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Optimal bisections of directed graphs

Guanwu Liu Jie Ma Chunlei Zu

Abstract

In this paper, motivated by a problem of Scott [32] and a conjecture of Lee, Loh and
Sudakov [25] we consider bisections of directed graphs. We prove that every directed graph
with m arcs and minimum semidegree at least d admits a bisection in which at least
(

d

2(2d+1) + o(1)
)

m arcs cross in each direction. This provides an optimal bound as well

as a positive answer to a question of Hou and Wu [19] in a stronger form.

1 Introduction

As one of the most fundamental problems in the common field of combinatorics and theoretical
computer science, graph partitioning problems have been studied extensively in the literature.
A well-known example is the Max-Cut problem, which asks to find a vertex-partition V1 ∪ V2

of a given graph with m edges that maximizes the number of edges between V1 and V2. A
uniformly random partition shows that this number is at least m/2. This bound was improved
to m/2 + (

√

2m+ 1/4 − 1/2)/4 by a prominent result of Edwards [10, 11] which is optimal for
infinitely many graphs (see Alon [1] for more advances).

In past decades, a new area of judicious partitioning problems has arisen, where the common
theme seeks for partitions optimizing several quantities simultaneously. A celebrated result in
this area is due to Bollobás and Scott [6], who showed that any graph with m edges admits
a bipartition V1 ∪ V2 of its vertex set such that the number of edges between V1 and V2 is at
least m/2 + (

√

2m+ 1/4 − 1/2)/4 (i.e., Edwards’ bound) and moreover for each i ∈ {1, 2}, the
number of edges contained in Vi is at most m/4+(

√

2m+ 1/4−1/2)/8. There has been a large
body of research for judicious partitioning problems (see, e.g., [2, 7, 9, 12, 14, 15, 21, 23, 24, 25,
28, 29, 30, 31, 33, 35, 36]). For a systematic treatment on related problems and results, we refer
interested readers to the surveys [8, 32, 34].

In this paper, we study partitioning problems for directed graphs (i.e., digraphs). For a
digraph D and a bipartition V (D) = V1 ∪ V2, let e(V1, V2) denote the size of the directed cut
(V1, V2), i.e., the number of arcs in D directed from V1 to V2. It is easy to find a directed cut
of size at least m/4 in any digraph with m edges; on the other hand, Alon, Bollobás, Gyárfás,
Lehel and Scott [3] constructed digraphs whose maximum directed cut is m/4 + O(m4/5). A
natural problem in the judicious setting would be to find a bipartition V (D) = V1 ∪ V2 that
maximizes min{e(V1, V2), e(V2, V1)}. However, if the digraph D is an oriented star where all
arcs are oriented from its center in one direction, then one of e(V1, V2) and e(V2, V1) will always
be zero for any bipartition V1 ∪ V2. To avoid this situation, Scott [32] suggested the following
problem by imposing a minimum degree condition.
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Problem 1.1 (Scott [32], see Problem 3.27). Let d be a positive integer. What is the largest
constant cd such that every digraph D with m arcs and minimum outdegree d admits a bipartition
V (D) = V1 ∪ V2 such that

min {e(V1, V2), e(V2, V1)} ≥ cd ·m?

It is easy to obtain c1 = 0. Lee, Loh and Sudakov [25] proved that c2 = 1/6 + o(1) and
c3 = 1/5 + o(1). For the general case, they made the following attractive conjecture.

Conjecture 1.2 (Lee, Loh and Sudakov [25], see Conjecture 1.2). Let d ≥ 3 be a positive
integer. Every digraph D with m arcs and minimum outdegree at least d+1 admits a bipartition
V (D) = V1 ∪ V2 such that

min {e(V1, V2), e(V2, V1)} ≥

(

d

2(2d + 1)
+ o(1)

)

m. (1.1)

If it is true, this would provide the optimal bound and thus show cd+1 = d
2(2d+1) + o(1) for

Problem 1.1 (see the construction below). Recently, Liu and Yu [27] proved the next case of
Conjecture 1.2, i.e., for digraphs with minimum outdegree at least 4. It is not clear if the mini-
mum outdegree alone is sufficient for Conjecture 1.2 for large d and there have been researches
for partitioning digraphs under additional conditions. A natural additional assumption here is
to impose some minimum indegree. In this line, Hou, Ma, Yu and Zhang [18] proved Conjecture
1.2 under the additional assumption that the minimum indegree is at least d+1. In other words,
the authors of [18] proved that (1.1) holds for digraphs with minimum semidegree at least d+1.
In [19], Hou and Wu proposed the following question for a weaker minimum semidgree condition
(also see Conjecture 4.6 in [34]).

Question 1.3 (Hou and Wu [19]). Is it true that for every positive integer d, every digraph D
with m arcs and minimum semidegree d admits a bipartition V (D) = V1 ∪ V2 such that

min {e(V1, V2), e(V2, V1)} ≥

(

d

2(2d + 1)
+ o(1)

)

m?

