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Improvements on induced subgraphs of given sizes

Jialin He* Jie Ma† Lilu Zhao‡

Abstract

Given integers m and f , let S n(m, f ) consist of all integers e such that every n-vertex graph with e edges

contains an m-vertex induced subgraph with f edges, and let σ(m, f ) = lim supn→∞ |S n(m, f )|/
(

n

2

)

. As a

natural extension of an extremal problem of Erdős, this was investigated by Erdős, Füredi, Rothschild and

Sós twenty years ago. Their main result indicates that integers in S n(m, f ) are rare for most pairs (m, f ),

though they also found infinitely many pairs (m, f ) whose σ(m, f ) is a fixed positive constant. Here we aim

to provide some improvements on this study. Our first result shows that σ(m, f ) ≤ 1
2

holds for all but finitely

many pairs (m, f ) and the constant 1
2

cannot be improved. This answers a question of Erdős et. al. Our

second result considers infinitely many pairs (m, f ) of special forms, whose exact values of σ(m, f ) were

conjectured by Erdős et. al. We partially solve this conjecture (only leaving two open cases) by making

progress on some constructions which are related to number theory. Our proofs are based on the research of

Erdős et. al and involve different arguments in number theory. We also discuss some related problems.

1 Introduction

The Turán number ex(n,H) of a graph H denotes the maximum number of edges in an n-vertex graph which

does not contain H as a subgraph. Since the seminal work of P. Turán, the study of Turán numbers has been

a central theme in extremal graph theory (see the survey [4]). A natural generalization, which was proposed

by Erdős [2] in 1963 to reduce the structure of forbidden subgraphs to one parameter (namely, their size), asks

the maximum number of edges in an n-vertex graph where every m-vertex subgraph spans less than f edges.1

This density problem and its notorious hypergraph version (initialed in [1]) are related to difficult problems in

number theory (e.g. the work of Ruzsa-Szemerédi [10] on Roth’s theorem [9]) and remain unsolved in general.

Here we consider another natural extremal problem, which can be viewed as an “induced subgraph” ana-

logue of the above Erdős’ problem in [2]. This was first investigated by Erdős, Füredi, Rothschild and Sós [3].

Following their notation, we say (n, e) → (m, f ) if every n-vertex graph with e edges contains an induced m-

vertex subgraph with exactly f edges. Taking an example, if tp(n) denotes the number of edges in the complete

balanced p-partite graph on n vertices, then Turán’s theorem can be equivalently stated as that (n, e)→ (m,
(

m
2

)

)

if and only if e > tm−1(n). For a fixed pair (m, f ), let S n(m, f ) = {e : (n, e)→ (m, f )} and let

σ(m, f ) = lim sup
n→∞

|S n(m, f )|
(

n
2

) . (1)

Since S n(m, f ) is a subset of
{

0, 1, ...,
(

n
2

)}

which cannot contain 0 and
(

n
2

)

simultaneously, the fraction on the

right hand of (1) is at most 1 and thus any pair (m, f ) satisfies 0 ≤ σ(m, f ) ≤ 1. In [3], Erdős, Füredi, Rothschild

and Sós gave a number of constructions arising from extremal graph theory, which reveal that for most pairs

(m, f ), the pairs (n, e) satisfying e ∈ S n(m, f ) are relatively rare (in sense of the measure σ(m, f )). Their main

result is as follows. Throughout the rest, letA = {(2, 0), (2, 1), (4, 3), (5, 4), (5, 6)}.
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1Here and throughout this paper, m and f are integers satisfying m ≥ 2 and 0 ≤ f ≤

(

m

2

)

.
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Theorem 1.1 ([3]). If (m, f ) < A, then σ(m, f ) ≤ 2
3
; otherwise, σ(m, f ) = 1.

Motivated by this result, the authors [3] raised the question if

“σ(m, f ) > 1
2

holds for only finitely many pairs”. (2)

Along the way to prove Theorem 1.1, an interesting intermediate result in [3] (see Construction 8 therein) says

that the majority of the pairs (m, f ) satisfy σ(m, f ) = 0. On the other hand, they [3] also proved the following

“positive” result by bounding σ(m, f ) below by a positive constant for infinitely many pairs (m, f ).

Theorem 1.2 ([3]). Let m, f be integers such that there exist positive integers a, b, c satisfying f =
(

a
2

)

=
(

m
2

)

−
(

b
2

)

= c(m − c). Suppose that r is the smallest integer such that f can be written in the following form

f =

r+1
∑

i=1

(

xi

2

)

, where integers xi ≥ 1 satisfy

r+1
∑

i=1

xi = m. (3)

Then σ(m, f ) ≥ 1
r
.Moreover, for r ≥ 9 it holds that σ(m, f ) = 1

r
.

Erdős, Füredi, Rothschild and Sós [3] further conjectured that the inequality in Theorem 1.2 should be

an equality for any r.2 Note that for any integers m, f from Theorem 1.2, we have (m, f ) < A and thus by

Theorem 1.1, any integer r chosen from (3) must satisfy r ≥ 2. We summarize this as the following.

Conjecture 1.3 ([3]). Let m, f be integers from Theorem 1.2 and let r ≥ 2 be from (3). Then σ(m, f ) = 1
r
.

This remains open for 2 ≤ r ≤ 8. It is worth pointing out that in addition to powerful results in extremal

graph theory, the proof of each of the above two theorems in [3] used tools from number theory.

In this paper we provide improvements on the above two results of [3]. We would like to emphasize that

part of our proofs is based on elementary and analytic methods in number theory. Our first result answers the

question of (2) in the affirmative. In addition, we show that the constant 1/2 cannot be lower and thus is sharp.

Theorem 1.4. Any pair (m, f ) < A satisfies σ(m, f ) ≤ 1
2
. On the other hand, there are infinitely many pairs

(m, f ) with σ(m, f ) = 1
2
.

The proof of Theorem 1.4 uses bounds on σ(m, f ) established by Erdős et. al in [3]. As a corollary,

Theorem 1.4, together with the lower bound of Theorem 1.2, implies the verification of Conjecture 1.3 for the

case r = 2. Our second result confirms more cases of Conjecture 1.3.

Theorem 1.5. Conjecture 1.3 holds whenever r = 2 or r ≥ 5.

This is mainly built on a key concept introduced in [3] (see (7) in Section 4), which is related to number

theory. We will present two proofs of Theorem 1.5, one for r ≥ 7 using elementary arguments and another for

r ≥ 5 using analytic arguments. We defer a more detailed discussion on Theorem 1.5 to Section 4.

The rest of the paper is organized as follows. In Section 2, we collect some results from the literature. In

Section 3, we prove Theorem 1.4. In Section 4, we prove Theorem 1.5. In Section 5, we consider a conjecture

of Erdős et. al [3] on the existence of limn→∞ |S n(m, f )|/
(

n
2

)

and conclude with some remarks.

