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Abstract

Bridges are a classical concept in structural graph theory and play a fundamental
role in the study of cycles. A conjecture of Voss from 1991 asserts that if disjoint bridges
B1, B2, . . . , Bk of a longest cycle L in a 2-connected graph overlap in a tree-like manner
(i.e., induce a tree in the overlap graph of L), then the total length of these bridges is at
most half the length of L. Voss established this for k ≤ 3 and used it as a key tool in
his 1991 monograph on cycles and bridges. In this paper, we confirm the conjecture in
full via a reduction to a cycle covering problem.

1 Introduction

LetG be a graph andH a subgraph ofG. AnH-bridge ofG is either (i) an edge in E(G)\E(H)
with both endpoints in V (H), or (ii) a subgraph consisting of a component D of G − V (H)
together with all edges between V (D) and V (H). For an H-bridge B, the vertices in V (H)∩
V (B) are called the attachments of B. In this paper, we often consider H to be a cycle.

The concept of bridges has naturally emerged in the development of graph theory, partic-
ularly in the study of cycles. As emphasized by Bondy in his influential survey [14] (p. 58),
“bridges clearly play a very important role in the study of paths and circuits, and it can be
argued that their role is central.”

A cornerstone result in the study of cycles is Tutte’s theorem [33], which strengthens Whit-
ney’s theorem [36] by asserting that every 4-connected planar graph is Hamiltonian. A key
ingredient in Tutte’s celebrated proof is the so-called Bridge Lemma, which characterizes the
bridges of certain cycles in planar graphs by their attachments. Since then, bridges have facil-
itated numerous generalizations and refinements concerning Hamiltonicity, including results
of Thomassen [30] (a small omission was corrected by Chiba and Nishizeki [11]), Thomas and
Yu [27, 28], Kawarabayashi and Ozeki [21], as well as [19, 24, 25, 29]. Beyond Hamiltonicity,
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bridges have also played a central role in the study of longest cycles in general graphs, as
explored in [5, 8, 9, 10, 18, 37], among others.

In light of these advances, an important direction of research has been to understand how
cycles interact with their bridges and how these bridges are arranged along the cycle. This
leads to the notion of the overlap graph. Let L be a cycle in a graph G. Two L-bridges B1

and B2 are said to overlap if L cannot be partitioned into two subpaths L1 and L2 such that
the attachments of Bi lie entirely on Li for each i = 1, 2. The overlap graph of G with respect
to L, denoted OG(L), is the graph whose vertices correspond to the L-bridges, with an edge
between two vertices if and only if the corresponding bridges overlap. Using this concept,
Tutte [34] gave a characterization of planar graphs, proving that a graph G is planar if and
only if, for every cycle L, the overlap graph OG(L) is bipartite. This characterization underlies
most planarity-testing algorithms (see [2, 13, 17]). Voss [35] further showed that for any cycle
L in a 3-connected graph G, the overlap graph OG(L) is connected.

In his monograph [35], Voss investigated various problems on cycles, with particular em-
phasis on the role of bridges. To provide a measure on the size of a bridge, he [35] introduced
the following parameter (which is called the span of a bridge in [14]).

Definition 1 For a subgraph H in a graph G, the length λ(B) of an H-bridge B is the
maximum number of edges in a tree within B whose leaves are exactly the attachments of B.

For a cycle L, an L-bridge has length one if and only if it is a chord of L. Thomassen’s Chord
Conjecture (see, e.g., [1, 4, 31]) then asserts that every longest cycle L in a 3-connected graph
contains such a bridge. The conjecture remains open, with significant progress in [6, 20, 32, 38].

Voss [35] proposed the following conjecture on longest cycles L in a graph G, aiming to
provide quantitative control over the size of L-bridges relative to the length of L (i.e., the
circumference of G). The conjecture is also discussed in Bondy’s comprehensive survey on
cycles [14] (see Conjecture 5.11).

Conjecture 2 (Voss [35], p. 54) Let G be a 2-connected graph with a longest cycle L. Let
B1, B2, . . . , Bk be L-bridges that are pairwise vertex-disjoint and induce a tree in OG(L). Then

k∑
i=1

λ(Bi) ≤ ⌊|E(L)|/2⌋.

The cases k ≤ 3 were established by Voss himself [35], who used them as key tools in his
study of problems and properties of longest cycles (see Chapters 3, 7, and 11 of [35]).

We note that, if true, the inequality is best possible. For k = 1, consider G = K2,3,
where the longest cycle has length 4 and its unique bridge has length 2. For k ≥ 2, let G
be the graph obtained from a 2k-cycle L = v1v2 · · · v2kv1 by adding the edge v1vk+1 and,
for each i ∈ {2, 3, . . . , k}, the edge viv2k+2−i. Then G has exactly k L-bridges whose total
length is k, which equals half of |E(L)| = 2k. We also remark that the conjecture fails
if the subgraph of OG(L) induced by B1, B2, . . . , Bk is disconnected or contains a cycle, as
shown in Fig. 1. To be precise, we see that in the left graph, OG(L) is disconnected and
λ(B1) + λ(B2) = 4 > |E(L)|/2 = 3, while in the right graph (the Petersen graph), OG(L)
contains a triangle and λ(B1) + λ(B2) + λ(B3) = 5 > |E(L)|/2 = 9/2.
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Fig. 1. Two examples for Conjecture 2

The main result of this paper resolves Conjecture 2 completely.

Theorem 3 Conjecture 2 holds for all positive integers k.

It is worth emphasizing that we prove this result by reducing the problem to one involving
specified cycle coverings, which we then solve. To state this result formally, we need to
introduce one more concept: the symmetric difference of two subgraphs H1 and H2 of a graph
G, denoted H1△H2, which is the subgraph induced by the edge set E(H1)△E(H2). The
following is the corresponding result on cycle coverings.

Theorem 4 Let L be a cycle in a 2-connected graph G, and let T1, T2, . . . , Tk be L-bridges
that are pairwise vertex-disjoint and induce a tree in OG(L), with each Ti being a tree whose
leaves are exactly the attachments of Ti. Then there exists a collection C of cycles in G such
that each edge of L lies in exactly two cycles of C, each edge not in L lies in at least four
cycles of C, and for each cycle C ∈ C, L△C is a cycle.

Since the proof is short, we present this reduction immediately.

Proof of Theorem 3, assuming Theorem 4. Let B1, B2, . . . , Bk be L-bridges that satisfy
the conditions of Theorem 3. For each L-bridge Bi, let Ti be the largest tree in Bi whose
leaves are the attachments of Bi. Define H as the union of L and Ti for all 1 ≤ i ≤ k, which is
2-connected. By Theorem 4, there exists a family C of cycles for H as described. Since L is a
longest cycle in G and L△C is a cycle for every C ∈ C, we have |E(L△C)| ≤ |E(L)|. Note that
|E(L△C)| = |E(L)\E(C)|+|E(C)\E(L)| and |E(L)| = |E(L)\E(C)|+|E(L)∩E(C)|. Thus
|E(C)\E(L)| ≤ |E(L)∩E(C)| for every C ∈ C. Observe that E(C)\E(L) =

⋃k
i=1 E(C)∩E(Ti)

and by the assumption, B1, B2, . . . , Bk are pairwise vertex-disjoint, so we have
∑k

i=1 |E(C) ∩
E(Ti)| = |E(C) \ E(L)| ≤ |E(L) ∩ E(C)| for every C ∈ C.

