 3.5.

Lastly, we need the following convenient lemma due to Erdős, Faudree, Schelp and Siminovits [3].

An analog for cycles can be found in [8].

Lemma 3.6 (Erdős et al., [3, Lemma 1]). Let G be a graph with at most 2d+ 1 vertices and P be any

family of disjoint paths Pi, where both end-vertices of each Pi ∈ P have degree at least d in G. Then G

contains a path Q such that both its end-vertices have degree at least d in G and
⋃

Pi∈P
V (Pi) ⊆ V (Q).

4 Proof of Theorem 1.3

For given positive integers n > d ≥ k, let φ be the function φ(n, d, k) defined in Theorem 1.3 throughout

this section. To complete the proof of Theorem 1.3, in view of Lemma 2.2, it suffices to prove that

any n-vertex graph with at least φ vertices of degree at least d contains a path Pk+1. (1)

We will prove this by contradiction. Consider any positive integers d ≥ k for which (1) fails. Then

there exists a counterexample G to the statement (1) as follows:

(a). G is an n-vertex graph with at least φ = φ(n, d, k) vertices of degree at least d,

(b). G does not contain any path Pk+1 (on k + 1 vertices),

(c). subject to (a) and (b), n is minimum, and

(d). subject to (a), (b) and (c), G has the minimum number of edges.

We proceed the proof by proving a sequence of claims. Our first claim is the following. In the rest

of the proof, we say a vertex is high if it has degree at least d in G and low otherwise. A path is a

high-end path if both its end-vertices are high vertices.

Claim 4.1. G has no high-end path on at least k − 1 vertices.

Proof. Suppose that P is a high-end path on at least k − 1 vertices. Let u, v be end-vertices of P . If

|P | ≥ k + 1, then there is nothing to prove. If |P | = k, as d(u) ≥ d ≥ k, u has a neighbor u′ outside

V (P ), and P ∪ uu′ is a desired path Pk+1. So |P | = k − 1. Then u has a neighbor u′ outside V (P ),

and v has a neighbor v′ outside V (P ) ∪ {u′}. Now u′u ∪ P ∪ vv′ is a path Pk+1. In any case, we get a

contradiction.

Claim 4.2. We may assume that k ≥ 5.

6



Proof. We first point out that the case k ∈ {1, 2} is trivial: a graph G contains P2 if and only if G has

a vertex of degree at least 1, and G contains P3 if and only if G has a vertex of degree at least 2.

Now consider the case k = 3. So G contains no P4. Then each component H of G is a K1,K2,K3

or a star K1,s for some s ≥ 2. Note that only the component K1,s with s ≥ d can have one high vertex.

It follows that H has at most ⌊ |V (H)|
d+1 ⌋ high vertices. So G has at most

∑

each component H

⌊

|V (H)|

d+ 1

⌋

≤

⌊

n

d+ 1

⌋

= φ− 1

high vertices, a contradiction.

Finally consider the case k = 4. In this case, G contains no P5. Let H be any component of G. By

Claim 4.1, H has no high-end path on 3 vertices. This shows that H has at most two high vertices,

and if u, v are the two high vertices of H, then uv must be a cut-edge of H and thus N(u)∩N(v) = ∅.

It also follows that if H has only one high vertex, then |V (H)| ≥ d+ 1 and if H has two high vertices,

then |V (H)| ≥ 2d. So we can conclude that H has at most |V (H)|
d

high vertices (and if H has exactly
|V (H)|

d
high vertices, then |V (H)| = 2d). Therefore G has at most

∑

each component H

|V (H)|

d
≤
n

d

high vertices.2 This gives that the number of high vertices of G is at most φ− 1, a contradiction.

We now discuss several useful properties that the graph G has.

Claim 4.3. If u is a low vertex in G, then every neighbor of u has degree exactly d and thus is high.

Proof. Suppose, otherwise, that there is a vertex v ∈ N(u) with d(v) ≤ d − 1 or d(v) ≥ d + 1. Then

G′ = G− uv is a graph satisfying (a), (b) and (c), but having less edges than G. This violates (d) and

the choice of G.

