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Tight bounds towards a conjecture of Gallai

Jun Gao∗ Jie Ma†

Abstract

We prove that for n > k ≥ 3, if G is an n-vertex graph with chromatic number k

but any of its proper subgraphs has smaller chromatic number, then G contains at most

n− k + 3 copies of a clique of size k − 1. This answers a problem of Abbott and Zhou

and provides a tight bound on a conjecture of Gallai.

1 Introduction

A graph G is called k-critical if its chromatic number is k but any proper subgraph of G

has chromatic number less than k. This important notion was first introduced by G. A.

Dirac in 1952 (see [2]) and has been extensively studied over the past decades.

Throughout this paper, for a graph G and a positive integer ℓ, let tℓ(G) denote the

number of copies of the clique Kℓ on ℓ vertices contained in G. T. Gallai (see [6, 3])

conjectured that every k-critical graph G on n vertices satisfies that tk−1(G) ≤ n. This

holds trivially for k ≤ 3 (note that the only 3-critical graphs are odd cycles). Using an

elegant argument of linear algebra, Stiebitz [6] confirmed this for 4-critical graphs G by

showing t3(G) ≤ n. On the other hand, he [6] proved that for any k ≥ 4, there exist some

constant ck > 0 and arbitrarily large k-critical graphs G on n vertices such that tℓ(G) ≥ ckn
ℓ

holds for each ℓ ∈ {2, 3, ..., k−2}. Koester [5] provided an improvement for 4-critical planar

graphs G by showing that if G has n ≥ 6 vertices, then t3(G) ≤ n − 1. The cases k ≥ 5

of Gallai’s conjecture were resolved completely by Abbott and Zhou in [1], who extended

Stiebitz’s arguments and proved that any k-critical graph G on n vertices has tk−1(G) ≤ n

with equality only if n = k and G ∼= Kn. They [1] also showed that for any 4-critical graph
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G on n vertices, if G is not an odd wheel1, then t3(G) ≤ n − 2. For integers ℓ, d ≥ 2, let

W (ℓ, d) denote the graph obtained from a disjoint union of a clique Kd on d vertices and

a cycle Cℓ of length ℓ by joining each vertex of Kd to each vertex of Cℓ. Observe that if

n−k+3 is odd, then W (n−k+3, k−3) is an n-vertex k-critical graph with exactly n−k+3

copies of Kk−1. Abbott and Zhou [1] posed the following problem, which was stated as a

conjecture in Kézdy and Snevily [4].

Conjecture. (Abbott and Zhou [1]) Let G be an n-vertex k-critical graph with n > k ≥ 4.

Then tk−1(G) ≤ n− k + 3.

This (if true) would be tight for infinitely many integers n as indicated by the above

graph W (n− k+ 3, k − 3). The aforementioned result of Abbott and Zhou [1] on 4-critical

graphs implies the case k = 4, and the cases k ≤ 7 were confirmed by Su [7, 8]. The current

best bound for the general case was obtained by Kezdy and Snevily [4] as follows.

Theorem 1 (Kézdy and Snevily [4]). Let G be an n-vertex k-critical graph with n > k ≥ 4.

Then tk−1(G) < n− 3k/5 + 2.

The proof of this theorem uses linear algebra as well as some careful analysis from

structural graph theory. We mention that the above problems and results are discussed in

detail in Section 5.9 of the book of Jensen and Toft [1] (see its page 103).

In this paper, we confirm the conjecture of Abbott and Zhou by proving the following.

Theorem 2. Let n > k ≥ 4. Any n-vertex k-critical graph G has tk−1(G) ≤ n− k + 3.

Our proof uses linear algebra arguments, which originate from Stiebitz [6] and appear

in the subsequent works [1, 4]. We would like to emphasize that the core part of our proof

is different from [4], which we will elaborate in Section 2.