From the properties of the cycle family C, each edge in L lies in exactly two cycles of C,
and each edge in

⋃k
i=1 Ti lies in at least four. Therefore, we can derive that

4
k∑

i=1

λ(Bi) = 4
k∑

i=1

|E(Ti)| ≤
∑
C∈C

k∑
i=1

|E(C) ∩ E(Ti)| ≤
∑
C∈C

|E(C) ∩ E(L)| = 2|E(L)|,

which finishes the proof of Theorem 3.

The remainder of the paper is organized as follows. In Section 2, we prove Theorem 3
using Theorem 4 and then present a slightly stronger version of it that provides additional
information on the cycle family for inductive arguments. Section 3 contains preliminary results
needed for this stronger version (Theorem 5). In Section 4, we give the full proof of Theorem 5.
Finally, we discuss some related open problems in the last section.
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2 A strengthened version of Theorem 4

Let L be a cycle in a graph G. A natural idea for proving Theorem 4 is to use induction on
the number of L-bridges. In the base case, where there are only one or two L-bridges, one can
explicitly construct the corresponding family of cycles. On the other hand, for the case with
at least three L-bridges, one may consider using induction hypothesis on (G1, L) and (G2, L),
where G1 and G2 are subgraphs of G with less L-bridges than G. This gives two families of
cycles, C1 and C2, respectively. Then one can construct a new family C of cycles, satisfying
the theorem, based on those in C1 ∪ C2. However, to ensure that the induction works, both
OL(G1) and OL(G2) must be trees. So we have to add some edges for certain cases in this
process. Then, in the construction of C, we also need to address the cycles which contain the
new edges. We will either delete these cycles or combine some pair of cycles by taking their
symmetric difference. This necessitates a deeper understanding of the cycles involved, which
motivates us to consider directed cycles instead.

We begin by defining four types of directed cycles (or, briefly, dicycles), which play a

central role in this paper. Throughout, we denote by
#—

H a directed graph whose underlying
graph is H. For two vertices x and y, we write (x, y) (or x → y) to denote an arc from x to
y, that is, an arc with tail x and head y.

Let L be a cycle in a graph G, whose vertices are arranged in cyclic order (often assumed
clockwise in a planar drawing of L). We denote by v+ (resp. v−) the next (resp. previous)
vertex of v on L in this order. Let C be a cycle of G that contains an edge ab, where a is
a vertex on L and b is not. We say that a dicycle

#—

C is of type ij with respect to a if the
following conditions are satisfied.

• ij = 00: (b, a) and (a, a+) are in
#—

C ;

• ij = 01: (a, b) and (a+, a) are in
#—

C ;

• ij = 10: (b, a) and (a, a−) are in
#—

C ;

• ij = 11: (a, b) and (a−, a) are in
#—

C .

For convenience, we interpret i = 0 (resp., i = 1) as indicating that the dicycle contains a+

(resp., a−). Similarly, j = 0 (resp., j = 1) indicates that the dicycle contains the arc (b, a)
(resp., (a, b)). Note that for each attachment v and ij ∈ Z2

2, it is possible that there are
different dicycles of type ij with respect to v.

Given a graph G, let C(G) be the family of all possible dicycles of G. For a subfamily
C ⊆ C(G) and an edge e ∈ E(G), let

Ce = { #—

C ∈ C : e ∈ E(C)}.

We are now ready to present the strengthened form of Theorem 4, the proof of which will
occupy the remainder of the paper.

Theorem 5 Let L be a cycle in a 2-connected graph G and let T1, T2, . . . , Ts be all the L-
bridges that are pairwise vertex-disjoint and induce a tree in OG(L), with each Ti being a tree.
Then there exists a subfamily C ⊆ C(G) such that the following conditions hold.
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(C1) |Ce| = 2 for every e ∈ E(L) and |Ce| ≥ 4 for every e ∈ E(G) \ E(L).

(C2) For each dicycle in C with underlying graph C, L△C is a cycle.

(C3) Every dicycle in C contains either no or exactly two attachments of each L-bridge.

(C4) For any ij ∈ Z2
2 and any vertex x which is an attachment of some L-bridge, there is

exactly one dicycle in C which is of type ij with respect to x.

By considering the underlying graphs of the dicycles in C, it is straightforward to see that
Theorem 4 already follows from (C1) and (C2).

3 Preliminary for the proof of Theorem 5

In this section, we introduce several definitions and lemmas that will be useful later. In
particular, we will present a method for constructing a special family of paths that covers a
tree. For this purpose, we define an auxiliary digraph and introduce some of its properties in
Section 3.1. Then, in Section 3.2, we use this auxiliary digraph to construct a family of paths
in which each edge is covered at least four times.

3.1 An auxiliary digraph

Let n and k be two positive integers with k ≤ n. We say a k-tuple η = (p1, p2, . . . , pk) is a
k-partition of n if pi ≥ 1 for each 1 ≤ i ≤ k and

∑k
i=1 pi = n. Given a k-partition η of n, we

define a multidigraph Dη with vertex-set
⋃k

i=1{v
i
1, v

i
2, . . . , v

i
pi
} and arcs as follows:

• k = 1. We add the arcs (v1i , v
1
i+1) and (v1i+1, v

1
i ) for each i = 1, 2, . . . , n, where we

interpret v1n+1 as v11.

• k ≥ 2. We add (1) the arcs (vij, v
i
j+1) and (vij+1, v

i
j) for all 1 ≤ i ≤ k and 1 ≤ j ≤ pi−1 (if

pi = 1, then this step is skipped); (2) the arcs (vi1, v
i+1
1 ) and (vipi , v

i+1
pi+1

) for all 1 ≤ i ≤ k,

where we interpret vk+1
1 as v11 and v k+1

pk+1
as v1p1 .

v11

v110v19
v18

v17

v16
v15 v14

v13

v12

(a) η = (10)

v11

v33v32
v31

v23

v22
v21 v14

v13

v12

(b) η = (4, 3, 3)

v11

v41v33
v32

v31

v22
v21 v14

v13

v12

(c) η = (4, 2, 3, 1)

v11

v10

1v9
1

v8
1

v7
1

v6
1

v5
1 v41

v31

v21

(d) η = (1, 1, . . . , 1)

Fig. 2. Examples of Dη, where each η is a partition of 10.

It is easy to check that Dη is a digraph in which every vertex has both in-degree 2 and
out-degree 2. Note that if pi = pi+1 = 1 for some i, then Dη contains multiple arcs. See Fig. 2
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for examples. For convenience, we denote by Gη the underlying multigraph of Dη, which may
contain parallel edges.

Lemma 6 For each arc (u, v) in Dη, there exist two dicycles containing (u, v), and these two
dicycles share only this arc.

Proof. Suppose η is a k-partition. The statement obviously holds for k = 1, one dicycle of
length 2 and the other of length n suffice. Thus we assume that k ≥ 2. It suffices to describe
such two dicycles.

First assume that u = vij and v = vij+1 for some 1 ≤ i ≤ k with pi ≥ 2 and 1 ≤ j ≤ pi − 1.