In the same paper [19], Hou and Wu proved that the above conclusion holds for all oriented
graphs with minimum semidegree d ≥ 21. Their proofs are involved and work only for oriented
graphs. Later, Hou, Li and Wu [17] gave a positive answer to Question 1.3 for d ≤ 3.

A bisection of a (di)graph is a bipartition of its vertex set in which the number of vertices
in the two parts differ by at most 1. Finding bisections is of particular interest in partitioning
problems (see, e.g., [13, 20, 22, 24, 26, 36]) and it is usually more challenging.

Here we give an affirmative answer to Question 1.3 in a stronger form, where we show that
the desired bipartition can be further chosen as a bisection.

Theorem 1.4. Let d be a positive integer. Every digraph D with m arcs and minimum semide-
gree at least d admits a bisection V (D) = V1 ∪ V2 such that

min {e(V1, V2), e(V2, V1)} ≥

(

d

2(2d + 1)
+ o(1)

)

m.

The proof of Theorem 1.4 at the basic level follows by an approach launched by Bollobás and
Scott [5, 8] and further developed in the subsequent works such as [19, 24, 25, 29]. It is to first
partition the set X of vertices with large degree by some optimization and then partition the set
Y of the remaining vertices using some randomize process which is carefully designed based on
the structures of the cut (X,Y ) as well as the subgraph induced by Y . Then using probabilistic
concentration inequalities, one can bound the deviations of random performances in terms of
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parameters associated with the aforementioned structures (see Lemma 2.7 for implementing
this step in our proof). For partitioning digraphs, the difficulties are often to untangle the
intricate relationships between these parameters. The new ingredients at the core of our proof
are some relatively neat estimations on the arcs between X and Y in each direction (we refer to
Subsection 3.3 for more details).

Finally we remark that the bounds in Conjecture 1.2 and Question 1.3 are asymptotically
optimal by considering the following digraphs given by Lee, Loh and Sudakov [25]: Take k
disjoint copies of K2d+1 oriented along an Eulerian circuit, and a single copy of K2d+3 oriented
in a similar manner which is disjoint from the copies of K2d+1; then fix a vertex v0 of K2d+3,
and add arcs from all the vertices in the copies of K2d+1 to v0. Clearly, the resulting digraph D
has minimum outdegree d+ 1 and minimum semidegree d, whose number of arcs equals

m = kd(2d + 1) + (d+ 1)(2d + 3) + k(2d+ 1) = k(d+ 1)(2d + 1) + (d+ 1)(2d + 3).

For any bipartition of K2d+1 oriented along an Eulerian circuit, the number of arcs in any

direction is at most d(d+1)
2 . Then for every bipartition V (D) = V1 ∪ V2 (say v0 ∈ V1), we have

e(V1, V2) ≤ k
d(d+ 1)

2
+

(d+ 1)(d + 2)

2
=

d

2(2d + 1)
m+

(d+ 1)2

2d+ 1
.

Hence we can conclude that

max
V (D)=V1∪V2

min {e(V1, V2), e(V2, V1)} ≤

(

d

2(2d + 1)
+ o(1)

)

m.

The rest of this paper is organized as follows. In Section 2, we give notations and collect
lemmas for the coming proof. In Section 3, we complete the proof of Theorem 1.4. Finally in
Section 4, we offer some concluding remarks.

2 Preliminaries

2.1 Notations

We use standard notations in graph theory. All digraphs considered in this paper are finite
with no loops and no multiple arcs (but a pair of arcs in opposite directions is allowed). For a
digraph D, we denote by V (D) the vertex set of D and by A(D) the arc set of D. Let x, y be
two vertices in D. We write xy or x → y for an arc in D with head x and tail y. We write
N+

D (x) = {y : xy ∈ A(D)} and N−
D (x) = {y : yx ∈ A(D)}, and call d+D(x) := |N+

D (x)| and
d−D(x) := |N−

D (x)| as the outdegree and indegree of x in D, respectively. The degree of x in D is
defined as dD(x) = d+D(x) + d−D(x), and the semidegree of x in D is min{d+D(x), d

−
D(x)}. We will

omit the subscripts in the above definitions when this is not ambiguous.
The maximum degree ∆(D) of D is max{dD(x) : x ∈ V (D)}. The minimum outdegree of D is

δ+(D) = min{d+D(x) : x ∈ V (D)} and the minimum indegree of D is δ−(D) = min{d−D(x) : x ∈
V (D)}. Finally, we define the minimum semidegree of D to be δ0(D) = min{δ+(D), δ−(D)}.

For any X ⊆ V (D), the subgraph of D induced by X is denoted by D[X]. We write e(X)
to express the number of arcs contained in D[X]. For disjoint sets X,Y ⊆ V (D), by (X,Y ) we
denote the set of all arcs in D with head in X and tail in Y . Let e(X,Y ) be the number of arcs
in (X,Y ). Throughout the rest of the paper, we write [k] for the set of integers {1, 2, . . . , k}
where k denotes a positive integer.
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2.2 Previous lemmas

In this subsection, we collect some previous lemmas for the use of the coming proof. First we
state the following version of the Azuma-Hoeffding inequality.