2 Preliminaries

We now prepare some results needed in later sections. The following lemma on σ(m, f ) is collected from

Sections 4 and 8 of [3] (see the equations (4.1), (4.4), (8.1), (8.3), (8.4) and (8.6) therein, respectively).

Lemma 2.1 ([3]). (i). σ(m, f ) = σ
(

m,
(

m
2

)

− f
)

.

(ii). If σ(m, f ) > 1
2
, then ⌊ (m−1)2

4
⌋ ≤ f ≤ ⌊m2

4
⌋.

2See the paragraph before the proof of Theorem 3 in [3].
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(iii). Write f =
(

b
2

)

− b′ for integers b, b′ with 0 ≤ b′ < b − 1. If 1
2
b < b′ < b − 1, then σ(m, f ) ≤ 1

2
.

(iv). Write f =
(

ℓ
2

)

+ ℓ′ for integers ℓ, ℓ′ with 0 ≤ ℓ′ < ℓ < m. If ℓ′ ≥ m − ℓ, then σ(m, f ) = 0.

(v). Let D(m) denote the set of integers xy+ z, where x, y, z are nonnegative integers satisfying that x+ y ≤ m

and if z ≥ 1 then x + y + z ≤ m − 1. If σ(m, f ) > 1
2
, then f ∈ D(m).

The following concentration inequality can be found in [5] (see its Corollary 2.2).

Lemma 2.2 ([5]). Let
(

[N]
n

)

be the set of n-subset of {1, 2, ...,N} and let h :
(

[N]
n

)

→ R be a given function. Let

C be a uniformly random element of
(

[N]
n

)

. Suppose that there exists α > 0 such that |h(A) − h(A′)| ≤ α for any

A, A′ ∈
(

[N]
n

)

with |A ∩ A′| = n − 1. Then for any real t > 0, P(|h(C) − E[h(C)]| ≥ t) ≤ 2 exp
(

− 2t2

min{n,N−n}α2

)

.

We also need two lemmas from number theory. Let N denote the set of non-negative integers.

Lemma 2.3 (Bennett, see [3]). The equation 2
(

x
2

)

=

(

y2

2

)

has a unique solution (x, y) = (3, 2) in positive integers.

Lemma 2.4 (Gauss). Define G = {x2
+ y2
+ z2 : ∀x, y, z ∈ N}. Then we have N\G = {4a(8b + 7) : a, b ∈ N}.

3 Proof of Theorem 1.4

Recall that A = {(2, 0), (2, 1), (4, 3), (5, 4), (5, 6)}. Our first goal is to show that any pair (m, f ) < A satisfies

σ(m, f ) ≤ 1
2
. Suppose for a contradiction that there exists some pair (m, f ) < A with σ(m, f ) > 1

2
.

By Lemma 2.1 (ii), we have
⌊

(m − 1)2

4

⌋

≤ f ≤
⌊

m2

4

⌋

. (4)

We first assert that m ≥ 8. Considering m = 7, by (4) it suffices to consider 9 ≤ f ≤ 12. By Lemma 2.1

(i), we see σ(7, 10) = σ(7, 11) and σ(7, 9) = σ(7, 12). Using Lemma 2.1 (iii) (with f = 7, b = 6, b′ = 4), it

follows that σ(7, 10) = σ(7, 11) ≤ 1
2
; on the other hand, Lemma 2.1 (iv) (with f = 12, ℓ = 5, ℓ′ = 2) implies

that σ(7, 9) = σ(7, 12) = 0. The cases for m ≤ 6 can be similarly verified as follows. By (4), Lemma 2.1 (i) and

the fact (m, f ) < A, it suffices to consider: σ(3, 2) for m ≤ 3, σ(4, 2) = σ(4, 4) for m = 4, σ(5, 5) for m = 5,

and σ(6, 6) = σ(6, 9) and σ(6, 7) = σ(6, 8) for m = 6. Then one can apply Lemma 2.1 (iv) to show that each of

these above pairs (m, f ) satisfies σ(m, f ) = 0. So we have m ≥ 8.

From now on, we express m ∈ {2k, 2k + 1} for some integer k ≥ 4, and write f in the form of f =
(

ℓ
2

)

+ ℓ′

for the unique integers ℓ, ℓ′ with 0 ≤ ℓ′ < ℓ. Since f <
(

m
2

)

, we have ℓ < m. By Lemma 2.1 (iv), we can derive

that 0 ≤ ℓ′ ≤ m − ℓ − 1.

We claim that ℓ′ = 0 and thus f =
(

ℓ
2

)

. Suppose on the contrary that ℓ′ ≥ 1. We can also write f in the form

f =
(

ℓ+1
2

)

−(ℓ−ℓ′) where 0 < ℓ−ℓ′ < ℓ. By Lemma 2.1 (iii), if ℓ+1
2
< ℓ−ℓ′ < ℓ, then σ(m, f ) ≤ 1

2
, a contradiction.

Thus, we have ℓ − ℓ′ ≤ ℓ+1
2

. This together with ℓ′ ≤ m − ℓ − 1 implies that ℓ ≤ 2m−1
3

. We discuss according to

the parity of m. First, let us consider when m = 2k. Then (4) implies k2 − k ≤ f =
(

ℓ
2

)

+ ℓ′ ≤
(

ℓ
2

)

+ 2k − ℓ − 1,

and solving this, we can obtain

3 +
√

8k2 − 24k + 17

2
≤ ℓ ≤ 2m − 1

3
=

4k − 1

3
.

Rearranging both sides, it gives (k − 1)(k − 4) ≤ 0 and thus 1 ≤ k ≤ 4. Note that k ≥ 4. So we have k = 4 and

further, we can derive that m = 8, ℓ = 5, ℓ′ = 2 and f = 12. Since 16 =
(

7
2

)

− 5, by Lemma 2.1 (i) and (iii),

σ(m, f ) = σ(8, 12) = σ(8, 16) ≤ 1
2
, a contradiction. Hence, we may assume that m = 2k + 1. In this case, (4)

infers that k2 ≤ f =
(

ℓ
2

)

+ ℓ′ ≤
(

ℓ
2

)

+ 2k − ℓ, which implies that

3 +
√

8k2 − 16k + 9

2
≤ ℓ ≤ 2m − 1

3
=

4k + 1

3
.
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The above inequality gives k = 2, a contradiction to that k ≥ 4. This proves the claim that ℓ′ = 0.

By (4), we have k2 − k ≤ f =
(

ℓ
2

)

≤ k2 for m = 2k and k2 ≤ f =
(

ℓ
2

)

≤ k2
+ k for m = 2k + 1. This leads to

√
2k − 1 <

1 +
√

8k2 − 8k + 1

2
≤ ℓ ≤ 1 +

√
8k2 + 1

2
<
√

2k + 1 for m = 2k, and

√
2k <

1 +
√

8k2 + 1

2
≤ ℓ ≤ 1 +

√
8k2 + 8k + 1

2
<
√

2k + 2 for m = 2k + 1.