It is clear that vij → vij+1 → vij and

vij → vij+1 → · · · → vipi → vi+1
pi+1

→ · · · → vi+1
1 → vi+2

1 → vi+3
1 → · · · → vi1 → vi2 → · · · → vij

are the desired dicycles (the upper indices are taken modulo k).
Thus without loss of generality, we may assume that u = vi1 and v = vi+1

1 . Then vi1 →
vi+1
1 → vi+2

1 → · · · → vi1 and

vi1 → vi+1
1 → vi+1

2 → · · · → vi+1
pi+1

→ vi+2
pi+2

→ · · · → vipi → vipi−1 → · · · vi1

are the desired dicycles. We remark that the arcs (vj1, v
j+1
1 ) and (vjpj , v

j+1
pj+1

) are essentially
different if pj = pj+1 = 1, in which case they are multi-arcs sharing the same tail and head by
the definitions of Dη.

Given a digraph D(G) with underlying graph G, for S, T ⊊ V (G), we denote by [S, T ]D(G)

the set of arcs with tails in S and heads in T , and [S, T ]G the edges of G joining S and T .
For a subset ∅ ̸= X ⊊ V (G), we denote by X the vertex-set V (G) \X.

Lemma 7 For any k-partition η of n, 1 ≤ k ≤ n and any ∅ ̸= X ⊊ V (Dη), we have

|[X,X]Gη
| ≥ 4.

Proof. Assume for some η and a subset ∅ ̸= X ⊊ V (Dη), we have |[X,X]Gη
| ≤ 2. With-

out loss of generality, assume that [X,X]Dη
̸= ∅ and (u, v) ∈ [X,X]Dη

is an arc, then for

any dicycle in Dη containing (u, v), it must contain an arc in [X,X]Dη
. This contradicts

Lemma 6, since we are unable to find two dicycles containing (u, v) but only sharing (u, v).
Thus |[X,X]Gη

| ≥ 3. On the other hand, if |[X,X]Gη
| is odd, then the degree sum of the

graph induced by X is odd as each vertex in Gη has even degree, but then it contradicts the

Handshaking Lemma. Thus we have |[X,X]Gη
| ≥ 4.

3.2 A family of dipaths of tree with labeled leaves

Given a tree T , let P(T ) be the family of all possible dipaths of T between leaves. For a

dipath
#—

P ∈ P(T ) and an edge e ∈ E(T ), we say
#—

P covers e if e ∈ E(P ). For P ⊆ P(T ) and

an edge e ∈ E(T ), let Pe = { #—

P ∈ P :
#—

P covers e}.
In this section, we will construct a subfamily P ⊆ P(T ), using the auxiliary digraph which

we introduced in the beginning of Section 3.1, such that each edge of T is covered by at least
four dipaths in P .
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For a tree T and two distinct vertices u, v ∈ T , we denote by T [u, v] the unique path in T

between u and v, by
#—

T [u, v] the corresponding dipath from u to v. We denote by ∂(T ) the
set of leaves of T .

Recall that Dη is the auxiliary digraph with respect to a k-partition η = (p1, p2, . . . , pk) of
some integer n. For a tree T and a k-partition η = (p1, p2, . . . , pk) of |∂(T )|, an η-labeling ℓ of
∂(T ) is a bijection from ∂(T ) to V (Dη).

Given a tree T , a k-partition η = (p1, p2, . . . , pk) of |∂(T )| and an η-labeling ℓ of ∂(T ), we

define P(T, η, ℓ) to be the collection of all dipaths
#—

T [u, v], where u and v are leaves of T such
that (ℓ(u), ℓ(v)) is an arc in the auxiliary digraph Dη.

The following lemma analyzes the number of dipaths that cover an edge in P(T, η, ℓ).

Lemma 8 Let T be a tree, η = (p1, p2, . . . , pk) be a k-partition of |∂(T )| and ℓ be a η-labeling
of ∂(T ). Then for any edge e ∈ E(T ), |Pe(T, η, ℓ)| ≥ 4.

Proof. Assume e ∈ E(T ), T1 and T2 are the two components of T − e. Let X1 = {ℓ(v)|v ∈
∂(T1)} and X2 = {ℓ(v)|v ∈ ∂(T2)}. Since ℓ is a one-to-one correspondence from ∂(T ) to
V (Dη), and ∂(T1) ∩ ∂(T2) = ∅, ∂(T ) = ∂(T1) ∪ ∂(T2), it follows that V (Dη) = X1 ∪ X2

and X1 ∩ X2 = ∅, that is X2 = X1 in Dη. By Lemma 7, |[X1, X2]Gη
| ≥ 4. This implies

that there exist at least four distinct ordered vertex pairs (a, b) ∈ ∂(T1) × ∂(T2) such that

(ℓ(a), ℓ(b)) ∈ [X1, X2]Dη
∪ [X2, X1]Dη

. For each such pair (a, b), either
#—

T [a, b] ∈ P(T, η, ℓ) or
#—

T [b, a] ∈ P(T, η, ℓ), and both
#—

T [a, b] and
#—

T [b, a] cover the edge e. Thus, |Pe(T, η, ℓ)| ≥ 4.

4 Proof of Theorem 5

For convenience, we say C is feasible for (G,L) if C ⊆ C(G) and C satisfies (C1)-(C4). For
two vertices u and v on L, let L[u, v] be the segment of L from u to v in clockwise direction.

We denote by
#—

L [u, v] the copy of L[u, v] directed from u to v, and
#—

L [u, v] the copy of L[u, v]

directed from v to u. For a subgraph H of G, let
#—

C |H be the subdigraph (not necessarily

connected) of
#—

C whose underlying graph is induced by the edge set E(C) ∩ E(H), and let

C|H = { #—

C |H :
#—

C ∈ C}.
Basic step: s = 1

Assume that v1, v2, . . . , vn are leaves of T1, arranged in clockwise cyclic order on L. We
construct C ⊆ C(G) as follows: for each 1 ≤ i ≤ n, we add two dicycles

#—

T [vi, vi+1] ∪
#—

L [vi, vi+1] and
#—

T [vi+1, vi] ∪
#—

L [vi, vi+1]

to C, where the indices are taken modulo n. We shall check that C satisfies (C1)-(C4). Note
that (C2)-(C4) are straightforward, we omit the verification and only focus on (C1).

It is clear that there is a one-to-one correspondence between C|T and P(T, η, ℓ), where
η = (n) is a 1-partition of n, and ℓ : ∂(T ) → {v1, v2, . . . , vn} is the η-labeling of ∂(T ).
Therefore, by Lemma 8, |Ce| = |Pe(T, η, ℓ)| ≥ 4 for every e ∈ E(G) \ E(L). On the other
hand, observe that by our construction, |Ce| = 2 for each e ∈ E(L). Thus C satisfies (C1).

Basic step: s = 2

7



In this case, G contains exactly two L-bridges T1 and T2. Let

u1
1, . . . , u

1
p1
, v11, . . . , v

1
q1
, u2

1, . . . , u
2
p2
, v21, . . . , v

2
q2
, . . . , uk

1, . . . , u
k
pk
, vk1 , . . . , v

k
qk

be all the attachments listed in clockwise cyclic order on L, where pi, qi ≥ 1 for each 1 ≤ i ≤ k,
the vertices ui

j’s are the attachments (leaves) of T1, and the vertices vij’s are the attachments
(leaves) of T2. Note that k ≥ 2 because the overlap graph OG(L) is connected. Thus η1 =
(p1, p2, . . . , pk) is a k-partition of |∂(T1)|, and η2 = (q1, q2, . . . , qk) is a k-partition of |∂(T2)|.
Let ℓi be the corresponding ηi-labeling of ∂(Ti) for i = 1, 2.