Lemma 2.1 (Azuma [4], Hoeffding [16]). Let Z1, . . . , Zn be independent random variables taking
values in {1, . . . , k}, let Z := (Z1, . . . , Zn), and let f : {1, . . . , k}n → N such that |f(Y )−f(Y ′)| ≤
ci for any Y, Y ′ ∈ {1, . . . , k}n which differ only in the i-th coordinate. Then for any z > 0,

P(f(Z) ≥ E(f(Z)) + z) ≤ exp

(

−z2

2
∑n

i=1 c
2
i

)

,

P(f(Z) ≤ E(f(Z))− z) ≤ exp

(

−z2

2
∑n

i=1 c
2
i

)

.

A natural, basic idea for finding good cuts is to investigate cuts generated by random par-
titions. If we place each vertex of a digraph D to a side uniformly and independently, then we
get a random partition with the expected number of arcs in each direction being e(D)/4. In the
following lemma, Lee, Loh and Sudakov [25] showed that such a partition (with asymptotically
optimal performances) can be realized under some additional restrictions.

Lemma 2.2 (Lee, Loh and Sudakov [25]). Let D be a digraph with n vertices and m arcs. For
every ε > 0, if m ≥ 8n/ε2 or ∆(D) ≤ ε2m/4, then D admits a bipartition V (D) = V1 ∪ V2 such
that

min{e(V1, V2), e(V2, V1)} ≥
1

4
m− εm.

This lemma was extended by Hou, Wu and Yan [22] in the following bisection version.

Lemma 2.3 (Hou, Wu and Yan [22]). Let D be a digraph with n vertices and m arcs. For every
ε > 0, if m ≥ 16n/ε2 or ∆(D) ≤ ε2m/8, then D admits a bisection V (D) = V1 ∪ V2 such that

min{e(V1, V2), e(V2, V1)} ≥
1

4
m− εm.

We now define an important structural concept in this study introduced by Lee, Loh and
Sudakov [24]. Let T be a connected component of a given (undirected) graph G. We say that
T is a tight component of G if it satisfies the following properties:

(i) for every vertex v ∈ V (T ), T − v contains a perfect matching, and

(ii) for every vertex v ∈ V (T ) and every perfect matching M of T − v, no edge in M has
exactly one end adjacent to v.

Clearly a tight component must have an odd number of vertices. The underlying graph GD

of a digraph D is a simple graph obtained from D by ignoring arc orientations and removing
redundant multi-edges. We say a component of D is tight if the corresponding component of
GD is tight, and essential if it is tight and does not contain two arcs in opposite directions.

Let {e1, . . . , es} be a maximum matching in a graph G, and let W be the set of vertices not
in the matching. Let v ∈ V (ei) and w ∈ W . With respect to this fixed matching, v is called
a free neighbor of w if w is adjacent to v but not adjacent to the other endpoint of ei. We
call w ∈ W a free vertex if it has at least one free neighbor in the matching, and a non-free
vertex otherwise. In [25] Lee, Loh and Sudakov showed that there is a bijective correspondence
between non-free vertices and tight components under certain conditions.
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Lemma 2.4 (Lee, Loh and Sudakov [25]). Let e1, . . . , es be the edges of a maximum matching
in an undirected graph G, and let W be the set of vertices not in the matching. Further assume
that among all matchings of maximum size, we have chosen one which maximizes the number of
free vertices in W . Then, every tight component contains a distinct non-free vertex of W , and
all non-free vertices of W are covered in this way (i.e., there is a bijective correspondence).

Using this lemma, the authors of [25] (see its Lemma 3.2) managed to decompose an undi-
rected graph into induced stars plus an independent set. We need the following version of this
decomposition result which can be easily deduced from the original proof of [25].1

Lemma 2.5 (Lee, Loh and Sudakov [25], Lemma 3.2). Let G be an undirected graph with τ tight
components. Let A be a subset of V (G). Let e1, . . . , es be the edges of a maximum matching in
G such that among all matchings of maximum size, we have chosen one which maximizes the
number of free vertices. Then there exists a partition V (G) = T1 ∪ T2 ∪ · · · ∪ Ts ∪ U such that

(i) each Ti induces a star containing the edge ei in the maximum matching,

(ii) at most one leaf vertex in each Ti is contained in A, and

(iii) U is an independent set of order |U | ≤ τ + |A|.

The following lemma of [25] and its variances serve as a guiding tool in the recent development
of digraph partitioning problems (see, i.e., [25, 22, 17]).

Lemma 2.6 (Lee, Loh and Sudakov [25]). For any positive constants C and ε, there exist γ,
n0 > 0 for which the following holds. Let D be a digraph with n ≥ n0 vertices and at most Cn
arcs. Suppose X ⊆ V (D) is a set of at most γn vertices and X1,X2 is a partition of X. Let
Y = V (D) \X and let τ be the number of components with odd order in D[Y ]. If every vertex
in Y has degree at most γn in D, then there is a bipartition V (D) = V1 ∪ V2 with Xi ⊆ Vi for
i = 1, 2 such that

e(V1, V2) ≥ e(X1,X2) +
e(X1, Y ) + e(Y,X2)

2
+

e(Y )

4
+

n− τ

8
− εn,

e(V2, V1) ≥ e(X2,X1) +
e(X2, Y ) + e(Y,X1)

2
+

e(Y )

4
+

n− τ

8
− εn.

