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Abstract

We present two extremal results on 4-cycles. Let q be a large even integer. First we prove
that every (q2 + q + 1)-vertex C4-free graph with more than 1

2q(q + 1)2 − 0.2q edges must be a
spanning subgraph of a unique polarity graph. This implies a stability refinement of a special
case of the seminal work of Füredi on the extremal number of C4. Second we prove that every
(q2+q+1)-vertex graph with 1

2q(q+1)2+1 edges contains at least q−1 copies of C4, where we also
characterize the extremal graphs. This confirms infinitely many cases of a longstanding conjecture
of Erdős and Simonovits on the number of C4. The proof of the first result combines some earlier
and novel ideas, while the proof of the second result builds on the first stability result.

1 Introduction

As one of the origins of extremal graph theory, Erdős [5] proposed the study of the maximum number
ex(n,C4) of edges in an n-vertex graph which does not contain any cycle of length four (such a graph
is called C4-free). An early result (see Kővári-Sós-Turán [14] and Reiman [16]) gives the general
upper bound ex(n,C4) ≤ n

4 (1 +
√

4n− 3). Using polarities from projective planes,1 Brown [2] and
Erdős-Rényi-Sós [6] independently and simultaneously proved that

ex(q2 + q + 1, C4) ≥ 1

2
q(q + 1)2 for all prime powers q.

In a striking breakthrough, Füredi [8, 10] confirmed a conjecture of Erdős by showing that this
inequality holds as an equality, where he proved for q = 2k in [8] and for q ≥ 14 in [10].

Theorem 1.1 (Füredi, [8, 10]). If q /∈ {1, 7, 9, 11, 13}, then ex(q2 + q + 1, C4) ≤ 1
2q(q + 1)2. Hence

for all prime powers q ≥ 14, ex(q2 + q + 1, C4) = 1
2q(q + 1)2.

Füredi also proved that extremal graphs for n = q2 + q + 1 where q ≥ q0 must be orthogonal polarity
graphs (unpublished, see [11]). More recently, ex(q2 + q, C4) was determined in [12] for all q = 2k.

The first contribution of this paper is a stability result on 4-cycles.

Theorem 1.2. Let q ≥ 109 be an even integer and G be a C4-free graph on q2 + q + 1 vertices with
e(G) ≥ 1

2q(q + 1)2 − 0.2q + 1. Then G is a subgraph of a unique polarity graph of order q.

The proof of this result combines several arguments from Füredi’s work as well as some novel ideas
(to find 1-intersecting hypergraphs and polarities). As one application, this can be used to improve
the upper bound of ex(n,C4) in Theorem 1.1 for some specific integers n as follows: If q is a large even
integer such that a projective plane of order q does not exist, then ex(q2+q+1, C4) ≤ 1

2q(q+1)2−0.2q.
We remark that by the celebrated Bruck-Ryser theorem [3] there are infinitely many such integers q.2

A longstanding conjecture of Erdős and Simonovits [7] asserts that any n-vertex graph with
ex(n,C4) + 1 edges contains at least

(
1 + o(1)

)√
n many C4’s. If true this will be sharp for in-

finitely many integers n (examples are given by orthogonal polarity graphs). The following is another
result of this paper.
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1We will postpone the formal definitions in Section 2.
2The Bruck-Ryser theorem states that if q ≡ 1 or 2 mod 4 is an integer which cannot be expressed as a sum of two

square numbers, then there exist no projective planes of order q.
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Theorem 1.3. Let q ≥ 1012 be even and let G be a graph on q2 + q + 1 vertices with 1
2q(q + 1)2 + 1

edges. Then either G contains at least 2q−3 copies of C4, or G is obtained from an orthogonal polarity
graph of order q by adding a new edge. In the latter case, G contains q − 1, q or q + 1 copies of C4.

One key ingredient in this proof is the use of the stability Theorem 1.2. Combining with Theorem
1.1, this gives the following exact result and thus confirms the conjecture of Erdős and Simonovits for
infinitely many cases: For q = 2k where k ≥ 40, any graph with q2 + q + 1 vertices and ex(q2 + q +
1, C4) + 1 edges contains at least q − 1 many C4’s. It also can be shown that the equality (exactly
q−1) holds if and only if the graph is obtained from an orthogonal polarity graph of order q by adding
a new edge between any two vertices of degree q.

The organization of this paper is as follows. Section 2 consists of preliminaries, where we give
notations and collect some lemmas. In Sections 3 and 4, we prove Theorems 1.2 and 1.3, respectively.

2 Preliminaries

Let H be a hypergraph. The degree dH(x) of a vertex x denotes the number of edges of H containing
x. We say H is k-regular if all vertices have degree k and k-uniform if all edges have k vertices. We
say H is 1-intersecting if any two edges of H have exactly one common vertex. The incidence matrix
of H is an |E(H)| × |V (H)| matrix M, where M(e, x) = 1 if x ∈ e ∈ E(H) and 0 otherwise.

A finite projective plane of order q, is a (q + 1)-uniform (q + 1)-regular 1-intersecting hypergraph
H = (P,L) with |P | = q2 + q + 1, where P consists of points and L consists of lines. It follows that
|L| = q2 + q + 1 and any two points are contained in a unique line. We need the following results.

Theorem 2.1 ([15]). Let H be a 1-intersecting (q + 1)-graph with q2 + q + 1 vertices and more than

q2−
√

5−1
2 q+ 17

√
q/5 edges for q ≥ 3900. Then H can be embedded into a projective plane of order q.

Theorem 2.2 ([4]). Let H be a 1-intersecting (q + 1)-graph with q2 + q + 1 vertices and more than
q2 − q + 1 edges. If H can be embedded into a projective plane of order q, then this projective plane
and the embedding both are unique.

A polarity π of a projective plane H = (P,L) of order q is a bijection π : P ∪L → P ∪L such that
π(P ) = L, π(L) = P , π2 is the identity function, and for any x ∈ L where L ∈ L, one has π(L) ∈ π(x).
The polarity graph G(π) (of order q) is a simple graph on the vertex set P such that xy ∈ E(G(π))
if and only if x ∈ π(y). Let a(π) denote the number of absolute points, i.e., points x ∈ P satisfying
x ∈ π(x). Baer [1] proved that a(π) ≥ q+1 and it is also known (see [9]) that a(π) = q+1+mπ

√
q for

some integer mπ ≥ 0. A polarity π and its polarity graph G(π) are called orthogonal if a(π) = q + 1.
For any prime power q, orthogonal polarity graphs of order q exist. The following lemmas will be
frequently used in the forthcoming proofs.

Lemma 2.3. Let π be a polarity of a projective plane of order q. Then the polarity graph G(π) is a
C4-free graph on q2 + q+ 1 vertices with exactly 1

2q(q+ 1)2− mπ
2

√
q edges such that a(π) vertices have

degree q and all others have degree q + 1.

Lemma 2.4. Let G be a polarity graph of order q with uv /∈ E(G). Then G ∪ {uv} contains q − 1, q
or q + 1 four-cycles, any two of which share uv as the unique common edge. Moreover, G ∪ {uv}
contains q − 1 four-cycles if and only if both u, v have degree q in G.