Since
√

2k < N for k ∈ N\{0}, we see that

ℓ ∈ {⌊
√

2k⌋, ⌊
√

2k⌋ + 1} for m = 2k and ℓ ∈ {⌊
√

2k⌋ + 1, ⌊
√

2k⌋ + 2} for m = 2k + 1. (5)

Next we prove that f =
(

ℓ
2

)

=
1
2

(

m
2

)

. Suppose on the contrary that f ′ :=
(

m
2

)

− f , f . Since σ(m, f ′) =

σ(m, f ) > 1
2
, repeating the above arguments, we can conclude that f ′ =

(

g
2

)

, where g is a positive integer instead

of ℓ satisfying (5). Since ⌊ (m−1)2

4
⌋ ≤ f , f ′ ≤ ⌊m2

4
⌋, it follows that | f − f ′| ≤ ⌊m2

4
⌋ − ⌊ (m−1)2

4
⌋ = k. As g , ℓ and

both g, ℓ satisfy (5), we can derive that

k ≥ | f − f ′| =
∣

∣

∣

∣

∣

∣

(

ℓ

2

)

−
(

g

2

)
∣

∣

∣

∣

∣

∣

≥ min{ℓ, g} ≥
⌊√

2k
⌋

,

which is a contradiction for k ≥ 4. This proves that 2
(

ℓ
2

)

= 2 f =
(

m
2

)

, as desired.

Finally we show that m must be a perfect square. By Lemma 2.1 (v), we see f ∈ D(m). That is, f can be

written as f = xy+z for nonnegative integers x, y and z satisfying that x+y ≤ m and if z ≥ 1 then x+y+z ≤ m−1.

If z ≥ 1, as m ≥ 8, we can infer that f = xy + z ≤ ⌊ (m−1−z)2

4
⌋ + z ≤ ⌊ (m−2)2

4
⌋ + 1 < ⌊ (m−1)2

4
⌋, a contradiction

to (4). Thus we have z = 0 and f = xy where x + y ≤ m. If x + y ≤ m − 1, then we have f = xy ≤ ⌊ (m−1)2

4
⌋

which contradicts that f = 1
2

(

m
2

)

. So we must have f = x(m − x) for some nonnegative integer x. Solving

x(m − x) = f = 1
2

(

m
2

)

, we get x = 1
2
(m ±

√
m) which implies that m is a perfect square.

Therefore, we have 2
(

ℓ
2

)

=

(

m
2

)

where m is a perfect square. By Lemma 2.3, this equation has the unique

solution (ℓ,m) = (3, 4) in positive integers, which contradicts that m ≥ 8. This completes the proof of the first

assertion of Theorem1.4 that any (m, f ) < A satisfies σ(m, f ) ≤ 1
2
.

To show the second assertion of Theorem 1.4, we construct an infinite sequence of pairs (m, f ) with

σ(m, f ) = 1
2
. In view of the first assertion, it is enough to show infinitely many pairs (m, f ) with σ(m, f ) ≥ 1

2
.

Using Theorem 1.2, we can further reduce to find infinitely many (m, f ) satisfying the following properties:

(A). f can be expressed as f =
(

a
2

)

=

(

m
2

)

−
(

b
2

)

= c(m − c) for some positive integers a, b, c,

(B). f can be expressed as f =
(

x1

2

)

+

(

x2

2

)

+

(

x3

2

)

for integers xi ≥ 1 with x1 + x2 + x3 = m, and

(C). f cannot be expressed as f =
(

y1

2

)

+

(

y2

2

)

for integers yi ≥ 1 with y1 + y2 = m.

To do so, we will make use of the coming two equations, which can be easily verified for any integer t ≥ 1:

(

5t + 2

2

)

=

(

3t + 1

2

)

+

(

4t + 2

2

)

and

(

3t + 1

2

)

=

(

2t + 1

2

)

+

(

2t + 1

2

)

+

(

t

2

)

.

We define m = 5t + 2 and f =
(

3t+1
2

)

. By the above equations, we see that (B) automatically holds for such

(m, f ), and one can choose integers a = 3t + 1 and b = 4t + 2 in (A). Next, we show that such (m, f ) also

satisfies (C); as otherwise, by Jensen’s inequality, we can derive that for any t ≥ 1,

f =

(

y1

2

)

+

(

5t + 2 − y1

2

)

≥
(

⌊2.5t⌋ + 1

2

)

+

(

⌈2.5t⌉ + 1

2

)

>

(

3t + 1

2

)

= f ,
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a contradiction. We are left to find a positive integer c such that
(

3t+1
2

)

= c(5t + 2 − c), which implies c =

1
2
(5t + 2 −

√
7t2 + 14t + 4). Note that for even integers t ≥ 1, if

√
7t2 + 14t + 4 is an integer, then c must be

a positive integer. Hence, it suffices to find infinitely many even integers t ≥ 1 such that
√

7t2 + 14t + 4 is an

integer. By letting x =
√

7t2 + 14t + 4 and y = t + 1, our task is now to find infinitely many positive integer

solutions (x, y) to the Pell’s equation

x2 − 7y2
= −3, (6)

where x is even and y is odd. Note that (x, y) = (2, 1) is a positive solution to (6). We also observe that

(x + y
√

7)(8 + 3
√

7) = (8x + 21y) + (3x + 8y)
√

7 and if (x, y) is a positive integer solution to (6), then so is

(8x + 21y, 3x + 8y). Combining these facts together, we obtain infinite positive integer solutions (xk, yk) to (6),

where xk + yk

√
7 = (2 +

√
7)(8 + 3

√
7)k for all k ≥ 0. Using the recurrences that xk+1 = 8xk + 21yk and

yk+1 = 3xk + 8yk, it is easy to see that x2k is even and y2k is odd.

To give an explicit formula for the above construction, let tk = y2k − 1 and we can derive that

tk =

(

0

1

)T (

8 21

3 8

)2k (

2

1

)

− 1.

Now let mk = 5tk + 2 and fk =
(

3tk+1
2

)

. By the above analysis, we have σ(mk, fk) = 1
2

for all k ≥ 1. This finishes

the proof of Theorem 1.4.

4 Proof of Theorem 1.5

In this section, we complete the proof of Theorem 1.5. First, let us prove the case r = 2.

Proof of Theorem 1.5 for r = 2. Let m, f be integers from Theorem 1.2 with r = 2. Then (m, f ) < A and by

Theorem 1.4, we have σ(m, f ) ≤ 1
2
. By Theorem 1.2, we get σ(m, f ) ≥ 1

2
. Thus σ(m, f ) = 1

2
.