We now construct C as follows (See Fig. 3 for illustration). For 1 ≤ i ≤ k, we add the
following dicycles to C, where the (superscript) index 0 is interpreted as k, and k + 1 as 1,

(1)
#—

T1[u
i
j, u

i
j+1] ∪

#—

L [ui
j, u

i
j+1] and

#—

T1[u
i
j+1, u

i
j] ∪

#—

L [ui
j, u

i
j+1] for each 1 ≤ j ≤ pi − 1 if pi ≥ 2.

(2)
#—

T2[v
i
j, v

i
j+1] ∪

#—

L [vij, v
i
j+1] and

#—

T2[v
i
j+1, v

i
j] ∪

#—

L [vij, v
i
j+1] for each 1 ≤ j ≤ qi − 1 if qi ≥ 2.

(3)
#—

T2[v
i
1, v

i+1
1 ] ∪ #—

L [ui+1
pi+1

, vi+1
1 ] ∪ #—

T1[u
i+1
pi+1

, ui
pi
] ∪ #—

L [ui
pi
, vi1].

(4)
#—

T2[v
i−1
qi−1

, viqi ] ∪
#—

L [viqi , u
i+1
1 ] ∪ #—

T1[u
i+1
1 , ui

1] ∪
#—

L [vi−1
qi−1

, ui
1].

T2 T1

u1
1
u1
2
u1
p1

v11 v12 v1q1

ui−1
1

ui−1
2

ui−1
pi−1

vi−1
1

vi−1
2

vi−1
qi−1

ui
1ui

2ui
pivi1vi2viqi

ui+1
1

ui+1
2

ui+1
pi+1

vi+1
1

vi+1
2

vi+1
qi+1

Fig. 3. Illustration for the construction of C. The blue dicycle corresponds to (3) and the
red one corresponds to (4).

By the construction of C, it is easy to check that C satisfies (C3)-(C4), we omit the details
and only focus on the verification of (C1) and (C2).

Observe that for i = 1, 2, the underlying paths in C|Ti
and P(Ti, ηi, ℓi) are identical, so

there is a natural one-to-one correspondence between C|Ti
and P(Ti, ηi, ℓi). Thus by Lemma

8, for each edge e ∈ E(Ti), |Ce| = |Pe(Ti, ηi, ℓi)| ≥ 4. On the other hand, |Ce| = 2 for each
edge e ∈ E(L). Therefore C satisfies (C1).

The dicycles constructed in (1) and (2) satisfy (C2) obviously, we focus on the rest two

classes. For
#—

C =
#—

T2[v
i
1, v

i+1
1 ] ∪ #—

L [ui+1
pi+1

, vi+1
1 ] ∪ #—

T1[u
i+1
pi+1

, ui
pi
] ∪ #—

L [ui
pi
, vi1], we have that

C△L = L[vi+1
1 , ui

pi
] ∪ T1[u

i
pi
, ui+1

pi+1
] ∪ L[vi1, u

i+1
pi+1

] ∪ T2[v
i
1, v

i+1
1 ]

8



is a cycle. For
# —

C ′ =
#—

T2[v
i−1
qi−1

, viqi ] ∪
#—

L [viqi , u
i+1
1 ] ∪ #—

T1[u
i+1
1 , ui

1] ∪
#—

L [vi−1
qi−1

, ui
1],

C ′△L = L[ui+1
1 , vi−1

qi−1
] ∪ T2[v

i−1
qi−1

, viqi ] ∪ L[ui
1, v

i
qi
] ∪ T1[u

i
1, u

i+1
1 ]

is also a cycle. Thus C satisfies (C2).

Induction step: s ≥ 3
Recall that T1, T2, . . . , Ts are all the L-bridges. We first claim the following.

Claim 1 There exist two vertices u and v on L such that the segment L[u, v] contains all the
attachments of some Ti, which is a leaf in OG(L), and contains no attachments of any other
L-bridge that does not overlap with Ti.

Proof. We choose two vertices u, v such that L[u, v] is as short as possible and contains
all the attachments of some Ti which is a leaf in OG(L). By this choice, both u and v are
attachments of Ti. Note that for any other Tj which does not overlap with Ti, if L[u, v]
contains one attachment of Tj, then it contains all the attachments of Tj, otherwise Ti and Tj

would overlap. Suppose the claim is not true. Then L[u, v] must contain all the attachments
of Tj for some j ̸= i, where Tj does not overlap with Ti. It is clear that ∂(Tj) lies in L[u+, v−]
as the L-bridges are pairwise disjoint. We claim that L[u+, v−] contains all the attachments
of some L-bridge other than Ti that is a leaf in OG(L), which contradicts the choice of u and
v. Indeed, if Tj is a leaf in OG(L), then we are done. Assume Tj is not a leaf. Since OG(L)
is a tree, there exists a new leaf Tk such that the unique path Pjk in OG(L) between Tj and
Tk does not contain the vertex Ti. Then by an easy inductive argument, it is easy to see that
any Tℓ ∈ V (Pjk) (note that Tℓ is not adjacent to Ti, i.e., Tℓ and Ti are not overlap) has an
attachment in L[x, y]. Thus all attachments of Tk are contained in L[u+, v−].

Without loss of generality, by Claim 1, we may assume that u and v are two vertices on L
such that L[u, v] contains all the attachments of T1 and L[u, v] is as short as possible, and T1

is a leaf in the overlap graph OG(L) that overlaps only with T2. Assume

u1
1, . . . , u

1
p1
, v11, . . . , v

1
q1
, u2

1, . . . , u
2
p2
, v21, . . . , v

2
q2
, . . . , vk−1

1 , . . . , vk−1
qk−1

, uk
1, . . . , u

k
pk
,

are the attachments listed in clockwise cyclic order on L[u, v], where k ≥ 2, pi, qi ≥ 1, the
vertices ui

j’s are attachments of T1, and the vertices vij’s are (partial) attachments of T2.
For two attachments x, y on L, we say that x and y witness each other if there are no other

attachments on the segments L[x, y] or L[y, x]. By our choice of u and v, we have u = u1
1 and

v = uk
pk
; hence, only u1

1 or uk
pk

can possibly witness attachments of Ti for 3 ≤ i ≤ s.
The remainder of the proof is divided into three subsections, depending on how many

vertices in {u1
1, u

k
pk
} can witness attachments of Ti for some 3 ≤ i ≤ s.

4.1 Neither u11 nor ukpk witness attachments of Ti for 3 ≤ i ≤ s

Starting from u1
1 and moving in the counterclockwise direction, let a be the first attachment of

T2 that can be witnessed by u1
1. Starting from uk

pk
and moving in the clockwise direction, let

b be the first attachment of T2 that may witness an attachment of Ti for 3 ≤ i ≤ s. See Fig. 4
for an illustration. Let T21 be the subtree of T2 whose leaves are precisely the attachments on
L[b, a], and let T22 be the subtree of T2 whose leaves are precisely the attachments on L[a, b].
We have the following.
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Claim 1a E(T2) = E(T21) ∪ E(T22).

Proof. By the definition of T21 and T22, ∂(T2) = ∂(T21) ∪ ∂(T22) and ∂(T21) ∩ ∂(T22) ̸= ∅.
Since E(T21)∪E(T22) ⊆ E(T2), it suffices to show that E(T2) ⊆ E(T21)∪E(T22). Suppose to
the contrary that there exists an edge e ∈ E(T2), but e /∈ E(T21) ∪ E(T22). Then either T21

and T22 are contained in the two components of T2−e, respectively, or T21∪T22 is contained in
one component of T2 − e. The former case contradicts the condition that ∂(T21)∩ ∂(T22) ̸= ∅,
and the latter case contradicts the condition that ∂(T2) = ∂(T21) ∪ ∂(T22).