Proof. Let π be the corresponding polarity of G. We see q ≤ dG(u), dG(v) ≤ q+ 1. For any ui ∈ π(u),
there exists a unique vertex vi in π(ui) ∩ π(v). So there are exactly q + 1 sequences uuiviv satisfying
ui ∈ π(u) and vi ∈ π(ui)∩π(v), where ui 6= v and vi 6= u for all i ∈ [q+1].3 Consider dG(u) = dG(v) =
q. Excluding uuviv and uuivv, there are exactly q− 1 sequences uuiviv with {u, v}∩ {ui, vi} = ∅. We
also have ui 6= vi (as otherwise, {u, ui} ⊆ π(u) ∩ π(ui), a contradiction). This shows exactly q − 1

3Throughout this paper, for any positive integer k, we write [k] as the set {1, 2, ..., k}.
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four-cycles in G ∪ {uv}. Now we may assume NG(u) = {u1, ..., uq+1}. We claim that there is at most
one i satisfying vi ∈ {ui, v}. To see this, note that if vi ∈ {ui, v}, then ui ∈ NG(u) ∩NG(v); thus two
such i, j would force a four-cycle uuivuju in G, a contradiction. From this claim, we see G ∪ {uv}
has q or q + 1 four-cycles. To complete the proof, it suffices to show that all such paths uuiviv are
edge-disjoint in G. This follows by the fact that each middle edge uivi can only appear once; as
otherwise there are two paths uuiviv and uviuiv which would force a four-cycle uuivviu in G.

Let G be a graph and x, y ∈ V (G). We use NG[x] to denote the union of {x} and the neighborhood
NG(x) of x. For A ⊆ V (G), let NG(A) be the set of vertices x /∈ A adjacent to some vertex in A. Let
dG(x, y) = |NG(x) ∩ NG(y)|. We say {x, y} is uncovered if dG(x, y) = 0 and covered otherwise. We
often drop the subscripts for all above notations when they are clear from context. Let UP be the set
of uncovered pairs of G and let P2 be the set of all paths of length 2 in G. Let UP ∩ A be the set of
uncovered pairs {x, y} ⊆ A of G and let P2 ∩ A be the set of paths of P2 with both endpoints in A.
By #C4, we denote the number of copies of C4 in G.

Proposition 2.5. Let G be a graph with A ⊆ V (G). Then 2#C4 ≥ |P2 ∩A|+ |UP ∩A| −
(|A|

2

)
.

Proof. Let B be the set of covered pairs {u, v} ⊆ A. Then |B| =
(|A|

2

)
− |UP ∩ A|. It holds that

2#C4 ≥
∑

B

(
d(u,v)

2

)
≥
∑

B

(
d(u, v)− 1

)
, which equals |P2 ∩A|+ |UP ∩A| −

(|A|
2

)
.

The next easy-to-use lemma is often adopted in replace of standard Cauchy-Schwarz inequalities.

Lemma 2.6. Let a1, ..., am be nonnegative integers satisfying
∑m

i=1 ai ≥ km + r, where m, k, r are

integers with m, k > 0 and r ≥ −m. Then
∑m

i=1

(
ai
2

)
≥ m

(
k
2

)
+ rk.

Proof. Write
∑m

i=1 ai = tm+ x for integers t, x with 0 ≤ x < m. We have
∑m

i=1

(
ai
2

)
≥ x

(
t+1

2

)
+ (m−

x)
(
t
2

)
= m

(
t
2

)
+ xt (see (3.1) from [9]). By letting Λ :=

∑m
i=1

(
ai
2

)
−m

(
k
2

)
− rk, we get that

Λ ≥ m
(
t

2

)
+ xt−m

(
k

2

)
− rk =

1

2
m(t− k)(t+ k − 1) + xt− rk. (1)

Since (t+1)m > tm+x ≥ km+r ≥ (k−1)m, we obtain t−k ≥ −1. Now consider the following three
cases. If t− k = −1, then −r ≥ m− x > 0 and by (1), Λ ≥ −(m− x)(k− 1) + (−r)k ≥ m− x > 0. If
t = k, then x ≥ r and by (1) it is easy to see Λ ≥ k(x− r) ≥ 0. Lastly, we consider t ≥ k + 1. Since
t+ k − 1 ≥ 2k and m(t− k) ≥ r − x, by (1) again, we see Λ ≥ (r − x)k + xt− rk = x(t− k) ≥ 0.

3 Proof of Theorem 1.2

We first reduce Theorem 1.2 to the following restricted version (with maximum degree ∆(G) ≤ q+1).
Given a graph G, let Si = {v ∈ V (G) : dG(v) = i}.

Lemma 3.1. Let q ≥ 109 be even and G be a C4-free graph on q2 + q + 1 vertices with ∆(G) ≤ q + 1
and e(G) ≥ 1

2q(q + 1)2 − 0.2q. Then G is a subgraph of a unique polarity graph of order q.

Proof of Theorem 1.2 (Assuming Lemma 3.1). Let q and G be from Theorem 1.2. Let
V (G) = {v1, ..., vn} where n = q2 + q + 1 and ∆ := ∆(G) = d(v1).

Using arguments in [8], we first show ∆ ≤ q + 2 and |Sq+2| ≤ 1. Since G is C4-free, we see
|N(vi) \ N(v1)| = d(vi) − d(vi, v1) ≥ d(vi) − 1 for 2 ≤ i ≤ n. As e(G) ≥ 1

2q(q + 1)2 − 0.2q + 1, we
have

∑n
i=2 |N(vi) \ N(v1)| ≥ 2e(G) −∆ − (n − 1) ≥ q3 + q2 − 0.4q −∆ + 2. Let A = V \N(v1). By

Proposition 2.5 and convexity, we obtain that(
q2 + q + 1−∆

2

)
=

(
|A|
2

)
≥ |P2 ∩A| ≥

n∑
i=2

(
|N(vi) \N(v1)|

2

)
≥ (q2 + q)

( q3+q2−0.4q−∆+2
q2+q

2

)
. (2)
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By the calculations in Appendix A, we see this inequality does not hold for q + 3 ≤ ∆ ≤ q2 + q when
q ≥ 109, a contradiction. So ∆(G) ≤ q + 2 holds.