To prove other cases of Theorem 1.5, we introduce the following concept given in [3]. Let

C(n, r) =















r
∑

i=1

(

ni

2

)

:

r
∑

i=1

ni = n and ni ∈ N for 1 ≤ i ≤ r















. (7)

So C(n, r) consists of all possible numbers of edges in an n-vertex graph formed by at most r cliques. A direct

application of the Cauchy-Schwarz inequality shows that the minimum element in C(n, r) is at least n2/2r−n/2,

thus implying |C(n, r)| ≤ n2

2
− n2

2r
. The following result was given in [3] implicitly, which reveals the importance

of C(n, r) for Conjecture 1.3, that is, if C(n, r) is almost full, then Conjecture 1.3 holds for such r.

Lemma 4.1 ([3]). Let r ≥ 2. If |C(n, r)| = n2

2
− n2

2r
+ o(n2), then Conjecture 1.3 holds for the case r.

Proof. Let m, f be integers from Theorem 1.2 and let r ≥ 2 be from (3). Suppose |C(n, r)| = n2

2
− n2

2r
+

o(n2). Take any e ∈ C(n, r). Then there exists an n-vertex graph G with e edges formed by at most r cliques.

Clearly, any m-vertex subgraph of G is a subgraph consisting of at most r cliques. By the choice of (m, f ),

f ∈ C(m, r + 1)\C(m, r). This shows that any m-vertex induced subgraph of G cannot have f edges. So e <

S n(m, f ). That also says, S n(m, f )∩C(n, r) = ∅. Therefore, we have σ(m, f ) ≤ lim supn→∞
(

1 − |C(n, r)|/
(

n
2

))

=

lim supn→∞
(

1
r
+ o(1)

)

=
1
r
, and thus the equality holds for the case r of Conjecture 1.3. �

Brueggeman and Hildebrand (unpublished, see [3]) showed that there exists a constant cr > 0 such that
[

n2

2r
+ crn,

n2 − n

2
− crn

3/2

]

⊆ C(n, r) for each r ≥ 9.

This, together with Lemma 4.1, was applied by Erdős et. al in [3] to derive the equality σ(m, f ) = 1
r

for r ≥ 9 in

Theorem 1.2. By the above discussion, to complete the proof of Theorem 1.5, it suffices to prove the following.

Theorem 4.2. Let r ≥ 5. Then we have |C(n, r)| = n2

2
− n2

2r
+ o(n2).

We remark (as we shall see later in the proof of Theorem 4.3) that if Theorem 4.2 holds for the case s, then

it holds for any r ≥ s.
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4.1 An elementary proof for r ≥ 7

We first prove the following weak version of Theorem 4.2 by elementary arguments.

Theorem 4.3. Let r ≥ 7. Then for some constant cr > 0, we have
[

n2

2r
+ crn,

n2−n
2
− crn

3/2
]

⊆ C(n, r).

Proof. We first show that it suffices to handle the case r = 7. Suppose that
[

n2

2r
+ crn,

n2−n
2
− crn

3/2
]

⊆ C(n, r)

holds. We claim that this will lead to the analog statement for the case r + 1. For any n0 ∈ C
(

n − ⌊ n
r+1
⌋, r

)

, we

have n0 +

(⌊ n
r+1
⌋

2

)

∈ C(n, r + 1), that is, C
(

n − ⌊ n
r+1
⌋, r

)

+

(⌊ n
r+1
⌋

2

)

⊆ C(n, r + 1). Also because C(n, r) ⊆ C(n, r + 1),

a careful calculation would give
[

n2

2(r+1)
+ cr+1n, n2−n

2
− cr+1n3/2

]

⊆ C(n, r + 1) for some cr+1 > 0, as claimed.

For r = 7, we will prove that

[

n2

14
+

n

2
+ 2100,

n2 − n

2
− 66n3/2

]

⊆ C(n, 7).

Let m ∈
[

n2

14
+

n
2
+2100, n2−n

2
−66n3/2

]

be an integer. Note that m ∈ C(n, 7) if and only if there exist non-negative

integers n1, n2, . . . , n7 such that
∑7

i=1 n2
i
= 2m+ n and

∑7
i=1 ni = n. Therefore, in order to prove m ∈ C(n, 7), we

only need to find integer solutions to

3
∑

i=1

(

x2
i + (2t − xi)

2)
+ (n − 6t)2

= 2m + n, (8)

where 0 ≤ xi ≤ 2t (1 ≤ i ≤ 3) and 6t ≤ n. The equation (8) is equivalent to

2

3
∑

i=1

(xi − t)2
= 2m + n − (n − 6t)2 − 6t2.

In view of Lemma 2.4, the equation (8) is solvable if there exists t ∈ N such that

6t ≤ n, 0 ≤ 2m + n − (n − 6t)2 − 6t2 ≤ t2 and 2m + n − (n − 6t)2 − 6t2 ∈ 2G, (9)

where G is from Lemma 2.4 and the second inequality insure that 0 ≤ xi ≤ 2t for 1 ≤ i ≤ 3.

We denote f (t) := f (t; m, n) = 2m+n− (n−6t)2−6t2
= −42(t− n

7
)2− n

7
2
+n+2m.When 0 ≤ t ≤ n

7
, f (t) is an

increasing function with f (0) = −n2
+n+2m and f (n

7
) = − n

7
2
+n+2m. Since n2

14
+

n
2
+2100 ≤ m ≤ n2−n

2
−66n3/2,

we have f (0) < 0 and f (n
7
) > f (n

7
− 10) = −4200 − n

7
2
+ n + 2m ≥ 0. Now we can choose an integer t0 with

0 ≤ t0 ≤ n
7
− 10 such that f (t0) ≤ 0 and f (t0 + 1) > 0. Next we show there exists an integer t0 + 1 ≤ t ≤ t0 + 10,

satisfying (9).

We first claim that t0 > 11
√

n− 1. Indeed, suppose that t0 ≤ 11
√

n− 1, then we can see that 0 < f (t0 + 1) ≤
f (11
√

n) = −5082n + 132n3/2 − n2
+ n + 2m ≤ −5082n < 0, which is a contradiction. It is easy to see that

f (t+1)− f (t) = −84t−42+12n, and if t > 11
√

n−1, then f (t+10)− f (t) = −840t−4200+120n < t2. Thus, for

any t0+1 ≤ t ≤ t0+10 ≤ n/7, we have 6t ≤ 6n/7 < n and 0 < f (t0+1) ≤ f (t) ≤ f (t0+10) ≤ f (t0)+ t2
0
≤ t2

0
< t2.

It is left to explain that one can choose t with t0 + 1 ≤ t ≤ t0 + 10 such that f (t) ∈ 2G.
Note that f (t) is alwalys an even integer. Also note that 8b + 7 ≡ 7, 15 (mod 16), 4(8b + 7) ≡ 12 (mod 16)

and 4a(8b + 7) ≡ 0 (mod 16) for all a ≥ 2. Thus by Lemma 2.4, it suffices to find f (t) such that
f (t)

2
.

