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Abstract

Let I(F, n) denote the maximum number of induced copies of a graph F in an n-vertex graph. The
inducibility of F , defined as i(F ) = limn→∞ I(F, n)/

(
n

v(F )

)
, is a central problem in extremal graph theory.

In this work, we investigate the inducibility of Turán graphs F . This topic has been extensively studied in
the literature, including works of Pippenger–Golumbic [27], Brown–Sidorenko [7], Bollobás–Egawa–Harris–
Jin [5], Mubayi, Reiher, and the first author [23], and Yuster [32]. Broadly speaking, these results resolve
or asymptotically resolve the problem when the part sizes of F are either sufficiently large or sufficiently
small (at most four).

We complete this picture by proving that for every Turán graph F and sufficiently large n, the value
I(F, n) is attained uniquely by the m-partite Turán graph on n vertices, where m is given explicitly in terms
of the number of parts and vertices of F . This confirms a conjecture of Bollobás–Egawa–Harris–Jin [5]
from 1995, and we also establish the corresponding stability theorem. Moreover, we prove an asymptotic
analogue for Ik+1(F, n), the maximum number of induced copies of F in an n-vertex Kk+1-free graph,
thereby completely resolving a recent problem of Yuster [32]. Finally, our results extend to a broader class
of complete multipartite graphs in which the largest and smallest part sizes differ by at most on the order
of the square root of the smallest part size.

1 Introduction

A fundamental problem in extremal graph theory is to determine the maximum number of induced copies
of a given graph F among all n-vertex graphs. Formally, given two graphs F and G, let I(F,G) denote the
number of induced copies of F in G, that is, the number of subsets S ⊆ V (G) of size v(F ) such that the
induced subgraph G[S] is isomorphic to F . Here, v(F ) denotes the number of vertices of F . For every positive
integer n, let

I(F, n) := max {I(F,G) : v(G) = n} .

The inducibility of F is then defined as

i(F ) := lim
n→∞

I(F, n)/
(
n

v(F )

)
.

A systematic study of the inducibility problem for graphs was initiated in a foundational work of Pippenger–
Golumbic [27], in which they established several general properties of inducibility and determined the
inducibility of complete bipartite graphs with part sizes differing by at most one.

Determining I(F, n) (or even i(F )) is rather difficult in general. For example, the inducibility of the path on
four vertices remains wide open (see, e.g., [10, 9]). For small graphs, bounds on the inducibility of graphs on
4, 5, and 6 vertices have been obtained in several works, including Exoo [10], Hirst [18], Even-Zohar–Linial [9],
Pikhurko–Sliačan–Tyros [26], and Bodnár et al. [4], some of which employ the computer-assisted flag algebra
machinery of Razborov [28]. A particularly interesting result obtained by Balogh–Hu–Lidickỳ–Pfender [2] is
the determination of the inducibility of the 5-cycle C5, which confirms a special case of an old conjecture of
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Pippenger–Golumbic [27] on the inducibility of cycles. This conjecture remains open for longer cycles, and
improved upper bounds were obtained in [17, 19].

For general graphs, results of Yuster [31] and Fox–Huang–Lee [11] imply that for almost all graphs F ,

i(F ) =
v(F )!

v(F )v(F ) − v(F )
,

where the lower bound construction arises from nested blowups of F itself. Answering a question of Bollobás–
Egawa–Harris–Jin [5] asymptotically, Hatami–Hirst–Norine [15] established that if F is a sufficiently large
balanced blowup of some graph K, then the extremal graph for I(F, n) is essentially a blowup of K. Extending
the results [24, 20, 12] on the edge-statistic conjecture of Alon–Hefetz–Krivelevich–Tyomkyn [1], Ueltzen [30]
recently classified all graphs with high inducibility.

In this work, we focus on the case where F is a complete multipartite graph, and more specifically, an almost
balanced complete multipartite graph. This class of graphs has already been studied extensively since the
work of Pippenger–Golumbic [27]. Throughout this work, for positive integers a1, . . . , ar, let Ka1,...,ar denote
the complete r-partite graph with part sizes a1, . . . , ar. For positive integers ℓ ≥ r, the Turán graph Tr(ℓ)
denotes the complete r-partite graph on ℓ vertices in which the largest and smallest part sizes differ by at
most one. The cases ℓ = r and r = 1 correspond to the complete graph on r vertices and the empty graph on
ℓ vertices, respectively; both are trivial cases in the inducibility problem. So, we assume for the remainder of
this work that ℓ ≥ r + 1 and r ≥ 2.

Results of Pippenger–Golumbic [27] (also Bollobás–Nara–Tachibana [6]) show that for bipartite Turán graphs
F , the value of I(F, n) is attained by bipartite Turán graphs T2(n). Using Zykov symmetrization [33] together
with additional arguments, Brown–Sidorenko [7] showed that for every complete multipartite graph F , an
extremal graph for I(F, n) can always be chosen from the class of complete multipartite graphs; moreover, if F
is complete bipartite, then the number of parts can be taken to be at most two. Nevertheless, determining the
number of parts and the ratios of part sizes in the extremal construction for a complete multipartite graph F
remains difficult in general. Consequently, the inducibility of complete multipartite graphs is still largely open.

The family of Turán graphs Tr(ℓ) has received substantial attention in the literature. Refining an asymptotic
result of Brown–Sidorenko [7] for the balanced complete r-partite graph Kr(t) := Tr(rt), Bollobás–Egawa–
Harris–Jin [5] proved that when t ≥ (1 + o(1)) ln r, the r-partite Turán graph Tr(n) is the unique extremal
graph, whereas this is not the case if t < ln(r+1)

r ln(1+1/r) . In the last section of [5], they remarked that (with
f(n,Kr(t)) below corresponding to I(Kr(t), n) in our notation):

One may also venture the conjecture that for every pair (r, t), r ≥ 4, t ≥ 2, if n is sufficiently large
then for some s ≥ 0, Tr+s(n) is the unique extremal graph for f(n,Kr(t)).

This conjecture has been open for three decades. There has been recent progress on the case when F is a
Turán graph with each part of small size. Mubayi, Reiher, and the first author [23, Theorem 1.13] determined
the inducibility when F is a Turán graph in which all but one part have size one. This result was extended
very recently by Yuster [32, Theorem 1.6], who determined the inducibility when F is an r-partite Turán
graph with at most 3r + 1 vertices (in particular, all parts have size at most four). He also remarked that
it would be highly interesting to determine whether the bound 3r + 1 can be removed, and posed a specific
problem concerning the inducibility of Turán graphs in clique-free graphs (see Problem 1.2 for details).

The main results of this work confirm the conjecture of Bollobás–Egawa–Harris–Jin [5] and resolves the above
problem of Yuster [32] in a stronger form.

1.1 Inducibility of almost balanced graphs

Let F = Ka1,...,ar be the complete r-partite graph with part sizes a1, . . . , ar, and assume that a1 ≥ · · · ≥ ar ≥ 1.
Let ℓ := a1 + · · ·+ ar denote the number of vertices of F . We say that F is almost balanced if it is not the
complete graph and (

a1 − ar
2

)
< ar, (1)

or, equivalently, a1 < ar +
1
2

(
1 +

√
8ar + 1

)
. It is key to observe that for ℓ ≥ r + 1, every Turán graph Tr(ℓ)

is almost balanced. Define the constant (depending only on F )

κF :=

(
ℓ

a1,...,ar

)
sym(a1, . . . , ar)

=
ℓ!

a1! · · · ar! · sym(a1, . . . , ar)
. (2)
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Here, sym(a1, . . . , ar) denotes the size of the symmetry group of the multiset {{a1, . . . , ar }}. In other words,
if we let b1, . . . , bt denote the distinct elements of the multiple set {{a1, . . . , ar }}, occurring with multiplicities
r1, . . . , rt, respectively, then

sym(a1, . . . , ar) = r1! · · · rt!.

Let mr,ℓ denote the unique1 integer that maximizes the discrete function f : [r,∞) → R defined by

f(k) :=
(k − 1)r−1

kℓ−1
=

(k − 1) · · · (k − r + 1)

kℓ−1
, for every integer k ∈ [r,∞). (3)

The main result of this subsection is the following theorem, which confirms the conjecture of Bollobás–Egawa–
Harris–Jin [5] in a more general setting.

Theorem 1.1. Suppose that F is an almost balanced complete r-partite graph on ℓ ≥ r + 1 vertices, and let
m = mr,ℓ. Then

i(F ) = κF · (m− 1)r−1

mℓ−1
.

Moreover, there exists a constant NF such that for all n ≥ NF , the m-partite Turán graph Tm(n) is the unique
extremal graph for I(F, n).

In the balanced case F = Kr(t) (i.e., every part of F has the same size t), we are able to determine the exact
value of I(F, n) for every positive integer n (see Theorem 5.6).

It is clear that I(F,G) = I(F̄ , Ḡ), where F̄ and Ḡ denote the complements of F and G, respectively. Thus
I(F, n) = I(F̄ , n), and hence, Theorem 1.1 also determines the inducibility of graphs that are vertex-disjoint
unions of cliques, in which the smallest clique size ar and the largest clique size a1 satisfy (1).

1.2 Inducibility of almost balanced graphs in H-free graphs

Given a graph H, we say that a graph G is H-free if it does not contain H as a (not necessarily induced)
subgraph. Let IH(F, n) denote the maximum number of induced copies of F in an H-free n-vertex graph, i.e.,

IH(F, n) := max
{
I(F,G) : v(G) = n and G is H-free

}
.

The H-free inducibility of F is then defined as

iH(F ) := lim
n→∞

IH(F, n)/
(
n

v(F )

)
.

When H = Kk+1 is the complete graph on k + 1 vertices, we simply write Ik+1(F, n) and ik+1(F ) instead of
IKk+1

(F, n) and iKk+1
(F ).

A classical example is the Erdős Pentagon Problem [8], which asks for the determination of I3(C5, n), that
is, the maximum number of (induced) copies of C5 in an n-vertex K3-free graph. This problem was solved
independently by Grzesik [14] and Hatami–Hladký–Kráľ–Norine–Razborov [16] for large n, and subsequently
by Lidický–Pfender [21] for all n.

Very recently, Yuster [32] initiated a systematic study of inducibility problem in H-free graphs. Among many
other results, he determined (see [32, Theorem 1.6]), for all k ≥ r, the value of ik+1(F ) when F is an r-partite
Turán graph on at most 3r + 1 vertices. He also remarked that it would be highly interesting to determine
whether the analogous result holds for all r-partite Turán graphs, that is, without the restriction on the
number of vertices.

Problem 1.2 ([32, Problem 1.8]). Is it true that for all 2 ≤ r < ℓ, there exists t = t(r, ℓ) such that the following
holds? Let F be the r-partite Turán graph on ℓ vertices. For all k ≤ t, ik+1(F ) is attained asymptotically by
the k-partite Turán graphs, and for all k ≥ t+ 1, ik(F ), and hence also i(F ), is attained asymptotically by the
t-partite Turán graphs.

In the following theorem, we completely resolve Yuster’s problem (in fact, for a broader family) and determine
the value of t = t(r, ℓ), namely the integer mr,ℓ defined in the previous subsection.

1The uniqueness will be proved in Lemma 3.2.
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Theorem 1.3. Suppose that F is an almost balanced complete r-partite graph on ℓ ≥ r + 1 vertices, and let
m = mr,ℓ. Then

ik+1(F ) =

{
κF · (k−1)r−1

kℓ−1 , if k ∈ [r,m− 1],

κF · (m−1)r−1

mℓ−1 , if k ∈ [m,∞).

1.3 Perfect stability

An interesting phenomenon, and also a very useful tool in extremal combinatorics, is stability, introduced
in the seminal work of Simonovits [29]. Partly inspired by the work of Norin–Yepremyan [25], a general
framework for establishing a strong form of stability in certain graph extremal problems that can be solved
using the Zykov symmetrization was developed recently by Liu–Pikhurko–Sharifzadeh–Staden [22]. This
framework will be used to prove the second assertion (i.e. the exact result) of Theorem 1.1.

For two graphs G and H with the same number of vertices, the edit distance edit(G,H) between G and H is
the minimum number of edges one needs to add or remove from G to make it isomorphic to H.

Definition 1.4 ([22, Definition 2]). The inducibility problem for a complete multipartite graph F is perfectly
stable if there exists a constant C > 0 such that for every n-vertex graph G with n ≥ C, there is an n-vertex
complete multipartite graph H satisfying

edit(G,H) ≤ C · I(F, n)− I(F,G)(
n

v(F )

) (
n

2

)
.

In particular, perfect stability of F implies that for all sufficiently large n, every extremal graph for the
inducibility problem I(F, n) is complete multipartite.

By the result of Brown and Sidorenko [7, Proposition 1], the inducibility problem for complete multipartite
graphs can be solved using Zykov symmetrization. Thus, the framework from [22] can be applied to this
problem. Indeed, as applications, Liu–Pikhurko–Sharifzadeh–Staden [22] established perfect stability for the
inducibility problem of F when F is a complete bipartite graph, a complete r-partite graph with each part of
size t > 1 + ln r, and for small cases such as K2,1,1,1 and K3,1,1. They further conjectured [22, Conjecture 1]
that the inducibility problem is perfectly stable for every complete multipartite graph F .

We confirm their conjecture for all almost balanced complete multipartite graphs.

Theorem 1.5. Suppose that F is an almost balanced complete multipartite graph. Then the inducibility
problem I(F, n) is perfectly stable.

Organization: In Section 2, we present some necessary definitions and preliminary results. In Section 3, we
determine the values of i(F ) and ik+1(F ) for almost balanced complete multipartite graphs F . For technical
reasons, the proofs are divided into two parts: first, we handle the case ℓ ≤ 2r − 1 (Subsection 3.2), and then
the case ℓ ≥ 2r (Subsection 3.3). In Section 4, we present the proof of Theorem 1.5 (see Subsections 4.2
and 4.3). In Section 5, we determine the unique extremal construction for I(F, n) for sufficiently large n,
thereby completing the proof of Theorem 1.1. The last section (Section 6) contains some concluding remarks.