T2
T1⋃s

i=3 Ti

· · ·

a

b

u1
1 u1

p1

uk
1uk

pk
· ·
·

v11
v1q1

vk−1
1

vk−1
qk−1

Fig. 4. Case 1

Let G1 be the subgraph of G induced by the edges in L, T21, T3, . . . , Ts and G2 be the
subgraph of G induced by the edges in L, T22, T1. By induction hypothesis, there exists
Ci ⊆ C(Gi) which is feasible for (Gi, L), i = 1, 2. We have the following.

Claim 1b The following statements hold.

•
#—

C1 =
#—

T2[b, a]∪
#—

L [a, b] is a dicycle of type 00 with respect to a, of type 11 with respect to
b in C1;

•
#—

C2 =
#—

T2[a, b]∪
#—

L [a, b] is a dicycle of type 01 with respect to a, of type 10 with respect to
b in C1;

•
#—

C3 =
#—

T2[a, b]∪
#—

L [b, a] is a dicycle of type 11 with respect to a, of type 00 with respect to
b in C2;

•
#—

C4 =
#—

T2[b, a]∪
#—

L [b, a] is a dicycle of type 10 with respect to a, of type 01 with respect to
b in C2;

Proof. We only prove the first statement, the rest can be proven similarly. By (C4), there

exists a dicycle
#—

C ∈ C1 which is of type 00 with respect to a. Hence (a, a+) is an arc in
#—

C .

As in G1, there is not attachments except a and b in L[a, b], so by (C3),
#—

C =
#—

T2[b, a]∪
#—

L [a, b].
It is clear that this dicycle is of type 11 with respect to b.

10



Then we let C = C1 ∪ C2 \ { #—

C1,
#—

C2,
#—

C3,
#—

C4}, where
#—

C i is defined as in Claim 1b. We now
verify that C satisfies (C1)-(C4).

For each edge e ∈ E(L), |C1
e | = |C2

e | = 2, and it is also covered by exactly two dicycles in

{ #—

C1,
#—

C2,
#—

C3,
#—

C4}, so |Ce| = |C1
e |+ |C2

e | − 2 = 2. Consider an arbitrary edge e ∈ E(G) \ E(L).
Since E(T2) = E(T21) ∪ E(T22) by Claim 1a, we have e ∈ E(G1) ∪ E(G2). If e ∈ E(G) \
[E(T2[a, b]) ∪ E(L)], then e ∈ E(Gi) \ E(L) for some i ∈ {1, 2} and e /∈ E(Cj) for any

j ∈ {1, 2, 3, 4}. Therefore |Ce| ≥ |Ci
e| ≥ 4, where the last inequality follows from (C1) for

(Gi, L). If e ∈ E(T2[a, b]), since E(T2[a, b]) ⊆ E(T21) ∩ E(T22), and e ∈ E(Ci) for each
i ∈ {1, 2, 3, 4}, then we can obtain

|Ce| = |C1
e |+ |C2

e | − 4 ≥ 4 + 4− 4 = 4.

Therefore, (C1) holds.
Since each dicycle in C1∪C2 satisfies (C2) by induction, C is a subset of C1∪C2, C satisfies

(C2) too.

By Claim 1b and that (C4) holds for C1,
#—

C1 and
#—

C2 are the only two dicycles in C1

containing vertices in L[a+, b−]. Thus every dicycle in C1 \ { #—

C1,
#—

C2} contains no attachments
of T1. On the other hand, as C1 satisfies (C3) by induction hypothesis, every dicycle in

C1 \ { #—

C1,
#—

C2} contains either no or two attachments of Ti for i = 2, 3, . . . , s. Similarly, we can

verify that each dicycle in C2 \ { #—

C3,
#—

C4} contains no attachments of Ti for i = 3, 4, . . . , s and
contains either no or exactly two attachments of each of T1 and T2. Thus C satisfies (C3).

For each ij ∈ Z2
2 and attachment w distinct from a or b, every dicycle of type ij with

respect to w in C1 or C2 is kept in C. For a or b, there are exactly two dicycles of type ij with
respect to it in C1∪C2, but we removed one for each type by Claim 1b. Thus, C satisfies (C4).

4.2 Exactly one of u11 and ukpk witnesses attachments of Ti for 3 ≤
i ≤ s

Without loss of generality, we assume that only u1
1 witnesses a vertex w, which is an attachment

of Ti for some 3 ≤ i ≤ s. Starting from uk
pk

and moving in the clockwise direction, let b be
the first attachment of T2 that witnesses an attachment of Ti for some 3 ≤ i ≤ s. Let x be
the unique vertex in T2 adjacent to b. We construct a new graph G∗ obtained from G by
subdividing the edge ww+ to waw+ and adding a new edge between x and the new vertex a.
See Fig. 5 for illustration. Let L′ be the corresponding subdivision of L. Define T ∗

2 = T2 ∪xa,
and let T ∗

21 be the subtree of T ∗
2 whose leaves are precisely the attachments in L′[b, a], and

T ∗
22 be the subtree of T ∗

2 whose leaves are precisely the attachments in L′[a, b]. By arguments
similar to those in Claim 1a, we obtain the following.

Claim 2a E(T ∗
2 ) = E(T ∗

21) ∪ E(T ∗
22).

Let G∗
1 be the subgraph of G∗ induced by the edges in L′, T ∗

21, T3, . . . , Ts and G∗
2 be the

subgraph of G∗ induced by the edges in L′, T ∗
22, T1. See again Fig. 5 for illustration. By

induction hypothesis, there exists C1 ∈ C(G∗
1) that is feasible for (G

∗
1, L

′). Instead of applying
induction on (G∗

2, L
′), we construct C2 that is feasible for (G∗

2, L
′), following the construction

in the basic step with s = 2. More precisely, T ∗
22 plays the role of T2, a plays the role of vkqk
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T2
T1⋃s

i=3 Ti

· · ·

a w+w

x

b

u1
1

uk
1

u1
p1

uk
pk

· ·
·

v11
v1q1

vk−1
1

vk−1
qk−1

G∗
1 G∗

2

⋃s
i=3 Ti T ∗

21

· · ·

a

w+

w

x

b
T ∗
22

T1

a
w+

w
x

b

vk1

u1
1

u1
p1

uk
1

uk
pk

· · ·

v11

vk−1
1

v1q1

vk−1
qk−1

Fig. 5. Illustration for the construction of G∗, G∗
1 and G∗

2.

and b plays the role of vkqk−1, and the remaining attachments of T ∗
22 along L[uk

pk
, b−] play the

role of vk1 , v
k
2 , . . . , v

k
qk−2 in order, respectively.

Note that both a and b are two attachments if T ∗
2i in G∗

i for i = 1, 2. By (C4) for (G∗
1, L

′)
and (G∗

2, L
′), for any ij ∈ Z2

2 and t ∈ {1, 2}, there is a unique dicycle in Ct which is of type

ij with respect to a, we denote such dicycle as
#—

C ij
t (a), and denote the other attachment of T2

contained in
#—

C ij
t (a) as a

ij
t . We denote

#—

C ij
t (b) similarly. Also, we denote by Ci(a) all the dicycles

in Ci containing a for i = 1, 2. The following claim lists six of the dicycles in C1(a) ∪ C2(a)
and some properties of the rest two.