0, 7, 12, 15 (mod 16). It is clear that we can choose t′ with t0+1 ≤ t′ ≤ t0+8, such that t′+n ≡ 0 (mod 8). Then

f (t′ + 1) − f (t′)

2
= −42t′ − 21 + 6n ≡ 11 (mod 16) and

f (t′ + 2) − f (t′ + 1)

2
= −42(t′ + 1) − 21 + 6n ≡ 1 (mod 16).

We can easily see from above that there exists t ∈ {t′, t′ + 1, t′ + 2} such that
f (t)

2
. 0, 7, 12, 15 (mod 16). This

completes the proof of Theorem 4.3.
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4.2 Proof of Theorem 4.2

In this subsection, we will use analytic method to prove Theorem 4.2. Let f and g be two functions on the same

domain, where f takes complex values and g takes non-negative real values. We use the Vinogradov symbols

f ≪ g, if there exists a constant C > 0 such that | f | ≤ Cg.3

As the previous analysis in the proof of Theorem 4.3, we may assume that r = 5 in the following proof.

Indeed, since C(n, r) ⊆ C(n, r + 1) and C
(

n − ⌊ n
r+1
⌋, r

)

+

(⌊ n
r+1
⌋

2

)

⊆ C(n, r + 1), then by the definition of C(n, r)

and induction on r, we can get the desired result for r + 1.

Let E(n) =
{

n2

10
+

n2

log n
≤ m ≤ n2−n

2
− n2

log n
: R(m) = 0

}

, with

R(m) =
∑

1≤x1 ,x2,x3 ,x4≤ n
5
− n

log n

x2
1
+x2

2
+x2

3
+x2

4
+(x1+x2+x3+x4−n)2

=2m+n

1, (10)

where x1, x2, x3, x4 are integers. Note that R(m) > 0 implies that m ∈ C(n, 5). Therefore, to prove Theorem 4.2,

it is enough to prove |E(n)| = o(n2).We will show the following stronger result. Let Z be the set of integers.

Theorem 4.4. |E(n)| = O
(

n2− 1
50
)

.

We denote N = n
5
− n

log n
. For positive integers x1, x2, x3, x4, we use ~x={x1, x2, x3, x4} to denote vectors in

Z4. Let Q(~x) = Q(x1, x2, x3, x4) = x2
1
+ x2

2
+ x2

3
+ x2

4
+ (x1+ x2+ x3+ x4−n)2. For a vector ~y={y1, y2, y3, y4} ∈ Z4,

the notation ~x ≤ ~y means xi ≤ yi for all 1 ≤ i ≤ 4, and 1 ≤ ~x ≤ C means 1 ≤ xi ≤ C for all 1 ≤ i ≤ 4. For

convenience, we write e(α) = e2πiα. Define

f (α) =
∑

1≤~x≤N

e
(

αQ(~x)
)

. (11)

Then by (10) and (11), we have

R(m) =

∫ 1+ 1
n

1
n

f (α)e
( − α(2m + n)

)

dα. (12)

We define

M(X) =
⋃

1≤q≤X

⋃

1≤a≤q
(a,q)=1

[

a

q
− X

qn2
,

a

q
+

X

qn2

]

and m(X) =

[

1

n
, 1 +

1

n

]

\M(X).

Note that the above union is pairwise disjoint for X ≤ n
2
. Also note that both

∫

M(L)
f (α)e

(

− α(2m + n)
)

dα

and
∫

m(L)
f (α)e

(

−α(2m+n)
)

dα take real values. We first estimate the integral onm(X) in the following lemma.

Lemma 4.5. Let L ≤ n
2
. Then

∑

n2

10
+

n2

log n
≤m≤ n2−n

2
− n2

log n

∣

∣

∣

∫

m(L)
f (α)e

(

− α(2m + n)
)

dα
∣

∣

∣

2
= O

(

n6(log n)5

L2

)

.

To show this lemma, we need the following claim.

Claim 4.6. Suppose that |α − a
q
| ≤ 1

q2 with (a, q) = 1. Then

| f (α)|2 ≪ n8(log n)4

(

1

q
+

1

n
+

q

n2

)4

.

Proof. This can be proved by the standard difference argument. Note that

| f (α)|2 =
∑

1≤~x, ~y≤N

e
(

α
(

Q(~x) − Q(~y)
))

=

∑

−N+1≤~h≤N−1

∑

1≤~y≤N

1≤~y+~h≤N

e
(

α
(

Q(~y + ~h) − Q(~y)
))

.

3Here and in the rest, | f | denotes the modulus of a complex number f .
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By triangle inequality, we deduce that

| f (α)|2 ≤
∑

−N+1≤~h≤N−1

∣

∣

∣

∣

∑

1≤~y≤N

1≤~y+~h≤N

e
(

α
(

Q(~y + ~h) − Q(~y)
))

∣

∣

∣

∣
.

Fix ~h and let h =
∑4

i=1 hi. Note that

∣

∣

∣

∣

∑

1≤~y≤N

1≤~y+~h≤N

e
(

α
(

Q(~y + ~h) − Q(~y)
))

∣

∣

∣

∣

≤
∣

∣

∣

∣

∑

1≤~y≤N

1≤~y+~h≤N

e
(

2α

4
∑

j=1

(h + h j)y j

)

∣

∣

∣

∣

≤
4

∏

j=1

∣

∣

∣

∣

∑

1≤y j≤N

1−h j≤y j≤N−h j

e
(

2α(h + h j)y j

)

∣

∣

∣

∣

.

Write ‖β‖ = minm∈Z |β − m|. Since
∑

1≤y j≤N

1−h j≤y j≤N−h j

e
(

2α(h + h j)y j

)

≪ min
(

N, ‖2α(h + h j)‖−1), we obtain

| f (α)|2 ≪
∑

−N+1≤~h≤N−1

4
∏

j=1

min
(

N, ‖2α(h + h j)‖−1) ≪
∑

−10(N−1)≤~t≤10(N−1)

w(~t)

4
∏

j=1

min
(

N, ‖αt j‖−1),

where w(~t) =
∑

−N+1≤~h≤N−1, 2(h+h j)=t j , ∀1≤ j≤4

1. It is easy to see that w(~t) ∈ {0, 1}, and thus we have

| f (α)|2 ≪
∑

−10(N−1)≤~t≤10(N−1)

4
∏

j=1

min
(

N, ‖αt j‖−1)
=

















∑

−10(N−1)≤t≤10(N−1)

min
(

N, ‖αt‖−1)

















4

(13)

As |α − a
q
| ≤ 1

q2 and (a, q) = 1, by Lemma 2.2 in [11] (with X = 10N, Y = N/10), we have

∑

−10(N−1)≤t≤10(N−1)

min
(

N, ‖αt‖−1)≪ N2(log N)

(

1

q
+

1

N
+

q

N2

)

. (14)

This, together with (13), (14) and the definition of N, completes the proof of Claim 4.6. �

Proof of Lemma 4.5. We can see that
∫

m(L)
f (α)e

( − α(2m + n)
)

dα is the Fourier coefficient of the function

which is f (α) on m(L) and 0 otherwise. Hence, by Bessel’s inequality, we have

∑

n2

10
+

n2

log n
≤m≤ n2−n

2
− n2

log n

∣

∣

∣

∣

∫

m(L)

f (α)e
( − α(2m + n)

)

dα
∣

∣

∣

∣

2
≤

∫

m(L)

| f (α)|2 dα.