2 Preliminaries

In this section, we introduce some necessary definitions and preliminary results.

Let k be a positive integer. For every real number z, define
(
z
k

)
= (z)k/k!, where

(z)k :=

{
0, if z ≤ k − 1,

z · · · (z − k + 1), if z > k − 1.

For a positive integer k, let [k] := {1, . . . , k}. We denote by N the set of natural numbers {0, 1, 2, . . . }, and
by N+ the set of positive integers {1, 2, 3, . . . }. Given a (possibly infinite) set S ⊆ N, let (S)r denote the
collection of ordered r-tuples with pairwise distinct entries, that is,

(S)r :=
{
(x1, . . . , xr) ∈ Sr : xi ̸= xj for all distinct i, j ∈ [r]

}
.
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In particular,

(N)r :=
{
(x1, . . . , xr) ∈ Nr : xi ̸= xj for all distinct i, j ∈ [r]

}
,

(N+)r :=
{
(x1, . . . , xr) ∈ Nr+ : xi ̸= xj for all distinct i, j ∈ [r]

}
.

For a complete multipartite graph F , let sc(F ) denote the number of parts of F that have size exactly one,
that is, the number of singleton parts. We have the following simple fact for counting the number of induced
copies of F in a complete multipartite graph.

Fact 2.1. Let F = Ka1,...,ar be the complete r-partite graph with part sizes a1 ≥ · · · ≥ ar ≥ 1. Suppose that
G is a complete multipartite graph whose non-singleton part sizes are b1, . . . , bk. Then

I(F,G) =
1

sym(a1, . . . , ar)

sc(F )∑
i=0

i!

(
sc(F )

i

)(
sc(G)

i

) ∑
(i1,...,ir−i)∈([k])r−i

r−i∏
j=1

(
bij
aj

)
.

In particular, if sc(F ) = 0 or sc(G) = 0, then

I(F,G) =
1

sym(a1, . . . , ar)

∑
(i1,...,ir)∈([k])r

r∏
j=1

(
bij
aj

)
. (4)

A more convenient version of Fact 2.1 for the case in which each part of G has approximately the same size
and each part is large, which will be useful in the proof of perfect stability, is as follows.

Fact 2.2. Let F = Ka1,...,ar be the complete r-partite graph with part sizes a1 ≥ · · · ≥ ar ≥ 1. Suppose that
G is a complete m-partite graph in which each part has size (1 + o(1))n, where n is large. Then

I(F,G) = (1 + o(1))
(m)r

a1! · · · ar! · sym(a1, . . . , ar)
nℓ. (5)

A foundation of our approach is the following result of Brown–Sidorenko [7].

Lemma 2.3 ([7, Proposition 1]). Suppose that F is a complete multipartite graph with at least two parts.
Then for every n ≥ 1, there exists a complete multipartite graph G on n vertices such that I(F,G) = I(F, n).

Roughly speaking, the main idea in the proof of Lemma 2.3 is to show that Zykov symmetrization does not
decrease the number of induced copies of F . Thus, after finitely many symmetrizations, one always ends
up with a complete multipartite graph. Since Zykov symmetrization also preserves Kk+1-freeness, the proof
of Lemma 2.3 implies that (as observed in [32]), when F is complete multipartite, there exists an extremal
construction for the inducibility problem Ik+1(F, n) that is complete multipartite (with at most k parts due
to the Kk+1-freeness).

Lemma 2.4. Suppose that F is a complete r-partite graph with r ≥ 2, and let k ≥ r be an integer. Then
for every n ≥ 1, there exists a complete multipartite graph G on n vertices with at most k parts such that
I(F,G) = Ik+1(F, n).

Therefore, by Lemmas 2.3 and 2.4, in determining i(F ) and ik+1(F ), it suffices to restrict our attention to the
class of complete multipartite graphs, which, in the limit, reduces to an optimization problem of homogeneous
polynomials (see [7, Corollary 6]). Since we also aim to prove perfect stability, we need to consider a slightly
more general polynomial (introduced in [22], see (7)) and prove the finiteness of the set of maximizers. For
this, we require the following definitions, mostly taken from [22, Section 2].

Define the partite limit space by

P :=
{
(x1, x2, . . .) ∈ RN+ : x1 ≥ x2 ≥ · · · ≥ 0 and

∑
i∈N+

xi ≤ 1
}
.

For every sequence x = (x1, x2, . . .) ∈ P, let x0 := 1−
∑
i∈N+

xi. Define the support of x as

supp(x) := {i ∈ N+ : xi > 0}.

A sequence in P gives rise to a complete multipartite graph on n vertices via the following definition (the
converse is straightforward).
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Definition 2.5 ([22, Definition 3]). Given x = (x1, x2, . . .) ∈ P and n ∈ N, the n-vertex realization of x,
denoted Gn,x, is the complete multipartite graph on the vertex set [n] with parts V1, . . . , Vm (for some m)
and a set V0 of universal vertices (i.e., the collection of singleton parts of Gn,x), obtained as follows: if x0 = 0,
then take a partition [n] = V1 ∪ · · · ∪ Vm such that ||Vi| − xin| < 1 for each i, and set V0 = ∅; otherwise,
for all i ≥ 1 with xin ≥ 2, set |Vi| = ⌊xin⌋ ≥ 2, and let V0 contain the remaining vertices in [n]. We call
V0, . . . , Vm the P-structure of Gn,x.

For a tuple (d1, . . . , dt) of positive integers and a sequence (x1, x2, . . .) ∈ RN+ of real numbers, let

Sd1,...,dt(x1, x2, . . .) :=
∑

(i1,...,it)∈(N+)t

xd1i1 · · ·xdtit . (6)

For convenience, we set S∅(x1, x2, . . .) := 1.

For two graphs F and G, let p(F,G) := I(F,G)/
(
v(G)
v(F )

)
denote the induced density of F in G.

Let a1 ≥ · · · ≥ ar ≥ 1 be integers, and let F = Ka1,...,ar . Define the limit function

pF (x) := lim
n→∞

p(F,Gn,x).

It follows from Fact 2.1 that (recall the definition of κF from (2))

pF (x) = κF ·
sc(F )∑
i=0

(
sc(F )

i

)
xi0 · Sa1,...,ar−i(x). (7)

In particular, if sc(F ) = 0 or x0 = 0, this expression simplifies to

pF (x) = κF · Sa1,...,ar (x). (8)

Intuitively, Lemma 2.3 and Fact 2.1 together indicate that determining i(F ) for a complete multipartite graph
amounts to finding the maximum of pF (x) over P. A rigorous proof is given in [22, Section 2].

Theorem 2.6 ([22]). Suppose that F is a complete multipartite graph. Then

i(F ) = max
x∈P

pF (x).

For perfect stability, it is also necessary to understand the property of the maximizers of pF (x) over P . Thus,
for a complete multipartite graph F , we define

OPT(F ) :=
{
x ∈ P : pF (x) = i(F )

}
.

So for every x ∈ OPT(F ), the graph Gn,x is asymptotically extremal for the inducibility problem I(F, n).

It follows relatively straightforwardly from Lemma 2.4 and standard results from the theory of graphons
(see [32, Section 1] for further details) that, for a complete multipartite graph F = Ka1,...,ar , we have

ik+1(F ) = max
x∈Sk−1

pF (x) = κF · max
x∈Sk−1

Sa1,...,ar (x), (9)

where

Sk−1 :=
{
(x1, . . . , xk, 0, . . .) ∈ RN+ : xi ≥ 0 for i ∈ [k] and x1 + · · ·+ xk = 1

}
.

Observe that Sk−1 ⊆ P and the union
⋃
k≥1 Sk−1 is the collection of sequences x ∈ P with x0 = 0. Define

OPTk+1(F ) :=
{
x ∈ Sk−1 : pF (x) = ik+1(F )

}
.

For convenience, set S∞ =
⋃
k≥1 Sk−1, OPT∞(F ) = OPT(F ), and i∞(F ) = i(F ). For every k ∈ N+, define

k :=
(
1/k, . . . , 1/k︸ ︷︷ ︸

k

, 0, . . .
)
.

We call x = (x1, x2, . . .) ∈ P balanced if xi = xj for all i, j ∈ supp(x); otherwise it is unbalanced. In particular,
if such a balanced x belongs to Sk−1, then necessarily x = t for some integer t ≤ k.

The following simple property of almost balanced complete multipartite graphs will be used multiple times.

6



Fact 2.7. Let F = Ka1,...,ar be an almost balanced complete r-partite graph with a1 ≥ · · · ≥ ar, and let
ℓ := a1 + · · ·+ ar.

(i) If ℓ ∈ [r + 1, 2r − 1], then a1 = · · · = aℓ−r = 2 and aℓ−r+1 = · · · = ar = 1.

(ii) If ℓ ≥ 2r, then ar ≥ 2.

Proof. Suppose that ℓ ∈ [r + 1, 2r − 1]. By the Pigeonhole Principle, we have ar = 1. By the definition of
almost balanced (see (1)), we have

(
a1−1

2

)
< 1, which implies that a1 ≤ 2. Therefore,

a1 = · · · = aℓ−r = 2 and aℓ−r+1 = · · · = ar = 1.

Now suppose that ℓ ≥ 2r. If ar = 1, then the definition of almost balanced implies that
(
a1−1

2

)
< 1, which

forces a1 ≤ 2. Consequently, ℓ ≤ 2r − 1, which is a contradiction.

3 Asymptotic results and uniqueness of the maximizer

In this section, we prove the following theorem, which constitutes the most crucial part of the proofs in this
work. In particular, it implies Theorem 1.3 and the asymptotic part of Theorem 1.1.

Theorem 3.1. Let ℓ > r ≥ 2 be integers, and let m = mr,ℓ. Suppose that F is an almost balanced complete
r-partite graph on ℓ vertices. Then

OPTk+1(F ) =

{
{k}, if k ∈ [r, m− 1],

{m}, if k ∈ [m, ∞].

In particular,

ik+1(F ) =

{
κF · (k−1)r−1

kℓ−1 , if k ∈ [r, m− 1],

κF · (m−1)r−1

mℓ−1 , if k ∈ [m, ∞].

In the next subsection, we establish some preliminary inequalities. We then present the proof of Theorem 3.1
in two cases according to the size of ℓ: ℓ ≤ 2r − 1 and ℓ ≥ 2r.

We remark that the proof of the case ℓ ≤ 2r − 1 in Theorem 3.1 is similar to that of [32, Theorem 1.6] (which
works for ℓ ≤ 3r + 1), with one difference: for k = ∞, Yuster proved the uniqueness of the maximizer of (8),
whereas we prove the uniqueness of the maximizer of (7) (slightly stronger but necessary for perfect stability).
In contrast, our proof for the case ℓ ≥ 2r differs substantially from Yuster’s. It relies on a quite nontrivial
inequality (Proposition 3.7), whereas Yuster’s argument is based on properties of low-degree polynomials.

3.1 Basic properties of f in (3) and the integer mr,ℓ

Let h : I → R be a function on I ⊆ R. We say that h is unimodal if there exists a point x0 ∈ I such that

• h is non-decreasing on I ∩ (−∞, x0], and

• h is non-increasing on I ∩ (x0,∞).

Lemma 3.2. Let ℓ > r ≥ 2 be integers. The discrete function f : [r,∞) → R, defined as in (3), is unimodal
and attains its maximum at a unique integer mr,ℓ ∈ [r,∞).

Proof. Consider the real extension f̃ : [r,∞) → R of f defined by

f̃(x) =
(x− 1) · · · (x− r + 1)

xℓ−1
, for every real number x ∈ [r,∞).

Straightforward calculations show that the derivative of f̃(x) is

f̃ ′(x) =
f̃(x)

x

(
x

x− 1
+ · · ·+ x

x− r + 1
− ℓ+ 1

)
.
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Define

g(x) :=

r−1∑
i=1

x

x− i
− ℓ+ 1, for every real number x ∈ [r,∞). (10)

Observe that g(x) is strictly decreasing on [r,∞) and satisfies limx→∞ g(x) = r − ℓ < 0. Thus, the function f̃
is not monotone increasing and is unimodal. It follows that the discrete function f can have at most two
maximizers on the set of integers {r, r + 1, . . .}, and if there are two, they must be consecutive integers.

Suppose, for contradiction, that f attains its maximum at two consecutive integers k0 and k0 + 1. Note that,
for every k ∈ {r, r+ 1, . . .}, we have f(k) < 1, in particular, f(k) is not an integer. Moreover, when written in
lowest terms, the denominator of f(k0) divides kℓ−1

0 , while the denominator of f(k0 + 1) divides (k0 + 1)ℓ−1.
Since k0 and k0 + 1 are coprime, kℓ−1

0 and (k0 + 1)ℓ−1 are also coprime, and consequently the denominators
of f(k0) and f(k0 + 1) are coprime (and both greater than 1, since both f(k0) and f(k0 + 1) are not integers).
Hence, f(k0) ̸= f(k0 + 1), a contradiction. Therefore, the maximizer of f on {r, r + 1, . . .} is unique.

It follows from Lemma 3.2 that mr,ℓ = r if and only if f(r) > f(r + 1), which is equivalent to

ℓ >
ln(r + 1)

ln(1 + 1/r)
= (1 + o(1))r ln r.

This is consistent with the result of Brown–Sidorenko [7, Theorem 9]. Refined bounds on mr,ℓ will be provided
in Lemma 4.2.

3.2 Proof of Theorem 3.1 for ℓ < 2r

In this subsection we present the proof of Theorem 3.1 for ℓ < 2r.