To show |Sq+2| ≤ 1, suppose for the contrary that d(v1) = d(v2) = ∆ = q + 2. Let B =
N(v1) ∪ N(v2). If N(v1) ∩ N(v2) = ∅, then |B| = 2∆. Since G is C4-free, we have |N(vi) \ B| =
d(vi)− d(vi, v1)− d(vi, v2) ≥ d(vi)− 2 for 2 < i ≤ n. Similarly as above, we can derive that(

n− 2∆

2

)
≥

n∑
i=3

(
|N(vi) \B|

2

)
≥ (n− 2)

(∑n
i=3(d(vi)−2)

n−2

2

)
= (n− 2)

(2e(G)−2∆−2n+4
n−2

2

)
. (3)

This is a contradiction (see its justification in Appendix A). Hence, we may assume N(v1)∩N(v2) =
{v3} and |B| = 2∆ − 1. Let C = N(v3) \ {v1, v2}. Then we have |N(vi) \ B| ≥ d(vi) − 1 for vi ∈ C
and |N(vi) \B| ≥ d(vi)− 2 for vi /∈ N(v3). By Proposition 2.5, we have(

n− 2∆ + 1

2

)
≥

n∑
i=3

(
|N(vi) \B|

2

)
≥
(
d(v3)− 2

2

)
+
∑
vi∈C

(
d(vi)− 1

2

)
+

∑
vj /∈N [v3]

(
d(vj)− 2

2

)

≥
(
d(v3)− 2

2

)
+ (n− 3)

(2e(G)−2∆−2n+4
n−3

2

)
≥ (n− 3)

(2e(G)−2∆−2n+4
n−3

2

)
,

(4)

again a contradiction (see its justification in Appendix A). Thus we have |Sq+2| ≤ 1.
Now we can delete at most one edge from G to get a subgraph G′ with ∆(G′) ≤ q + 1 and

e(G′) ≥ e(G) − 1 ≥ 1
2q(q + 1)2 − 0.2q. By Lemma 3.1, there exists a unique polarity graph H of

order q containing G′ as a subgraph. Let e be the possible edge in E(G)\E(G′). If e does not exist or
e ∈ E(H), then the conclusion holds for G. So e /∈ E(H). By Lemma 2.4, H ∪ {e} contains at least
q−1 copies of C4, all of which contain e and are edge-disjoint otherwise. Since G = G′∪{e} is C4-free,
any of these copies of C4 has an edge not contained in G, all of which are distinct. By Lemma 2.3, this
shows that e(G′) ≤ e(H)− (q− 1) ≤ 1

2q(q+ 1)2− (q− 1), a contradiction to e(G′) ≥ 1
2q(q+ 1)2− 0.2q.

Assuming Lemma 3.1, we have completed the proof of Theorem 1.2.

In the rest of the section, we prove Lemma 3.1.

Proof of Lemma 3.1. Let q and G be from Lemma 3.1. If ∆(G) ≤ q, then e(G) ≤ q
2(q2 + q + 1) <

1
2q(q + 1)2 − 0.2q, a contradiction. So we may assume ∆(G) = q + 1 in the rest of the proof.

The deficiency of a vertex v is defined by f(v) = q + 1 − d(v), and the deficiency of a subset
T ⊆ V (G) is f(T ) =

∑
v∈T f(v). We will write V = V (G) for short. Let S = ∪qi=0Si. Let B = {x ∈

V : |N(x) ∩ S| ≥ 0.1q} and A = Sq+1\B. Finally, let R = {N(x) : x ∈ A}.

Claim 3.1. |B| ≤ 14 and |R| ≥ q2 − 0.4q − 14.

Proof. It is known (see Corollary 5.2 in [9]) that for even q, if G is C4-free with q2 + q + 1 vertices
and ∆(G) = q + 1, then any x ∈ Sq+1 has a neighbor in S and |S| ≥ q + 1. Thus, we have

q + 1 ≤ |S| ≤
q∑
i=0

(i+ 1)|Sq−i| = f(V ) = (q + 1)n− 2e(G) ≤ 1.4q + 1. (5)

So q2 − 0.4q ≤ |Sq+1| ≤ q2 and |S| ≤ 1.4q + 1 ≤ 2q. For each T ⊆ S, we have

1.4q + 1 ≥ f(V ) ≥ f(T ) + (|S| − |T |) ≥ f(T ) + (q + 1− |T |).

This implies that f(T ) ≤ |T |+ 0.4q for any T ⊆ S and in particular,

d(x) ≥ 0.6q and d(x) + d(y) ≥ 1.6q for any vertices x, y. (6)

Let t be the number of ordered adjacent pairs (b, v) with b ∈ B and v ∈ S. Since |B| · 0.1q ≤ t ≤
|S|q ≤ 2q2, we see |B| ≤ 20q. Consider the subgraph G0 of G induced by the set B∪S, where |B∪S| ≤
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22q. By the classic Reiman’s bound, we derive that 1
2 |B| · 0.1q ≤ e(G0) ≤ 22q

4 · 10q1/2 = 55q3/2 and
thus |B| ≤ 1100

√
q. For any b, b′ ∈ B, we have |NS(b)∩NS(b′)| ≤ 1. Using (5) and inclusion-exclusion

principle, 1.4q+1 ≥ |S| ≥ |∪b∈BNS(b)| ≥
∑

b∈B |NS(b)|−
∑

b,b′∈B |NS(b)∩NS(b′)| ≥ |B| ·0.1q−
(|B|

2

)
.

Solving this quadratic inequality on |B| and using the fact that |B| ≤ 1100
√
q for large q, we can infer

that |B| ≤ 14. So |R| = |A| = |Sq+1| − |B| ≥ q2 − 0.4q − 14, proving this claim.

Claim 3.2. R is a 1-intersecting (q + 1)-graph.

Proof. We say a vertex v has property 1, if v ∈ Sq+1, |N(v) ∩ Sq+1| = q and |N(v) ∩ Sq| = 1. Let
V1 be the set of all vertices of property 1. We assert that |V1| ≥ 0.6q2 − 1.8q which we prove now.
For each uv ∈ E(G) with u ∈ S and v ∈ Sq+1, assign its weight to be f(u). Let W denote the sum
of weights of these edges. We note that any vertex in V1 contributes one to W , while any vertex in
Sq+1\V1 contributes at least two. By (5), |V1| + 2(|Sq+1| − |V1|) ≤ W ≤

∑q
i=0(q − i)(i + 1)|Sq−i| ≤

q · f(V ) ≤ q(1.4q + 1). So |V1| ≥ 2|Sq+1| − q(1.4q + 1) ≥ 0.6q2 − 1.8q.
The following property will be key to show R is 1-intersecting. Suppose v ∈ V1 has N(v) =

{v1, ..., vq+1} and let Ni = N(vi)\N [v] for i ∈ [q + 1]. Consider a vertex u ∈ Sq+1 \N [v] and suppose
that u is adjacent to some vertex in Sq+1 ∩N(v), say v1. Since v ∈ V1, the subgraph G[N(v)] consists
of a matching of size q

2 plus an isolated vertex of degree q (see Proposition 5.4 in [9]). Without loss of
generality, assume v1v2 ∈ E(G) so v1, v2 ∈ Sq+1. Then u has exactly one neighbor in N(v), namely v1,
and no neighbors in N2 (else we get a C4). The sets N1, ..., Nq+1 partition V \N [v] and u cannot have
two neighbors in some Ni. However, d(u) = q+ 1 and so this forces u to have exactly one neighbor in
each Ni with i 6= 2, and N(u) ∩N(v2) = {v1}. We conclude that

|N(u) ∩N(vi)| = 1 for all i ∈ [q + 1]. (7)

We now summarize this as property (?): For any v ∈ V1 with N(v) = {v1, ..., vq+1}, if u ∈ Sq+1\N [v]
is adjacent to some vertex in Sq+1 ∩N(v), then (7) holds for u.