For X < n
2
, we define n(X) = M(2X)\M(X), and for X = n

2
, we write n(X) =

[

1
n
, 1+ 1

n

]

\M(X). Let t = ⌈log2
n

2L
⌉.

By the dyadic argument and the definition of n(X), we can see that m(L) ⊆ n(L)∪n(2L)∪ · · · ∪n(2t−1L)∪n(n
2
).

Thus we only need to prove that for L ≤ X ≤ n
2
,
∫

n(X)
| f (α)|2 dα ≪ n6(log n)4

X2 .

By Dirichlet’s approximation theorem (see Lemma 2.1 in [11]), for α ∈ n(X), there exist a, q ∈ N such

that |α − a
q
| ≤ X

qn2 , 1 ≤ a ≤ q ≤ n2

X
and (a, q) = 1. Since α < M(X), we further have q > X. Now it follows

from Claim 4.6 that supα∈n(X) | f (α)|2 ≪ n8(log n)4

X4 . Note that the measure of n(X) is |n(X)| ≪ X2

n2 , so we obtain
∫

n(X)
| f (α)|2 dα ≪ n6(log n)4

X2 , which completes the proof of Lemma 4.5.

In order to estimate the contribution fromM(X) in (12), we define

S (q, a) =
∑

1≤~x≤q

e

(

a

q
Q(~x)

)

and T (q; m) =
1

q4

∑

1≤a≤q
(a,q)=1

S (q, a)e

(

−a

q
(2m + n)

)

. (15)

The following claim can be proved by some standard argument (see Lemmas 2.10 and 2.11 in [11]).
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Claim 4.7. T (q; m) is multiplicative as a function of q.

Also T (q; m) takes real values. In the next claim we bound |T (q; m)| from above for prime powers q.

Claim 4.8. Assume that p is a prime and k ∈ Z+. Then |T (pk; m)| ≤ cp · p−k
(

1− 1
p

)

, where c2 = 4, c5 =
√

5 and

cp = 1 if p ∤ 10.

Proof. We can deduce that

|S (q, a)|2 =
∑

1≤~x, ~h≤q

e

(

a

q

(

Q(~x + ~h) − Q(~x)
)

)

≤
∑

1≤~h≤q

∣

∣

∣

∣

∑

1≤~x≤q

e
(a

q

(

2

4
∑

j=1

(h1 + · · · + h4 + h j)x j

))

∣

∣

∣

∣

≤ q4S q,

where S q is the number of solutions to 2(h1 + · · · + h4 + h j) ≡ 0 (mod q) (1 ≤ j ≤ 4) with 1 ≤ h1, ..., h4 ≤ q.

The last inequality holds by the fact that
∑q

j=1
e
(

a
q
t j
)

= q, when t ≡ 0 (mod q) and
∑q

j=1
e
(

a
q
t j
)

= 0 otherwise.

Solving the congruence equations, we can get that S 2k = 16, S 5k = 5 and S pk = 1 if p ∤ 10, which implies that

|S (2k, a)| ≤ 4 · 22k, |S (5k, a)| ≤
√

5 · 52k, and |S (pk, a)| ≤ p2k if p ∤ 10. Note that |{1 ≤ a ≤ pk : (a, pk) = 1}| =
pk

(

1 − 1
p

)

. This completes the proof of Claim 4.8 by (15). �

In case (q, 10) = 1, we can get the following better bound for |T (q; m)|.

Claim 4.9. Assume that (q, 10) = 1. Then |T (q; m)| ≤ 1
q2

(

q, n2 − 5(2m + n)
)

.

Proof. By Claim 4.7, we only need to prove the claim for q as a power of some prime p. So we may assume

that q = pk, where p is a prime with (p, 10) = 1 and k ≥ 1 is an integer. Let r̄ denotes an integer r′ satisfying

rr′ ≡ 1 (mod q). Let A = I4×4 + J4×4, where I is the identity matrix, and all the entries in J are 1. Note that

det(A) = 5 and Q(~x) = ~x
T

A~x − 2n(x1 + x2 + x3 + x4) + n2. Let ~b = 5̄nA∗~1, where A∗ is the adjugate matrix of

A.We get that Q(~y + ~b) = ~y
T

A~y + 5̄n2, and S (q, a) =
∑

1≤~y≤q

e
(

a
q
~y

T
A~y

)

e
(

a
q
5̄n2

)

=
∑

1≤~y≤pk

e
(

a
pk~y

T
A~y

)

e
(

a
pk 5̄n2

)

.

Let ~y = ~upk−1
+ ~v. When k ≥ 2, we have that

∑

1≤~y≤pk

e

(

a

pk
~y

T
A~y

)

=

∑

1≤~u≤p

∑

1≤~v≤pk−1

e

(

a

pk

(

2~u
T

pk−1A~v + ~v
T

A~v
)

)

= p2
∑

1≤~v≤pk−1

2A~v≡~0 (mod p)

e

(

a

pk
~v

T
A~v

)

.

The last equality holds since
∑

1≤~u≤p e
(

a
p
2~u

T
A~v

)

= p2, when 2A~v ≡ ~0 (mod p) and
∑

1≤~u≤p e
(

a
p
2~u

T
A~v

)

= 0,

otherwise. For (p, 10) = 1, 2A~v ≡ ~0 (mod p) if and only if ~v ≡ ~0 (mod p). Thus we have
∑

1≤~y≤pk e
(

a
pk~y

T
A~y

)

=

p2 ∑

1≤~y≤pk−2 e
(

a
pk−2~y

T
A~y

)

, for k ≥ 2. By Lemma 26 in [6] and its proof, we have
∑

1≤~y≤p e
(

a
p
~y

T
A~y

)

=

(

5
p

)

p2,

where
(

5
p

)

denotes the Jacobi symbol. Thus we get that
∑

1≤~y≤pk e
(

a
pk~y

T
A~y

)

=

(

5
pk

)

p2k for all k ≥ 1, and

S (q, a) =
(

5
q

)

q2e
(

a
q
5̄n2

)

. Then we can see that |T (q; m)| = 1
q2

∣

∣

∣

∣

∑

1≤a≤q
(a,q)=1

e
(

a
q

(

5̄n2−(2m+n)
)

)

∣

∣

∣

∣
≤ 1

q2

(

q, n2−5(2m+n)
)

.

The last inequality is a standard upper bound of the Ramanujan sum. �

Define G(m) =
∑∞

q=1 T (q; m). By Claims 4.7, 4.8 and 4.9, G(m) is absolutely convergent.