Proof of Theorem 3.1 for ℓ < 2r. Let F = Ka1,...,ar be an almost balanced complete r-partite graph on
ℓ ∈ [r + 1, 2r − 1] vertices (i.e. ℓ = a1 + · · · + ar), and assume that a1 ≥ · · · ≥ ar. Let m = mr,ℓ be the
integer give by Lemma 3.2. By Fact 2.7 (i), we have a1 = · · · = aℓ−r = 2 and aℓ−r+1 = · · · = ar = 1.

Case 1: k ∈ [m,∞].

Since Sk−1 ⊆ P, it suffices to prove that OPT(F ) = {m} for this case.

Recall from (6) and (7) that for every x = (x1, x2, . . .) ∈ P,

pF (x) = κF ·
2r−ℓ∑
j=0

(
2r−ℓ
j

)
xj0

∑
(i1,...,ir−j)∈(N+)r−j

xa1i1 · · ·xar−j

ir−j
. (11)

Claim 3.3. The following statements hold.

(i) If ℓ ≥ r + 2, then every maximizer x ∈ OPT(F ) is balanced.

(ii) If ℓ = r + 1, then for every unbalanced maximizer x ∈ OPT(F ), there exists a balanced maximizer
y ∈ OPT(F ) such that

y0 = x0 and |supp(y)| < |supp(x)|.

Proof. Suppose to the contrary that this claim is not true (for both items). Let x = (x1, x2, . . .) ∈ OPT(F )
be a counterexample with minimum size of support. Then there exists some distinct pair i, j ∈ supp(x) such
that xi ̸= xj .

Fix all xk where k ∈ N \ {i, j}. Note that since
∑∞
k=1 xk = 1, the sum β := xi + xj is also fixed. From (11),

there exist constants K1, . . . ,K5 independent of xi and xj such that

pF (x) = (xi + xj)K1 + (xi
2 + xj

2)K2 + xixjK3 + xixj(xi + xj)K4 + (xixj)
2K5

= (xi + xj)K1 +
(
(xi + xj)

2 − 2xixj
)
K2 + xixjK3 + xixj(xi + xj)K4 + (xixj)

2K5. (12)

Since a1 = 2 and ar = 1, we have min{K1,K2,K4} > 0. Moreover, K3 > 0 if ar−1 = 1 (equivalently,
ℓ ≤ 2r − 2), and K5 > 0 if a2 = 2 (equivalently, ℓ ≥ r + 2).
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Let α := xixj . Then pF (x) can be rewritten as

ψ(α) := pF (x) = βK1 + (β2 − 2α)K2 + αK3 + αβK4 + α2K5

= K5α
2 + (βK4 +K3 − 2K2)α+ (βK1 + β2K2).

Now observe that, while β is fixed, the product α = xixj can vary continuously from 0 to β2/4 by adjusting
xi and xj under the constraint xi + xj = β. Thus we may view ψ(α) as a quadratic polynomial in α.

Let y and z be the sequences in P obtained from x by replacing (xi, xj) with (xi + xj , 0) and
(
xi+xj

2 ,
xi+xj

2

)
,

respectively, and then reordering the entries accordingly. Note that y0 = z0 = x0.

Suppose that ℓ ≥ r + 2. Then K5 > 0. So ψ(α) is a quadratic polynomial in α, and hence

pF (x) = ψ(α) < max
{
ψ(0), ψ

(
(xi+xj)

2

4

)}
= max {pF (y), pF (z)} .

However, this is a contradiction to the maximality of pF (x). This proves (i).

Now suppose that ℓ = r + 1. Then K5 = 0. Hence, ψ(α) is linear in α with coefficient βK4 +K3 − 2K2. If
βK4 +K3 − 2K2 ̸= 0, then similarly, we have

pF (x) = ψ(α) < max
{
ψ(0), ψ

(
(xi+xj)

2

4

)}
= max {pF (y), pF (z)} ,

again a contradiction. So it must be the case that βK4 +K3 − 2K2 = 0. It follows that

pF (x) = ψ(α) = ψ(0) = pF (y).

This means that y ∈ OPT(F ) as well. Since x does not satisfy Claim 3.3 (ii), the maximizer y must be
unbalanced. Since |supp(y)| < |supp(x)|, it follows from the minimality of x that y satisfies Claim 3.3 (ii).
That is, there exists a balanced maximizer w = (w1, w2, . . .) ∈ OPT(F ) with w0 = y0 = x0 and |supp(w)| <
|supp(y)| < |supp(x)|. However, w witnesses that x itself satisfies the assertion of Claim 3.3 (ii), contradicting
the assumption that x is a counterexample. This completes the proof of Claim 3.3.

Now we establish the following inequality (which is slightly stronger than what we need) for sequences x ∈ P
with x0 = 0. Recall that for every t ∈ N+, t = (1/t, . . . , 1/t, 0, . . .).

Claim 3.4. There exists a constant ε = εr,ℓ > 0, such that for all x ∈ P with x0 = 0, we have

Φ(x) := pF (x) + ε

( ∑
(i,j)∈(N+)2

xixj − m−1
m

)2

+ ε

( ∑
(i,j,k)∈(N+)3

xixjxk − (m−1)(m−2)
m2

)2

≤ Φ(m),

and the equality holds if and only if x = m, where m = mr,ℓ is the constant given by Lemma 3.2.

Proof. Recall that for any t ∈ N+, pF (t) = κF · (t−1)r−1

kℓ−1 = κF · f(t), where f(t) is defined in (3). In what
follows, we assume f(r − 1) = 0. Define

ε :=
κF
3

·min
{
f(m)− f(m− 1), f(m)− f(m+ 1)

}
.

It follows from Lemma 3.2 that ε > 0.

Since f(x) is unimodal (by Lemma 3.2), for every integer t ̸= m, we have

Φ(t) = κF · f(t) + ε
(
t−1
t − m−1

m

)2
+ ε

(
(t−1)(t−2)

t2 − (m−1)(m−2)
m2

)2
≤ κF ·max

{
f(m− 1), f(m+ 1)

}
+ ε+ ε

= κF
(
max

{
f(m− 1), f(m+ 1)

}
+ 2κF

3 ·min
{
f(m)− f(m− 1), f(m)− f(m+ 1)

})
< κF · f(m) = Φ(m). (13)

Suppose to the contrary that this claim fails. Let x = (x1, x2, . . .) ∈ P \ {m} be a counterexample with
x0 = 0, i.e., Φ(x) ≥ Φ(m) but x ̸= m. Using (13), we conclude that there exist i, j ∈ supp(x) such that
xi ̸= xj . Let α := xixj and β := xi + xj . Similar to the proof of Claim 3.3 (more specifically, (12)), fix all xk
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where k ∈ N \ {i, j}. Note that since
∑∞
k=1 xk = 1, the sum β = xi + xj is also fixed. So we may view Φ(x)

as a polynomial in α:

ϕ(α) := Φ(x) = pF (x) + ε (2α+ J1)
2
+ ε
(
6α(1− β) + J2

)2
=
(
K5 + 4ε+ 36ε(1− β)2

)
α2 + (βK4 +K3 − 2K2 + 4εJ1 + 12ε(1− β)J2)α

+
(
βK1 + β2K2 + εJ2

1 + εJ2
2

)
,

where J1, J2 are constants independent of xi, xj , and K1, . . . ,K5 are the same constants as in (12).

Let y and z be the sequences in P obtained from x by replacing (xi, xj) with (xi + xj , 0) and
(
xi+xj

2 ,
xi+xj

2

)
,

respectively, and then reordering the entries accordingly. Note that y0 = z0 = x0 = 0. Since ϕ(α) is a
quadratic polynomial in α with coefficient K5 + 4ε+ 36ε(1− β)2 > 0, we have

Φ(x) = ϕ(α) < max
{
ϕ(0), ϕ

(
(xi+xj)

2

4

)}
= max {Φ(y), Φ(z)} ,

a contradiction to the maximality of Φ(x). This completes the proof of Claim 3.4.

Claim 3.5. Suppose that x ∈ P satisfies x0 > 0. Then x ̸∈ OPT(F ).

Proof. Suppose to the contrary that this is not true. Then by Claim 3.3, there exists a counterexample
x ∈ OPT(F ) with x0 > 0 and x1 = · · · = xs = y := 1−x0

s for some s ≥ 1. For every integer k ≥ 1, let x(k) be
the sequence obtained from x by appending the length-k sequence x0

k , . . . ,
x0

k , and then reordering the entries.
By applying (11) to pF (x) and (8) together with (6) to pF (x(k)), we obtain that

pF (x)− pF (x
(k)) = κF ·

2r−ℓ∑
j=0

(
2r−ℓ
j

)
(1− sy)j(s)r−jy

ℓ−j

− κF ·
2r−ℓ∑
j=0

(
2r−ℓ
j

)
(k)j

(
1−sy
k

)j
(s)r−jy

ℓ−j

− κF ·
ℓ−r∑
i=1

2r−ℓ∑
j=0

(
ℓ−r
i

)(
2r−ℓ
j

)
(k)i+j

(
1−sy
k

)2i+j
(s)r−i−jy

ℓ−2i−j .

Since (k)j
kj → 1 and the third term goes to 0 as k → ∞ (because (k)i+j

k2i+j ≤ 1
k → 0), we have

pF (x)− pF (x
(k)) → 0 as k → ∞.

Combining this with Claim 3.4, we obtain

0 ≤ Φ(x(k))− pF (x
(k)) ≤ Φ(m)− pF (x

(k))

= pF (m)− pF (x
(k)) ≤ pF (x)− pF (x

(k)) → 0 as k → ∞.

This implies that both

lim
k→∞

∑
(i,j)∈(N+)2

x
(k)
i x

(k)
j − m−1

m = 0, and lim
k→∞

∑
(i,j,k)∈(N+)3

x
(k)
i x

(k)
j x

(k)
k − (m−1)(m−2)

m2 = 0.

Simplifying this, we obtain

m− 1

m
= (1− sy)2 + 2(1− sy)sy + s(s− 1)y2,

(m− 1)(m− 2)

m2
= (1− sy)3 + 3(1− sy)2sy + 3(1− sy)s(s− 1)y2 + s(s− 1)(s− 2)y3.

It follows from the first equality that y = 1√
ms

. Plugging it into the second equality we obtain

1− 3

m
+

2s

(ms)3/2
=

(m− 1)(m− 2)

m2
,

which implies s = m. However, this means that x0 = 1− sy = 0, contradicting the choice of x.
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Suppose that x ∈ OPT(F ). It then follows from Claim 3.5 that x0 = 0, and from Claim 3.4 that x = m.
This shows that OPT(F ) = {m} and thereby completes the proof of Case 1.

Case 2: k ∈ [r,m− 1].

An almost identical argument to the proof of Claim 3.3 yields the following result, so we omit the details here.

Claim 3.6. The following statements hold.

(i) If ℓ ≥ r + 2, then every maximizer x ∈ OPTk+1(F ) is balanced.

(ii) If ℓ = r + 1, then for every unbalanced maximizer x ∈ OPTk+1(F ), there exists a balanced maximizer
y ∈ OPTk+1(F ) such that |supp(y)| < |supp(x)|.

Recall that for every integer t ≥ r, we have pF (t) = κF · f(t), with f(t) defined in (3). By Lemma 3.2, the
function f is strictly increasing on [r, k], so pF (t) < pF (k) for every t < k. Hence, ik+1(F ) = pF (k).

If ℓ ≥ r + 2, then Claim 3.6 (i) immediately implies that OPTk+1(F ) = k.

Now, suppose ℓ = r + 1. Take an arbitrary maximizer x ∈ OPTk+1(F ). If x ≠ k, then by Claim 3.6 (ii) we
obtain another balanced maximizer y ∈ OPTk+1(F ) with |supp(y)| < |supp(x)|. Consequently, pF (y) = pF (t)
for some t < k, contradicting ik+1(F ) = pF (k) > pF (t). Therefore, we must have x = k, and again
OPTk+1(F ) = {k}. This completes the proof of Theorem 3.1 for ℓ ≤ 2r − 1.

3.3 Proof of Theorem 3.1 for ℓ ≥ 2r

In this subsection, we present the proof of Theorem 3.1 for ℓ ≥ 2r. We will use the following inequality, which
constitutes the most crucial ingredient of our proof and distinguishes our approach from those in [7, 5, 23, 32].

Proposition 3.7. Let x and y be two positive real numbers. For positive integers d, d1, d2 define

µd := (x+ y)d − xd − yd, ωd := xd + yd − 2
(
x+y
2

)d
,

ψd1,d2 := xd1yd2 + xd2yd1 , ϕd1,d2 := 2
(
x+y
2

)d1+d2 − xd1yd2 − xd2yd1 .

Suppose that x ̸= y, and let a, b, s, t be positive integers satisfying b ≥ t ≥ s ≥ a >
(
b−a
2

)
. Then

ωt
µt

≤ ωa
µa

<
ϕs,t
ψs,t

. (14)

Equivalently,

µtωa − µaωt ≥ 0, and µaϕs,t − ωaψs,t > 0. (15)

Proof. First we prove that ωt

µt
≤ ωa

µa
, which follows from the following claim.

Claim 3.8. We have ωk+1

µk+1
≤ ωk

µk
for every integer k ≥ a.

Proof. By definition, this is equivalent to showing(
xk+1 + yk+1 − 2

(
x+y
2

)k+1
) (

(x+ y)k − xk − yk
)
≤
(
xk + yk − 2

(
x+y
2

)k) (
(x+ y)k+1 − xk+1 − yk+1

)
.

