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On extremal numbers of the triangle plus the four-cycle

Jie Ma∗ Tianchi Yang†

Abstract

For a family F of graphs, let ex(n,F) denote the maximum number of edges in an

n-vertex graph which contains none of the members of F as a subgraph. A longstanding

problem in extremal graph theory asks to determine the function ex(n, {C3, C4}). Here
we give a new construction for dense graphs of girth at least five with arbitrary number

of vertices, providing the first improvement on the lower bound of ex(n, {C3, C4}) since
1976. As a corollary, this yields a negative answer to a problem in Chung-Graham [3].

1 Introduction

For a given family F of graphs, throughout this note we denote ex(n,F) to be the maximum

number of edges in an n-vertex graph which does not contain any member in F as its

subgraph. This number - often referred as the extremal number or Turán number of F
- is the main subject in the field of extremal graph theory (see [9]). One of the central,

extremely challenging problems in this field asks for the determination of the extremal

number ex(n, {C3, C4}) of the family consisting of the triangle C3 and the 4-cycle C4, whose

study can be dated back to a paper of Erdős [5] in 1938.

A relevant object is the Zarankiewicz number z(n,C4) of the 4-cycle, that is, the max-

imum number of edges in an n-vertex bipartite graph without containing a 4-cycle. It is

well-known that z(n,C4) = (n2 )
3/2 + o(n3/2) (see [4, 9]). To be more precise, there exists a

constant c > 0 such that for any positive integer n,

(n

2

)3/2
− cn4/3 ≤ z(n,C4) ≤

n

4

(√
2n− 3 + 1

)

≤
(n

2

)3/2
+

1

4
n, (1)
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where the lower bound follows from [8] and the upper bound can be found in [12] (see its

Proposition 1.4).1 As a bipartite graph cannot contain a triangle, evidently one can relate

these two aforementioned numbers with the following inequality

ex(n, {C3, C4}) ≥ z(n,C4). (2)

A famous old conjecture of Erdős [5, 6] (restated in Erdős-Simonovits [7]) asserts that this

lower bound on ex(n, {C3, C4}) essentially is optimal.

Conjecture 1 (Erdős [5, 6], Erdős-Simonovits [7]). It holds that

lim
n→+∞

ex(n, {C3, C4})
z(n,C4)

= 1.

In view of (1) and (2), this conjecture is equivalent to the upper bound ex(n, {C3, C4}) ≤
(n2 )

3/2 + o(n3/2). It is still widely open. The best known upper bound on ex(n, {C3, C4})
remains the following trivial bound that

ex(n, {C3, C4}) ≤ ex(n,C4) =
1

2
n3/2 +O(n).2

On the other hand, Parsons [14] gave a construction in 1976, showing that for integers

n =
(q
2

)

where q = 1 mod 4 is a prime, the inequality (2) can be improved to

ex(n, {C3, C4}) ≥
(n

2

)3/2
+

3

8
n ≥ z(n,C4) +

1

8
n.

To the best of our knowledge, no progress has been made since then. A stronger version of

Conjecture 1 was stated as a problem in the book of Chung and Graham [3] (see p.41 in

Section 3.4).

Problem 2 (Chung-Graham [3]). Is it true that ex(n, {C3, C4}) =
(

n
2

)3/2
+O(n)?

Let us also mention that Allen, Keevash, Sudakov and Verstraëte [1] (see Conjecture

1.7 therein) made an opposite conjecture that lim inf
n→+∞

ex(n,{C3,C4})
z(n,C4)

> 1.

A general conjecture of Erdős and Simonovits [7] concerning extremal numbers of fam-

ilies containing bipartite graphs and odd cycles is as follows: Let C denote the family of all

odd cycles, and let Ck denote the family of all odd cycles of length at most k. Then for any

finite family F containing a bipartite graph, there exists an odd integer k such that

lim
n→+∞

ex(n,F ∪ Ck)
ex(n,F ∪ C) = 1.