We then show that the neighborhood of any x ∈ A contains many vertices of property 1. For x ∈ A,
let Sx = N(x)∩S and S∗x = Sx∪(N(Sx)∩N(x)). We will prove that |(N(x)\S∗x)∩V1| ≥ 0.3q+1. Now
since x ∈ A, we have |Sx| ≤ 0.1q by definition of A and B. Every vertex in Sx has at most one neighbor
in N(x), so |S∗x\Sx| ≤ |Sx| and thus |S∗x| ≤ 2|Sx|. Let N(x) = {x1, ..., xq+1} and Ni = N(xi) \ N [x]
for i ∈ [q + 1]. We first assert that f(Ni) ≥ 1 for any xi ∈ N(x)\S∗x. Indeed, by definition of S∗x, such
xi ∈ Sq+1 and if y is a neighbor of xi in S, then y must lie outside of N [x] (that is in Ni). On the
other hand, as pointed out in the beginning of the proof of Claim 3.1, such xi must have a neighbor
in S and thus in Ni. This shows that f(Ni) ≥ 1. From this argument, we also see that xi ∈ N(x)\S∗x
has f(Ni ∪ {xi}) = 1 if and only if xi ∈ V1. That says, f(Ni ∪ {xi}) ≥ 2 if xi ∈ (N(x)\S∗x)\V1, and
f(Ni ∪ {xi}) ≥ 1 if xi ∈ Sx or xi ∈ (N(x)\S∗x) ∩ V1. Let m = |(N(x)\S∗x) ∩ V1|. Then we can get

m+ 2(|N(x)| − |S∗x| −m) + |Sx| ≤
∑

i∈[q+1]

f(Ni ∪ {xi}) ≤ f(V ) ≤ 1.4q + 1.

Using |N(x)| = d(x) = q + 1 and 2|S∗x| − |Sx| ≤ 3|Sx| ≤ 0.3q, we can derive that m ≥ 0.3q + 1.
Now we are ready to prove that R is 1-intersecting. Suppose for the contrary that there exist

some x, y ∈ A with no common neighbor. If xy ∈ E(G), by the previous paragraph, there exists
z ∈ N(x) ∩ V1 − {y} with yz /∈ E(G). Apply property (?) by viewing z as the vertex v therein. Since
y ∈ Sq+1\N [z] is adjacent to x ∈ Sq+1 ∩N(z), it shows |N(y) ∩N(x)| = 1, a contradiction.

Hence xy /∈ E(G). Let N(x) = {x1, ..., xq+1}. Let Ni = N(xi)\N [x] for i ∈ [q + 1] and Y =
V \(N [x] ∪ N1 ∪ ... ∪ Nq+1). So y ∈ Y . Since each xi has at most one neighbor in N(x), |Y | ≤
n− (q+ 2)−

∑q+1
i=1 (d(xi)− 2) =

∑q+1
i=1 f(xi). Let N1(x) be the set of vertices in N(x)\S∗x of property

1 and N2(x) = N(x)\(N1(x) ∪ S∗x). Note that |N1(x)| ≥ 0.3q + 1, f(Ni) = 1 for each xi ∈ N1(x), and
f(Nj) ≥ 2 for each xj ∈ N2(x). So |Y | ≤

∑q+1
i=1 f(xi) =

∑
xi∈Sx f(xi) ≤ 1.4q+ 1− |N1(x)| − 2|N2(x)|.

Since N(x) = N1(x)∪N2(x)∪S∗x, the number of neighbors of y in those Ni’s satisfying xi ∈ N1(x) is at
least d(y)−(|Y |−1)−|S∗x|−|N2(x)|, which is at least (q+2)−(1.4q+1)+|N1(x)|+|N2(x)|−|S∗x| ≥ 0.2q.
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Here we use the above estimation on |Y | and the facts that |N1(x)| + |N2(x)| + |S∗x| = q + 1 and
|S∗x| ≤ 2|Sx| ≤ 0.2q. Since |N(y) ∩ S| < 0.1q, among those 0.2q neighbors of y, there is a vertex
z ∈ N(y)∩ Sq+1. Let z ∈ Nj for some xj ∈ N1(x) ⊆ V1. Apply property (?) by viewing this xj as the
vertex v. Since y ∈ Sq+1\N [xj ] is adjacent to z ∈ N(xj) ∩ Sq+1, we can derive that y and x ∈ N(xj)
have a common neighbor, a contradiction to the assumption. This proves the claim.

By the above claim and Theorems 2.1 and 2.2, R can be embedded into a projective plane P of
order q and this embedding is unique. Using R and P, we now construct a unique polarity graph of
order q, which contains G as a subgraph. Let Rc = P\R with |Rc| ≤ 1.4q + 15.

We say v ∈ V (G) is feasible, if N(v) ⊆ L for some line L ∈ P; otherwise v is non-feasible. For
non-feasible v, we say it is near-feasible, if there exist a subset Kv ⊆ N(v) and a line L ∈ Rc such
that |Kv| ≤ 2 and N(v)\Kv ⊆ L. In both definitions, we say v and L are associated with each other.
For feasible v, we also let Kv = ∅. By (6), for any vertices u and v which is feasible or near-feasible,

|(N(u)\Ku) ∪ (N(v)\Kv)| ≥
(
d(u)− 2

)
+
(
d(v)− 2

)
− 1 ≥ 1.6q − 5 > q + 1. (8)

This implies that each line in P is associated with at most one feasible or near-feasible vertex. On the
other hand, if there are two lines in P associated with the same feasible or near-feasible vertex v, as
d(v) ≥ 0.6q from (6), it is easy to see that these two lines will intersect with more than two vertices,
a contradiction. So each feasible or near-feasible vertex is associated with a unique line in P.

We show that any v ∈ V (G) has a neighbor u with dR(u) = |N(u) ∩ A| ≥ q − 2. Let N(v) =
{v1, ..., vd}, where d = d(v) ≥ 0.6q. Let Ni = N(vi)\N [v] for i ∈ [d]. Since the sets Ni∪{vi} are disjoint
over i ∈ [d], we have 1.4q+ 1 ≥ f(V ) ≥

∑
i∈[d] f(Ni ∪ {vi}) + f(v) =

∑
i∈[d] f(Ni ∪ {vi}) + (q+ 1− d).

This implies at least (d − 0.4q)/2 ≥ 15 distinct j ∈ [d] with f(Nj ∪ {vj}) ≤ 1. As |B| ≤ 14, there is
some j ∈ [d] with f(Nj ∪ {vj}) ≤ 1 and Nj ∩ B = ∅. Therefore, dR(vj) = |N(vj) ∩ A| ≥ |Nj ∩ A| ≥
|Nj | − |Nj ∩ S| ≥

(
d(vj)− 2

)
− f(Nj) =

(
q − 1− f(vj)

)
− f(Nj) ≥ q − 2, as desired.

Now we consider some properties on non-feasible vertices v. Clearly v /∈ A. Recall that any
two points in a projective plane are contained in a unique line. So for any x, y ∈ N(v), the pair
{x, y} is contained in a unique line in the projective plane P but not in R (suppose otherwise that
{x, y} ⊆ N(a) ∈ R, then xayvx would form a C4 in G). Let Lv be the family of all lines L ∈ P which
contains at least two vertices of N(v). Then Lv ⊆ Rc and we also point out that any vertex in N(v)
appears in at least two lines of Lv (suppose for a contradiction that say x ∈ N(v) appears only in the
unique line L ∈ Lv, then for any y ∈ N(v)\{x} the pair {x, y} must be contained in L, which implies
that N(v) ⊆ L ∈ P, contradicting that v is non-feasible).