Simplifying this reduces to showing that:

(x+ y)k+1 ≤ xk+1 + yk+1 + (2k − 1)(xky + xyk). (16)

Since for every i ∈ [k] it holds that

(xky + xyk)− (xiyk+1−i + xk+1−iyi) = xy(xi−1 − yi−1)(xk−i − yk−i) ≥ 0,

it follows that
k∑
i=1

(
k+1
i

)
(xky + xyk) ≥

k∑
i=1

(
k+1
i

)
xiyk+1−i +

k∑
i=1

(
k+1
i

)
xk+1−iyi,

which implies that (
2k+1 − 2

)
(xky + xyk) ≥ 2

(
(x+ y)k+1 −

(
xk+1 + yk+1

))
After dividing both sides by 2 and rearranging, we obtain (16).
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Next, we prove that ωa

µa
<

ϕs,t

ψs,t
for b ≥ t ≥ s ≥ a ≥ 2. By definition, this inequality is equivalent to

(
(x+ y)a − xa − ya

) (
2
(
x+y
2

)s+t − xsyt − xtys
)
>
(
xa + ya − 2

(
x+y
2

)a) (
xsyt + xtys

)
.

Simplifying this reduces to showing that:(
x+y
2

)s+t−a (
(x+ y)a − xa − ya

)
>
(
2a−1 − 1

) (
xsyt + xtys

)
. (17)

We first prove the following auxiliary inequalities:

Claim 3.9. The following inequalities hold:

2a−2
(
(x+ y)a − xa − ya

)
≥ (2a − 2)xy(x+ y)a−2; (18)

2
(
x+y
2

)s+t−2
> xs−1yt−1 + xt−1ys−1. (19)

Proof. First, we prove (18). It is straightforward to verify that (18) holds with equality when a ∈ {2, 3}, so
we may assume that a ≥ 4. For i ∈ [a− 1], let

Mi := 2a−2
(
a
i

)
− (2a − 2)

(
a−2
i−1

)
,

noting that Mi =Ma−i. Let

f(i) :=
2a−2

(
a
i

)
(2a−2)

(
a−2
i−1

) = 2a−2a(a−1)
(2a−2)i(a−i) .

Observe that f(i) is decreasing in i for i ∈ (0, a/2) and increasing in i for i ∈ (a/2, a). Also

f(1) = f(a− 1) = 2a−2a
2a−2 > 1 and f(a/2) = 2a−2(a−1)

(2a−2)a < 1.

So there exists i0 ∈ [2, a/2] such that{
Mi > 0, if i < i0 or i > a− i0,

Mi ≤ 0, if i ∈ [i0, a− i0].

For i, j ∈ [1, a/2] with i < j, we have(
xiya−i + xa−iyi

)
−
(
xjya−j + xa−jyj

)
= xiyi

(
xj−i − yj−i

) (
xa−i−j − ya−i−j

)
≥ 0.

Define γi := xiya−i and βi := (γi + γa−i)/2 for i ∈ [1, a/2]. The inequality above shows that for i < j ≤ a/2,
we have γi + γa−i ≥ γj + γa−j and consequently βi ≥ βj . Also note that

a−1∑
i=1

Mi = 2a−2
a−1∑
i=1

(
a
i

)
− (2a − 2)

a−1∑
i=1

(
a−2
i−1

)
= 2a−2 (2a − 2)− (2a − 2) 2a−2 = 0,

Then, using the Binomial Theorem and the symmetry Mi =Ma−i and βi = βa−i, we obtain that

2a−2
(
(x+ y)a − xa − ya

)
− (2a − 2)xy(x+ y)a−2

=

a−1∑
i=1

Miγi =
1

2

a−1∑
i=1

(Miγi +Ma−iγa−i) =

a−1∑
i=1

Miβi =

i0−1∑
i=1

Miβi +

a−i0∑
i=i0

Miβi +

a−1∑
i=a−i0+1

Miβi

≥

(
i0−1∑
i=1

Mi

)
min

1≤i≤i0−1
βi +

(
a−i0∑
i=i0

Mi

)
max

i0≤i≤a−i0
βi +

(
a−1∑

i=a−i0+1

Mi

)
min

a−i0+1≤i≤a−1
βi

=

(
i0−1∑
i=1

Mi

)
βi0−1 +

(
a−i0∑
i=i0

Mi

)
βi0 +

(
a−1∑

i=a−i0+1

Mi

)
βa−i0+1 = 2

(
i0−1∑
i=1

Mi

)
(βi0−1 − βi0) ≥ 0,

where the last equation uses the symmetry and the fact that
∑a−1
i=1 Mi = 0. This proves (18).
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It remains to prove (19). The argument is adapted from the proof of [7, Theorem 3], with some modifications.
Define, for every z ∈ [0, 1],

g(z) := zt−1(1− z)s−1 + zs−1(1− z)t−1

We first show that g attains its maximum uniquely at z = 1/2.

Letting x := (1− z)/z. Straightforward calculations show that

g′(z) = zt−1(1− z)s−2
(
(s− 1)xt−s+1 − (t− 1)xt−s + (t− 1)x− s+ 1

)
,

Define

h(x) := (s− 1)xt−s+1 − (t− 1)xt−s + (t− 1)x− s+ 1

Let y := x− 1. Then for x ≥ 1, we have

h(x) = (s− 1)(1 + y)t−s+1 − (t− 1)(1 + y)t−s + (t− 1)(1 + y)− s+ 1

=
(
(s− 1)(t− s+ 1)− (t− 1)(t− s) + (t− 1)

)
y +

t−s+1∑
i=2

(
(s− 1)

(
t−s+1
i

)
− (t− 1)

(
t−s
i

))
yi

= 2
(
s− 1−

(
t−s
2

))
y +

t−s+1∑
i=2

(
t−s
i−1

)1
i

(
(s− 1)(t− s+ 1)− (t− 1)(t− s− i+ 1)

)
yi

≥ 2
(
s− 1−

(
t−s
2

))
y +

t−s+1∑
i=2

(
t−s
i−1

)1
i

(
(s− 1)(t− s+ 1)− (t− 1)(t− s− 1)

)
yi

= 2
(
s− 1−

(
t−s
2

))
y +

t−s+1∑
i=2

(
t−s
i−1

)2
i

(
s− 1−

(
t−s
2

))
yi ≥ 0,

where in the last inequality we used the assumption that
(
b−a
2

)
≤ a−1 (and thus, s−1 ≥ a−1 ≥

(
b−a
2

)
≥
(
t−s
2

)
).

It follows that g′(z) ≥ 0 for z ∈ (0, 1/2), and hence, g is nondecreasing on [0, 1/2]. Since g is symmetric
around z = 1/2 and is a polynomial which is not linear (since s, t ≥ 2), it attains its maximum on the interval
[0, 1] uniquely at z = 1/2. Therefore, (19) holds.

Combining (18) and (19), we obtain(
x+y
2

)s+t−a (
(x+ y)a − xa − ya

)
≥
(
x+y
2

)s+t−a
(2a − 2)xy

(
x+y
2

)a−2

> 2a−2
2 xy

(
xs−1yt−1 + xt−1ys−1

)
=
(
2a−1 − 1

) (
xsyt + xtys

)
,

which proves (17). This completes the proof of Proposition 3.7.

We are now ready to prove Theorem 3.1 for ℓ ≥ 2r.

Proof of Theorem 3.1 for ℓ ≥ 2r. Let F = Ka1,...,ar be an almost balanced complete r-partite graph on
ℓ ≥ 2r vertices, that is, ℓ = a1 + · · · + ar. Let m = mr,ℓ be the integer give by Lemma 3.2. Assume that
a1 ≥ · · · ≥ ar. By Fact 2.7 (ii), we have ar ≥ 2. Fix an integer k ∈ [r,∞].

Claim 3.10. For every x ∈ OPTk(F ), we have x0 = 0.

Proof. It follows from the definition of Sk−1 that x0 = 0 if k ̸= ∞. Thus we may assume that k = ∞. Suppose
to the contrary that there exists x = (x1, x2, . . .) ∈ OPT(F ) with x0 > 0. Since in every realization Gn,x (see
Definition 2.5), no induced copy of F can contain vertices from V0 (because a1 ≥ · · · ≥ ar ≥ 2), we have

pF (x) = κF ·
∑

(i1,...,ir)∈(N+)r

xa1i1 · · ·xarir .

Let x̃ be the sequence obtained from x by replacing x1 with x0+x1. Note that x̃ ∈ P and pF (x̃)− pF (x) > 0,
a contradiction to the optimality of x.
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Fix an arbitrary optimal sequence x ∈ OPTk(F ). By Claim 3.10, we have x0 = 0. We aim to show that all
nonzero entries of x are equal. Suppose to the contrary that there exist i, j ∈ supp(x) with xi ̸= xj .

Let y and z be the sequence in P obtained from x by replacing (xi, xj) with (xi + xj , 0) and
(
xi+xj

2 ,
xi+xj

2

)
,

respectively, and then reordering the entries accordingly. Note that y0 = z0 = x0 = 0 and {y, z} ⊆ Sk−1. In
addition, define x̃ by replacing both xi and xj with 0 and then reordering the entries.

Let a := (a1, . . . , ar). Recall the definition of Sa(x) from (6). We shall prove the following key inequality:

Claim 3.11. We have

Sa(x) < max
{
Sa(y), Sa(z)}. (20)

Consequently, pF (x) < max
{
pF (y), pF (z)}.

Proof. For p, q ∈ [r], let ap be the (r − 1)-tuple obtained from a by removing the element ap; let ap,q be the
(r − 2)-tuple obtained from a by removing the elements ap and aq; and let

Ap := Sap(x̃) and Bp,q := Sap,q (x̃).

It is clear that |supp(x)| ≥ r. Thus, |supp(x̃)| ≥ r − 2, and hence, Bp,q > 0 for all {p, q} ⊆ [r]. Define

µp := (xi + xj)
ap − x

ap
i − x

ap
j , ωp := x

ap
i + x

ap
j − 2

(
xi+xj

2

)ap
,

ψp,q := x
ap
i x

aq
j + x

aq
i x

ap
j , ϕp,q := 2

(
xi+xj

2

)ap+aq
− x

ap
i x

aq
j − x

aq
i x

ap
j .

Suppose to the contrary that this claim fails. Then we have

0 ≤ Sa(x)− Sa(y) = −
∑
p∈[r]

µpAp +
∑

{p,q}∈([r]2 )

ψp,qBp,q, (21)

0 ≤ Sa(x)− Sa(z) =
∑
p∈[r]

ωpAp −
∑

{p,q}∈([r]2 )

ϕp,qBp,q. (22)

Considering the linear combination −ωr × (21) − µr × (22), we obtain∑
p∈[r]

(µpωr − µrωp)Ap +
∑

{p,q}∈([r]2 )

(µrϕp,q − ωrψp,q)Bp,q ≤ 0. (23)

However, it follows from (15) and Bp,q > 0 that∑
p∈[r]

(µpωr − µrωp)Ap +
∑

{p,q}∈([r]2 )

(µrϕp,q − ωrψp,q)Bp,q > 0,

a contradiction to (23).

It follows from Claim 3.11 and the optimality of x that x must be balanced. Suppose that |supp(x)| = k̂ for
some integer k̂ ≤ k. Then x = k̂ = (1/k̂, . . . , 1/k̂, 0, . . .), and hence, pF (x) = κF · (k̂)r/k̂r. It follows from
Lemma 3.2 and the maximality of pF (x) that k̂ = m if k ≥ m and k̂ = k if k ≤ m− 1. This completes the
proof of Theorem 3.1 for ℓ ≥ 2r.

4 Perfect stability

4.1 Preparations

In this subsection, we briefly review the sufficient conditions for perfect stability in the framework developed
by [22]. Their framework applies to the broader class of “symmetrizable” functions, but here we focus
specifically on the inducibility problem for complete multipartite graphs F . Very roughly, [22, Theorem 1.1]
asserts that if OPT(F ) is finite and each maximizer x ∈ OPT(F ) satisfies certain strictness conditions, then
the inducibility problem for F is perfectly stable.
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For convenience, we will use the following simplified variant of [22, Theorem 1.1] (see also [3, Theorem 8.2]).

For a graph G and a pair {x, y} ⊆ V (G) of vertices, let G⊕ xy denote the graph with vertex set V (G) and
edge set E(G)△ {xy}. That is, G⊕ {xy} is obtained by adding the edge {x, y} if it is not present in G, and
by removing it otherwise. Suppose that G is a complete t-partite graph with parts V1, . . . , Vt. For every
A ⊆ [t], let GA denote the graph obtained from G by adding a new vertex that is adjacent precisely to all
vertices in

⋃
i∈A Vi.

Theorem 4.1. Let F be a complete multipartite graph with ℓ vertices. Suppose that OPT(F ) contains a
unique sequence x with x0 = 0 (i.e.

∑
i∈N+

xi = 1) and t := |supp(x)| <∞. Suppose that there exist constants
ε > 0 and N0 such that for every n ≥ N0 the following statements hold for the n-vertex realization G := Gn,x
with parts V1, . . . , Vt :

(S1) For every pair {x, y} ⊆ V (G), we have

I(F,G)− I(F,G⊕ xy) ≥ εnℓ−2.

(S2) For every A ⊆ [t] with |A| ̸= t− 1, we have

min
{
I(F,GA∗) : A∗ ⊆ [t] and |A∗| = t− 1

}
− I(F,GA) ≥ εnℓ−1.

Then the inducibility problem for F is perfectly stable.

We also need the following refined estimates for mr,ℓ, the integer given by Lemma 3.2.

Lemma 4.2. Let ℓ > r ≥ 2 be integers and let m = mr,ℓ. Then

(i) m > max
{
ℓ(r−1)
2(ℓ−r) , r − 1

}
, and

(ii) m < min
{
ℓ(ℓ−1)
2(ℓ−r) ,

r
α

}
, where α := α(ℓ/r) ∈ (1− r2/ℓ2, 1) is the unique positive real root of the equation

e(ℓ/r)·x(1− x) = 1. In particular, m < rℓ2

ℓ2−r2 .

Proof. First, we prove (i). Since m ≥ r holds trivially, it suffices to show that m > ℓ(r−1)
2(ℓ−r) , equivalently,

1
m+1 <

2(ℓ−r)
rℓ+ℓ−2r . Note that ℓ(r−1)

2(ℓ−r) is decreasing in ℓ > r, and when ℓ = 2r, we have ℓ(r−1)
2(ℓ−r) < r. Thus we may

assume that r < ℓ < 2r.