Claim 4.4. G is connected.

Proof. Suppose that G is not connected. Then G is a disjoint union of two subgraphs G1 and G2. For

i ∈ {1, 2}, let |V (Gi)| := ni = qi(d + 1) + ri for 0 ≤ ri ≤ d, and let n = q(d + 1) + r for 0 ≤ r ≤ d.

As n = n1 + n2, we have that either (1) q = q1 + q2 and r = r1 + r2 ≤ d, or (2) q = q1 + q2 + 1 and

0 ≤ r = r1 + r2 − (d+ 1) ≤ d. Note that each Gi contains no Pk+1.

First consider that k is odd, or k ≥ 6 is even and ri ≤ d− k
2 for both i ∈ {1, 2}. In this case, since Gi

has no Pk+1, each Gi has at most qi⌊
k−1
2 ⌋ high vertices. SoG has at most (q1+q2)⌊

k−1
2 ⌋ ≤ q⌊k−1

2 ⌋ ≤ φ−1

high vertices, a contradiction.

Now assume that k ≥ 6 is even and exactly one of r1 and r2 is at most d − k
2 . Without loss of

generality, assume that r1 ≤ d − k
2 and r2 > d − k

2 . Then G1 has at most q1
k−2
2 high vertices and G2

has at most q2
k−2
2 + 1 high vertices. Thus G has at most (q1 + q2)

k−2
2 + 1 high vertices. Note that

either q = q1 + q2 + 1, or q = q1 + q2 and d ≥ r = r1 + r2 > d − k
2 . In both cases, we see that the

number of high vertices in G is at most (q1 + q2)
k−2
2 + 1 ≤ φ− 1, a contradiction.

Finally, k ≥ 6 is even and ri > d− k
2 for both i ∈ {1, 2}. In this case, each Gi has at most qi

k−2
2 +1

high vertices, and soG has at most (q1+q2)
k−2
2 +2 high vertices. Since r1+r2 > 2d−k ≥ d, we must have

that q = q1+ q2+1. Thus the number of high vertices in G is at most (q1+ q2)
k−2
2 +2 ≤ q k−2

2 ≤ φ− 1,

where the first inequality holds because k ≥ 6. This contradiction completes the proof of Claim 4.4.

2We also see that in this case, if G has exactly n

d
high vertices, then every component of G forms a double-star H∗

d,4.
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Claim 4.5. G has exactly φ high vertices.

Proof. Suppose that G has at least φ + 1 high vertices. If every vertex is high, then δ(G) ≥ d ≥ k

and by Erdős-Gallai Theorem [4], there is a path of length d ≥ k in G, a contradiction. So there is

some low vertex, say u in G. By Claim 4.4, G is connected, so there exists some v ∈ N(u). By Claim

4.3, v is high. Then G′ = G− uv is a graph satisfying (a), (b) and (c), but with less number of edges,

contradicting the choice of G. This proves the claim.

In the rest of the proof, we write n = q(d + 1) + r for some integers q ≥ 1 and 0 ≤ r ≤ d. Since

k ≥ 5, we have φ = ⌊k−1
2 ⌋q + 1 + ǫ, where ǫ = 1 if k is even and r > d− k

2 , and ǫ = 0 otherwise.

Claim 4.6. We have n ≥ 2d+ 2 and thus q ≥ 2.

Proof. Suppose that d < n ≤ 2d+1. So q = ⌊ n
d+1⌋ = 1 and n = d+1+ r. We will reach a contradiction

to Claim 4.1 by finding a high-end path in G on at least k − 1 vertices. Let X be the set of all high

vertices in G and Y = V (G)\X. Let G′ = G(X,Y ) be the spanning bipartite subgraph of G with parts

X and Y . We have |X| = φ by Claim 4.5.