We mention that Hou, Wu and Yan [22] extended this lemma by replacing τ with the number
of tight components in D[Y ] and requiring the bipartition V (D) = V1 ∪ V2 to be a bisection,
and more recently, Hou, Li and Wu [17] improved it by showing τ can be chosen as the number
of essential components in D[Y ]. To show the desired bisection of Theorem 1.4, we will need a
further strengthening of Lemma 2.6 for which we prove in the following subsection.

2.3 A strengthening of Lemma 2.6

In this subsection, using probabilistic arguments we prove Lemma 2.7, which generalizes Lemma
2.6 as well as its variances mentioned above. This lemma will allow us to extend a pre-optimized
partition of the set of vertices with large degree to a ‘good’ bisection of the entire digraph. We
like to point out that it is crucial for the proof in Section 3 to use τ as the number of essential
components.

Since the proof is similar to that of Lemma 3.1 in [25] and Lemma 3.5 in [22], we shall only
give detailed explanations for steps which reflect the difference and sketch the rest of them.

1In the original statement of Lemma 3.2 in [25], G is a graph with n vertices and m ≤ Cn edges and A denotes
the set of vertices with degree at least 2C/ε, where ε and C are arbitrary positive reals. In particular |A| ≤ εn.
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Lemma 2.7. For any positive constants C and ε, there exist γ, n0 > 0 for which the following
holds. Let D be a digraph with n ≥ n0 vertices and at most Cn arcs. Suppose X ⊆ V (D) is
a set of at most γn vertices and X1,X2 is a partition of X. Let Y = V (D) \ X and let τ be
the number of essential components in D[Y ]. If every vertex in Y has degree at most γn in D,
then there is a bisection V (D) = V1 ∪ V2 with Xi ⊆ Vi for i = 1, 2 such that

e(V1, V2) ≥ e(X1,X2) +
e(X1, Y ) + e(Y,X2)

2
+

e(Y )

4
+

n− τ

8
− εn,

e(V2, V1) ≥ e(X2,X1) +
e(X2, Y ) + e(Y,X1)

2
+

e(Y )

4
+

n− τ

8
− εn.

Proof. Let G be the underlying graph of D. Let τ∗ be the number of tight components in G[Y ],
and let σ be the number of tight components in G[Y ] which contains an antiparallel pair when
lifted to D. Clearly, τ = τ∗ − σ is the number of essential components in D[Y ].

We choose e1, . . . , es to be the edges of a maximum matching in G such that

(1). among all matchings of maximum size, we choose one which maximizes the number of free
vertices in the set W of vertices not in the matching, and

(2). subject to the above, we require that the number of edges ei which corresponds to a pair
of arcs in opposite directions when lifted to D (call ei special) is maximized.

We claim that the number of special edges in {e1, . . . , es} is at least σ. It suffices to show that
each tight component B in G[Y ] which contains an antiparallel pair when lifted to D contributes
at least one special edge. Suppose that B has 2k + 1 vertices and D[B] contains u → v and
v → u. It is easy to see that any maximum matching in G contains k edges in B and for any
matching of k edges in B, the remaining vertex of B is a non-free vertex. So taking any matching
of k edges in B will not affect the property (1). Now we just need to show that there exists
a matching of k edges in B containing the edge uv, which can be obtained from any perfect
matching M of B − v by replacing the edge of M containing u with the edge uv.

Let A = {x ∈ V (G) : dG(x) ≥ 2C/ε}. Since e(G) ≤ e(D) ≤ Cn, we have |A| ≤ εn. Applying
Lemma 2.5 to G[Y ] with respect to A and {e1, . . . , es}, we obtain a partition Y = T1∪· · ·∪Ts∪U
such that each Ti induces a star containing the edge ei, at most one leaf vertex in each G[Ti]
has degree at least 2C/ε in the whole graph G, and U is an independent set with |U | ≤ τ∗ + εn.

We then randomly construct a partition V (D) = V1 ∪ V2 as follows: place each Xi in Vi for
i = 1, 2; partition each Ti by independently placing its center vertex vi on a uniformly random
side, and then placing the rest of Ti\{vi} on the other side; place each remaining vertex (from
the set U) on a uniformly random side.