By Lemma 3.2, the discrete function f defined in (3) is unimodal. Therefore, the optimality of m implies that
f(m) > f(m+ 1), which yields (

1− 1

m+ 1

)ℓ
< 1− r

m+ 1
.

Define g(x) := (1− x)ℓ + rx− 1 for x ∈ [0, 1]. Then the inequality above implies that g
(

1
m+1

)
< 0.

Straightforward calculations show that the second derivative of g is g′′(x) = ℓ(ℓ − 1)(1 − x)ℓ−2, which is
nonnegative for x ∈ [0, 1]. Thus, the function g is convex on the interval [0, 1]. Since g(0) = 0 and g

(
1

m+1

)
< 0,

to show that 1
m+1 <

2(ℓ−r)
rℓ+ℓ−2r , it suffices to prove the following claim.

Claim 4.3. We have g
(

2(ℓ−r)
rℓ+ℓ−2r

)
≥ 0.

Proof. It is equivalent to show that(
(r − 1)ℓ

(r + 1)ℓ− 2r

)ℓ
=

(
1− 2(ℓ− r)

rℓ+ ℓ− 2r

)ℓ
≥ 1− 2r(ℓ− r)

rℓ+ ℓ− 2r
=

(2r − ℓ)(r − 1)

(r + 1)ℓ− 2r
.

Taking logarithms on both sides and then rearranging the terms, this simplifies to showing that

ℓ ln ℓ+ (ℓ− 1) ln(r − 1)− (ℓ− 1) ln
(
(r + 1)ℓ− 2r

)
− ln(2r − ℓ) ≥ 0. (24)
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Define

ϑ(x) := x lnx+ (x− 1) ln(r − 1)− (x− 1) ln
(
(r + 1)x− 2r

)
− ln(2r − x), for x ∈ [r, 2r).

Straightforward calculations show that

ϑ(r) = ϑ′(r) = 0 and ϑ′′(x) =
4r2(x− r)

(
(r + 2)x− 4r

)(
(r + 1)x− 2r

)2
(2r − x)2x

.

For x ∈ [r, 2r) and r ≥ 2, we have (r + 2)x− 4r ≥ (r + 2)r − 4r = r(r − 2) ≥ 0. Hence ϑ′′(x) ≥ 0. It follows
that ϑ(x) ≥ 0 for all x ∈ [r, 2r), which implies (24). This completes the proof of Claim 4.3.

It remains to prove (ii). Let t := ℓ/r and ht(x) := etx(1−x)− 1. First we show that the real number α defined
in the lemma lies in the interval (1− 1/t2, 1). Note that the derivative h′t(x) = etx(t− 1− tx) is positive when
x < 1− 1/t and negative when x > 1− 1/t. Thus, ht is unimodal on (0,∞). Since ht(0) = 0 and ht(1) = −1,
the equation ht(x) = 1 has a unique positive root (i.e. α), which lies in the interval (0, 1).

To show that α > 1− 1/t2, it suffices to verify that the following quantity is positive:

ht(1− 1/t2) =
1

t2
et−

1
t − 1.

Let u(t) := et−
1
t /t2. Since the derivative u′(t) = u(t)(1− 1/t)2 is positive for t > 1, the function u is strictly

increasing on (1,∞). Consequently, ht(1− 1/t2) = u(t)− 1 > u(1)− 1 = 0 for t > 1, as desired. This proves
that α ∈ (1− 1/t2, 1).

Next, we prove the upper bound for m. Since α < 1 and straightforward calculations show that ℓ(ℓ−1)
2(ℓ−r) > r for

all ℓ > r, we may assume that m > r (otherwise, we are done).

By Lemma 3.2, the discrete function f defined in (3) is unimodal. Therefore, the optimality of m implies that
f(m) > f(m− 1), which yields

m− r

m
<

(
1− 1

m

)ℓ
. (25)

Combining it with the inequality (
1− 1

m

)ℓ
≤ 1− ℓ

m
+

(
ℓ

2

)(
1

m

)2

,

we obtain m < ℓ(ℓ−1)
2(ℓ−r) .

It remains to prove that m < r/α. Define θ := r/m. Then it follows from (25) and the inequality ln(1+x) ≤ x
for x > −1 that

1− θ =
m− r

m
<

(
1− 1

m

)ℓ
= exp

(
ℓ ln

(
1− 1

m

))
≤ exp

(
− ℓ

m

)
= e−tθ.

In other words, we have ht(θ) < 0. Since ht is unimodal on (0,∞) and ht(0) = 0, we have θ > α, which
implies that m < r/α. This proves (ii), and thus completing the proof of Lemma 4.2.

4.2 Proof of Theorem 1.5 for ℓ < 2r

In this subsection, we present the proof of Theorem 1.5 for ℓ < 2r.

Lemma 4.4. Let ℓ, r be integers such that r ≥ 2 and r + 1 ≤ ℓ ≤ 2r − 1. Let m = mr,ℓ be the integer given
by Lemma 3.2. Then the discrete function h : [0,m] → Z defined by

h(q) := (q)r−1 ·
(
2r − ℓ+ 2(m− q)(ℓ− r)

)
, for every q ∈ [0,m],

satisfies h(q) < h(m− 1) for all integers q ∈ [0,m] \ {m− 1}.
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Proof. Note that h(m− 1) = ℓ(m− 1)r−1 > 0. So it suffices to prove that for every q ∈ [r − 1,m] \ {m− 1},

h(q) = (q)r−1 ·
(
2r − ℓ+ 2(m− q)(ℓ− r)

)
< ℓ(m− 1)r−1. (26)

For q = m, inequality (26) becomes (m)r−1(2r − ℓ) < ℓ(m− 1)r−1, which simplifies to 2(ℓ− r)m > ℓ(r − 1).
This follows from the lower bound on m given by Lemma 4.2 (i), and hence this case holds. It remains to
show h(q) < h(m− 1) for every q ∈ [r,m− 2].

Claim 4.5. Suppose that q ∈ [r,m− 1]. Then h(q)− h(q − 1) > 0.

Proof. First, we consider the case q = m− 1. In this case we need to show (m− 2)r−1(3ℓ− 2r) < ℓ(m− 1)r−1,
which is equivalent to 2(ℓ− r)m < 3rℓ− 2r2 − ℓ. Since m < ℓ(ℓ−1)

2(ℓ−r) (by Lemma 4.2 (ii)), we have

2(ℓ− r)m− (3rℓ− 2r2 − ℓ) < 2(ℓ− r) · ℓ(ℓ− 1)

2(ℓ− r)
− (3rℓ− 2r2 − ℓ) = (ℓ− r)(ℓ− 2r) < 0.

This proves that h(m− 2) < h(m− 1).

Next, we consider the case q ∈ [r,m− 2]. It follows from m < ℓ(ℓ−1)
2(ℓ−r) (by Lemma 4.2 (ii)) that

2(ℓ− r)(3r −m− 1) + (r − 1)(2r − ℓ) > 2(ℓ− r)
(
3r − 1− ℓ(ℓ−1)

2(ℓ−r)

)
+ (r − 1)(2r − ℓ)

= 2(ℓ− r)(3r − 1)− ℓ(ℓ− 1) + (r − 1)(2r − ℓ)

= (ℓ− r)(4r − ℓ) > 0.

Since q ≤ m− 2, we have

(r − 1)(m+ 1)− rq ≥ (r − 1)(m+ 1)− r(m− 2) = 3r − 1−m.

Consequently,

2(ℓ− r)
(
(r − 1)(m+ 1)− rq

)
+ (r − 1)(2r − ℓ) ≥ 2(ℓ− r)(3r −m− 1) + (r − 1)(2r − ℓ) > 0. (27)

Now, fix q ∈ [r,m− 2], and let δ(q) := h(q)− h(q − 1). Then

δ(q) = (q)r−1

(
2r − ℓ+ 2(m− q)(ℓ− r)

)
− (q − 1)r−1

(
2r − ℓ+ 2(m− q + 1)(ℓ− r)

)
= (q − 1)r−2

(
q
(
2r − ℓ+ 2(m− q)(ℓ− r)

)
− (q − r + 1)

(
2r − ℓ+ 2(m− q + 1)(ℓ− r)

))
= (q − 1)r−2

(
2(ℓ− r)

(
(r − 1)(m+ 1)− rq

)
+ (r − 1)(2r − ℓ)

)
> 0,

where the last inequality follows from (27). This proves Claim 4.5.

It follows from Claim 4.5 that h(q) < h(m− 1) for every q ∈ [r,m− 2]. This proves Lemma 4.4.

Proof of Theorem 1.5 for ℓ < 2r. Let F = Ka1,...,ar be an almost balanced complete r-partite graph on
ℓ ∈ [r + 1, 2r − 1] vertices (i.e. ℓ = a1 + · · ·+ ar). Let m = mr,ℓ be the integer given by Lemma 3.2. Assume
that a1 ≥ · · · ≥ ar. By Fact 2.7 (i), we have a1 = · · · = aℓ−r = 2 and aℓ−r+1 = · · · = ar = 1.

Let ε > 0 be a sufficiently small constant such that, in particular,

ε ≤
(
2mℓ+12ℓ−r(ℓ− r)!(2r − ℓ)!

)−1
.

It follows from Theorem 3.1 that OPT(F ) = {m}. Thus, by Theorem 4.1, it suffices to verify (S1) and (S2)
for all sufficiently large n (with ε there corresponding to ε here).

Fix a sufficiently large integer n and let k := ⌊n/m⌋. For convenience, we will use o(·) to denote lower-order
terms. Let G := Gn,m be the n-vertex realization with parts V1, . . . , Vm, where |Vi| = k for all i ∈ [m].

We first verify (S1) for all distinct x, y ∈ V (G).

Claim 4.6. Suppose that (x, y) ∈ Vi × Vj for distinct i, j ∈ [m]. Then

I(F,G)− I(F,G⊕ xy) ≥ εnℓ−2.
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Proof. By symmetry, we may assume that (x, y) ∈ V1 × V2. Since x and y lie in different parts, the pair
{x, y} is an edge of G. Let G̃ denote the induced subgraph of G on V3 ∪ · · · ∪ Vr, noting that G̃ is complete
(m− 2)-partite.

Let C denote the collection of all induced copies of F in G that contain {x, y}. Let

C1,1 := {T ∈ C : (|V1 ∩ V (T )|, |V2 ∩ V (T )|) = (1, 1)} ,
C1,2 := {T ∈ C : (|V1 ∩ V (T )|, |V2 ∩ V (T )|) = (1, 2)} ,
C2,1 := {T ∈ C : (|V1 ∩ V (T )|, |V2 ∩ V (T )|) = (2, 1)} ,
C2,2 := {T ∈ C : (|V1 ∩ V (T )|, |V2 ∩ V (T )|) = (2, 2)} ,

noting that C1,1 ∪ C1,2 ∪ C2,1 ∪ C2,2 = C.

Observe that the size of C1,1 is 0 if ℓ = 2r − 1, and coincides with the value of I
(
Ka1,...,ar−2

, G̃
)

if ℓ ≤ 2r − 2.
So, by Fact 2.2, we have

|C1,1| =

{
0, if ℓ = 2r − 1
(1+o(1))(m−2)r−2

2ℓ−r(ℓ−r)!(2r−ℓ−2)!
kℓ−2 if ℓ ≤ 2r − 2

=
(1 + o(1))(m− 2)r−2

2ℓ−r(ℓ− r)!(2r − ℓ)!
(2r − ℓ)(2r − 1− ℓ)kℓ−2.

Similar, we have

|C1,2|+ |C1,2| = 2 · I
(
Ka2,...,ar−1

, G̃
)
=

(1 + o(1))(m− 2)r−2

2ℓ−r−2(ℓ− r − 1)!(2r − ℓ− 1)!
kℓ−2,

and

|C2,2| =

{
0 if ℓ = r + 1

(1+o(1))(m−2)r−2

2ℓ−r−2(ℓ−r−2)!(2r−ℓ)!k
ℓ−2 if ℓ ≥ r + 2

=
(1 + o(1))(m− 2)r−2

2ℓ−r−2(ℓ− r)!(2r − ℓ)!
(ℓ− r)(ℓ− r − 1)kℓ−2.

Therefore,

|C| = |C1,1|+ |C1,2|+ |C1,2|+ |C2,2|

=
(1 + o(1))(m− 2)r−2

2ℓ−r(ℓ− r)!(2r − ℓ)!
((2r − ℓ)(2r − 1− ℓ) + 4(ℓ− r)(2r − ℓ) + 4(ℓ− r)(ℓ− r − 1)) kℓ−2

= (1 + o(1))
(m− 2)r−2(ℓ

2 − 3ℓ+ 2r)

2ℓ−r(ℓ− r)!(2r − ℓ)!
kℓ−2. (28)

Let C′ denote the collection of all induced copies of F in G⊕ xy that contain {x, y}. Observe that, in each
copy in C′, the pair {x, y} must form a part of size two. Thus, the size of C′ coincides with the value of
I
(
Ka2,...,ar , G̃

)
, and hence, by Fact 2.2,

|C′| = (1 + o(1))(m− 2)r−1

2ℓ−r−1(ℓ− r − 1)!(2r − ℓ)!
kℓ−2.

Combining this with (28), we obtain

I(F,G)− I(F,G⊕ xy) = |C| − |C′| = (1 + o(1))(m− 2)r−2

2ℓ−r(ℓ− r)!(2r − ℓ)!

(
ℓ2 − 3ℓ+ 2r − 2(m− r)(ℓ− r)

)
kℓ−2.