Suppose that k is odd. Then |X| = φ = k+1
2 , and |Y | = n− |X| ≤ 2d+ 1− k+1

2 . For every x ∈ X,

dG′(x) ≥ dG(x) − (|X| − 1) ≥ d − k−1
2 := d1. Since d ≥ k, we can derive that |X| = k+1

2 ≤ d1 and

|Y | ≤ 2d + 1 − k+1
2 ≤ 3d1 − 1. By Lemma 3.5 (iii) with t = 1, G′ has at most two disjoint paths (say

P1, P2) containing all vertices in X. We may assume that all end-vertices of P1, P2 are in X, so P1, P2

are high-end paths of G. As n ≤ 2d + 1, by Lemma 3.6, there is a high-end path P in G satisfying

V (P1) ∪ V (P2) ⊆ V (P ) and thus |P | ≥ |P1|+ |P2| = 2|X| − 2 = k − 1.

Now suppose that k is even and r ≤ d− k
2 . Then |X| = φ = k

2 and |Y | = n−|X| = (d+1+r)−|X| ≤

d+ 1 + (d− k
2 )−

k
2 = 2d+ 1− k. Also for every x ∈ X, dG′(x) ≥ d− k

2 + 1 := d2. Since d ≥ k, we see

|X| ≤ d2 and |Y | ≤ 2d2 − 1. By Lemma 3.5 (i), G′ has a path P containing all vertices in X. We may

view P as a path with both end-vertices in X. So P is a high-end path of G with |P | = 2|X|−1 = k−1.

It remains to consider the case when k is even and d ≥ r > d − k
2 . In this case, |X| = φ = k

2 + 1,

|Y | = n − |X| = (d + 1 + r)− |X| ≤ 2d − k
2 , and for every x ∈ X, dG′(x) ≥ d − k

2 := d3. Since d ≥ k,

one can deduce that |X| ≤ d3 + 1 and |Y | ≤ 3d3. By Lemma 3.5 (iii) with t = 2, G′ has at most

three disjoint paths P1, P2, P3 containing all vertices in X, all of which can be viewed as high-end paths

of G. Using Lemma 3.6, G has a high-end path P containing all vertices in P1 ∪ P2 ∪ P3. Therefore

|P | ≥ |P1|+ |P2|+ |P3| = 2|X| − 3 = 2
(

k
2 + 1

)

− 3 = k − 1.

In any case, we get a contradiction to Claim 4.1. This finishes the proof of Claim 4.6.

Claim 4.7. If T is any set of at least d+1 vertices, then T ∪N(T ) contains at least ⌊k+1
2 ⌋ high vertices.

Proof. Suppose that T ∪ N(T ) contains at most ⌊k−1
2 ⌋ high vertices. Let T ′ be any subset of T with

|T ′| = d + 1, and let G′ be obtained from G by deleting all vertices in T ′. Then n′ := |V (G′)| =

n− (d+ 1) > d and G′ has at least φ−
⌊

k−1
2

⌋

= φ(n′, d, k) high vertices. Thus G′ is a counterexample

smaller than G (which satisfies (a) and (b) but violates (c)), a contradiction.

Since G is connected and has φ ≥ 2 high vertices, there exist high-end paths in G. Now we choose a

high-end path P in G such that the number of high vertices in P is maximum, and subject to this, |P |

is maximum. By Claim 4.1, we have |P | ≤ k− 2. Note that as q ≥ 2, we have φ ≥ ⌊k−1
2 ⌋q + 1 ≥ k− 1.

So there must be some high vertex outside V (P ).

Let u1, u2 be the two end-vertices of P . We assign the orientation of P from u1 to u2.

Claim 4.8. Let Si = NG−P (ui) for i ∈ {1, 2} and S = S1 ∪ S2. Then any vertex in S is a low vertex,

S1∩S2 = ∅, and NP (u1)∪{u1} ⊆ V (P )\(NP (u2))
+. In particular, we have dP (u1)+ dP (u2) ≤ |P |− 1.
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Proof. First any vertex in S is a low vertex (as, otherwise, say s ∈ NG−P (u1) is high, then P ∪ u1s

contradicts the choice of P ). If u1, u2 has a common neighbor say v outside V (P ), then v is a low vertex

and let C = P ∪ u2vu1; if there exists a vertex v ∈ NP (u1) ∩ (NP (u2))
+ such that u1v, u2v

− ∈ E(G),

then let C = (P − v−v) ∪ {u1v, u2v
−}. In any case C is a cycle containing all vertices in P . As we

just discussed before this claim, there exists some high vertex x outside V (P ) (and thus outside V (C)).