Define random variables Y1 = e(V1, V2) and Y2 = e(V2, V1). For an arc e = u → v, let Ie
be the indicator random variable of the event that u ∈ V1 and v ∈ V2. Then Y1 =

∑

e∈A(D) Ie.
We see that E[Ie] = 1 if u ∈ X1 and v ∈ X2 and E[Ie] = 1/2 if either u ∈ X1 and v ∈ Y , or
u ∈ Y and v ∈ X2. For an arc e in D[Y ], if e is an arc induced by some set Ti, then E[Ie] = 1/2;
otherwise, E[Ie] = 1/4. Note that any special edge ei contributes two arcs induced by Ti, so

the total number of arcs induced by the sets Ti is at least |Y |−|U |
2 + σ ≥ (n−γn)−(τ∗+εn)

2 + σ.
Therefore, as τ = τ∗ − σ, we have

E[Y1] ≥ e(X1,X2) +
e(X1, Y ) + e(Y,X2)

2
+

e(Y )

4
+

1

4

[

(n− γn)− (τ∗ + εn)

2
+ σ

]

≥ e(X1,X2) +
e(X1, Y ) + e(Y,X2)

2
+

e(Y )

4
+

n− τ

8
−

(ε+ γ)n

8
,
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where we choose γ ≪ ε, C. Similarly, we can derive that

E[Y2] ≥ e(X2,X1) +
e(X2, Y ) + e(Y,X1)

2
+

e(Y )

4
+

n− τ

8
−

(ε+ γ)n

8
.

Now we have reached the same position as in Lemma 3.1 of [25] and Lemma 3.5 of [22].
Following the same arguments therein, one can use Lemma 2.1 (the Azuma-Hoeffding inequality)
to control the deviations of random variables Y1, Y2, |V1|, |V2| of the randomized partition V1∪V2.
This leads to an almost bisection V1 ∪ V2 with desired bounds on e(V1, V2) and e(V2, V1), where
|Vi − n/2| = oε,C(n) + γn. Since e(D) ≤ Cn, the number of vertices with degree at most 4C is
at least n/2. As shown in [22], one can equalize |V1| and |V2| by moving around oε,C(n) + γn
vertices with degree at most 4C, which will only affect e(V1, V2) and e(V2, V1) by at most εn/2
(as γ ≪ ε, C). This completes the proof of Lemma 2.7.

3 Proof of Theorem 1.4

Let d be a positive integer and let D be a digraph with n vertices and m arcs whose minimum
semidegree is at least d. Let ε be any positive real number and m be sufficiently large compared
with d, ε. Our goal is to find a bisection V (D) = V1 ∪ V2 such that

min{e(V1, V2), e(V2, V1)} ≥

(

d

2(2d + 1)
− ε

)

m. (3.1)

As n(n − 1) ≥ m, we may also assume that n is sufficiently large compared with d, ε (so
that Lemma 2.7 can be applied later). If m ≥ 256(2d + 1)2n, then applying Lemma 2.3 with
ε = 1

4(2d+1) yields a bisection V (D) = V1 ∪ V2 such that

min{e(V1, V2), e(V2, V1)} ≥
m

4
−

m

4(2d + 1)
=

d

2(2d + 1)
m,

as desired. So in the rest of the proof we may assume that (also as the minimum outdegree is
at least d)

dn ≤ m < 256(2d + 1)2n. (3.2)

3.1 The initial partition V (D) = X ∪ Y

Throughout the rest of the proof, we consider the partition V (D) = X ∪Y such that X := {v ∈
V (D) : dD(v) ≥ n3/4} and Y := V (D) \X. Then, by (3.2),

|X| · n3/4 ≤
∑

v∈X

dD(v) ≤
∑

v∈V (D)

dD(v) = 2m < 512(2d + 1)2n.

Hence, |X| = O(m/n3/4) = O(n1/4), and thus

e(X) ≤ |X|2 = O(n1/2) = O(m1/2).

We emphasize that in the following proof, we will only use the semidegree condition for
vertices in Y . For the sake of simplicity we remove all arcs within X, and update m to be the
new total number of arcs in the resulting digraph.2 Therefore from now on, we may assume that

e(X) = 0.

2Note that this will not change the indegree and outdegree of each vertex in Y .
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Note that this will only affect O(m1/2) amount of arcs. So to prove (3.1), it suffices to show
that the resulting digraph (which we still call D) has a bisection V (D) = V1 ∪ V2 for which

min{e(V1, V2), e(V2, V1)} ≥
( d

2(2d + 1)
−

ε

2

)

m. (3.3)

We will first find a good bipartition for the set of vertices of large degree X and we begin by
introducing some useful concepts. As we shall see later, the vertices in X whose outdegree and
indegree differ significantly play important roles. For v ∈ X, we define

s+(v) := d+(v) − d−(v), s−(v) := d−(v) − d+(v), and s(v) := |d+(v)− d−(v)|.

For a partition X = X1 ∪X2, its ordered gap is defined as

θ(X1,X2) =
(

e(X1, Y ) + e(Y,X2)
)

−
(

e(X2, Y ) + e(Y,X1)
)

.