By Lemma 4.2 (ii), we have m < ℓ(ℓ−1)
2(ℓ−r) , which implies that

ℓ2 − 3ℓ+ 2r − 2(m− r)(ℓ− r) > ℓ2 − 3ℓ+ 2r − 2
(
ℓ(ℓ−1)
2(ℓ−r) − r

)
(ℓ− r)

= ℓ2 − 3ℓ+ 2r − ℓ(ℓ− 1) + 2r(ℓ− r) = 2(r − 1)(ℓ− r).

Therefore,

I(F,G)− I(F,G⊕ xy) ≥ (1 + o(1))
2(r − 1)(ℓ− r)(m− 2)r−2

2ℓ−r(ℓ− r)!(2r − ℓ)!
kℓ−2 > εnℓ−2,

which proves Claim 4.6.
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Claim 4.7. Suppose that {x, y} ⊆ Vi for some i ∈ [m]. Then

I(F,G)− I(F,G⊕ xy) ≥ εnℓ−2.

Proof. By symmetry, we may assume that {x, y} ⊆ V1. Note that the pair {x, y} is not an edge of G. Let G′

denote the induced subgraph of G on V2 ∪ · · · ∪ Vm.

It is clear that the number of induced copies of F in G that contain {x, y} coincides with the value of
I(Ka2,...,ar , G

′), which, by Fact 2.2, is

(1 + o(1))
(m− 1)r−1

2ℓ−r−1(ℓ− r − 1)!(2r − ℓ)!
kℓ−2.

If ℓ = 2r − 1, then F has only one part of size one, and hence, the number of induced copies of F in G⊕ xy
that contain {x, y} is 0. If ℓ ≤ 2r − 2, then the number of induced copies of F in G⊕ xy that contain {x, y}
coincides with the value of I(Ka1,...,ar−2 , G

′), which, by Fact 2.2, is

(1 + o(1))
(m− 1)r−2

2ℓ−r(ℓ− r)!(2r − ℓ− 2)!
kℓ−2.

Therefore,

I(F,G)− I(F,G⊕ xy) =
(1 + o(1))(m− 1)r−2

2ℓ−r(ℓ− r)!(2r − ℓ)!

(
2(ℓ− r)(m− r + 1)− (2r − ℓ)(2r − 1− ℓ)

)
kℓ−2.

By Lemma 4.2 (i), we have m > ℓ(r−1)
2(ℓ−r) . Therefore,

2(ℓ− r)(m− r + 1)− (2r − ℓ)(2r − 1− ℓ)

> 2(ℓ− r)
(
ℓ(r−1)
2(ℓ−r) − r + 1

)
− (2r − ℓ)(2r − 1− ℓ) = (ℓ− r)(2r − ℓ).

It follows that

I(F,G)− I(F,G⊕ xy) ≥ (1 + o(1))(m− 1)r−2

2ℓ−r(ℓ− r)!(2r − ℓ)!
(ℓ− r)(2r − ℓ)kℓ−2

=
(1 + o(1))(m− 1)r−2

2ℓ−r(ℓ− r − 1)!(2r − ℓ− 1)!
kℓ−2 > εnℓ−2,

which proves Claim 4.7.

It follows from Claims 4.6 and 4.7 that (S1) holds. So it remains to verify (S2).

Claim 4.8. Suppose that B ⊆ [m] is a subset with |B| = q ∈ [0,m]. Then

|C̃q| =
(1 + o(1))h(q)

2ℓ−r(ℓ− r)!(2r − ℓ)!
kℓ−1,

where h : [m] → Z is the discrete function defined in Lemma 4.4.

Proof. Fix a subset B ⊆ [m] with |B| = q. Recall that GB is the graph obtained from G by adding a new vertex
v∗ that is adjacent to precisely all vertices in

⋃
i∈B Vi. By symmetry, we may assume that B = {1, . . . , q}.

Let C̃q denote the collection of all induced copies of F in GA that contain v∗. Let C̃1
q denote the collection

of all induced copies of F in GA in which v∗ forms a part of size one, and let C̃2
q denote the collection of all

induced copies of F in GA in which v∗ lies in a part of size two.

Note that the size of C̃1
q coincides with the value of I(Ka1,...,ar−1

,K[V1, . . . , Vq]), which, by Fact 2.2, is

(1 + o(1))(q)r−1

2ℓ−r(ℓ− r)!(2r − ℓ− 1)!
kℓ−1.

Note that the size of C̃2
q coincides with the value of I(Ka2,...,ar ,K[V1, . . . , Vq)·

∑m
i=q+1 |Vi|, which, by Fact 2.2, is

(1 + o(1))(q)r−1

2ℓ−r−1(ℓ− r − 1)!(2r − ℓ)!
kℓ−2 · (m− q)k =

(1 + o(1))(m− q)(q)r−1

2ℓ−r−1(ℓ− r − 1)!(2r − ℓ)!
kℓ−1.
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Therefore,

|C̃q| = |C̃1
q |+ |C̃2

q | =
(1 + o(1))(q)r−1

2ℓ−r(ℓ− r)!(2r − ℓ− 1)!
kℓ−1 +

(1 + o(1))(m− q)(q)r−1

2ℓ−r−1(ℓ− r − 1)!(2r − ℓ)!
kℓ−1

=
(1 + o(1))(q)r−1

2ℓ−r(ℓ− r)!(2r − ℓ)!

(
(2r − ℓ) + 2(m− q)(ℓ− r − 1)

)
kℓ−1 =

(1 + o(1))h(q)

2ℓ−r(ℓ− r)!(2r − ℓ)!
kℓ−1.

This proves Claim 4.8.

Fix an arbitrary set A ⊆ [m] with |A| ̸= m− 1. Let

∆ := min
{
I(F,GA∗) : A∗ ⊆ [m] and |A∗| = m− 1

}
− I(F,GA).

Then it follows from Claim 4.8 and Lemma 4.4 that

∆ =
(1 + o(1))h(m− 1)

2ℓ−r(ℓ− r)!(2r − ℓ)!
kℓ−1 − (1 + o(1))h(|A|)

2ℓ−r(ℓ− r)!(2r − ℓ)!
kℓ−1

=
h(m− 1)− h(|A|)
2ℓ−r(ℓ− r)!(2r − ℓ)!

kℓ−1 + o(kℓ−1) ≥ 1

2ℓ−r(ℓ− r)!(2r − ℓ)!
kℓ−1 + o(kℓ−1) ≥ εnℓ−1.

This shows that (S2) holds. So it follows from Theorem 4.1 that the inducibility problem for F is perfectly
stable, which completes the proof of Theorem 1.5 for ℓ ≤ 2r − 1.

4.3 Proof of Theorem 1.5 for ℓ ≥ 2r

In this subsection, we prove Theorem 1.5 for the case ℓ ≥ 2r. The proof parallels that of the previous section,
with several steps simplified by the fact that ar ≥ 2 (which follows from ℓ ≥ 2r).

Lemma 4.9. Let ℓ, r be integers such that r ≥ 2 and ℓ ≥ 2r. Let m = mr,ℓ be the integer given by Lemma 3.2.
Then the discrete function H : [0,m] → Z defined by

H(q) := (m− q)(q)r−1, for every q ∈ [0,m],

satisfies H(q) < H(m− 1) for all integers q ∈ [0,m] \ {m− 1}.

Proof. The inequality H(q) < H(m− 1) is clear for q = m and q ≤ r − 2 since H(q) = 0 in these cases. For
the remaining case, it suffices to show that H(q) is increasing in q for q ∈ [r − 1,m− 2].

It follows from Lemma 4.2 (ii) that

m <
rℓ2

ℓ2 − r2
≤ r(2r)2

(2r)2 − r2
=

4r

3
. (29)

Fix q ∈ [r,m− 1]. Then we have

H(q)−H(q − 1) = (m− q)(q)r−1 − (m− q + 1)(q − 1)r−1

= (q − 1)r−2

(
(m− q)q − (m− q + 1)(q − r + 1)

)
= (q − 1)r−2

(
(r − 1)(m+ 1)− rq

)
≥ (q − 1)r−2

(
3r − 1−m

)
> (q − 1)r−2

(
5r
3 − 1

)
> 0.

Here, in the first inequality we used the assumption that q ≤ m− 2, in the second inequality we used (29).
This completes the proof of Lemma 4.9.

Proof of Theorem 1.5. Let F = Ka1,...,ar be an almost balanced complete r-partite graph on ℓ ≥ 2r
vertices, that is, ℓ = a1 + · · ·+ ar. Let m = mr,ℓ be the integer given by Lemma 3.2. Since ℓ ≥ 2r, it follows
from Lemma 4.2 (ii) that (29) holds.

Assume that a1 ≥ · · · ≥ ar. By Fact 2.7 (ii), we have ar ≥ 2. Let b1 > · · · > bt denote the distinct elements of
the multiple set {{a1, . . . , ar }}, occurring with multiplicities r1, . . . , rt, respectively.

It follows from Theorem 3.1 that OPT(F ) = {m}. Thus, by Theorem 4.1, it suffices to verify (S1) and (S2)
for some constant ε > 0 and all sufficiently large n.
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Fix a sufficiently large n and let k := ⌊n/m⌋. For simplicity, we will use o(·) to denote lower-order terms.

Let G := Gn,m be the n-vertex realization with parts V1, . . . , Vm, where |Vi| = k for all i ∈ [m]. Let

ε :=
(
4mℓ+1 · sym(a1, . . . , ar) · a1! · · · ar!

)−1

.

We first verify (S1) in the following two claims.

Claim 4.10. Suppose that {x, y} ⊆ Vi for some i ∈ [m]. Then

I(F,G)− I(F,G⊕ xy) ≥ εnℓ−2.

Proof. By symmetry, we may assume that {x, y} ⊆ V1. Since each part of F has size at least two, there is no
induced copy of F in G⊕ xy containing {x, y}. However, it is clear that the number of induced copies of F in
G that contain {x, y} and with exactly a1 vertices in V1 is at least(|V1|−2

a1−2

)
· I(Ka2,...,ar ,K[V2, . . . , Vm]).

By Fact 2.2, this is

(1 + o(1))
1

(a1 − 2)!
ka1−2 (m− 1)r−1

a2! · · · ar! · sym(a2, . . . , ar)
ka2+···+ar > εnℓ−2.

It follows that I(F,G)− I(F,G⊕ xy) ≥ εnℓ−2, which proves Claim 4.10.

Claim 4.11. Suppose that (x, y) ∈ Vi × Vj for distinct i, j ∈ [m]. Then

I(F,G)− I(F,G⊕ xy) ≥ εnℓ−2.

Proof. By symmetry, we may assume that (x, y) ∈ V1 × V2. Recall that b1 > · · · > bt are the distinct elements
of the multiple set {{a1, . . . , ar }}, occurring with multiplicities r1, . . . , rt, respectively.

Let C denote the collection of all induced copies of F in G that contain {x, y}. For {i, j} ⊆ [t], let Ci,j denote
the collection of all induced copies of F in G that contain {x, y} with x lying in a part of size bi and y lying
in a part of size bj . For each i ∈ [t] with ri ≥ 2, let Ci denote the collection of all induced copies of F in G
that contain {x, y} with both x and y lying in parts of size bi.

For each {i, j} ⊆ [t], let Fi,j denote the (r− 2)-partite subgraph of F obtained by removing one part of size bi
and one part of size bj . Then, by Fact 2.2, we have

|Ci,j | =
(|V1|−1
bi−1

)(|V2|−1
bj−1

)
· I(Fi,j , G[V3, . . . , Vm])

= (1 + o(1))
kbi−1+bj−1

(bi − 1)!(bj − 1)!

(m− 2)r−2

(bi!bj !)−1
∏
x∈[t](bx!)

rx · (rirj)−1
∏
x∈[t] rx!

kℓ−bi−bj

= (1 + o(1))
(m− 2)r−2∏

x∈[t](bx!)
rx ·

∏
x∈[t] rx!

ribirjbjk
ℓ−2.

For each i ∈ [t] with ri ≥ 2, let Fi denote the (r− 2)-partite subgraph of F obtained by removing two parts of
size bi. Then, by Fact 2.2, we have

|Ci| =
(|V1|−1
bi−1

)(|V2|−1
bi−1

)
· I(Fi, G[V3, . . . , Vm])

= (1 + o(1))
k2bi−2

((bi − 1)!)2
(m− 2)r−2

(bi!)−2
∏
x∈[t](bx!)

rx · (ri(ri − 1))−1
∏
x∈[t] rx!

kℓ−2bi

= (1 + o(1))
(m− 2)r−2∏

x∈[t](bx!)
rx ·

∏
x∈[t] rx!

ri(ri − 1)b2i k
ℓ−2bi .

Therefore,

|C| = (1 + o(1))(m− 2)r−2∏
x∈[t](bx!)

rx ·
∏
x∈[t] rx!

kℓ−2
( ∑

(i,j)∈([t])2

ribirjbj +
∑

i∈[t],ri≥2

ri(ri − 1)b2i

)
=

(1 + o(1))(m− 2)r−2

a1! · · · ar! · sym(a1, . . . , ar)
kℓ−2

∑
(i,j)∈([r])2

aiaj . (30)
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Let C′ denote the collection of all induced copies of F in G⊕ xy that contain {x, y}. Let ω denote the number
of parts of size two in F . Since ai ≥ 2 for every i ∈ [r], we have (using (29))∑

(i,j)∈([r])2

aiaj − 2(m− r)ω > 4r(r − 1)− 2

(
4r

3
− r

)
r =

2

3
r(5r − 6). (31)

Suppose that ω = 0. Since every part of F has size at least 3 and {x, y} in not and edge in G⊕ xy, there is
no induced copy of F in G⊕ xy, and hence, |C′| = 0.

Suppose that ω ≥ 1 (i.e. ar = 2), then bt = 2 and rt = ω. Note that in this case, the size of C′ coincides with
the value of I(Ka1,...,ar−1

,K[V3, . . . , Vm]), which, by Fact 2.2, is

(1 + o(1))(m− 2)r−1

a1! · · · ar−1! · sym(a1, . . . , ar−1)
kℓ−2 =

(1 + o(1))(m− 2)r−2

a1! · · · ar! · sym(a1, . . . , ar)
kℓ−22(m− r)rt.