2 The proof

To present the proof of Theorem 2, we will first need to introduce some notation and several

existing results. Let G be an n-vertex graph with vertex set V (G) = {v1, v2, ..., vn}. For

a subset S ⊆ V (G), we define its incidence vector to be a 0-1 vector ~uS = (u1, u2, ..., un),

where ui = 1 if vi ∈ S and ui = 0 otherwise. The first lemma we need is given by Stiebitz [6],

which reveals the special role of the graph W (ℓ, k − 3) in k-critical graphs.

Lemma 3 (Stiebitz [6]). Let k ≥ 4. If G is a k-critical graph containing some W (ℓ, k − 3)

as a subgraph, then G ∼= W (ℓ, k − 3) and ℓ is an odd integer.

1An odd wheel is obtained from an odd cycle C by adding a new vertex x and joining x to every vertex

of C. Note that an odd wheel on n ≥ 6 vertices is a 4-critical planar graph and has exactly n− 1 triangles.
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The following lemma is a direct consequence of a result of Abbott and Zhou [1].

Lemma 4 (Abbott and Zhou [1], see its Lemma 2). Let k ≥ 4 and G be a k-critical graph

that does not contain any W (ℓ, k − 3) as a subgraph. Let ~x1, ~x2, ..., ~xr be incidence vectors

of all cliques Kk−1 in G. Then ~x1, ~x2, ..., ~xr are linearly independent over GF (2).

The following nice lemma relates the total number of cliques in a k-critical graph to the

number of cliques containing any fixed edge. The cases d ∈ {0, 1} were first obtained by

Su [8] and the general case was later proved by Kezdy and Snevily [4]. We shall mention

that our proof will only need the case d = 0.

Lemma 5 (Kezdy and Snevily [4]). Let G be an n-vertex k-critical graph. If there is an

edge in G that is contained in exactly d copies of Kk−1, then tk−1(G) ≤ n− (k − 2− d).

We are ready to present the proof of our result Theorem 2.

Proof of Theorem 2. Let n > k ≥ 4 be integers and let G be any k-critical graph on n

vertices. We aim to show that tk−1(G) ≤ n− k + 3.

If G contains some W (ℓ, k−3), then by Lemma 3, G ∼= W (ℓ, k−3) and ℓ = n−k+3 ≥ 4

is odd, from which the desired conclusion tk−1(G) = n−k+3 holds. Hence we may assume

that there is no copy of W (ℓ, k − 3) in G. In particular there is no Kk in G and G 6∼= Kk,

so by the result of Abbott and Zhou [1], we have tk−1(G) ≤ n − 1. For any x ∈ V (G), let

tk−1(x,G) denote the number of cliques Kk−1 in G containing x. Then we have

∑

x∈V (G)

tk−1(x,G) = (k − 1) · tk−1(G) ≤ (k − 1)(n − 1).

Let u be the vertex minimizing tk−1(u,G) among all vertices in G. By the above inequality,

we see that tk−1(u,G) ≤ k − 2.

Suppose that the neighborhood N(u) of the vertex u induces a complete subgraph of

G. In this case, as G does not contain any copy of Kk, we see |N(u)| ≤ k − 2. This is a

contradiction, as the minimum degree of a k-critical graph is at least k − 1.

Therefore, there exist two vertices v, x ∈ N(u) such that v, x are not adjacent in G. For

any edge e ∈ E(G), we denote tk−1(e,G) to be the number of copies of Kk−1 in G that

contain e. We may assume that tk−1(e,G) ≥ 1, i.e., any edge e is contained in at least one

copy of Kk−1 (as otherwise Lemma 5 implies that tk−1(G) ≤ n− k + 2).

Since v, x are not adjacent, the set of all cliques Kk−1 containing uv is disjoint from the

set of all cliques Kk−1 containing ux. So we have

tk−1(uv,G) + tk−1(ux,G) ≤ tk−1(u,G) ≤ k − 2.
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Because tk−1(ux,G) ≥ 1, we see that

tk−1(uv,G) ≤ k − 3. (1)

Claim 1. There exists a clique A = {a1, a2, ..., ak−1} of size k − 1 such that x ∈ A and

A ∩ {u, v} = ∅.