Now let P ′ be any path in G from x to C and internally disjoint from C (recall Claim 4.4 that G is

connected). Then C∪P ′ contains a high-end path containing more high vertices than P , a contradiction

to the choice of P .

In the following claims, we investigate more properties on the sets S1 and S2.

Claim 4.9. Every vertex in N(S1) ∪ N(S2) is high and lies in P , every vertex in (N(S1)\{u1})
− ∪

(N(S2)\{u2})
+ is low, and moreover, |S| ≥ d+ 3.

Proof. By Claim 4.3, any neighbor of a low vertex is a high vertex. So for i ∈ {1, 2}, every vertex

in N(Si) is high and must lie on P (otherwise, P can be extended to a longer high-end path, which

contradicts the choice of P ). Consider any v ∈ S1 and x ∈ N(v)\{u1}. So x ∈ V (P )\{u1}. If x− is

high, then P ′ = x−Pu1 ∪ u1vx ∪ xPu2 is a high-end path such that V (P ) ( V (P ′), a contradiction to

the choice of P . Thus we conclude that all vertices in (N(S1)\{u1})
− are low, and similarly all vertices

in (N(S2)\{u2})
+ are low. By Claim 4.8, one can get that |S| = |S1| + |S2| ≥ (d(u1) − dP (u1)) +

(d(u2)− dP (u2)) ≥ 2d− (k − 3) ≥ d+ 3.

Claim 4.10. There is at most one vertex v ∈ V (P ) such that v, v+ ∈ N(S). In particular, we have

v ∈ N(S1)\N(S2) and v
+ ∈ N(S2)\N(S1).

Proof. First, both v, v+ ∈ N(S) are high. If v ∈ N(S2), then by Claim 4.9, v+ is low, a contradiction.

Thus v ∈ N(S1)\N(S2), and similarly, v+ ∈ N(S2)\N(S1). Note that possibly v = u1 or v+ = u2.

Suppose for a contradiction that there are two such vertices, say v1 and v2. Assume that v1 ∈

V (u1Pv2). Recall that v1, v2 ∈ N(S1) and v+1 , v
+
2 ∈ N(S2). We remark that v+1 6= v2 (because v−2 is

low by Claim 4.9). So v1, v
+
1 , v2, v

+
2 appear on P in order. For i ∈ {1, 2}, let xi ∈ S1 with xivi ∈ E(G)

and yi ∈ S2 with yiv
+
i ∈ E(G) such that if v1 = u1 then choose x1 = x2, and if v+2 = u2 then choose

y1 = y2. Now we define a new path P ′ as follows (see Figure 4):

P ′ =



















u1Pv1 ∪ v1x1v2 ∪ v2Pv
+
1 ∪ v+1 y1v

+
2 ∪ v+2 Pu2, if x1 = x2 and y1 = y2;

u+1 Pv1 ∪ v1x1u1x2v2 ∪ v2Pv
+
1 ∪ v+1 y1v

+
2 ∪ v+2 Pu2, if x1 6= x2 and y1 = y2;

u1Pv1 ∪ v1x1v2 ∪ v2Pv
+
1 ∪ v+1 y1u2y2v

+
2 ∪ v+2 Pu

−
2 , if x1 = x2 and y1 6= y2;

u+1 Pv1 ∪ v1x1u1x2v2 ∪ v2Pv
+
1 ∪ v+1 y1u2y2v

+
2 ∪ v+2 Pu

−
2 , if x1 6= x2 and y1 6= y2.

Then V (P ′) = V (P )∪{x1, x2, y1, y2}, and the possible end-vertices u+1 and u−2 of P ′ can be low vertices.

Let P ′′ be the path obtained from P ′ by removing its low end-vertices (which only can be u+1 and/or

u−2 ). Note that u
+
1 (respectively, u−2 ) is an end-vertex of P ′ if and only if x1 6= x2 (respectively, y1 6= y2).