Combining this with (30) and (31), we obtain

I(F,G)− I(F,G⊕ xy) =
(1 + o(1))(m− 2)r−2

a1! · · · ar! · sym(a1, . . . , ar)
kℓ−2

( ∑
(i,j)∈([r])2

aiaj − 2(m− r)ω
)

≥ (1 + o(1))2r(5r − 6)(m− 2)r−2

3a1! · · · ar! · sym(a1, . . . , ar)
kℓ−2 ≥ εnℓ−2.

This completes the proof of Claim 4.11.

By Claims 4.10 and 4.11, (S1) holds. So it remains to verify (S2).

Claim 4.12. Suppose that B ⊆ [m] is a set of size q ∈ [0,m]. Then the number of induced copies of F in GB
that contain v∗ is

(1 + o(1))ℓ ·H(q)∏
i∈[r] ai! · sym(a1, . . . , ar)

kℓ−1,

where H : [m] → Z is the discrete function defined in Lemma 4.9.

Proof. Fix a subset B ⊆ [m] with |B| = q. Recall that GB is the graph obtained from G by adding a new vertex
v∗ that is adjacent to precisely all vertices in

⋃
i∈B Vi. By symmetry, we may assume that B = {1, . . . , q}.

Let C̃q denote the collection of all induced copies of F in GB that contain v∗. Since F is complete r-partite
and ar ≥ 2, if q ∈ [r − 2] ∪ {m}, then |C̃q| = 0. Thus, we may assume that q ∈ [r − 1,m− 1].

Recall that b1 > · · · > bt are the distinct elements of the multiple set {{a1, . . . , ar }}, occurring with multiplicities
r1, . . . , rt, respectively. For each i ∈ [t], let F ′

i denote the (r − 1)-partite subgraph of F by removing a part of
size bi, and let C̃iq denote the collection of all induced copies of F in GB that contain v∗ such that v∗ lying in
a part of size bi. Then the size C̃iq coincides with the value of

∑m
j=q+1

( |Vj |
bi−1

)
· I(F ′

i ,K[V1, . . . , Vq]), which, by
Fact 2.2, is

(1+o(1))(m−q) kbi−1

(bi − 1)!
· (q)r−1

(bi!)−1
∏
i∈[r] ai! · r

−1
i · sym(a1, . . . , ar)

kℓ−bi =
(1 + o(1))(m− q)(q)r−1∏
i∈[r] ai! · sym(a1, . . . , ar)

ribik
ℓ−1.

It follows that

|C̃q| =
(1 + o(1))(m− q)(q)r−1∏
i∈[r] ai! · sym(a1, . . . , ar)

kℓ−1 ·
∑
i∈[t]

ribi =
(1 + o(1))ℓ(m− q)(q)r−1∏
i∈[r] ai! · sym(a1, . . . , ar)

kℓ−1.

This completes the proof of Claim 4.12.

Fix A ⊆ [m] with |A| ̸= m− 1, and let

∆ := min
{
I(F,GA∗) : A∗ ⊆ [m] and |A∗| = m− 1

}
− I(F,GA).

It follows from Claim 4.12 and Lemma 4.9 that

∆ =
(1 + o(1))ℓ∏

i∈[r] ai! · sym(a1, . . . , ar)
kℓ−1

(
H(m− 1)−H(q)

)
≥ (1 + o(1))ℓ∏

i∈[r] ai! · sym(a1, . . . , ar)
kℓ−1 ≥ εnℓ−1.

This proves (S2). By Theorem 4.1, the inducibility problem for F is perfectly stable, proving Theorem 1.5.
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5 Exact results and uniqueness of the extremal construction

In this section, we show that, for large n, the extremal graph for I(F, n) is the Turán graph if F is an almost
balanced complete multipartite graph, thus completing the proof of Theorem 1.1. We begin with the following
two lemmas.

Lemma 5.1. Let t ≥ s ≥ 1 be integers. Suppose x, y,N are real numbers satisfying y > x + 1 and
max{|x−N |, |y −N |} = o(N) as N → ∞. Then(

x+1
s

)
+
(
y−1
s

)
−
(
x
s

)
−
(
y
s

)
= − s(s−1)

s! (y − x− 1)Ns−2 + o(Ns−2); (32)(
x+1
t

)(
y−1
s

)
+
(
x+1
s

)(
y−1
t

)
−
(
x
t

)(
y
s

)
−
(
x
s

)(
y
t

)
= t+s−(t−s)2

s!t!

(
y − x− 1

)
N t+s−2 + o(N t+s−2). (33)

Proof. We start with the first equality. The case s = 1 is trivially true, so we may assume that s ≥ 2. Let
ϕ : [s− 1,∞) → R be the function defined by ϕ(z) =

(
z
s−1

)
for all z ∈ [s− 1,∞). By the Mean Value Theorem,

there exists z0 ∈ [x, y − 1] (hence |z0 −N | = o(N)) such that(
x+1
s

)
+
(
y−1
s

)
−
(
x
s

)
−
(
y
s

)
=
(
x
s−1

)
−
(
y−1
s−1

)
= (x− y + 1)ϕ′(z0)

= (x− y + 1)
(
zs−2
0

(s−2)! + o
(
zs−2
0

))
= −y−x−1

(s−2)! N
s−2 + o(Ns−2),

as desired.

We now consider the second equality. Let

g(x, y) := (x+ 1)(y − s)t−s+1 + (x+ 1)(y − s)(x− s+ 1)t−s − (x− s+ 1)y(y − s)t−s − y(x− s+ 1)t−s+1.

Claim 5.2. We have g(x, y) =
(
t+ s− (t− s)2

)
(y − x− 1)N t−s + o(N t−s).

Proof. The case t− s ∈ {0, 1} follows directly from the following fact (which itself follows from straightforward
calculations):

g(x, y) =

{
2s(y − x− 1), if t− s = 0,

s(y − x− 1)(x+ y − 2s), if t− s = 1.

So we may assume that t− s ≥ 2. Simplifying g(x, y), we obtain

g(x, y) = s
(
y(y − s)t−s − (x+ 1)(x+ 1− s)t−s

)
− t(x+ 1)y

(
(y−s)t−s

y − (x+1−s)t−s

x+1

)
.

Let ψ1, ψ2 : [t− 1,∞) → R be functions defined by

ψ1(z) = z(z − s)t−s and ψ2(z) =
(z − s)t−s

z
for all z ∈ [t− 1,∞).

By the Mean Value Theorem, there exist z1, z2 ∈ [x, y − 1] such that

y(y − s)t−s − (x+ 1)(x+ 1− s)t−s = (y − x− 1)ψ′
1(z1)

= (y − x− 1)
(
(t− s+ 1)zt−s1 + o(zt−s)

)
= (y − x− 1)(t− s+ 1)N t−s + o(N t−s),

and

(y − s)t−s
y

− (x+ 1− s)t−s
x+ 1

= (y − x− 1)ψ′
2(z2)

= (y − x− 1)
(
(t− s− 1)zt−s−2

2 + o(zt−s−2)
)

= (y − x− 1)(t− s− 1)N t−s−2 + o(N t−s−2).

Consequently, we have

g(x, y) = s(y − x− 1)(t− s+ 1)N t−s + t(x+ 1)y(y − x− 1)(t− s− 1)N t−s−2 + o(N t−s)

=
(
t+ s− (t− s)2

)
(y − x− 1)N t−s + o(N t−s),

which proves Claim 5.2.
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It follows from Claim 5.2 that(
x+1
t

)(
y−1
s

)
+
(
x+1
s

)(
y−1
t

)
−
(
x
t

)(
y
s

)
−
(
x
s

)(
y
t

)
=

(x)s−1(y − 1)s−1

t! s!
· g(x, y)

=
t+ s− (t− s)2

s!t!

(
y − x− 1

)
N t+s−2 + o(N t+s−2),

which completes the proof of Lemma 5.1.

Lemma 5.3. Let F = Ka1,...,ar be an almost balanced complete r-partite graph with a1 ≥ · · · ≥ ar, and let
ℓ := a1 + · · ·+ ar. Let m := mr,ℓ be the constant given by Lemma 3.2. Then(

ℓ

2

)
> m

∑
k∈[r]

(
ak
2

)
.

Proof. Suppose that ar = 1. Then it follows from Fact 2.7 (i) that a1 = · · · = aℓ−r = 2 and aℓ−r+1 = · · · =
ar = 1. Combining this with m < ℓ(ℓ−1)

2(ℓ−r) (by Lemma 4.2 (ii)), we obtain

m
∑
k∈[r]

(
ak
2

)
= m(ℓ− r) <

ℓ(ℓ− 1)

2(ℓ− r)
(ℓ− r) =

(
ℓ

2

)
.

Now suppose that ar ≥ 2 (consequently, ℓ ≥ 2r). Observe that

r
∑
k∈[r]

(
ak
2

)
=

1

2

(
r
∑
k∈[r]

a2k − r
∑
k∈[r]

ak

)
=

1

2

(
(a1 + · · ·+ ar)

2 +
∑

{i,j}∈([r]2 )

(ai − aj)
2 − rℓ

)

=
1

2

(
ℓ2 +

∑
{i,j}∈([r]2 )

(ai − aj)
2 − rℓ

)
. (34)

For every {i, j} ⊆ [r], it follows from the almost balanced assumption that(
ai − aj

2

)
≤
(
a1 − ar

2

)
≤ ar − 1 ≤ aj − 1,

which implies that
(ai − aj)

2 ≤ ai + aj − 2. (35)

First, we consider the case r ≤ 3. Since ℓ ≥ 2r ≥ ln(r+1)
ln(1+1/r) for r ∈ {2, 3}, the integer mr,ℓ given by Lemma 3.2

satisfies that mr,ℓ = r. Combining this with (34) and (35), we obtain

m
∑
k∈[r]

(
ak
2

)
= r

∑
k∈[r]

(
ak
2

)
=

1

2

(
ℓ2 +

∑
{i,j}∈([r]2 )

(ai − aj)
2 − rℓ

)
≤ 1

2

(
ℓ2 +

∑
{i,j}∈([r]2 )

(ai + aj − 2)− rℓ
)

=
1

2

(
ℓ2 + (r − 1)ℓ− r(r − 1)− rℓ

)
=

1

2

(
ℓ2 − ℓ− r(r − 1)

)
<

(
ℓ

2

)
,

as desired. So it remains to prove the case when r ≥ 4.

Claim 5.4. We have
∑

{i,j}∈([r]2 )
(ai − aj)

2 ≤ (r − 1)ℓ− r2.

Proof. Observe that∑
{i,j}∈([r]2 )

(ai − aj)
2 =

∑
{i,j}∈([2,r−1]

2 )

(ai − aj)
2 + (a1 − ar)

2 +
∑

i∈[2,r−1]

(
(a1 − ai)

2 + (ai − ar)
2
)

≤
∑

{i,j}∈([2,r−1]
2 )

(ai − aj)
2 + (a1 − ar)

2 +
∑

i∈[2,r−1]

(a1 − ar)
2

=
∑

{i,j}∈([2,r−1]
2 )

(ai − aj)
2 + (r − 1)(a1 − ar)

2,
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where the inequality follows from the fact that, for all x ≥ y ≥ z ≥ 0,

(x− y)2 + (y − z)2 =
(
(x− y) + (x− z)

)2 − 2(x− y)(y − z) ≤ (x− z)2.

Repeating this argument for
∑
i,j∈([2,r−1]

2 )(ai − aj)
2, and continuing similarly, then applying (35), we obtain∑

{i,j}∈([r]2 )

(ai − aj)
2 ≤ (r − 1)(a1 − ar)

2 + (r − 3)(a2 − ar−1)
2 + · · ·+

(
r − 2⌊ r2⌋+ 1

)(
a⌊r/2⌋ − ar+1−⌊r/2⌋

)2

=

⌊r/2⌋∑
i=1

(r − 2i+ 1)(ai − ar+1−i)
2 ≤

⌊r/2⌋∑
i=1

(r − 2i+ 1)(ai + ar+1−i − 2).

So it suffices to show that

⌊r/2⌋∑
i=1

(r − 2i+ 1)(ai + ar+1−i − 2) ≤ (r − 1)ℓ− r2.

Suppose that r = 2k for some k ≥ 2. Then

⌊r/2⌋∑
i=1

(r − 2i+ 1)(ai + ar+1−i − 2) =
∑
i∈[k]

(r − 1)(ai + ar+1−i − 2)−
∑
i∈[k]

(2i− 2)(ai + ar+1−i − 2)

≤ (r − 1)(ℓ− r)−
∑
i∈[k]

(2i− 2)(2 + 2− 2)

= (r − 1)(ℓ− r)− r(r − 2)

2
= (r − 1)ℓ− r2 − r(r − 4)

2
≤ (r − 1)ℓ− r2,

as desired.

Now suppose that r = 2k − 1 for some k ≥ 3. Then

⌊r/2⌋∑
i=1

(r − 2i+ 1)(ai + ar+1−i − 2)

=
∑

i∈[k−1]

(r − 1)(ai + ar+1−i − 2)−
∑

i∈[k−1]

(2i− 2)(ai + ar+1−i − 2)

=

r∑
i=1

(r − 1)(ai − 1)− (r − 1)(ak − 1)−
∑

i∈[k−1]

(2i− 2)(ai + ar+1−i − 2)

≤ (r − 1)(ℓ− r)− (r − 1)(2− 1)−
∑

i∈[k−1]

(2i− 2)(2 + 2− 2)

= (r − 1)(ℓ− r)− (r − 1)− 1

2

(
r2 − 4r + 3

)
= (r − 1)ℓ− r2 − r(r − 4) + 1

2
≤ (r − 1)ℓ− r2,

also as desired. This completes the proof of Claim 5.4.