1Using the result of [2] on the distribution of primes, the proof in [8] can yield a slightly better general

lower bound that z(n,C4) ≥
(

n
2

)3/2
− cn1.2625 for some c > 0 and any positive integers n.

2Throughtout this note, for a function f(n) we write f(n) = O(n) if there exists some absolute constant

C > 0 such that f(n) ≤ Cn for any positive integers n. Here, ex(n,C4) = 1

2
n3/2 + O(n) is a well-known

result of Kővári-Sós-Turán [13] and Reiman [15].
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Erdős and Simonovits [7] confirmed this for F = {C4} by showing that ex(n, {C4, C5}) =
(

n
2

)3/2
+O(n) and thus lim

n→+∞
ex(n,{C4,C5})

z(n,C4)
= 1. This was strengthened by Keevash, Sudakov

and Verstraëte [12], where their main result implies that for all integers k ≥ 2,

ex(n, {C4, C2k+1}) =
(n

2

)3/2
+O(n). (3)

The main result of this paper is the following theorem, which improves the error term

in Parsons’ lower bound on ex(n, {C3, C4}) from Ω(n) to Ω(n1.25).

Theorem 3. There exists an absolute constant c > 0 such that for every integer n ≥ 7,

ex(n, {C3, C4}) ≥ z(n,C4) + c · n1.25.

We would like to emphasize that this result works for every integer n ≥ 7, while the

construction of Parsons is applicable only for a special form of integers n. Let us also note

that when n = 6, both numbers ex(n, {C3, C4}) and z(n,C4) are equal to 6.

Using the above bound, one can immediately derive the following corollary that the

difference between ex(n, {C3, C4}) and
(

n
2

)3/2
can be a superlinear term in n, thus showing

that Problem 2 does not hold in general.

Corollary 4. For integers n = 2(q2 + q + 1) where q is a prime power,

ex(n, {C3, C4}) =
(n

2

)3/2
+Ω(n1.25).

In particular, this provides a negative answer to Problem 2.

We also see from (3) that the behavior of ex(n, {C3, C4}) is different from ex(n, {C4, C2k+1})
for any integer k ≥ 2, as they vary in their second order terms. We remark (see the last

paragraph of Section 2) that using results from number theory on the distribution of primes,

the conclusion of Corollary 4 in fact holds for almost all integers n.

The rest of the paper is organized as follows. In Section 2, we present the proofs of

Theorem 3 and Corollary 4. In the final section, we conclude with a remark by explaining

that similar constructions as in Theorem 3 are unlikely to give better bounds.

2 The proofs of Theorem 3 and Corollary 4

In this section, we first prove Theorem 3 and then use it to infer Corollary 4.

Proof of Theorem 3. We begin with a warm-up by showing that for any integer n ≥ 7,

ex(n, {C3, C4}) ≥ z(n,C4) + 1. (4)
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By (2) we have ex(n, {C3, C4}) ≥ z(n,C4). Assume for a contradiction that ex(n, {C3, C4}) =
z(n,C4) for some n ≥ 7. Then there exists an n-vertex bipartite C4-free

3 graph G with

e(G) = ex(n, {C3, C4}). Let (X,Y ) be the bipartition of G with |X| ≥ |Y |. We claim that

(P1). Any two vertices in the same part (X or Y ) have a unique common neighbor, and

(P2). The maximum degree ∆(G) is at most three.

If u, v ∈ X do not have a common neighbor, then the graph G+ {uv} will be {C3, C4}-free,
a contradiction to that e(G) = ex(n, {C3, C4}). So (P1) follows. To see (P2), suppose that

there is a vertex u ∈ X with at least four neighbors a, b, c, d ∈ Y . Let G′ be the graph

obtained from G by deleting the edges ub, uc and adding new edges ab, bc, cd. If there is

a 3-cycle or 4-cycle in G′ containing one edge in {ab, bc, cd}, then this cycle contains a

vertex u′ ∈ X which has two neighbors in {a, b, c, d}. It implies that u and u′ have two

common neighbors in G, which is impossible. Thus G′ is {C3, C4}-free with e(G′) > e(G).