By Claim 4.3, P ′′ is a high-end path and contains exactly the same high vertices as in P . However, P ′′

is longer than P , as |P ′′| ≥ |P ′| − 1x1 6=x2
− 1y1 6=y2 ≥ |P |+ 2. This contradicts the choice of P .

Now we can derive from Claims 4.9 and 4.10 that |N(S)| ≤ |P |+2
2 ≤ k

2 . On the other hand, as

|S| ≥ d+ 3 (by Claim 4.9), S ∪N(S) contains at least ⌊k+1
2 ⌋ high vertices (by Claim 4.7). All vertices

in S are low (by Claim 4.8), so |N(S)| ≥ ⌊k+1
2 ⌋. Combining the above, we have

⌊

k + 1

2

⌋

≤ |N(S)| ≤
|P |+ 2

2
≤
k

2
. (2)
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u1u
+
1 v1 v

+
1 v2 v

+
2 u−2 u2

x1 = x2 y1 = y2

u1u
+
1 v1 v

+
1 v2 v

+
2 u−2 u2

x1 x2 y1 = y2

u1u
+
1 v1 v

+
1 v2 v

+
2 u−2 u2

x1 = x2 y1 y2

u1u
+
1 v1 v

+
1 v2 v

+
2 u−2 u2

x1 x2 y1 y2

Figure 2: Key steps in the proof of Claim 4.10.

This indicates that k is even, |P | = k − 2, |N(S)| = k
2 , and there is exactly one vertex v ∈ V (P )

satisfying Claim 4.10. Furthermore, by letting k = 2s, we can express

P = a0b1a1 · · · bjajaj+1bj+1 · · · bs−2as−1

for some 0 ≤ j ≤ s− 2 such that a0 = u1, aj = v, aj+1 = v+, as−1 = u2 and N(S) = {a0, a1, ..., as−1}.

Claim 4.11. We have N(S1) = {a0, ..., aj} and N(S2) = {aj+1, ..., as−1}.

Proof. It suffices to show that N(S1) ⊆ {a0, ..., aj} and N(S2) ⊆ {aj+1, ..., as−1}. By symmetry, we

will only prove that N(S1) ⊆ {a0, ..., aj}. Suppose not. Then there exists some aℓ ∈ N(S1) with

ℓ ≥ j + 1, and we may assume that subject to the condition ℓ ≥ j + 1, ℓ is minimal. By Claim 4.9,

we see that (aℓ)
− is a low vertex. This implies that ℓ ≥ j + 2 and bℓ−1 = (aℓ)

− is low. Then

by the minimality of ℓ, we have aℓ−1 ∈ N(S2). Let z1 ∈ S1, z2 ∈ S2 be two vertices such that

z1aℓ, z2aℓ−1 ∈ E(G). Then P ′ := ajPu1 ∪ u1z1aℓ ∪ aℓPu2 ∪ u2z2aℓ−1 ∪ aℓ−1Paj+1 is a high-end path

such that V (P ′) = (V (P )\{bℓ−1}) ∪ {z1, z2} and |P ′| = |P | + 1. So P ′ contains all high vertices of P

and is longer than P , a contradiction to the choice of P . This proves Claim 4.11.

Hence by Claim 4.9, every ai for 0 ≤ i ≤ s− 1 is high and every bi for 1 ≤ i ≤ s− 2 is low.

Claim 4.12. For any ai /∈ {v, v+}, every vertex z ∈ NG−P (ai) is a low vertex such that N(z) ⊆ V (P ).

On the other hand, every bi satisfies N(bi) ⊆ V (P ).

Proof. First we consider bi for any 1 ≤ i ≤ s− 2. Without loss of generality, we may assume 1 ≤ i ≤ j.