It follows from (34), Claim 5.4, and the inequality m < rℓ2

ℓ2−r2 (by Lemma 4.2 (ii)) that

r
∑
k∈[r]

(
ak
2

)
=
m

r
· r
∑
k∈[r]

(
ak
2

)
=
m

r
· 1
2

(
ℓ2 +

∑
{i,j}∈([r]2 )

(ai − aj)
2 − rℓ

)

≤ ℓ2

ℓ2 − r2

(
ℓ2 + (r − 1)ℓ− r2 − rℓ

)
=

(
ℓ

2

)
− r2ℓ

2(ℓ2 − r2)
<

(
ℓ

2

)
.

This completes the proof of Lemma 5.3.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let F = Ka1,...,ar be an almost balanced complete r-partite graph on ℓ vertices,
that is, ℓ = a1 + · · · + ar. Let m = mr,ℓ be the integer given by Lemma 3.2. Let n be a sufficiently large
integer, and let N := n/m. Let G be an n-vertex graph satisfying I(F,G) = I(F, n).
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It follows from Theorems 3.1 and 1.5 that G is complete m-partite with each part of size (1 + o(1))N . Write
the part sizes of G as n1 ≥ n2 ≥ · · · ≥ nm, noting that

∑m
i=1 ni = n and |ni −N | = o(n) for every i ∈ [m].

Let y := n1 and x := nm. Suppose to the contrary that G is not a Turán graph, that is, y ≥ x+ 2.

For convenience, for every graph H, let Î(F,H) := sym(a1, . . . , ar) · I(F,H).

Claim 5.5. The complete m-partite graph G∗ ∼= Kn1−1,n2,...,nm+1 satisfies

Î(F,G∗)− Î(F,G) > 0.

Proof. Recall that m = 2 when r = 2 by Lemma 3.2. For each i ∈ [r], let

fi(x, y) :=
(
x+1
ai

)
+
(
y−1
ai

)
−
(
x
ai

)
−
(
y
ai

)
,

Ai :=

{
0, if r = 2,∑

(sk)k∈[r]\{i}

∏
k∈[r]\{i}

(
nsk
ak

)
, if r ≥ 3,

=
(

(m−2)r−1·ai!
a1!···ar! + o(1)

)
N ℓ−ai .

where the tuple (sk)k∈[r]\{i} ranges over
(
[2,m− 1]

)
r−1

in the summation.

For each {i, j} ⊆ [r], let

gi,j(x, y) :=
(
x+1
ai

)(
y−1
aj

)
+
(
x+1
aj

)(
y−1
ai

)
−
(
x
ai

)(
y
aj

)
−
(
x
aj

)(
y
ai

)
,

Bi,j :=

{
1, if r = 2,∑

(sk)k∈[r]\{i,j}

∏
k∈[r]\{i,j}

(
nsk
ak

)
, if r ≥ 3,

=
(

(m−2)r−2·ai!aj !
a1!···ar! + o(1)

)
N ℓ−ai−aj ,

where the tuple (sk)k∈[r]\{i,j} ranges over
(
[2,m− 1]

)
r−2

in the summation.

Since sc(G) = 0, applying (4) and simplifying, we obtain

Î(F,G∗)− Î(F,G) =
∑
i∈[r]

Ai · fi(x, y) +
∑

{i,j}∈([r]2 )

Bi,j · gi,j(x, y). (36)

It follows from (32) that

Ai · fi(x, y) = −ai(ai − 1)

ai!
(y − x− 1 + o(1))Nai−2 ·

(
(m− 2)r−1 · ai!

a1! · · · ar!
+ o(1)

)
N ℓ−ai

= ai(ai − 1)(y − x− 1)
(m− 2)r−1

a1! · · · ar!
N ℓ−2 + o(N ℓ−2). (37)

It follows from (33) that

Bi,j · gi,j(x, y) =
ai + aj − (ai − aj)

2

ai!aj !

(
y − x− 1 + o(1)

)
Nai+aj−2 ·

(
(m− 2)r−2 · ai!aj !

a1! · · · ar!
+ o(1)

)
N ℓ−ai−aj

=
(
ai + aj − (ai − aj)

2
)
(y − x− 1)

(m− 2)r−2

a1! · · · ar!
N ℓ−2 + o(N ℓ−2). (38)

Let

Ψ := −
∑
i∈[r]

(m− r)ai(ai − 1) +
∑

{i,j}∈([r]2 )

(
ai + aj − (ai − aj)

2
)
.

Then

Ψ = −
∑
i∈[r]

(m− r)(a2i − ai) +
∑

{i,j}∈([r]2 )

(
ai + aj − a2i − a2j + 2aiaj

)
=
∑
i∈[r]

(
−(m− r)(a2i − ai)− (r − 1)(a2i − ai)

)
+
∑
i∈[r]

ai
∑

j∈[r]\{i}

aj

= −
∑
i∈[r]

(m− 1)(a2i − ai) +
∑
i∈[r]

ai(ℓ− ai)

= −
∑
i∈[r]

m(a2i − ai) +
∑
i∈[r]

(ℓ− 1)ai = 2
((

ℓ
2

)
−m

∑
i∈[r]

(
ai
2

))
.
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Combining this with (36), (37), and (38), we obtain

Î(F,G∗)− Î(F,G) = Ψ · (y − x− 1)
(m− 2)r−2

a1! · · · ar!
N ℓ−2 + o(N ℓ−2)

= 2
((

ℓ
2

)
−m

∑
i∈[r]

(
ai
2

))
· (y − x− 1)

(m− 2)r−2

a1! · · · ar!
N ℓ−2 + o(N ℓ−2).

By Lemma 5.3, the factor
(
ℓ
2

)
−m

∑
i

(
ai
2

)
is positive and hence at least one. It follows that Î(F,G∗)− Î(F,G) >

0, which establishes Claim 5.5.

It follows from Claim 5.5 that G is not extremal, contradicting the assumption that I(F,G) = I(F, n). This
completes the proof of Theorem 1.1.

For the balanced case Kr(t) = Tr(rt), the requirement that n be sufficiently large can be dropped, though the
extremal graph may no longer be unique.

Theorem 5.6. Let r, t ≥ 2 be integers. The following holds for every n ≥ rt. Suppose that G is an n-vertex
complete multipartite graph satisfying I(Kr(t), G) = I(Kr(t), n). Then G ∼= Tk(n) for some integer k ≥ r. In
particular, for every integer n ≥ rt, there exists an integer k such that I(Kr(t), Tk(n)) = I(Kr(t), n).

Proof. Fix integers r ≥ 2 and t ≥ 2, and let F = Kr(t). Fix n ≥ rt. By Lemma 2.3, there exists a complete
multipartite graph G such that I(F,G) = I(F, n). Write G = Ka1,...,ak for some integer k, and assume that
a1 ≥ · · · ≥ ak. Clearly, we must have k ≥ r and ak ≥ t, since otherwise I(F,G) = 0.

Suppose to the contrary that a1 ≥ ak + 2. Let G′ be the complete k-partite graph with part sizes a1 −
1, a2, · · · , ak−1, ak + 1, and let G′′ be the complete (k − 1)-partite graph with part sizes a1 + ak, a2, · · · , ak−1.

Claim 5.7. We have I(F,G) < max{I(F,G′), I(F,G′′)}.

Proof. Let x := ak and y := a1, noting that y − 1 > x ≥ t. Define

A :=

0, if r = 2,

r ·
∑

(i1,...,ir−1)∈([2,k−1])r−1

(
ai1
t

)
· · ·
(air−1

t

)
, if r ≥ 3,

B :=

2, if r = 2,

r(r − 1) ·
∑

(i1,...,ir−2)∈([2,k−1])r−2

(
ai1
t

)
· · ·
(air−2

t

)
, if r ≥ 3.

Since mini∈[k] ai ≥ t and k ≥ r, it follows directly from the definition that B > 0.

Suppose for a contradiction that both I(F,G) ≥ I(F,G′) and I(F,G) ≥ I(F,G′′) hold. Applying (4) and
then simplifying, we obtain

0 ≤ r!
(
I(F,G)− I(F,G′)

)
= α1A− β1B, (39)

0 ≤ r!
(
I(F,G)− I(F,G′′)

)
= β2B − α2A, (40)

where

α1 :=
(
x
t

)
+
(
y
t

)
−
(
x+1
t

)
−
(
y−1
t

)
, α2 :=

(
x+y
t

)
−
(
x
t

)
−
(
y
t

)
, β1 :=

(
x+1
t

)(
y−1
t

)
−
(
x
t

)(
y
t

)
, β2 :=

(
x
t

)(
y
t

)
.

Since y > x ≥ t ≥ 2, we have

α1 =
(
y−1
t−1

)
−
(
x
t−1

)
> 0, α2 =

∑
i∈[t−1]

(
x
i

)(
y
t−i
)
> 0, β1 = y−x−1

t

(
x
t−1

)(
y−1
t−1

)
> 0, β2 > 0.

Combining this with (39), (40), and B > 0, we obtain

β1
α1

≤ A

B
≤ β2
α2
,

which after rearranging yields

0 ≤ β2α1 − β1α2 =
(
x
t

)(
y
t

)((
x
t

)
+
(
y
t

)
−
(
x+1
t

)
−
(
y−1
t

))
−
((
x+1
t

)(
y−1
t

)
−
(
x
t

)(
y
t

))((
x+y
t

)
−
(
x
t

)
−
(
y
t

))
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=
(
y
t

)(
y−1
t

)((
x+1
t

)
−
(
x
t

))
−
(
x+1
t

)(
x
t

)((
y
t

)
−
(
y−1
t

))
−
(
x+y
t

)((
x+1
t

)(
y−1
t

)
−
(
x
t

)(
y
t

))
=
(
y
t

)(
y−1
t

)(
x
t−1

)
−
(
x+1
t

)(
x
t

)(
y−1
t−1

)
− y−x−1

t

(
x
t−1

)(
y−1
t−1

)(
x+y
t

)
= 1

t

(
x
t−1

)(
y−1
t−1

)(
y
(
y−1
t

)
− (x+ 1)

(
x
t

)
− (y − x− 1)

(
x+y
t

))
.

It follows that

y
(
y−1
t

)
− (x+ 1)

(
x
t

)
− (y − x− 1)

(
x+y
t

)
≥ 0. (41)

Let ϕ : [t,∞) → R be the function defined by ϕ(z) =
(
z
t

)
for every z ∈ [t,∞). Since ϕ is strictly convex on

[t,∞) for t ≥ 2, it follows from Jensen’s inequality that

x+1
y

(
x
t

)
+ y−x−1

y

(
x+y
t

)
>
( x+1

y ·x+ y−x−1
y ·(x+y)
t

)
=
(
y−1
t

)
.

However, this is a contradiction to (41). This completes the proof of Claim 5.7.

It follows from Claim 5.7 that G is not extremal, contradicting the assumption that I(F,G) = I(F, n). This
completes the proof of Theorem 5.6.

6 Concluding remarks

Let F be a complete r-graph on ℓ ≥ r + 1 vertices. Observe that if a maximizer x = (x1, x2, . . .) ∈ OPT(F )
satisfies x0 = 0 and xi = xj for all i, j ⊆ supp(x), then necessarily x = mr,ℓ, where mr,ℓ is the integer given
by Lemma 3.2.

A natural next step beyond Theorem 1.1 is to understand to what extent the “almost balanced” hypothesis
can be relaxed.

Problem 6.1. For all integers ℓ > r ≥ 3, characterize the complete r-partite graphs F on ℓ vertices for which
OPT(F ) = {mr,ℓ}.

We remark that a necessary condition for a complete r-partite graph F = Ka1,...,ar on ℓ vertices satisfying
OPT(F ) = {mr,ℓ} is given by the following inequality, which is slightly weaker than that in Lemma 5.3:(

ℓ

2

)
≥ mr,ℓ

∑
k∈[r]

(
ak
2

)
. (42)

Indeed, let m = mr,ℓ. If (42) fails, consider the perturbation (for a sufficiently small constant δ > 0)

xδ :=
(
1+δ
m , 1

m , . . . ,
1
m︸ ︷︷ ︸

m−2

, 1−δm , 0, . . .
)
.

By (8), we have

pF (xδ) =
κF (m− 2)r−2

mℓ

(
(m− r)(m− r − 1) + (m− r)S(δ) + T (δ)

)
,

where

S(δ) :=
∑
i∈[r]

(
(1 + δ)ai + (1− δ)ai

)
and T (δ) :=

∑
{i,j}⊆[r]

(1 + δ)ai(1− δ)aj .

Writing q(δ) := (m− r)S(δ) + T (δ), a direct calculation yields

q′(0) = 0 and q′′(0) = 2
(
m

r∑
i=1

(
ai
2

)
−
(
ℓ
2

))
> 0.

It follows that m cannot be a maximizer, as claimed.

It should be pointed out that (42) is not a sufficient condition for OPT(F ) = {mr,ℓ} to hold (even when
replaced by a strict inequality). In forthcoming work [13], we will determine i(F ) and establish the perfect
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stability for all complete 3-partite graphs F . In particular, our result will show that F = K12,7,7 satisfies (42)
with strict inequality. However, the unique maximizer in OPT(F ) is

(
α, 1−α2 , 1−α2 , 0, . . .

)
, where α ≈ 0.396884

is the largest real root of

130x5 + 25x4 − 90x3 + 80x2 − 40x+ 7 = 0.

On the other hand, the sufficient condition (1) is not necessary in general. For example, F = K4,8,8 is
not almost balanced (since

(
8−4
2

)
= 6 > 4), yet our result will show that the unique maximizer for F is

(1/3, 1/3, 1/3, 0, . . .).

Thus, the answer to Problem 6.1, in terms of the algebraic relations among a1, . . . , ar, lies strictly between
the hypersurfaces defined by (1) and (42), and appears to be quite complicated.
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