Since e(X) = 0, we also see that

θ(X1,X2) =
∑

v∈X1

s+(x)−
∑

v∈X2

s+(x). (3.4)

For a given partition X = X1 ∪ X2, we say a vertex v ∈ X is forward if either v ∈ X1 and
s+(v) > 0, or v ∈ X2 and s−(v) > 0; otherwise, we say v is backward. Let Xf := {v ∈ X :
v is forward} and Xb := {v ∈ X : v is backward}. Then we can rewrite (3.4) as the following

θ(X1,X2) =
∑

v∈Xf

s(x)−
∑

v∈Xb

s(x). (3.5)

3.2 Partitioning X

In the rest of this section, we choose the partition X = X1∪X2 such that |θ(X1,X2)| is minimum.
Note that θ(X1,X2) = −θ(X2,X1). So by swapping X1 and X2 if necessary, we may assume
θ(X1,X2) ≥ 0. In the following, we write θ = θ(X1,X2), unless otherwise specified.

Let τ be the number of essential components in D[Y ]. Note that n is sufficiently large
compared with d, ε. So applying Lemma 2.7 with C := 256(2d+1)2, D has a bisection V (D) =
W1 ∪W2 such that Xi ⊆ Wi for i = 1, 2, and moreover (note that e(X) = 0)

min{e(W1,W2), e(W2,W1)}

≥
1

2
min{e(X1, Y ) + e(Y,X2), e(X2, Y ) + e(Y,X1)} +

e(Y )

4
+

n− τ

8
−

ε

4
n

=
e(X,Y ) + e(Y,X) − θ

4
+

e(Y )

4
+

n− τ

8
−

ε

4
n

=
m− θ

4
+

n− τ

8
−

ε

4
n

≥
m− θ

4
+

n− τ

8
−

ε

2
m,

where the last inequality holds as m ≥ dn/2 ≥ n/2 from (3.2). To prove (3.3) (and thus
Theorem 1.4), it suffices to show that

m− θ

4
+

n− τ

8
−

ε

2
m ≥

( d

2(2d + 1)
−

ε

2

)

m,

8



which is equivalent to the following

m

2d+ 1
+

n

2
− θ −

τ

2
≥ 0. (3.6)

Note that we have τ ≤ n. If θ ≤ m
2d+1 , then (3.6) holds trivially. So we may assume

θ >
m

2d+ 1
> 0. (3.7)

We point out that since θ > 0, it follows from (3.5) that X has at least one forward vertex.
Our strategy in the coming proof then is to prove (3.6) by establishing a sequence of claims.

The following two claims can be found in [17] whose proofs can be traced back to [25]. For the
sake of completeness, we include their short proofs here.

Claim 3.1. Call a vertex v ∈ X huge if s(v) ≥ θ. Then all forward vertices in X are huge. In
particular, there is at least one huge vertex.

Proof. As we just point out after (3.7), there is at least one forward vertex in X. Take any
forward vertex v ∈ X. By definition, s(v) > 0. Let X ′

1 ∪X ′
2 be the new partition of X obtained

from X1 ∪X2 by switching the side of v. Then

θ(X ′
1,X

′
2) =

(

e(X ′
1, Y ) + e(Y,X ′

2)
)

−
(

e(X ′
2, Y ) + e(Y,X ′

1)
)

=
(

e(X1, Y ) + e(Y,X2)− s(v)
)

−
(

e(X2, Y ) + e(Y,X1) + s(v)
)

= θ − 2s(v).

Since X1 ∪X2 is a partition of X minimizing |θ(X1,X2)|, we have |θ(X ′
1,X

′
2)| = |θ− 2s(v)| ≥ θ.

This forces s(v) ≥ θ, which means v is huge.

Let X ′ be the set of huge vertices in X. By Claim 3.1, we know that all vertices in X\X ′

are backward vertices. Define

α = |X ′| and g =
∑

v∈X\X′

s(v).

Claim 3.2. For any forward vertex v ∈ X, we have s(v) ≥ θ + g.

Proof. For the bipartition X = X1 ∪X2, we call an arc in (X1, Y ) ∪ (Y,X2) forward and an arc
in (X2, Y ) ∪ (Y,X1) backward. Let mf = e(X1, Y ) + e(Y,X2) and mb = e(X2, Y ) + e(Y,X1).
Note that θ = mf −mb.

Suppose to the contrary that there exists a forward vertex v ∈ X such that g > s(v)−θ ≥ 0.
Recall that g =

∑

v∈X\X′ s(v). Then X\X ′ = {u ∈ X : s(u) < θ} 6= ∅. Now we switch
vertices between X1 and X2 in two consecutive rounds. First, we move v to the other part of the
partition X = X1∪X2. Then the number of forward arcs in the resulting partition of X becomes
m′

f = mf − s(v) ≤ mf − θ = mb. Next, we choose a vertex in X\X ′ (which remains backward)
at a time and switch it to the other part. After we switch all vertices in X\X ′, the number of
forward arcs becomes m′′

f = m′
f + g = mf − s(v) + g > mf − s(v) + (s(v)− θ) = mf − θ = mb.