Next we show all non-feasible vertices are in fact near-feasible. Let v be any non-feasible vertex.
Note that there exists u ∈ N(v) with dR(u) ≥ q − 2. Then there are α ∈ {2, 3} lines in Lv containing
u, say Li for i ∈ [α]. Let Di = Li ∩N(v) for i ∈ [α] such that |Di| ≥ |Dj | ≥ 2 whenever i < j. We see
that for any x ∈ N(v)\{u}, the pair {u, x} is contained in a unique Di. Therefore, N(v) = ∪i∈[α]Di

and Di ∩ Dj = {u} for any i < j. Consider x ∈ Di\u and y ∈ Dj\u. By the previous paragraph,
any such pair {x, y} is contained in a line in Rc. Also any L ∈ Rc contains at most one such pair (as
otherwise, |L∩Lk| ≥ 2 for some k ∈ [α]). Hence, we can derive 1.4q+15 ≥ |Rc| ≥ (|Di|−1)(|Dj |−1),
where

∑
i∈[α](|Di|−1) = d(v)−1 ≥ 0.6q−1. This would imply that |Di|−1 ≤ 2 for any 2 ≤ i ≤ α and

thus |D1| ≥ d(v) − 4. Let Kv =
(
∪2≤i≤α Di

)
\u. So |Kv| ≤ 4 and N(v)\Kv ⊆ L1. For any w ∈ Kv,

let Tw be the set of all lines in Lv containing w. If there exists L ∈ Tw with |L ∩ D1| ≥ 2, then we
see |L ∩ L1| ≥ 2 and L 6= L1, a contradiction. This shows |Tw| ≥ |D1| ≥ d(v)− 4 ≥ 0.6q − 4 for each
w ∈ Kv. If |Kv| ≥ 3, since 1.4q+15 ≥ |Rc| ≥ |Lv| ≥ |∪w∈Kv Tw| ≥

∑
w∈Kv |Tw|−

∑
w,w′∈Kv |Tw∩Tw′ |,

then this forces |Tw ∩ Tw′ | ≥ 2 for some w,w′ ∈ Kv, which gives two lines in P containing {w,w′}, a
contradiction. Hence |Kv| ≤ 2 and v is near-feasible.

Let K = ∪v∈V (G)Kv. We claim that either there is at most one near-feasible vertex or |K| ≤ 1.
First we point out that |K| ≤ 2. Suppose there are three distinct vertices wi ∈ Kvi for i ∈ [3], where
v1, v2, v3 are near-feasible (not necessarily distinct). Let Twi be the set of all lines in Lvi containing
wi. By the same arguments in the previous paragraph, we obtain |Twi | ≥ d(vi) − 4 ≥ 0.6q − 4 and
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|Twi ∩ Twj | ≤ 1 for i, j ∈ [3]. Then we arrive at a contradiction that 1.4q + 15 ≥ |Rc| ≥ | ∪i∈[3] Lvi | ≥
| ∪i∈[3] Twi | ≥

∑
i∈[3] |Twi | − 3 ≥ 1.8q − 15, thereby proving |K| ≤ 2. Now it suffices to assume that

|K| = 2 and there are two near-feasible vertices v1, v2. Let K = {w1, w2} such that wi ∈ N(vi) for
i ∈ [2]. Similarly as before, if Twi denotes the set of all lines in Lvi containing wi, then we can show
|Twi | ≥ d(vi)−4. By (6), |Tw1 |+|Tw2 | ≥ d(v1)+d(v2)−8 ≥ 1.6q−8. Since |Tw1∪Tw2 | ≤ |Rc| ≤ 1.4q+15,
this forces two lines in P containing {w1, w2}, again a contradiction. This proves the claim.

Let V = {v1, ..., vn} for n = q2 + q + 1. For each i ∈ [n], let Li ∈ P be the unique line associated
with vi. Let π : V ↔ P be a function which maps vi ↔ Li for every i ∈ [n]. Let M = (mij) be the
incidence matrix of P with respect to π. We now showM is symmetric. To show this, we first assert
that if vi ∈ A\K, then mij = mji for all j ∈ [n]. For mij = 1, as vi ∈ A, we have vj ∈ Li = N(vi) ∈ R;
since vi /∈ K, we see vi ∈ N(vj)\K ⊆ N(vj)\Kvj ⊆ Lj , which shows that mji = 1 = mij . Now we
observe that as vi ∈ A, the i’th column and the i’th row ofM have exactly q+ 1 many 1-entries, and
all these 1-entries are in the symmetric positions. This shows that the i’th column and the i’th row
are symmetric, proving the assertion. Note that |A\K| ≥ |A| − 2 > q2 − q + 3. Then by Lemma 3.7
in [9], one can conclude that the whole matrix M is symmetric.

Therefore the function π is a polarity of the projective plane P. Let H be the polarity graph of π.
Finally we show G is a subgraph of H. This is equivalent to show that the adjacent matrix A = (aij)
of G is at most M = (mij); that is aij ≤ mij for each i, j. Suppose that vn is the only near-feasible
vertex. Then we see aij ≤ mij holds for any i 6= n. Since A,M are symmetric and ann = 0, A is
indeed at mostM. Now it suffices to consider the case |K| = 1, say K = {vk}. We see aij ≤ mij holds
for all j 6= k. Similarly we can show that G is a subgraph of H. By the uniqueness of the projective
plane P, it also can be derived from the above arguments that the polarity graph H is unique.

We remark the same proof also works when e(G) ≥ 1
2q(q + 1)2 − (0.25− o(1))q for large even q.

4 Proof of Theorem 1.3

Let q and G be from Theorem 1.3. We assume #C4 ≤ 2q − 4 and aim to show that G is obtained
from an orthogonal polarity graph of order q by adding an edge.

Let Si = {v ∈ V : d(v) = i} and S = ∪qi=0Si. For a vertex v, let c(v) be the number of C4 containing
v and its deficiency f(v) = max{q + 1− d(v), 0}. The deficiency of A ⊆ V (G) is f(A) =

∑
v∈A f(v).

A pair {u, v} ⊆ V is opposite if d(u, v) ≥ 2. Let d0(v) be the number of vertices u with d(u, v) = 0.

Claim 4.1. Any vertex v satisfies c(v) ≥ (d(v)− q − 1)q − f(N(v)) + d0(v), and if d(v) ≥ q + 1 and
N(v) ∩ S = ∅ then c(v) ≥ 1.