Claim 2b The following statements hold.

(1)
#—

C00
1 (a) =

#—

C11
1 (b) = (b, x) ∪ (x, a) ∪ #—

L [a, b].

(2)
#—

C01
1 (a) =

#—

C10
1 (b) = (a, x) ∪ (x, b) ∪ #—

L [a, b].

(3)
#—

C10
2 (a) =

#—

C01
2 (b) = (b, x) ∪ (x, a) ∪ #—

L [b, a].

(4)
#—

C11
2 (a) =

#—

C00
2 (b) = (a, x) ∪ (x, b) ∪ #—

L [b, a].

(5)
#—

C00
2 (a) =

# —

T ∗
2 [v

k−1
qk−1

, a] ∪
#—

L′[a, u1
1] ∪

#—

T1[u
1
1, u

k
1] ∪

#—

L′[vk−1
qk−1

, uk
1]. (Hence a002 = vk−1

qk−1
)

(6)
#—

C01
2 (a) =

# —

T ∗
2 [a, v

1
q1
] ∪

#—

L′[v1q1 , u
2
1] ∪

#—

T1[u
2
1, u

1
1] ∪

#—

L′[a, u1
1]. (Hence a012 = v1q1)
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(7) Neither
#—

C11
1 (a) nor

#—

C10
1 (a) contain the vertex b.

Proof. The first two can be proven as in the proof of Claim 1b. The third through sixth
statements follow from the construction of C2. We focus on the last one, and only prove that
#—

C11
1 (a) does not contain b, the other part can be shown similarly. Suppose to the contrary, b

is contained in
#—

C11
1 (a). Since

#—

C11
1 (a) is of type 11 with respect to a, we know that L′[a, b] is

not contained in
#—

C11
1 (a), hence the cycle L′[a, b] ∪ T ∗

21[a, b] is contained in L′△C11
1 (a). As C1

holds for (C2), it must be that L′△C11
1 (a) = L′[a, b] ∪ T ∗

21[a, b]. This implies that
#—

C11
1 (a) =

L′[b, a] ∪ T ∗
21[a, b]. Hence

#—

C11
1 (a) contains all the attachments of T ∗

21. Since T2 overlaps with
some Ti for i ∈ {3, 4, . . . , s}, T ∗

21 must contain another attachment other than a and b. So
#—

C11
1 (a) contains at least three attachments of T ∗

21, which violates (C3).

Now we are going to construct C that is feasible for (G,L). To do this, we introduce several
auxiliary subgraphs and notations that will be used in the construction.

Given two dicycles
#—

C1 and
#—

C2 such that their intersection C1 ∩ C2 is a path containing
at least one edge, and such that the orientations of

#—

C1 and
#—

C2 on this common path are
opposite, we define

#—

C1△
#—

C2 to be the digraph whose underlying graph is C1△C2, with arc
directions inherited from

#—

C1 ∪
#—

C2. It is clear that
#—

C1△
#—

C2 is also a dicycle.
Let Q1 = T2[x, a

11
1 ] ∩ T2[x, a

00
2 ] and Q2 = T2[x, a

10
1 ] ∩ T2[x, a

01
2 ]. Note that both Q1 and Q2

are paths in T2, and may consist of only the single vertex x. Since C11
1 (a) and C00

2 (a) share
common edges and vertices only within T2, it follows that

C11
1 (a) ∩ C00

2 (a) = xa ∪Q1.

Similarly, we have that
C10

1 (a) ∩ C01
2 (a) = xa ∪Q2.

On the other hand, by the definitions of
#—

C11
1 (a) and

#—

C00
2 (a), the orientations of these two

dicycles are opposite on xa ∪ Q1. Thus
#—

C11
1 (a)△ #—

C00
2 (a) is also a dicycle. Let

#—

Cnew
1 be the

dicycle obtained from
#—

C11
1 (a)△ #—

C00
2 (a) by contracting w → a → w+ to w → w+. Similarly, let

#—

Cnew
2 be the dicycle obtained from

#—

C10
1 (a)△ #—

C01
2 (a) by contracting w+ → a → w to w+ → w.

See Fig. 6 for illustration.

x

w a w+

a111

a002

= vk−1
qk−1

delete

Q1

#—

C11
1 (a)

#—

C00
2 (a)

x

w a w+

a101

a012 = vk−1
q1

delete

Q2

#—

C10
1 (a)

#—

C01
2 (a)

Fig. 6. Illustration for the construction of
#—

Cnew
1 (left) and

#—

Cnew
2 (right). The underlying

graph of the green diptahs in the left figure are both Q1, while those that in the right figure
are both Q2.
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Now we construct C as follows, let

C =
(
C1 ∪ C2 \ [C1(a) ∪ C2(a)]

)
∪ { #—

Cnew
1 ,

#—

Cnew
2 }.

In the rest of this subsection, we check that C satisfies (C1)-(C4).
We first show that C satisfies (C1). It is not difficult to verify that |Ce| = 2 for each

e ∈ E(L). We then focus on edges in E(G) \ E(L).
As each edge in Q1 is also in T ∗

21[b, a
11
1 ]∩T ∗

22[b, a
00
2 ], and each edge in Q2 is also in T ∗

21[b, a
10
1 ]∩

T ∗
22[b, a

01
2 ], the following holds.

Claim 2c For each edge e ∈ E(Q1) ∪ E(Q2) ∪ {xb}, we have e ∈ E(T ∗
21 ∩ T ∗

22).

Assume e ∈ E(G) \ E(L), clearly e ̸= xa. Then we consider the following cases.

• e = xb. Note that by the first four items of Claim 2b, e is contained in each of the
cycles C00

1 (a), C01
1 (a), C10

2 (a), C11
2 (a). By the last three items of Claim 2b, e is not

contained in each of C10
1 (a), C11

1 (a), C00
2 (a), C01

2 (a). On the other hand, by Claim 2c,
e ∈ E(G∗

1) ∩ E(G∗
2). Therefore, |Ce| = |C1

e |+ |C2
e | − 4 ≥ 4.

• e ∈ E(Q1) ∪ E(Q2). By Claim 2c, e ∈ E(G∗
1) ∩ E(G∗

2). On the other hand, e is

not contained in any of the four dicycles
#—

C00
1 (a),

#—

C01
1 (a),

#—

C10
2 (a),

#—

C11
2 (a), but it is

possible that e is in C11
1 (a) ∩ C00

2 (a) or C10
1 (a) ∩ C01

2 (a) as e ∈ E(Q1) ∪ E(Q2). Hence
|Ce| ≥ |C1

e |+ |C2
e | − 4 ≥ 4.

• e ∈ E(G)\ [E(L)∪E(Q1)∪E(Q2)∪{bx}]. Note that in this case, it is not possible that
e ∈ E(C11

1 (a)) ∪ E(C00
2 (a)) but e /∈ E(Cnew

1 ) as e /∈ E(Q1). Similarly, it is not possible
that e ∈ E(C10

1 (a)) ∪ E(C01
2 (a)) but e /∈ E(Cnew

2 ) as e /∈ E(Q2). Then by Claim 2a,
e is contained in E(G∗

i ) \ (E(L′) ∪ {xa}) for some i ∈ {1, 2}. On the other hand, e is

not contained in any of the four dicycles
#—

C00
1 (a),

#—

C01
1 (a),

#—

C10
2 (a),

#—

C11
2 (a). Thus, as Ci is

feasible for (G∗
i , L

′), we have |Ce| ≥ |Ci
e| ≥ 4.