Proof. First we have by the minimality of tk−1(u,G) that tk−1(x,G) ≥ tk−1(u,G). There

also exists a clique Kk−1 containing uv, that, in particular, contains u but not x. These

two facts together indicate that there exists a clique A of size k − 1, that contains x but

not u. As xv /∈ E(G), this clique A cannot contain v as well, proving the claim.

Because G is k-critical, the subgraph G − uv is (k − 1)-colorable and thus there exists

a proper coloring φ : V (G) → {1, 2, ..., k − 1} of G− uv such that u and v are assigned the

same color, say the color k − 1. We now prove the following claim.

Claim 2. There exists a color c ∈ {1, 2, ..., k−2} such that every clique Kk−1 in G contains

a vertex that is colored by c under φ. We may assume c = k − 2.

Proof. To see this, we first note that each of the cliques Kk−1 in G not containing the edge

uv must use all colors in {1, 2, ..., k − 1} under φ. For any clique Kk−1 in G containing the

edge uv, it uses exactly k− 3 colors in {1, 2, ..., k− 2} under φ, for which one color needs to

be removed from the list {1, 2, ..., k− 2} for this claim. By (1), there are at most k− 3 such

cliques Kk−1, which together will remove at most k − 3 colors from the list {1, 2, ..., k − 2}

for this claim. This leaves at least one color c ∈ {1, 2, ..., k − 2} such that every clique in G

witnesses the color c under φ.

For each 1 ≤ i ≤ k − 1, let

Ci = {x ∈ V (G) : φ(x) = i}.

For the clique A = {a1, a2, ..., ak−1} from Claim 1, we may assume that ai ∈ Ci. Let us

recall the properties of A and it will be crucial for us to notice that

ak−1 ∈ Ck−1\{u, v}. (2)

Let r = tk−1(G) and let T1, T2, · · · , Tr be all cliques Kk−1 in G. For each 1 ≤ i ≤ r, we use

~xi to denote the incidence vector of Ti, and for each 1 ≤ j ≤ k− 3, we use ~yj to denote the

incidence vector of the single-vertex set {aj}.
2

2Note that here we only use k−3 incidence vectors from A to form ~yj ’s. In total, there are k−1 elements

of A that correspond to k− 1 colors. We have two special colors k− 1 and k− 2 set aside after Claim 1 and

Claim 2, respectively, which leaves k − 3 colors.
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The rest of the proof will be devoted to show the statement that

the vectors ~x1, ~x2, ..., ~xr, ~y1, ~y2, ..., ~yk−3 are linearly independent over GF (2).

Note that all these vectors are defined in an n-dimensional linear space over GF (2). If this

statement is proved to be true, then we have r+ (k − 3) ≤ n, from which the conclusion of

Theorem 2 that tk−1(G) = r ≤ n− k + 3 holds.

Suppose for a contradiction that there exist ~xq1 , ..., ~xqs , ~yp1 , ..., ~ypm such that

~xq1 + ~xq2 + · · · + ~xqs + ~yp1 + ~yp2 + · · · + ~ypm = ~0 (3)

over GF (2), where 1 ≤ qi ≤ r and 1 ≤ pj ≤ k − 3 for all possible 1 ≤ i ≤ s and 1 ≤ j ≤ m.

We may assume qi = i and pj = j for all i and j. By Lemma 4, ~x1, ~x2, ..., ~xr are linearly

independent over GF (2), so m ≥ 1. Since the ~yi are independent as well, we have s ≥ 1.

Let G = {T1, T2, · · · , Ts}. For any vertex w ∈ V (G) and any pair e ∈
(

V (G)
2

)

, let t(w,G)

and t(e,G) denote the number of cliques in G containing w and e, respectively.3 We observe

from (3) that for any vertex w ∈ V (G),

t(w,G) is odd if and only if w ∈ {a1, a2, ..., am}. (4)

As 1 ≤ m ≤ k− 3, we get that {a1, a2, ..., am}∩ (Ck−2∪Ck−1) = ∅, showing that t(w,G) for

all w ∈ Ck−2 ∪ Ck−1 are even (in particular, t(ak−1,G) is even). By Claim 2, every clique

in G contains exactly one vertex in Ck−2, so we derive that

|G| = |{(w, Tj) : w ∈ Ck−2 ∩ Tj and Tj ∈ G}| =
∑

w∈Ck−2
t(w,G) is even. (5)

We have seen from (4) that t(ak−1,G) is even. To reach the final contradiction, we

want to estimate the parity of t(ak−1,G) using a different approach, i.e., by looking at the

contributions of all edges between ak−1 and C1. This will be done in the coming claim.