This contradiction proves the above claim. Let σX denote the number of paths of length

two with both end-points in X. By (P1) we have σX =
(|X|

2

)

, while (P2) implies that

σX =
∑

y∈Y
(d(y)

2

)

≤ 3|Y |. As |X| ≥ |Y |, we get
(|X|

2

)

≤ 3|Y | ≤ 3|X|, showing that |X| ≤ 7.

So n ≤ 14. The precise values of ex(n, {C3, C4}) are determined in [10] for all integers n ≤ 24

(see Theorem 3.1). In particular, when n ∈ {7, 8, 9, 10, 13}, the extremal {C3, C4}-free graph
on n vertices is unique and non-bipartite (see Figures 1 and 2 in [10]). So it only remains to

consider n ∈ {11, 12, 14}. For n = 11, we have |Y | ≤ 5 and ex(11, {C3, C4}) = 16 from [10],

so there must be a vertex in Y of degree at least four, a contradiction to (P2). For n = 12,

we have ex(12, {C3, C4}) = 18 from [10], implying that all vertices have degree three and

|X| = |Y | = 6. However, it leads to a contradiction as we should have
(|X|

2

)

= σX = 3|Y |
in this situation. Lastly, for n = 14, we have ex(14, {C3, C4}) = 23 from [10] and thus the

extremal graph G must contain a vertex of degree at least four, a contradiction to (P2).

This proves (4).

To complete the proof of Theorem 3, it suffices to show that for sufficiently large n,

ex(n, {C3, C4}) = z(n,C4) + Ω(n1.25). (5)

Let ε be a sufficiently small (but fixed) positive real and let n be any integer which is

sufficiently larger than 1/ǫ. Let G be any extremal graph of z(n,C4), i.e., an n-vertex

bipartite C4-free graph with z(n,C4) edges. Let (X,Y ) be the bipartition of G. In what

follows, based on G we will construct a (non-bipartite) {C3, C4}-free graph on the same

vertex set V (G) and with Ω(n1.25) more edges.

3Given a family F of graphs, throughout the rest we say a graph H is F-free if H does not contain any

member in F as a subgraph. If F consists of a single graph F , then simply we say F -free instead of {F}-free.
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We claim that there exists a vertex u in G with d(u) ≤ (1+ε)
√

n/2 and |∪x∈N(u)N(x)| ≥
(1 − ε)n/2. Note that as G is C4-free, for any vertex u, the neighborhoods N(x)’s for all

vertices x ∈ N(u) are pairwise disjoint. To prove this claim, we will proceed to show that

(A). there are less than n/2 vertices with degree at least (1 + ε)
√

n/2, and

(B). there are less than n/2 vertices u with | ∪x∈N(u) N(x)| ≤ (1− ε)n/2.

First let us see that (X,Y ) is almost balanced. By (1), we have

(n

2

)3/2
− cn4/3 ≤ z(n,C4) = e(G) ≤ (|X||Y |)3/4 +max{|X|, |Y |} ≤ (|X|(n − |X|))3/4 + n,

where the second last inequality follows by Proposition 3.9 in [12]. Solving the above

inequality for |X|, it gives that (1− ε
2)

n
2 ≤ |X|, |Y | ≤ (1+ ε

2)
n
2 . Let σ be the number of paths

of length two in G. As G is bipartite and C4-free, each pair of vertices from the same part

is contained in at most one path of length two. So σ ≤
(|X|

2

)

+
(|Y |

2

)

≤ (1 + ε2

4 )
n2

4 . Suppose

for a contradiction to (A) that there are n/2 vertices with degree at least (1 + ε)
√

n/2 in

G. By Jensen’s inequality, we have

σ =
∑

u∈V (G)

(

d(u)

2

)

≥ n

2

(

(1 + ε)
√

n/2

2

)

+
n

2

(
(

2e(G) − n
2 (1 + ε

)
√

n/2)/(n/2)

2

)

≥ n

2

(

(1 + ε)
√

n/2

2

)

+
n

2

(

(1− ε)
√

n/2−O(n1/3)

2

)

= (1 + ε2)
n2

4
− o(n2).