Therefore, we proved that C satisfies (C1).
By our construction of C, to check that C satisfies (C2), it suffices to check that both

Cnew
1 △L and Cnew

2 △L are cycles. Observe that C11
1 (a)∩C00

2 (a) = Q1∪xa and C10
1 (a)∩C01

2 (a) =
Q2 ∪ xa. Since Cij

t (a)△L′ is a cycle for ij ∈ Z2
2, t ∈ {1, 2}, we decompose four of them to

edge-disjoint paths as follows.

C11
1 (a)△L′ = xa ∪Q1 ∪ L′[a, b] ∪R1,

C00
2 (a)△L′ = xa ∪Q1 ∪ L′[b, a] ∪R2,

C10
1 (a)△L′ = xa ∪Q2 ∪ L′[a, b] ∪R3,

C01
2 (a)△L′ = xa ∪Q2 ∪ L′[b, a] ∪R4,

where R1 and R3 are in G∗
1, R2 and R4 are in G∗

2. In addition, R1 and R3 share only the
vertices b and one endpoint of Q1 distinct from x, and similarly, R2 and R4 share only the
vertices b and one endpoint of Q2 distinct from x. It follows that Cnew

1 △L = R1 ∪ R2 and
Cnew

2 △L = R3 ∪R4 are both cycles. Thus C satisfies (C2).
For (C3), we only need to focus on Cnew

1 and Cnew
2 , the rest can be verified similarly as in

Section 4.1. It is clear that Cnew
1 contains two attachments of T2, which are a111 and a002 , and
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w a w+

v11 (b112 )

v1q1 (a012 )

vk−1
1 (b102 )

vk−1
qk−1

(a002 )
z b z−

x

Q

Fig. 7. Illustration for the choice of x and xa, xb. The red path is Q.

contains either no or two attachments of Tj for j ̸= 2 as (C3) holds for C11
1 (a) and C00

2 (a).
Similarly, we can verify that Cnew

2 satisfies (C3).
Now we show that C satisfies (C4). This statement holds for b by the similar arguments as

in Section 4.1. Thus we assume w is an attachment distinct from b. If w is not contained in
any dicycle in C1(a) ∪ C2(a), then each dicycle containing w is kept in C. So we assume that
w is contained in at least one dicycle in C1(a)∪C2(a). By Claim 2b, w is not contained in any

of
#—

C00
1 (a),

#—

C01
1 (a),

#—

C11
2 (a) and

#—

C10
2 (a), each of which contains two attachments a and b of T ∗

2 .

If w is contained in
#—

C11
1 (a) (resp.,

#—

C00
2 (a)) which is the unique dicycle of type ij with respect

to w for some ij ∈ Z2
2, then

#—

Cnew
1 is also the unique dicycle of type ij with respect to w. If w

is contained in
#—

C10
1 (a) (resp.,

#—

C00
2 (a)) which is the unique dicycle of type ij with respect to w

for some ij ∈ Z2
2, then

#—

Cnew
2 is also the unique dicycle of type ij with respect to w.

4.3 Both u11 and ukpk witness attachments of Ti for 3 ≤ i ≤ s

In this case, let w be the first attachment that u1
1 witnesses when moving in the counter-

clockwise direction, and let z be the first attachment that uk
pk

witnesses when moving in
the clockwise direction. Here, w and z are attachments of Ti and Tj, respectively, for some
3 ≤ i, j ≤ s (possibly with i = j).

We choose a non-leaf vertex x in T2 as follows. If v11 = v1q1 = vk−1
1 = vk−1

qk−1
(when k = 2

and q1 = 1), then let x be the unique neighbor of v1q1 in T2. Otherwise, let x be a non-leaf

vertex in the subtree of T2 whose leaves are exactly {v11, v1q1 , v
k−1
1 , vk−1

qk−1
}. We choose x so that

its degree in this subtree is as large as possible. In addition, if v1q1 ̸= vk−1
qk−1

, then make sure

that x is in T2[v
1
q1
, vk−1

qk−1
]. See Fig. 7 for illustration.

We construct a new graph G∗ which obtained from G by subdividing ww+ to waw+ and
adding a new edge between x and the new vertex a, and subdividing zz− to zbz− and adding
an edge between x and the new vertex b. Let L′ be the corresponding subdivision of L. Let
T ∗
2 , T

∗
21, T

∗
22, G

∗
1, G

∗
2, C1, C2,

#—

C ij
t (a), a

ij
t be defined or obtained as last section. Similarly, we

define
#—

C ij
t (b) and bijt for b as

#—

C ij
t (a) and aijt , respectively. Obviously, Claim 2a also holds here.

Let Q1 = T2[x, a
11
1 ] ∩ T2[x, a

00
2 ], Q2 = T2[x, a

10
1 ] ∩ T2[x, a

01
2 ], Q3 = T2[x, b

00
1 ] ∩ T2[x, b

11
2 ] and

T2[x, b
10
1 ] ∩ T2[x, b

01
2 ]. The following is obviously true.
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Claim 3a Every edge in E(Q1)∪E(Q2)∪E(Q3)∪E(Q4)∪ {xa, xb} is also in E(T ∗
21 ∩ T ∗

22).

By (C3) and (C4) for C1 and the construction of C2, Claim 2b also holds here. In addition,
we have the following.

Claim 3b The following statements hold.

(1)
#—

C10
2 (b) =

# —

T ∗
2 [v

k−1
1 , b] ∪

#—

L′[uk
pk
, b] ∪ #—

T1[u
k
pk
, uk−1

pk−1
] ∪

#—

L′[uk−1
pk−1

, vk−1
1 ]. (Hence b102 = vk−1

1 )

(2)
#—

C11
2 (b) =

# —

T ∗
2 [b, v

1
1] ∪

#—

L′[u1
p1
, v11] ∪

#—

T1[u
1
p1
, uk

pk
] ∪

#—

L′[uk
pk
, b]. (Hence b112 = v11)

Thus by Claim 2b and Claim 3b, a002 = vk−1
qk−1

, a012 = v1q1 , b
10
2 = vk−1

1 and b112 = v11. Let Ta

be the subtree of T2 whose leaves are precisely {a002 , a012 , a101 , a111 }, and let Tb be the subtree of
T2 whose leaves are precisely {b001 , b011 , b102 , b112 }. We claim the following.

Claim 3c E(Q1) ∩ E(Q2) ∩ E(Ta) = ∅ and E(Q3) ∩ E(Q4) ∩ E(Tb) = ∅. In particular, if x
is in Ta, then E(Q1) ∩ E(Q2) = ∅. Similarly, if x is in Tb, then E(Q3) ∩ E(Q4) = ∅.

Proof. Assume to the contrary, e ∈ E(Q1)∩E(Q2) and also e ∈ E(Ta). Then Ta−e contains
two components, say Ta1 and Ta2. Let y be the vertex in Q1∩Q2∩Ta that is closest to x along
Q1. Clearly, y is also in Q2 for otherwise, there is a cycle in T2. Without loss of generality,
assume y ∈ V (Ta1). By the definition of Q1 and Q2, it must be that all of a002 , a012 , a101 , a111 are
contained in Ta2 as e ∈∈ E(Q1)∩E(Q2). However, by definition, Ta is the minimal subtree of
T2 containing all of these four vertices. This implies that Ta ⊆ Ta2 and hence does not contain
y, which contradicts the assumption that y ∈ V (Ta1).