In the second round, when the first time the number of forward arcs m∗
f is greater than mb,

it must be the case that m∗
f < mb + θ = mf . Note that during the above switching process,

the number of forward and backward arcs in total always equals to mf +mb. This tells that at
the very same moment, the number of backward arcs m∗

b also satisfies mb < m∗
b < mf . So we

get |m∗
f − m∗

b | < |mf − mb| = θ, contradicting the minimality of the gap θ. This proves that
s(v) ≥ θ + g.
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3.3 Bounding the arcs between X and Y

We turn to some key estimations on the sizes of (X,Y ) and (Y,X), which provide new ingredients
to Question 1.3. Recall that τ denotes the number of essential components in D[Y ].

Claim 3.3. (2d+ 1)τ ≤ |Y |+ 2 ·min{e(X,Y ), e(Y,X)}.

Proof. For i = 1, 3, . . . , 2d− 1, let τi be the number of essential components in D[Y ] of order i;
and let τ ′ be the number of essential components in D[Y ] of order at least 2d+ 1. Then

τ =

d
∑

i=1

τ2i−1 + τ ′. (3.8)

Considering the number of vertices in Y , it yields that

d
∑

i=1

(2i− 1)τ2i−1 + (2d+ 1)τ ′ ≤ |Y |. (3.9)

Now we count the number of arcs from Y to X. For each essential component Di of order i,
as it does not contain two arcs in opposite directions, we have e(Di) ≤ i(i − 1)/2. Thus, since
the outdegree of every vertex in Y is at least d, we see that e(Di,X) ≥ di− i(i− 1)/2. Viewing
f(i) = di − i(i − 1)/2 as a function of i over the interval [1, 2d − 1], we see that it achieves its
minimum at i = 1 (since d ≥ 1). Hence, e(Di,X) ≥ f(1) = d for every i ∈ [2d− 1]. Thus,

d
∑

i=1

d · τ2i−1 ≤ e(Y,X). (3.10)

Combining (3.8), (3.9) with (3.10), we can derive that

(2d + 1)τ ≤
d

∑

i=1

(2d + 2i− 1)τ2i−1 + (2d+ 1)τ ′ ≤ |Y |+ 2e(Y,X).

Note that the indegree of each vertex in Y is also at least d. Using the same arguments as above,
counting the number of arcs from X to Y would lead to

(2d+ 1)τ ≤ |Y |+ 2e(X,Y ),

proving the claim.

For convenience, we define

eX,Y := e(X,Y ) + e(Y,X) and b =
∑

v∈X

min{d+(v), d−(v)}.

For any v ∈ X, we have d(v)− s(v) = 2min{d+(v), d−(v)}. Therefore

m ≥ m− e(Y ) = eX,Y =
∑

v∈X

d(v) =
∑

v∈X

s(v) + 2b =
∑

v∈X′

s(v) + g + 2b ≥ αθ, (3.11)

where α = |X ′| denotes the number of huge vertices in X. By Claim 3.1, we have

1 ≤ α ≤
m

θ
< 2d+ 1, (3.12)

where the second inequality holds because of (3.11) and the third inequality follows from (3.7).
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Let X ′ = {v1, v2, . . . , vα} with s(vi) = ∆i for i ∈ [α] such that ∆1 ≥ ∆2 ≥ · · · ≥ ∆α ≥ θ.
After (3.7) we point out that there exists at least one forward vertex (say vi ∈ X ′). By Claim 3.2,
∆i = s(vi) ≥ θ + g and thus we have

0 ≤ g ≤ ∆1 − θ. (3.13)

Throughout we let β = ⌈α/2⌉. By (3.12), we see 1 ≤ β ≤ d.

Claim 3.4. max{e(X,Y ), e(Y,X)} ≥ βθ+b and min{e(X,Y ), e(Y,X)} ≤
∑α

i=1∆i+g−βθ+b.

Proof. There always exist β vertices in X ′, say X∗ = {vj1 , vj2 , . . . , vjβ}, satisfying either (i)
s(vji) = s+(vji) for every i ∈ [β], or (ii) s(vji) = s−(vji) for every i ∈ [β].

If the case (i) occurs, then s(vji) = s+(vji) = d+(vji)− d−(vji) ≥ θ for i ∈ [β], implying

e(X,Y ) =
∑

v∈X

d+(v)

=
∑

v∈X∗

d+(v) +
∑

v∈X\X∗

d+(v)

≥
∑

v∈X∗

(d−(v) + θ) +
∑

v∈X\X∗

d+(v)

≥ βθ +
∑

v∈X

min{d+(v), d−(v)}

= βθ + b.

If the case (ii) occurs, by the similar arguments we can obtain that e(Y,X) ≥ βθ+b. This shows
that max{e(X,Y ), e(Y,X)} ≥ βθ + b. Finally, using (3.11) we have

max{e(X,Y ), e(Y,X)} +min{e(X,Y ), e(Y,X)} = eX,Y =
∑

v∈X

s(v) + 2b =
α
∑

i=1

∆i + g + 2b,

which implies that min{e(X,Y ), e(Y,X)} ≤
∑α

i=1 ∆i + g − βθ + b, as desired.

The next claim gives a further upper bound on min{e(X,Y ), e(Y,X)}.