This is a contradiction to the above upper bound on σ, thus proving (A). To see (B), suppose

on the contrary that there are n/2 vertices u with | ∪x∈N(u) N(x)| ≤ (1 − ε)n/2. Each of

these vertices is contained in at most (1− ε)n/2 paths of length two as an end-point, while

any other vertex is contained in at most max{|X|, |Y |} ≤ (1 + ε
2)

n
2 paths of length two as

an end-point. Totally we have 2σ ≤ n
2 · (1− ε)n2 + n

2 · (1 + ε
2)

n
2 =

(

2− ε
2

)

n2

4 , implying that

(

1− ε

4

) n2

4
≥ σ =

∑

u∈V (G)

(

d(u)

2

)

≥ n

(

2e(G)/n

2

)

≥ n

(

√

n/2−O(n1/3)

2

)

=
n2

4
− o(n2),

a contradiction. This completes the proof of the claim.

Let u ∈ X be the vertex as claimed. LetN(u) = {u1, u2, ..., ut} for some t ≤ (1+ε)
√

n/2.

For each 1 ≤ i ≤ t, let Ni = N(ui) and Ei = {uix|x ∈ Ni}. As pointed out, these Ni’s are

pairwise disjoint and thus
∑

1≤i≤t |Ni| ≥ (1 − ε)n/2. Let Gi be an extremal {C3, C4}-free
graph on the vertex set Ni. By (1), there exists some c > 0 such that

e(Gi) ≥ (|Ni|/2)3/2 − c · (|Ni|/2)4/3 . (6)

Let H be obtained from G by deleting all edges in Ei and adding the graph Gi into Ni for

every 1 ≤ i ≤ t. We claim that H is {C3, C4}-free. Suppose that H contains a triangle say

5



abc. Then at least one edge (say ab) must appear in some Gi (note that V (Gi) = Ni ⊆ X).

As Gi is C3-free, we must have c ∈ Y and thus ac, bc ∈ E(G) ∩ E(H). But this is a

contradiction as the unique common neighbor of a, b in Y has been destroyed by deleting

the edges of Ei. Now suppose H has a C4 say abcd. We may assume that ab ∈ E(Gi). Since

Gi is C4-free and H[Y ] is an independent set, we may assume that c ∈ X and d ∈ Y . As

Nj ’s are pairwise disjoint, it is clear that c ∈ Ni. Then we get ad, cd ∈ E(G)∩E(H), which

is a contradiction by the same reason. So indeed, H is an n-vertex {C3, C4}-free graph. We

can estimate the number of edges in H as follows:

e(H) = e(G) +
∑

1≤i≤t

(e(Gi)− |Ei|) ≥ z(n,C4) +
∑

1≤i≤t

(

(|Ni|/2)3/2 − c · (|Ni|/2)4/3 − |Ni|
)

≥ z(n,C4) +
∑

1≤i≤t

(1− o(1))

( |Ni|
2

)3/2

≥ z(n,C4) + (1− o(1)) · t
(

∑

1≤i≤t |Ni|/t
2

)3/2

= z(n,C4) + Ω

(

(
∑

1≤i≤t |Ni|)3/2√
t

)

≥ z(n,C4) + Ω(n1.25),

where the first inequality follows by (6), and the last inequality uses the facts that t ≤
(1 + ε)

√

n/2 and
∑

1≤i≤t |Ni| ≥ (1 − ε)n/2. This proves (5) and thus completes the proof

of Theorem 3.

Proof of Corollary 4. Let q be a prime power and let n = 2(q2+ q+1). In this case, it is

well-known that a finite projective plane of order q exists and thus z(n,C4) =
1
2(q + 1)n ≥

(

n
2

)3/2
(see e.g. Theorem 1.2 in [12]). Therefore, by Theorem 3, we have ex(n, {C3, C4}) =

z(n,C4) + Ω(n1.25) =
(

n
2

)3/2
+Ω(n1.25).