Similarly, we can prove E(Q3) ∩ E(Q4) ∩ E(Tb) = ∅.
Note that if x is in Ta, and E(Q1) ∩ E(Q2) ̸= ∅, then E(Q1) ∩ E(Q2) ∩ E(Ta) ̸= ∅, a

contradiction. Similarly, we can show that if x is in Tb, then E(Q3) ∩ E(Q4) = ∅.

Claim 3d Each edge in E(G) is contained in at most two of Q1, Q2, Q3, Q4.

Proof. First assume that vk−1
qk−1

= v1q1 , it follows that a
00
2 = a012 (by the fifth and sixth items

of Claim 2b), hence Ta has at most three leaves. Thus at least one of Q1 and Q2 is empty.
Without loss of generality, assume Q1 = ∅. If v11 = v1q1 = vk−1

1 = vk−1
qk−1

, then it is easy to see
that Q1 = Q2 = Q3 = Q4 = ∅, the claim is obviously true. Otherwise, by the choice of x,
we know that x must lie in T2[v

1
1, v

k−1
1 ] and hence in Tb. By Claim 3c, E(Q3) ∩ E(Q4) = ∅.

Together with the fact that Q1 = ∅, the claim holds.
Assume that vk−1

qk−1
̸= v1q1 . By the choice of x, we have that x is in T2[v

1
q1
, vk−1

qk−1
] = T2[a

01
2 , a012 ],

hence in Ta. By Claim 3c, E(Q1) ∩ E(Q2) = ∅.
If x is also in Tb, then again by Claim 3c, E(Q3)∩E(Q4) = ∅. Thus there is no edge could

be in three of E(Q1), E(Q2), E(Q3), E(Q4), the claim follows.
Assume that x is not contained in Tb. Then, by the choice of x, the subpaths T2[a

00
2 , a012 ]

and T2[b
10
2 , b112 ] are vertex-disjoint, see Fig. 7 for illustration. Since T2 is a tree, there exists a

unique path Q in T2 joining these two subpaths. By the choice of x, it must be one endpoint
of Q, and we denote the other endpoint by y. Clearly, y is in T2[b

10
2 , b112 ], and hence it is also in

Tb. Most importantly, we know that Q3∩Q4 = Q by Claim 3c and the definition of Q3, Q4, Q.
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By the choice of x, both Q1 ⊂ T2[a
00
2 , a012 ] and Q2 ⊂ T2[a

00
2 , a012 ], but Q is edge-disjoint to

T2[a
00
2 , a012 ], so we have

E(Q3) ∩ E(Q4) ∩ (E(Q1) ∪ E(Q2)) = E(Q) ∩ (E(Q1) ∪ E(Q2)) = ∅.

Together with the fact that E(Q1) ∩ E(Q2) = ∅, the claim follows.

Now we shall construct C that is feasible for (G,L). Let

C =
(
C1 ∪ C2 \ [C1(a) ∪ C2(a) ∪ C1(b) ∪ C2(b)]

)
∪ { #—

Cnew
1 ,

#—

Cnew
2 ,

#—

Cnew
3 ,

#—

Cnew
4 },

where
#—

Cnew
1 and

#—

Cnew
2 are defined as last subsection,

#—

Cnew
3 and

#—

Cnew
4 are defined as follows.

•
#—

Cnew
3 is obtained from

#—

C00
1 (b)△ #—

C11
2 (b) by contracting z− → b → z to z− → z.

•
#—

Cnew
4 is obtained from

#—

C01
1 (b)△ #—

C10
2 (b) by contracting z → b → z− to z → z−.

The verification of C satisfying (C2)-(C4) is analogous to the last subsection, except that

there are additional dicycles
#—

Cnew
3 and

#—

Cnew
4 , which need to be verified for (C2)-(C3), and one

additional vertex b to be considered for (C4). We therefore omit the repeated arguments. We
can also deduce that |Ce| = 2 for e ∈ E(L) and |Ce| ≥ 4 for each e ∈ E(G)\[E(L)∪E(T ∗

21∩T ∗
22)]

as in that part. Thus it remains to verify (C1) for the edges in [E(T ∗
21 ∩ T ∗

22)] \ {xa, xb}.
By Claims 2b, 3b, and the definition of Q1, Q2, Q3, Q4, we have the following.

C11
1 (a) ∩ C00

2 (a) = xa ∪Q1, C10
1 (a) ∩ C01

2 (a) = xa ∪Q2,

C00
1 (b) ∩ C11

2 (b) = xb ∪Q3, C01
1 (b) ∩ C10

2 (b) = xb ∪Q4.

Therefore, by Claims 3a, 3d, |Ce| ≥ |C1
e |+|C2

e |−4 ≥ 4 for each edge e ∈ [E(T ∗
21 ∩ T ∗

22)]\{xa, xb}.
This completes the proof of Theorem 5.

5 Concluding remarks

As shown in Voss [35], the case k ≤ 3 of Conjecture 2 provides a useful estimate of the
number of edges in certain subgraphs of the bridges of a longest cycle, which has proved
valuable in many problems on cycles. Hence, we would expect that resolving this conjecture
(i.e., Theorem 3) may lead to further applications in the study of cycles.

One potential application of Theorem 3 concerns the size of the intersection of two longest
cycles in highly connected graphs. A well-known conjecture (see [14, 16]), often attributed to
Scott Smith, asserts the following.

Conjecture 9 In k-connected graphs, any two longest cycles intersect in at least k vertices.

There has been extensive research on this conjecture; see [7, 16, 26] and recent results [15, 22].
Let C and D be two longest cycles in a 2-connected graph G (so that they intersect in at least
two vertices), and let H = C ∪ D denote the 2-connected subgraph formed by their union.
The C-bridges of H are all subpaths of D, and existing approaches to Conjecture 9 often
analyze how these bridges are arranged along C. In this context, Conjecture 9 aligns closely
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with the essence of Conjecture 2, and our main result may provide a useful tool for studying
this structure in more detail. This conjecture is also closely related to the famous conjecture
of Lovász on the circumference of vertex-transitive graphs (see [3, 12, 15, 22, 23] for details).

Another potential application of Theorem 3 is related to a problem of Babai [3], which
asks about the intersection size of two longest cycles in a 3-connected cubic graph.

Problem 10 (Babai [3], Problem 2) Let f(c) denote the largest integer with the following
property: if a 3-connected graph has circumference c, then any two longest cycles of the graph
intersect in at least f(c) vertices. Does f(c) → ∞ as c → ∞?

Suppose C and D are two longest cycles of a 3-connected cubic graph G, and let H =
C ∪ D, which is a 2-connected subgraph of G. Since G is cubic, all C-bridges of H, say
B1, . . . , Bk, are vertex-disjoint subpaths of D, whose union is exactly E(D) \ E(C), so that∑k

i=1 λ(Bi) = |E(D) \E(C)|. Now suppose that OH(C) forms a tree. By Theorem 3, we then

have
∑k

i=1 λ(Bi) ≤ |E(C)|/2. Combining these, we obtain

|E(C ∩D)| = |E(D)| − |E(D) \ E(C)| = |E(C)| −
k∑

i=1

λ(Bi) ≥ |C|/2.

This bound is certainly too strong to hold in general. A more practical approach is to analyze
the overlap graph of OH(C) and attempt to decompose it into small trees, so that Theorem 3
can be applied to each tree in a meaningful way.
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