Proof. To see this, by counting the paths of length 2 with an endpoint v, we get∑
u∈V \{v}

d(v, u) =
∑

w∈N(v)

(d(w)− 1) ≥
∑

w∈N(v)

(q − f(w)) = d(v)q − f(N(v)). (9)

Thus, c(v) =
∑

u∈V \{v}
(
d(v,u)

2

)
≥
∑

u∈V \{v}(d(v, u)− 1) + d0(v) ≥ (d(v)− q − 1)q − f(N(v)) + d0(v),

where the first inequality holds because each vertex u with d(u, v) ≥ 1 satisfies
(
d(v,u)

2

)
≥ d(v, u) − 1

and the contribution of all vertices u′ with d(u′, v) = 0 cancels out in the expression. For the second
assertion, we have f(N(v)) = 0 and by the above inequality, we may assume d(v) = q + 1 and
d0(v) = 0. So every vertex in V \{v} has at least one common neighbor with v. Since d(v) = q + 1 is
odd, G[N(v)] can not consist of a perfect matching. This implies c(v) ≥ 1.

Claim 4.2. We have ∆(G) ≤ q + 3.

Proof. Suppose for the contrary that there exists some v1 ∈ V (G) with d(v1) = q + k for some
4 ≤ k ≤ q2. Let ai = |N(v1) ∩ N(vi)| for 2 ≤ i ≤ n. There are

(
ai
2

)
copies of C4 with the opposite

pair {v1, vi}, so we have 2q − 4 ≥ c(v1) =
∑n

i=2

(
ai
2

)
≥
∑n

i=2(ai − 1), implying that
∑n

i=2 ai ≤
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q2 + 3q − 4. Also we have
∑n

i=2(d(vi)− ai) = 2e(G)− d(v1)−
∑n

i=2 ai = (q2 + q)(q − 1) + X, where
X = 2q2 + q + 2− k −

∑n
i=2 ai ≥ −(q2 + q). By Proposition 2.5 and Lemma 2.6,

2#C4 +

(
n− d(v1)

2

)
≥ |P2 ∩ (V \N(v1)) | =

n∑
i=2

(
d(vi)− ai

2

)
≥ (q2 + q)

(
q − 1

2

)
+ (q − 1)X.

Further calculations give 2#C4 ≥ q3− 2q2 + 2q− (q− 1)
∑n

i=2 ai− 0.5k2 +k(q2− q+ 1.5)− 2 ≥ 5q− 8,
where the last inequality holds as k ≥ 4 and

∑n
i=2 ai ≤ q2+3q−4, a contradiction to #C4 ≤ 2q−4.

Now we have that

f(V ) = (q + 1)n+ |Sq+2|+ 2|Sq+3| − 2e(G) = q − 1 + |Sq+2|+ 2|Sq+3|. (10)

Claim 4.3. |S| ≥ q − 8 and |Sq+2 ∪ Sq+3| ≤ 5.

Proof. We first show that any v1, v2 in Sq+2 ∪Sq+3 with c(vi) < 0.2q for i ∈ [2] form an opposite pair.
Otherwise, we have d(v1, v2) ≤ 1. Let d(v1) = q + 2 + δ1 and d(v2) = q + 2 + δ2 for δ1, δ2 ∈ {0, 1}.
Let B = N(v1) ∪ N(v2) and ai = |N(vi) ∩ B| for all 3 ≤ i ≤ n. Then at least ai − 2 copies of
C4 contain {vi, v1} or {vi, v2} as their opposite pairs. Consider the case when v1, v2 have a common
neighbor say v3. In this case, for any vi ∈ N(v3)\{v1, v2}, at least ai − 1 copies of C4 contain {vi, v1}
or {vi, v2} as their opposite pairs. Thus 0.4q > c(v1) + c(v2) ≥

∑n
i=3(ai−2) +d(v3)−2, implying that∑n

i=3 ai+d(v3) ≤ 2q2+2.4q. Hence we have
∑n

i=4(d(vi)−ai) = 2e(G)−d(v1)−d(v2)−d(v3)−
∑n

i=4 ai =
(q2 +q−2)(q−1)+X, where X = 2q2 +2q−4−δ1−δ2−

∑n
i=4 ai−d(v3) ≥ −0.4q−6 ≥ −(q2 +q−2).

By Proposition 2.5 and Lemma 2.6, if we write A = V \B, then one can derive

2 ·#C4 ≥ |P2 ∩A| −
(
|A|
2

)
≥

n∑
i=4

(
d(vi)− ai

2

)
−
(
q2 − q − 2− δ1 − δ2

2

)
≥ (q2 + q − 2)

(
q − 1

2

)
− (0.4q + 6)(q − 1)−

(
q2 − q − 2

2

)
= 0.1q2 − 4.1q + 1 > 4q − 8,

a contradiction. The case when v1, v2 have no common neighbor can be treated similarly.
If more than

√
8q vertices u ∈ Sq+2 ∪ Sq+3 have c(u) < 0.2q, then from the previous paragraph

we see at least
(√

8q+1
2

)
≥ 4q opposite pairs, providing at least 2q copies of C4. So we may assume

at most
√

8q vertices u ∈ Sq+2 ∪ Sq+3 with c(u) < 0.2q. Since
∑

v∈V c(v) = 4#C4 < 8q, there are at
most 8q/0.2q = 40 vertices w ∈ V with c(w) ≥ 0.2q. Hence |Sq+2 ∪ Sq+3| ≤

√
8q + 40 ≤ 3

√
q.

Observe |S| ≤ f(V ) = q−1+|Sq+2|+2|Sq+3| ≤ q+6
√
q−1. Then |Sq+1| = n−|S|−|Sq+2∪Sq+3| >

q2−9
√
q. If |S| ≤ q−9, then there are at least |Sq+1|− q|S| ≥ 8q vertices u in Sq+1 with no neighbors

in S; by Claim 4.1, every such u has c(u) ≥ 1, implying that #C4 ≥ 2q, a contradiction. Therefore
we have q − 8 ≤ |S| ≤ q + 6

√
q − 1. Furthermore, for any T ⊆ V , it gives that

q + 6
√
q − 1 ≥ f(V ) ≥ f(T ) + (|S| − |S ∩ T |) ≥ f(T )− |S ∩ T |+ (q − 8), (11)

which implies that
f(T ) ≤ |S ∩ T |+ 6

√
q + 7.

Now suppose for the contrary that Sq+2 ∪ Sq+3 contains vi for i ∈ [6]. For any 1 ≤ i < j ≤ 6,
d(vi, vj) ≤ 2

√
q (as otherwise #C4 ≥ 2q). Fix j ∈ [6]. Using (9) together with the fact d(vj) ≥ q + 2

and the above bound on f(T ) (with T = N(vj)), we get that

n∑
i=7

(
d(vj , vi)

2

)
≥

n∑
i=7

(d(vj , vi)− 1) ≥
∑

i∈[n]\{j}

d(vj , vi)−
(
q2 + q + 10

√
q
)

≥ d(vj)q − f(N(vj))−
(
q2 + q + 10

√
q
)
≥ q − 16

√
q − 7− |N(vj) ∩ S|.
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Since 2#C4 ≥
∑6

j=1

∑n
i=7

(d(vj ,vi)
2

)
, this gives 4q ≥ 2#C4 ≥ 6(q − 16

√
q − 7) −

∑6
j=1 |N(vj) ∩ S|. So∑6

j=1 |N(vj) ∩ S| ≥ 2q − 96
√
q − 42. By inclusion-exclusion principle,

|S| ≥ |
⋃

1≤j≤6

(N(vj) ∩ S)| ≥
∑

1≤j≤6

|N(vj) ∩ S| −
∑

1≤i<j≤6

|N(vi) ∩N(vj)| ≥ 2q − 126
√
q − 42,

where last inequality holds as d(vi, vj) ≤ 2
√
q for 1 ≤ i < j ≤ 6. But |S| ≤ q + 6

√
q − 1, where q is

large. This final contradiction proves Claim 4.3.