Claim 3. t(a1ak−1,G) is odd, and for any w ∈ C1\{a1}, t(wak−1,G) is even.

Proof. Let w ∈ C1 be any vertex. If wak−1 /∈ E(G), then it is clear that w 6= a1 and

t(wak−1,G) = 0 that is even. So from now on we may assume wak−1 ∈ G. Then there

exists a proper coloring χw : V (G) → {1, 2, ..., k − 1} of G − wak−1 such that w and ak−1

are assigned the same color, say the color k − 1. It is easy to see that every clique Kk−1

containing the edge wak−1 has exactly two vertices (i.e., w and ak−1) with the color k − 1

under χw, while every other clique Kk−1 not containing wak−1 has exactly one vertex with

the color k − 1 under χw; let us call this property (⋆).

Suppose that w ∈ C1\{a1}. For any vertex z with χw(z) = k − 1, we have z = ak−1, or

z = w ∈ C1\{a1}, or z is not adjacent to ak−1. However in any case, such z is not contained

3If e /∈ E(G), then it is evident that we have t(e,G) = 0.
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in {a1, a2, ..., am}. By (4), we see that t(z,G) is even for any vertex z with χw(z) = k − 1.

Let Λ denote the number of pairs (z, Tj) satisfying z ∈ Tj ∈ G and χw(z) = k − 1. By the

above fact and the property (⋆), we get that

|G|+ t(wak−1,G) = Λ =
∑

z: χw(z)=k−1

t(z,G) is even.

As |G| is even (i.e., (5)), we then derive that t(wak−1,G) is even for any w ∈ C1\{a1}.

It remains to consider w = a1. By similar analysis, for any vertex z 6= w with χw(z) =

k− 1, we get that t(z,G) is even. This together with the fact that t(w,G) is odd imply that

|G|+ t(wak−1,G) =
∑

z: χw(z)=k−1

t(z,G) is odd.

Thus t(a1ak−1,G) = t(wak−1,G) is odd. This finishes the proof of Claim 3.

By fact (2), every clique K of size k− 1 in G containing ak−1 does not contain the edge

uv, so we have |K ∩ Ci| = 1 for each i ∈ {1, 2, ..., k − 1}. This shows that

t(ak−1,G) =
∑

w∈C1

t(wak−1,G),

which together with Claim 3 imply that t(ak−1,G) is odd. But this is a contradiction to (4)

as it oppositely says that t(ak−1,G) is even. The proof of Theorem 2 now is complete.

It would be very interesting to determine all n-vertex k-critical graphs G with tk−1(G) =

n−k+3 for n > k ≥ 4. For the case k = 4, it is known from the result of Abbott and Zhou

[1] that such 4-critical graphs can only be odd wheels. For k ≥ 5, it seems to be challenging

to say something about the structure of these k-critical graphs from the proof presented

here. We tend to believe that in case n− k + 3 is odd, the graph G = W (n− k + 3, k − 3)

is the only extremal graph for Theorem 2 satisfying that tk−1(G) = n− k + 3.

There also is a related conjecture proposed by Su [8], which states that any k-critical

graph of order n > k has an edge that is contained in at most one clique Kk−1 on k − 1

vertices. Su proved that this conjecture would imply Theorem 2, and this proof was extended

by Kézdy and Snevily [4] to Lemma 5. The cases 4 ≤ k ≤ 7 were verified by Su [8]. It is

interesting to have an alternative proof of Theorem 2 via this conjecture.
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