Claim 3.5. min{e(X,Y ), e(Y,X)} ≤ 2β∆1 − (β + 1)θ + b, where 1 ≤ β ≤ d.

Proof. For clarity of presentation we divide this proof into two cases according to the parity of
α. First assume that α is odd. Then α = 2β − 1 where β ∈ [1, d]. It follows from Claim 3.4 and
(3.13) that

min{e(X,Y ), e(Y,X)} ≤

2β−1
∑

i=1

∆i + g − βθ + b ≤ 2β∆1 − (β + 1)θ + b.

It remains to consider when α is even. Then α = 2β, where β ∈ [1, d]. Recall (3.5) and the
definitions of Xf ,Xb. Let vp1 , vp2 , . . . , vps be all forward vertices in X ′ and vq1 , vq2 , . . . , vqt be
all backward vertices in X ′, where s + t = |X ′| = 2β. By Claim 3.1, all vertices in X\X ′ are
backward vertices. Hence,

Xf = {vp1 , vp2 , . . . , vps} and Xb = {vq1 , vq2 , . . . , vqt} ∪X\X ′.
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Then by (3.5) and the definition of g, we have

θ =
∑

v∈Xf

s(x)−
∑

v∈Xb

s(x) =
s

∑

i=1

∆pi −
t

∑

i=1

∆qi − g. (3.14)

By Claim 3.4, we get

min{e(X,Y ), e(Y,X)} ≤
α
∑

i=1

∆i + g − βθ + b =
s

∑

i=1

∆pi +
t

∑

i=1

∆qi + g − βθ + b (3.15)

If s ≤ β, then using (3.14) the above inequality implies

min{e(X,Y ), e(Y,X)} ≤ 2
s

∑

i=1

∆pi − θ − βθ + b ≤ 2β∆1 − (β + 1)θ + b,

as desired. So s ≥ β + 1. Then t = 2β − s ≤ β − 1. Using the equivalent form
∑s

i=1∆pi =
θ +

∑t
i=1 ∆qi + g of (3.14), the inequality (3.15) gives that

min{e(X,Y ), e(Y,X)} ≤ 2
t

∑

i=1

∆qi+2g+θ−βθ+b ≤ 2(t+1)∆1−(β+1)θ+b ≤ 2β∆1−(β+1)θ+b,

where the second last inequality holds by (3.13). This claim now is complete.

3.4 Completing the proof

Finally, we are ready to complete the proof by showing (3.6).
We will need one more inequality that

m ≥ βθ + b+ d|Y |. (3.16)

To see this, since δ0(D) = min{δ+(D), δ−(D)} ≥ d, we have e(Y,X)+e(Y ) ≥ d|Y | and e(X,Y )+
e(Y ) ≥ d|Y |. That says,

min{e(X,Y ), e(Y,X)} + e(Y ) ≥ d|Y |.

Indeed, this together with Claim 3.4 give the desired inequality that

m = eX,Y + e(Y ) = max{e(X,Y ), e(Y,X)} +min{e(X,Y ), e(Y,X)} + e(Y ) ≥ βθ + b+ d|Y |.

We can also derive from Claims 3.3 and 3.5 that

(2d + 1)τ ≤ |Y |+ 4β∆1 − 2(β + 1)θ + 2b. (3.17)

Since e(X) = 0, we see |Y | ≥ |d+(v1)− d−(v1)| = s(v1) = ∆1. This together with (3.13) imply
that n ≥ |Y | ≥ ∆1 ≥ θ. Also note that d ≥ β. Then using (3.16) and (3.17) we have

2(2d + 1)

(

m

2d+ 1
+

n

2
− θ −

τ

2

)

≥ 2m+ (2d + 1)|Y | − (4d+ 2)θ − (2d + 1)τ

≥
(

2βθ + 2b+ 2d|Y |
)

+ (2d+ 1)|Y | − (4d + 2)θ −
(

|Y |+ 4β∆1 − 2(β + 1)θ + 2b
)

= 4d|Y | − 4β∆1 − 4(d − β)θ

≥ 0.

Hence (3.6) holds. This completes the proof of Theorem 1.4.
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4 Concluding remarks

In this paper, we answer Question 1.3 by showing that every digraph D with m arcs and
minimum semidegree d admits a bisection V (D) = V1 ∪V2 such that min{e(V1, V2), e(V2, V1)} ≥

d
2(2d+1)m + o(m). Most arguments in Section 3 in fact work for any digraph which may be

useful for Conjecture 1.2 (to be precise, only Claim 3.3 and Subsection 3.4 use the minimum
semidegree condition). We also wonder if the following can be true.

Question 4.1. Is it true that for every integer d ≥ 1 and sufficiently large m, every digraph D
with m arcs and minimum semidegree d admits a bipartition V (D) = V1 ∪ V2 such that

min {e(V1, V2), e(V2, V1)} ≥
d

2(2d + 1)
m.

One plausible step towards this question is to remove the term εn in Lemma 2.7. It may also
be the case that such a bipartition can be replaced by a bisection.
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