By (10) and Claim 4.3, one can easily deduce that q− 8 ≤ |S| ≤ f(V ) ≤ q+ 9. This together with
(11) shows that for any T ⊆ V (G), f(T ) ≤ |S ∩ T | + 17. In particular, for any vertex v, f(v) ≤ 18
and d(v) ≥ q + 1− f(v) ≥ q − 17.

Claim 4.4. For any vertex v, either |N(v) ∩ S| ≤ 20 or |N(v) ∩ S| ≥ q − 28. Moreover, there is at
most one vertex (say z if it exists) in G with |N(z) ∩ S| ≥ q − 28.

Proof. Consider any v ∈ V . Let N(v)\S = {v1, ..., vt} with t = d(v)−|N(v)∩S|. Let Ni = N(vi)\{v}
for i ∈ [t]. If Ni, Nj share a common vertex x, then vvixvjv forms a distinct C4. Since #C4 < 2q and
|Ni| ≥ d(vi)− 1 ≥ q for i ∈ [t], we can derive that |

⋃
i∈[t]Ni| ≥

∑
i∈[t] |Ni| − 2q ≥ qt− 2q.

Let Bi = Ni ∩ S and Ci be the set of vertices x ∈ Ni with c(x) = 0. If x ∈ Ci ∩ Cj , then
vvixvjv forms a C4, a contradiction. So Ci’s are disjoint over i ∈ [t]. This shows

∑
i∈[t] |Bi ∩ Ci| =

| ∪i∈[t] (Bi ∩ Ci)| ≤ | ∪i∈[t] Bi| ≤ |S| ≤ q + 9. We now show every x ∈ Ci\Bi has at least one neighbor
in S\N(v). Since d(x) ≥ q + 1 and c(x) = 0, by Claim 4.1, we see x has a neighbor say y ∈ S; if
y ∈ N(v) ∩ S, then vvixyv is a C4, a contradiction to x ∈ Ci. Also it is clear that every vertex in
S\N(v) has at most one neighbor in Ci\Bi. Hence |Ci\Bi| ≤ |S\N(v)| ≤ q+ 9− |N(v)∩ S|. Putting
these together, we see |

⋃
i∈[t]Ci| = |

⋃
i∈[t](Ci\Bi)|+ |

⋃
i∈[t](Bi ∩Ci)| ≤ t(q + 9− |N(v) ∩ S|) + q + 9.

Since each x ∈ Ni\Ci for i ∈ [t] has c(x) ≥ 1, we can derive the following

8q ≥
∑
x∈V

c(x) ≥ |
⋃
i∈[t]

(Ni\Ci)| ≥ |
⋃
i∈[t]

Ni| − |
⋃
i∈[t]

Ci| ≥ (d(v)− |N(v) ∩ S|) · (|N(v) ∩ S| − 9)− 3q − 9,

where d(v) ≥ q − 17 and q is large. Solving this inequality gives that either |N(v) ∩ S| ≤ 20 or
|N(v) ∩ S| ≥ q − 28. If there exist z1, z2 with |N(zi) ∩ S| ≥ q − 28 for i ∈ [2], then as |S| ≤ q + 9, we
have |N(z1) ∩ N(z2)| ≥ q − 65. This would give at least

(
q−65

2

)
� 2q copies of C4, a contradiction.

Thus at most one vertex z can have |N(z) ∩ S| ≥ q − 28.

Let W = Sq+2 ∪ Sq+3 ∪ {z}. By Claims 4.3 and 4.4, we see |W | ≤ 6 and any vertex in V \{z} has

at most 20 neighbors in S. Let ` = 900 so that 0.01`q −
(
`
2

)
· 2√q > 8q holds.

Claim 4.5. If there are ` opposite pairs {ui, vi} for i ∈ [`] such that ui, vi ∈ V \W and all vi are
distinct, then there is some ui with c(ui) > 0.8q.

Proof. Let c′(v) denote the number of vertices x ∈ N(v) with c(x) ≥ 1. The key for this claim is to
show: if {u, v} is an opposite pair with u ∈ V \W and v ∈ V \{z}, then c(u) + 19 · c′(v) ≥ q − 740.

Note that |N(u) ∩ S| ≤ 20 and |N(v) ∩ S| ≤ 20. Let d(u) = q + 1− a. Then 0 ≤ a ≤ 18, f(u) = a
and f(N(u)) ≤ |N(u) ∩ S| + 17 ≤ 37. Let Vu be the set of vertices x ∈ V with d(x, u) = 0. By
Claim 4.1, |Vu| = d0(u) ≤ c(u) + aq+ f(N(u)) ≤ c(u) + aq+ 37. Let N(v) = A∪B, where A consists
of vertices x with c(x) = 0 and B consists of vertices y with c(y) ≥ 1. Further we let N1 = N(v) ∩ S,
N2 = N(v)∩N [u], N3 = {x ∈ N(v)\(N1∪N2) : |N(x)∩Vu| ≤ a} and N4 = N(v)\(N1∪N2∪N3). By
definition, we know |N1| ≤ 20, N2 ⊆ B (as {u, v} is an opposite pair) and N3 ⊆ Sq+1 ∪ Sq+2 ∪ Sq+3.

We claim that N3 ⊆ B, i.e., each vertex x ∈ N3 is contained in a 4-cycle. We first see that for
any x ∈ N3, any vertex in N(x)\Vu has at least one neighbor in N(u), while v ∈ N(x)\Vu has at
least two neighbors in N(u). Thus using the definition of x ∈ N3, there are at least |N(x)\Vu|+ 1 =
d(x)−|N(x)∩Vu|+1 ≥ (q+1)−a+1 edges zy with z ∈ N(x) and y ∈ N(u). Since |N(u)| = q+1−a,
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there exists some vertex y ∈ N(u) with at least two neighbors in N(x). As x /∈ N(u), we see y 6= x
and thus we can easily find a 4-cycle containing x. This shows N3 ⊆ B.

Since v /∈ Vu and every two vertices in A have no common neighbor except v, we deduce that the
sets N(x)∩Vu are disjoint over all x ∈ N4∩A, where |N(x)∩Vu| ≥ a+1. So |N4∩A| ≤ |Vu|/(a+1) ≤
(c(u) + aq + 37)/(a + 1). Combining with the facts that |N1| ≤ 20 and A ⊆ N1 ∪ (N4 ∩ A) (as
N2 ∪N3 ⊆ B), we have

c′(v) = |B| = d(v)−|A| ≥ (q−17)−|N1|− |N4∩A| ≥ (q−37)− c(u) + aq + 37

a+ 1
=
q − c(u)− 37

a+ 1
−37.