Suppose that bi has a neighbor z outside V (P ). Then by Claim 4.3, z is high. Let w ∈ S1 be such that

wai ∈ E(G). Now zbi∪ biPu1∪u1wai∪aiPu2 is a high-end path containing more high vertices than P ,

a contradiction. This proves N(bi) ⊆ V (P ). Now consider any ai /∈ {v, v+}. We are done by Claims 4.8

and 4.9 if ai ∈ {u1, u2}. Hence, without loss of generality assume that 1 ≤ i ≤ j − 1. Consider

z ∈ NG−P (ai). Let w
′ ∈ S1 be such that w′ai+1 ∈ E(G) and let P ′ := zai∪aiPu1∪u1w

′ai+1∪ai+1Pu2.

If z is high, then P ′ is a high-end path containing more high vertices than P , a contradiction. So any

such z must be low. Suppose for a contradiction that z has a neighbor z′ outside V (P ). Then by

Claim 4.3, z′ is high. So z′z ∪ P ′ is a high-end path containing more high vertices than P , again a

contradiction. Thus we can conclude that N(z) ⊆ V (P ).

We are ready to complete the proof of Theorem 1.3. Recall that G has a high vertex (say x) outside

V (P ). Let U = V (P )\{v, v+}. We can derive from Claim 4.12 that {v, v+} is a 2-cut of G separating

the vertex x from the set S ∪ U . Let D be the union of (at most two) components in G − {v, v+}
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containing vertices in S ∪ U . Claim 4.12 also shows that all high vertices in D ∪ N(D) are those in

V (P ), i.e., vertices in N(S) = {a0, a1, ..., as−1}. By Claim 4.8, we have

|S∪V (P )| = |S1|+|S2|+|P | ≥ dG−P (u1)+dG−P (u2)+(dP (u1)+dP (u2))+1 = d(u1)+d(u2)+1 ≥ 2d+1.

Either v or v+ has some neighbor not in S ∪ V (P ). Without loss of generality we assume that v has

some neighbor not in S ∪ V (P ). By Claim 4.4, v has degree d. Also note that vv+ ∈ E(G). So v has

at most d− 2 neighbors in S ∪ U . Set S′ = (S ∪ U)\N(v). Then using |S ∪ V (P )| ≥ 2d+ 1, we have

|S′| ≥ |S ∪ U | − (d− 2) = (|S ∪ V (P )| − 2)− (d− 2) ≥ d+ 1.

By Claim 4.7, S′ ∪ N(S′) contains at least s = k
2 high vertices. However, as S′ is a subset in D, by

definition we see S′∪N(S′) ⊆ (D∪N(D))\{v}. We have pointed out that all high vertices in D∪N(D)

are a0, a1, ..., as−1. So S
′ ∪N(S′) contains at most s− 1 high vertices. This final contradiction finishes

the proof of Theorem 1.3.

5 On two related questions

In this section, we consider two questions related to Conjecture 1.2 that are raised by Erdős, Faudree,

Schelp and Simonovits in [3]. We will provide better constructions than the ones given in [3], which

give (negative and positive) answers to their questions.

It is natural to consider the analog of Definition 1.1 for long cycles. For integers n > d ≥ k ≥ 2,

define θ(n, d, k) to be the smallest integer θ such that every n-vertex graph with at least θ vertices

of degree at least d contains a cycle on at least k + 1 vertices. In this language, the well-known

Dirac’s theorem [2] states that θ(n, d, d) ≤ n. Improving Dirac’s theorem, Woodall [9] proved that

θ(n, d, d) ≤ (d+2)(n−1)
2d if d is even and θ(n, d, d) ≤ d(n−2)

2(d−1) otherwise; while for the general case, he [9]

showed that θ(n, d, k) ≤ (k+3)(n−1)
2d . Recall the graph Hd,k+1 that it contains no cycles on at least k+1

vertices and has d+1 vertices in total, where ⌊k2⌋ vertices have degree d (call them high vertices) and all

other vertices have degree ⌊k2⌋ (call them low vertices). By considering the graphs consisting of blocks

Hd,k+1, the authors of [3] raised the following question: Is it possible that θ(n, d, k) ≤ ⌊k2⌋⌊
n−1
d

⌋+ 2?

In the following proposition, we give a negative answer to the above question.