Claim 4.10. Suppose that n2−5(2m+n) , 0. Then there is an absolute constant c > 0 such that G(m) ≥ c
log log n

.

Proof. Let ∆ = n2 − 5(2m + n), P1 =
{

prime p : p ∤ 10∆
}

, P2 =
{

prime p : p | ∆ and p ∤ 10
}

. By Claim 4.7,

we have G(m) =
∏

p prime

(

1 +
∑∞

k=1 T (pk; m)
)

. Combining Claims 4.8 and 4.9, we get that

1 +

∞
∑

k=1

T (pk; m) ≥











































1 −
∑∞

k=1
1

p2k = 1 − 1
p2−1
≥

(

1 − 1
p2

)2
if p ∈ P1,

1 −∑∞
k=1

1
pk = 1 − 1

p−1
if p ∈ P2,

1 −∑∞
k=1 p−k+ 1

2

(

1 − 1
p

)

= 1 − p−
1
2 > 0 if p = 5,

1 + T (p; m) −
∑∞

k=2 p−k+2
(

1 − 1
p

)

= T (2; m) = 1 if p = 2.
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We first see that
∏

p∈P1

(

1 − 1
p2

)2
≥∏

p

(

1 − 1
p2

)2
= ζ(2)−2. Then there exist constants c1, c2 > 0 such that

G(m) ≥ c1 ·
∏

p∈P2

(

1 − 1

p − 1

)

= c1e
∑

p∈P2
log

(

1− 1
p−1

)

≥ c1e
−

∑

p∈P2
1

p−1 ≥ c2e
−

∑

p|∆
1
p .

Let Y = log∆. From Theorem 6.16 [8], we have
∑

p≤Y
1
p
≤ c3 log log Y for some constant c3 > 1 and thus there

exists constant c4 > 0 such that

∑

p prime
p|∆

1

p
=

∑

p|∆
p≤Y

1

p
+

∑

p|∆
p>Y

1

p
≤

∑

p≤Y

1

p
+

1

Y

∑

p|∆
p>Y

1 ≤ c3 log log Y +
1

Y
· log∆

log Y
≤ c4 log log log∆,

which implies that G(m) ≥ c/ log log∆ and completes the proof of Claim 4.10. �

Define I(β) =
∫

[0,N]4 e
(

βQ(~y)
)

d~y and I(m) =
∫

+∞
−∞ I(β)e

( − β(2m + n)
)

dβ. Note that I(m) takes real val-

ues. Using integration by parts, we have I(β) ≪ |β|−2. By Fourier inverse formula (see [7], p460), we have

n2(log n)−10 ≪ I(m)≪ n2. For the contribution fromM(X), we have the following.

Lemma 4.11. Let L = n
1
50 . Then

∫

M(L)
f (α)e

(

− α(2m + n)
)

dα = G(m)I(m) + O(n2− 1
100 ).

Proof. Let f ∗(α) = 1
q4 S (q, a)I(α − a

q
). Suppose that |α − a

q
| ≤ L

qn2 with 1 ≤ a ≤ q ≤ L and (a, q) = 1, then the

partial summation formular (see Lemma 2.6 in [11] with ci = 1, X = N) implies f (α) = f ∗(α) + O(N3L). Thus

we get that

∫

M(L)

f (α)e
(

− α(2m + n)
)

dα =

∫

M(L)

f ∗(α)e
(

− α(2m + n)
)

dα + O
(

N3L · |M(L)|
)

= R∗ + O(N3L3n−2),

where |M(L)| denotes the measure ofM(L). And we can deduce from above that

R∗ =
∑

q≤L

∑

1≤a≤q
(a,q)=1

∫

|α− a
q
|≤ L

qn2

f ∗(α)e
( − α(2m + n)

)

dα =
∑

q≤L

T (q; m) · J∗(m),

where J∗(m) =
∫

|β|≤ L

qn2

I(β)e
( − β(2m + n)

)

dβ = J(m) + O
(qn2

L

)

using the definition of J(m) and I(β) ≪ |β|−2.

It is well-known (see Theorem 6.25 [8]) that for any ǫ > 0, there exists cǫ > 0 such that τ(n) ≤ cǫn
ǫ , where

τ(n) denotes the number of factors of n. Let ∆ = n2 − 5(2m + n) and q = 2a5bq1 with a, b ≥ 0 and (q1, 10) = 1.

By Claims 4.7, 4.8 and 4.9, we have q|T (q; m)| ≤ 4(q1 ,∆)

q1
. Thus

∑

q≤L
T (q; m)O

( qn2

L

)

≤
∑

q≤L

(q,∆)

q
O
(

(log L)2n2

L

)

. Since

∑

q≤L

1

q
(q,∆) =

∑

d|∆
d≤L

∑

q≤L
(q,∆)=d

d

q
≤

∑

d|∆
d≤L

∑

k≤ L
d

1

k
≤ log L ·

∑

d|∆
d≤L

1 ≤ cǫ∆
ǫ log L = O

(

(log L)n2ǫ
)

,

we can get that
∑

q≤L

T (q; m)O
( qn2

L

)

= O
(

(log L)3n2+2ǫ

L

)

. Since
∑

q≤L

T (q; m) = G(m) − ∑

q>L

T (q; m) and J(m) = O(n2),

by the same method above, we can get that
∑

q>L
T (q; m)J(m) = O

(

(log L)3n2+2ǫ

L

)

. Combining the above two bounds,

we get that R∗ = G(m)I(m) + O
(

(log L)3n2+2ǫ

L

)

. By choosing ǫ = 1
400
, we finish the proof of Lemma 4.11. �

Now we are ready to prove Theorem 4.4, which would complete the proof of Theorem 1.5.

Proof of Theorem 4.4. Let L = n
1
50 . Let W denote the set of integers m ∈

[

n2

10
+

n2

log n
, n2−n

2
− n2

log n

]

such that
∣

∣

∣

∣

∫

m(L)
f (α)e

( − α(2m + n)
)

dα
∣

∣

∣

∣

≥ n2(log n)−11. Since L = n
1
50 ≤ n

2
, by Lemma 4.5, we have

|W | = O

(

n6(log n)5L−2

n4(log n)−22

)

= O
(

n2(log n)27L−2).
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For integers m ∈
[

n2

10
+

n2

log n
, n2−n

2
− n2

log n

]

\W , by Claim 4.10, Lemma 4.11 and J(m)≫ n2(log n)−10, we have

R(m) =

∫ 1+ 1
n

1
n

f (α)e
( − α(2m + n)

)

dα =

∫

m(L)

f (α)e
( − α(2m + n)

)

+

∫

M(L)

f (α)e
( − α(2m + n)

)

= G(m)J(m) + O(n2− 1
100 ) + O(n2(log n)−11)≫ n2(log n)−10(log log n)−1 > 0.

In particular, we see that E(n) ⊆ W and |E(n)| ≤ |W | = O(n2(log n)27L−2) = O(n2− 1
50 ). This completes the proof

of Theorem 4.4.