In the rest of this section, we present a generalization of Corollary 4. Let pn denote the

n’th prime. It is well-known in number theory (see [11]) that there exists some constant

δ ∈ (0, 1) such that for all reals x > 0,

∑

pn≤x, pn+1−pn≥√
pn

(pn+1 − pn) = O(x1−δ). (7)

This can imply that for sufficiently small constant ǫ > 0 and for almost all integers n, there

exists a prime in [n − ǫ
√
n, n]. By the proof of [8], one can then derive that z(n,C4) ≥

(

n
2

)3/2 − O(ǫ) · n1.25 for almost all integers n. Therefore, together with Theorem 3, this

shows that ex(n, {C3, C4}) = z(n,C4) + Ω(n1.25) =
(

n
2

)3/2
+ Ω(n1.25) holds for almost all

integers n.
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3 A remark

In the above construction, we take an extremal graph of z(n,C4), choose vertex-disjoint

subsets of size roughly q =
√

n/2, and then for each of these subsets A, add Ω(q3/2) edges

into A and delete fewer edges incident with A to make a {C3, C4}-free graph with more than

z(n,C4) edges. One may ask whether one can take larger subsets (say of size n1/2+ǫ for any

ǫ > 0) and add/delete edges using similar operations to get a denser {C3, C4}-free graph.

We illustrate in the following example that it is unlikely to give better constructions.

For the purpose of our presentation, let G be an extremal graph of z(n,C4) with bipartite

(X,Y ) and let n = 2q2 be an integer with q ∈ R
+ such that

except O(q) vertices, every vertex in G has degree at least q − o(q). (8)

Let δ ∈ (0, 1) be any real. Consider any set A ⊆ X of size q1+δ.

We will show that it is impossible to construct a {C3, C4}-free graph H obtained from G

by adding c|A|3/2 edges into A and deleting any subset E∗ of edges such that e(H) > e(G).

Suppose for a contradiction that such H does exist. Since e(H) > e(G), we have |E∗| <
c|A|3/2 = o(q2+δ). It is easy to see that the size of |X| or |Y | is (1 + o(1))q2. By (8), the

number of edges between A and Y in G is at least (1−o(1))q2+δ . Then the induced bipartite

subgraphH[A,Y ] of H with parts A and Y has at least (1−o(1))q2+δ−|E∗| ≥ (1−o(1))q2+δ

edges. Let σ1 be the number of paths of lengths two in H[A,Y ] with both ends in A. Then

σ1 =
∑

v∈Y

(

dH[A,Y ](v)

2

)

≥ |Y |
(

e(H[A,Y ])/|Y |
2

)

= (1− o(1))q2+2δ/2 = (1− o(1))

(|A|
2

)

.

As H[A] has at least c|A|3/2 edges, the number σ2 of paths of length two in H[A] is

σ2 =
∑

v∈A

(

dH[A](v)

2

)

≥ |A|
(

2e(H[A])/|A|
2

)

≥ c2
(|A|

2

)

,

Therefore, in total H contains σ1 + σ2 ≥ (1 + c2 − o(1))
(|A|

2

)

>
(|A|

2

)

paths of length two

with both ends in A, which leads to a copy of C4 in H, a contradiction.

We point out that when n = 2(t2 + t + 1) for any prime power t, the extremal graph

of z(n,C4) is regular and thus satisfies (8), so (at least) for these infinitely many integers

n, our construction cannot be improved using the above operations. In fact, to make the

above arguments work, all we need here is the property that e(G[A,Y ]) ≥ (1 − o(1))q2+δ

(which follows by (8)), and one can show that for general n, almost all subsets A of size

q1+δ in one part of the extremal graph of z(n,C4) satisfy this property.

As a side note, Keevash et al. proved in [12] (see Theorem 5.1) that any (nearly) extremal

graph of z(n,C4) satisfies the pseudorandomness property. We would like to conjecture that

any extremal graph of z(n,C4) satisfies (8).
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