Proposition 5.1. For any integer k ≥ 2, there exist infinitely many integers d such that the following

holds. There exists some constant c = c(d, k) > 0 such that θ(n, d, k) > (⌊k2⌋ + c) · n−1
d

for infinite

integers n.

Proof. We show a slightly stronger statement: Let α, β be positive integers such that d = (1 + α)⌊k2⌋

and n = 1 + d+ αβd satisfy n > d ≥ k ≥ 2. Then θ(n, d, k) ≥ n−1
d

⌊k2⌋+
n−(d+1)

αd
+1.

We construct an n-vertex graph G as follows. Let H0 be a copy of Hd,k+1 with a low vertex v0.

For each 1 ≤ i ≤ β, let Hi be obtained from α copies of Hd,k+1 by identifying one low vertex from

each copy of Hd,k+1 (call the resulting vertex ui); let vi be a low vertex in Hi other than ui. Finally,

let G be obtained from H0,H1, . . . ,Hβ by identifying vi−1 and ui for all 1 ≤ i ≤ β. Since each block

of G is a copy of Hd,k+1, we see that G contains no cycles of at least k + 1 vertices. However, G has

(1 + αβ)⌊k2 ⌋+ β = n−1
d

⌊k2⌋+
n−(d+1)

αd
vertices of degree at least d. This proves the proposition.

Note that in the above proof, one can take α ≥ 1 for even k and α ≥ 2 for odd k. For the cases

d > k in Lemma 5.1, the constant c can be taken up to 1
2 (i.e., when it corresponds to α = 2).

Another question concerned in [3] is the restricted version of Conjecture 1.2 when the graph G is

assumed to be connected. For positive integers n > d ≥ k, define ψ(n, d, k) to be the smallest integer ψ
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such that every n-vertex connected graph with at least ψ vertices of degree at least d contains a path

Pk+1 on k+1 vertices. Erdős et al. [3] observed that the graph, obtained from ⌊n−1
d

⌋ copies of H
d,⌈k

2
⌉+1

by identifying at a fixed high vertex of each H
d,⌈k

2
⌉+1, contains no Pk+1. This gives that ψ(n, d, k) ≥

⌊k−3
4 ⌋⌊n−1

d
⌋ + 2, which is approximately a half of the number of high vertices in Conjecture 1.2 (as

k → ∞). They [3] asked if there is a better construction. We show that it is possible to improve the

leading coefficient of n by a positive constant factor in the above lower bound of ψ(n, d, k).

Proposition 5.2. For any integer k ≥ 7, there exist infinitely many integers d such that the following

holds. There exists some constant c′ = c′(d, k) > 0 such that ψ(n, d, k) > (⌊k−3
4 ⌋+ c′) · n−1

d
for infinite

integers n.

Proof. Let α ≥ 2 and β ≥ d be any integers. Let d = 1 + α⌊k−3
4 ⌋ and n = 1 + β(1 + αd). Note that

the graph H∗ = Hd,⌈k
2
⌉−1 contains ⌊k−3

4 ⌋ vertices of degree d, and all other vertices have degree ⌊k−3
4 ⌋

(call them low vertices). We will construct an n-vertex connected graph G to show that ψ(n, d, k) ≥

⌊k−3
4 ⌋n−1

d
+

(

1− 1
d
⌊k−3

4 ⌋
)

n−1
1+αd

+ 2 as follows. Let H0 be a star K1,β with leaves vi for 1 ≤ i ≤ β. For

each 1 ≤ i ≤ β, let Hi be obtained from α copies of H∗ by identifying one low vertex from each H∗

(call the resulting vertex ui). Now let G be obtained from H0,H1, ...,Hβ by identifying vi and ui for

each 1 ≤ i ≤ β. Then G contains no path Pk+1 and has αβ⌊k−3
4 ⌋+β+1 =

(

n−1
d

− β
d

)

⌊k−3
4 ⌋+β+1 =

⌊k−3
4 ⌋n−1

d
+

(

1− 1
d
⌊k−3

4 ⌋
)

n−1
1+αd

+ 1 vertices of degree at least d, as desired.

It would be very interesting to determine the functions θ(n, d, k) and ψ(n, d, k) exactly.
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