5 Concluding remarks

We now discuss some open problems related to the study of induced subgraphs of given sizes here.

Erdős, Füredi, Rothschild and Sós [3] also conjectured that the limsup in (1) is actually a limit. That

says, the limit σ∗(m, f ) = limn→∞ |S n(m, f )|/
(

n
2

)

exists for every pair (m, f ). As mentioned earlier, a result of

[3] implies that the majority of pairs (m, f ) satisfy σ(m, f ) = 0, and in these cases, it is clear that σ∗(m, f )

exists (for being zero). For the pairs (m, f ) from Theorem 1.2 with r = 2 or r ≥ 5, by Theorem 1.5 we have

σ(m, f ) = 1
r
, and in fact, it also holds that σ∗(m, f ) = 1

r
. Despite of these supportive results, it seems to be a

challenging problem to determine the existence of this limit for any pair (m, f ) with σ(m, f ) > 0. We prove

the following lemma towards this conjecture, which says that it would suffice to find some large S n(m, f ) with

most of its integers appearing in few consecutive intervals.

Lemma 5.1. Let (m, f ) be a pair with σ = σ(m, f ) > 0. If for any ǫ > 0, there exists some integer n such that

at least (σ − ǫ)
(

n
2

)

integers in S n(m, f ) belong to a union of at most ǫ
√

n intervals of consecutive integers, then

the limit σ∗(m, f ) exists.

Proof. Fix any ǫ > 0. Then there exists some n such that S n(m, f ) contains disjoint intervals I1, I2, ..., Ik of

consecutive integers, where k ≤ ǫ
√

n and
∑k

j=1 |I j| ≥ (σ − ǫ)
(

n
2

)

. Let I j =
[

c j

(

n
2

)

, d j

(

n
2

)

]

for each j ∈ [k],

where
∑k

j=1(d j − c j) ≥ σ − ǫ. Let N be any sufficiently large integer and let E =
⋃k

j=1 I′
j
, where I′

j
=

[

(

c j +

2n−
1
2
)

(

N
2

)

,
(

d j − 2n−
1
2
)

(

N
2

)]

for j ∈ [k].

We claim that E ⊆ S N(m, f ). To see this, consider any E ∈ E (say E ∈ I′
j

for some j ∈ [k]) and any

N-vertex graph G with E edges. We aim to show that G contains an n-vertex induced subgraph with e edges,

where e ∈ I j. For an n-subset A of V(G), let e(A) be the number of edges in the induced subgraph G[A]. Then

for any A, A′ ∈
(

V(G)
n

)

with |A∩A′| = n− 1, we can easily check that |e(A)− e(A′)| ≤ n− 1. Let C be a uniformly

random element of
(

V(G)
n

)

. It is easy to see that E[e(C)] = E ·
(

N−2
n−2

)

/
(

N
n

)

=
E

(N
2)

(

n
2

)

. By Lemma 2.2 (with α = n− 1

and t = n
1
2 (n − 1)), we get that

P

(∣

∣

∣

∣
e(C) − E[e(C)]

∣

∣

∣

∣
≥ n

1
2 (n − 1)

)

≤ 2 exp
(

− 2n(n − 1)2

min{n,N − n}(n − 1)2

)

≤ 2e−2 < 1.

Therefore, there must exist an n-subset B of V(G) such that
∣

∣

∣

∣

e(B) − E

(N
2)

(

n
2

)

∣

∣

∣

∣

< n
1
2 (n − 1). This gives that

c j

(

n

2

)

≤ E
(

N
2

)

(

n

2

)

− n
1
2 (n − 1) ≤ e(B) ≤ E

(

N
2

)

(

n

2

)

+ n
1
2 (n − 1) ≤ d j

(

n

2

)

,

where E ∈ I′
j
=

[

(

c j + 2n−
1
2
)

(

N
2

)

,
(

d j − 2n−
1
2
)

(

N
2

)]

. So G[B] is an n-vertex induced subgraph of G, where

e(B) ∈ I j ⊆ S n(m, f ). Then G[B] (and thus G) contains an m-vertex induced subgraph with f edges. This

shows that E ∈ S N(m, f ) and thus E ⊆ S N(m, f ), proving the claim.

Since
∑k

j=1(d j − c j) ≥ σ − ǫ and k ≤ ǫ
√

n, we see that for sufficiently large N,

|S N(m, f )| ≥ |E| =
k

∑

j=1

|I′j | =
k

∑

j=1

(

d j − c j − 4n−
1
2

)

(

N

2

)

≥
(

σ − ǫ − 4kn−
1
2

)

(

N

2

)

≥ (

σ − 5ǫ
)

(

N

2

)

.
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This shows that for any ǫ > 0, we have lim inf
N→∞

|S N (m, f )|
(N

2)
≥ σ − 5ǫ. Hence lim inf

N→∞
|S N (m, f )|

(N
2)
≥ σ = lim sup

N→∞

|S N (m, f )|
(N

2)
,

which implies that σ∗(m, f ) = lim
N→∞

|S N (m, f )|
(N

2)
exists. This completes the proof of Lemma 5.1. �

It also seems natural to consider the same problem for hypergraphs. Let r ≥ 3 and m, f be integers satisfying

0 ≤ f ≤
(

m
r

)

. Let S r
n(m, f ) consist of all integers e such that every n-vertex r-graph with e edges contains an

m-vertex induced subhypergraph with f edges, and let σr(m, f ) = lim supn→∞ |S r
n(m, f )|/

(

n
r

)

. Compared with

the graph case (i.e., Theorem 1.4), it is much easier to show the following.

Lemma 5.2. Let r ≥ 3. If (m, f ) < {(r, 0), (r, 1)}, then σr(m, f ) ≤ 1 − r!/rr; otherwise, σr(m, f ) = 1.

In fact, it is enough to use the construction of complete r-partite r-graphs for all but finitely many pairs (m, f ).

The authors of [3] mentioned the question if limn→∞
(

max0≤ f≤(m
2)
σ(m, f )

)

= 0. It was not, as answered by

their Theorem 1.2. A direct corollary of Theorem 1.4 shows that lim supm→∞
(

max0≤ f≤(m
2)
σ(m, f )

)

=
1
2
, but it

is not known yet if limm→∞
(

max0≤ f≤(m
2)
σ(m, f )

)

exists or not.

We conclude this paper with a remark that by a more careful refinement of the arguments in Subsection 4.2,

one can show that |C(n, r)| = n2

2
− n2

2r
+ o(n2) holds for r = 4 and odd integers n. It would be interesting to

understand the remaining cases r = 3, 4 in Conjecture 1.3.
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[1] W. G. Brown, P. Erdős and V. T. Sós, Some extremal problems on r-graphs, New directions in the theory

of graphs (Proc. 3rd Ann Arbor Conf., Univ. Michigan, 1971), Academic Press, New York, 1973, pp.

53–63.
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