As 0 ≤ a ≤ 18, we have c(u) + 19 · c′(v) ≥ c(u) + (a+ 1) · c′(v) ≥ q − 37(a+ 2) ≥ q − 740, as desired.
Suppose c(ui) ≤ 0.8q for all i ∈ [`]. For each {ui, vi}, we have c(ui) + 19 · c′(vi) ≥ q − 740,

which implies that c′(vi) ≥ 0.01q. We know that every two vertices vi, vj have at most 2
√
q common

neighbors. Using inclusion-exclusion, the number of vertices in
⋃
i∈[`]N(vi) which lie in a copy of C4

is at least 0.01`q −
(
`
2

)
· 2√q > 8q, a contradiction to the assumption #C4 < 2q.

We now show that there exists E∗ ⊆ E(G) with |E∗| ≤ 105 such that G′ = G−E∗ has at most 0.1q
copies of C4. Let A = {v ∈ V : c(v) > 0.8q}, B = A∪W and E∗ = E(G[B]). So |B| < 8q/0.8q+6 = 16
and |E∗| ≤ 105. We will show that such E∗ is the desired edge set. Let C be the set of 4-cycles in
G′ = G − E∗ and assume |C| > 0.1q. Suppose first that there exists some x ∈ B contained in more
than 0.001q copies of C4 in C. Each of these 4-cycles offers an opposite pair (ui, vi) with ui, vi ∈ V \B
and thus these opposite pairs span at least

√
0.001q > ` vertices in V \B. Then we can choose `

opposite pairs among them say {ui, vi} for i ∈ [`] such that all vi are distinct. By Claim 4.5, there is
a vertex u ∈ V \B with c(u) > 0.8q which contradicts the definition of B. Hence we may assume that
every x ∈ B is contained in at most 0.001q copies of C4 in C. Since |B| ≤ 15, there are at least 0.085q
copies of C4 in C disjoint with B. These C4’s span at least 4

√
8× 0.085q > ` vertices in V \B. Using

Claim 4.5, there exists some u′ ∈ V \B with c(u′) > 0.8q, again a contradiction. So |C| ≤ 0.1q.
Note that G′ has at most 0.1q copies of C4 with e(G′) ≥ e(G) − 105. We further define a

graph G′′ to be obtained from G′ by deleting one edge from each 4-cycle of G′. Thus we have
e(G′′) ≥ e(G′)− 0.1q ≥ q(q + 1)2/2− 0.1q − 104. Since G′′ is C4-free, by Theorem 1.2, there exists a
unique polarity graph H of order q such that G′′ ⊆ H.

We claim that G′ ⊆ H. Suppose not. Then there exists an edge e ∈ E(G′)\E(G′′) such that
e /∈ E(H). By Lemma 2.4, H+e contains at least q−1 copies of C4, any two of which are edge-disjoint
except sharing e. Note that G′′+e ⊆ H+e and as a subgraph of G′, G′′+e contains at most 0.1q copies
of C4. While preserving the edge e, one needs to delete at least 0.9q−1 edges fromH+e to deriveG′′+e.
Also as e(H) ≤ q(q+1)2/2, we see e(G′′) = e(G′′+e)−1 ≤ e(H+e)−(0.9q−1)−1 ≤ q(q+1)2/2−0.9q+1,
which contradicts the above lower bound on e(G′′). This proves G′ ⊆ H.

Finally, we are ready to complete Theorem 1.3. Suppose there are three edges e, e′, e′′ in E∗\E(H).
By Lemma 2.4, H+{e, e′, e′′} has 3(q−1) distinct copies of C4, q−1 copies of which are in H+{e}, q−1
copies of which in H+{e′} and q−1 copies of which in H+{e′′}. We also see that each edge in H can
appear in at most three of these cycles. SinceG′ ⊆ H and e(H)−e(G′) ≤ (e(G)+1)−e(G′) ≤ |E∗|−1 ≤
104, we know G′+{e, e′, e′′} can be obtained from H+{e, e′, e′′} by deleting at most 104 edges. These
together show that G ⊇ G′ + {e, e′, e′′} has at least 3(q − 1)− 312 > 2q copies of C4, a contradiction.
Now we may assume |E∗\E(H)| ≤ 2. Note that |E(G ∩ H)| + |E∗\E(H)| = |E(G)| ≥ |E(H)| + 1.
This shows that 1 ≤ |E∗\E(H)| ≤ 2 and by Lemma 2.3, e(H) = q(q+ 1)2/2 (i.e., H is orthogonal). If
|E∗\E(H)| = 1, then the above inequality implies that G is a graph obtained from H by adding one
new edge, as desired. So |E∗\E(H)| = 2 and e(G ∩H) = e(H) − 1. That is, G is obtained from H
by deleting an edge e′′ and adding two new edges e, e′. Now a refinement of Lemma 2.4 shows that G
contains at least 2q − 3 copies of C4. This proves Theorem 1.3.

The proof can be sharpened to tell a bit more. For instance, one can characterize all such graphs
with exactly q − 1, q, q + 1 or 2q − 3 many 4-cycles, respectively; see [13].
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Appendices

A Justification of the inequalities in the proof of Theorem 1.2.

Here we provide detailed calculations to show why the inequalities (2), (3) and (4) in the proof of
Theorem 1.2 do not hold. We are given q ≥ 109 in Theorem 1.2. First, we consider (2) by letting

g(∆) := 2(q2 + q)

((
q2 + q + 1−∆

2

)
− (q2 + q)

( q3+q2−0.4q−∆+2
q2+q

2

))
= (q2 + q − 1)∆2 − (2q4 + 2q3 + 2q2 + 2.8q − 4)∆ + (2q5 + 5.8q4 + 0.4q3 − 1.56q2 + 3.6q − 4).
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So g(x) is a quadratic function with the axis of symmetry x = q4+q3+q2+1.4q−2
q2+q−1

> q+ 3. Since q ≥ 109,

we have g(q + 3) = −1.2q4 − 0.6q3 + 3.64q2 + 2.2q− 1 < 0 and g(q2 + q) = −q6 + q5 + 3.8q4 − 5.4q3 −
1.36q2 + 7.6q − 4 < 0. These imply that g(∆) < 0 for all q + 3 ≤ ∆ ≤ q2 + q. Thus (2) does not hold.

Next we consider (3). Using n = q2 + q + 1, ∆ = q + 2 and e(G) ≥ 1
2q(q + 1)2 − 0.2q + 1, it is

straightforward to see that the expression(
n− 2∆

2

)
− (n− 2)

(2e(G)−2∆−2n+4
n−2

2

)
≤ 1

2(q2 + q − 1)
(−1.2q4 − 1.4q3 + 10.04q2 + 8.4q − 12)

is negative when q ≥ 109. So (3) does not hold.
Finally we consider (4). Similarly using the above bounds on n,∆ and e(G), we can derive that(
n− 2∆ + 1

2

)
− (n− 3)

(2e(G)−2∆−2n+4
n−3

2

)
≤ 1

2(q2 + q − 2)
(−0.2q4 − 0.4q3 + 4.04q2 + 2.8q − 12)

is also negative when q ≥ 109. So (4) does not hold. This completes the computational justification
needed in the proof of Theorem 1.2.
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