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Abstract

Let I(F,n) denote the maximum number of induced copies of a graph F' in an n-vertex graph. The
inducibility of F', defined as i(F) = limp— 00 I(F,n)/ (U("F)), is a central problem in extremal graph theory.
In this work, we investigate the inducibility of Turan graphs F. This topic has been extensively studied in
the literature, including works of Pippenger—Golumbic [27], Brown—Sidorenko [7], Bollobas-Egawa—Harris—
Jin [5], Mubayi, Reiher, and the first author [23], and Yuster [32]. Broadly speaking, these results resolve
or asymptotically resolve the problem when the part sizes of F' are either sufficiently large or sufficiently
small (at most four).

We complete this picture by proving that for every Turadn graph F' and sufficiently large n, the value
I(F,n) is attained uniquely by the m-partite Turan graph on n vertices, where m is given explicitly in terms
of the number of parts and vertices of F. This confirms a conjecture of Bollobas—Egawa—Harris—Jin [5]
from 1995, and we also establish the corresponding stability theorem. Moreover, we prove an asymptotic
analogue for I41(F,n), the maximum number of induced copies of F in an n-vertex Kpyi-free graph,
thereby completely resolving a recent problem of Yuster [32]. Finally, our results extend to a broader class
of complete multipartite graphs in which the largest and smallest part sizes differ by at most on the order
of the square root of the smallest part size.

1 Introduction

A fundamental problem in extremal graph theory is to determine the maximum number of induced copies
of a given graph F' among all n-vertex graphs. Formally, given two graphs F' and G, let I(F,G) denote the
number of induced copies of F' in G, that is, the number of subsets S C V(G) of size v(F') such that the
induced subgraph G[S] is isomorphic to F'. Here, v(F') denotes the number of vertices of F. For every positive
integer n, let

I(F,n) =max{I(F,G): v(G) =n}.
The inducibility of F is then defined as

. . . n
i(F) = nh_}rr;o I(F, n)/(U(F)).
A systematic study of the inducibility problem for graphs was initiated in a foundational work of Pippenger—
Golumbic [27], in which they established several general properties of inducibility and determined the
inducibility of complete bipartite graphs with part sizes differing by at most one.

Determining I(F,n) (or even i(F)) is rather difficult in general. For example, the inducibility of the path on
four vertices remains wide open (see, e.g., [10, 9]). For small graphs, bounds on the inducibility of graphs on
4, 5, and 6 vertices have been obtained in several works, including Exoo [10], Hirst [18], Even-Zohar—Linial [9],
Pikhurko—Slia¢an—Tyros [26], and Bodnéar et al. [4], some of which employ the computer-assisted flag algebra
machinery of Razborov [28]. A particularly interesting result obtained by Balogh-Hu-Lidicky—Pfender [2] is
the determination of the inducibility of the 5-cycle Cy, which confirms a special case of an old conjecture of
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Pippenger—Golumbic [27] on the inducibility of cycles. This conjecture remains open for longer cycles, and
improved upper bounds were obtained in [17, 19].

For general graphs, results of Yuster [31] and Fox-Huang—Lee [11] imply that for almost all graphs F,

v(F)!
v(F)*(E) —o(F)’
where the lower bound construction arises from nested blowups of I itself. Answering a question of Bollobés—
Egawa—Harris—Jin [5] asymptotically, Hatami—Hirst—Norine [15] established that if F is a sufficiently large
balanced blowup of some graph K, then the extremal graph for I(F,n) is essentially a blowup of K. Extending

the results [24, 20, 12] on the edge-statistic conjecture of Alon—Hefetz—Krivelevich-Tyomkyn [1], Ueltzen [30]
recently classified all graphs with high inducibility.

i(F) =

In this work, we focus on the case where F' is a complete multipartite graph, and more specifically, an almost
balanced complete multipartite graph. This class of graphs has already been studied extensively since the
work of Pippenger—Golumbic [27]. Throughout this work, for positive integers as, ..., a, let Ky, . o, denote
the complete r-partite graph with part sizes ay,...,a,. For positive integers ¢ > r, the Turdn graph T, ({)
denotes the complete r-partite graph on ¢ vertices in which the largest and smallest part sizes differ by at
most one. The cases £ = r and r = 1 correspond to the complete graph on r vertices and the empty graph on
¢ vertices, respectively; both are trivial cases in the inducibility problem. So, we assume for the remainder of
this work that ¢ > r + 1 and r > 2.

Results of Pippenger—Golumbic [27] (also Bollobas—Nara—Tachibana [6]) show that for bipartite Turan graphs
F, the value of I(F,n) is attained by bipartite Turan graphs T5(n). Using Zykov symmetrization [33] together
with additional arguments, Brown—Sidorenko [7] showed that for every complete multipartite graph F', an
extremal graph for I(F,n) can always be chosen from the class of complete multipartite graphs; moreover, if F'
is complete bipartite, then the number of parts can be taken to be at most two. Nevertheless, determining the
number of parts and the ratios of part sizes in the extremal construction for a complete multipartite graph F
remains difficult in general. Consequently, the inducibility of complete multipartite graphs is still largely open.

The family of Turan graphs T,.(¢) has received substantial attention in the literature. Refining an asymptotic
result of Brown—Sidorenko [7] for the balanced complete r-partite graph K,.(t) := T, (rt), Bollobas-Egawa—
Harris—Jin [5] proved that when t > (1 + o(1)) Inr, the r-partite Turan graph T,.(n) is the unique extremal

%. In the last section of [5], they remarked that (with

f(n, K.(t)) below corresponding to I(K,(t),n) in our notation):

graph, whereas this is not the case if t <

One may also venture the conjecture that for every pair (r,t), r > 4, ¢ > 2, if n is sufficiently large
then for some s > 0, T;.15(n) is the unique extremal graph for f(n, K.(t)).

This conjecture has been open for three decades. There has been recent progress on the case when F' is a
Turan graph with each part of small size. Mubayi, Reiher, and the first author [23, Theorem 1.13] determined
the inducibility when F'is a Turan graph in which all but one part have size one. This result was extended
very recently by Yuster [32, Theorem 1.6], who determined the inducibility when F is an r-partite Turan
graph with at most 3r + 1 vertices (in particular, all parts have size at most four). He also remarked that
it would be highly interesting to determine whether the bound 3r 4+ 1 can be removed, and posed a specific
problem concerning the inducibility of Turédn graphs in clique-free graphs (see Problem 1.2 for details).

The main results of this work confirm the conjecture of Bollobas—Egawa—Harris—Jin [5] and resolves the above
problem of Yuster [32] in a stronger form.

1.1 Inducibility of almost balanced graphs

Let F' = K, ....q, be the complete r-partite graph with part sizes a1, ..., a,, and assume that a; > --- > a, > 1.
Let £ :=a; + - - - + a, denote the number of vertices of F. We say that F is almost balanced if it is not the

complete graph and
(") <an (1)

or, equivalently, a1 < a, + % (1 + v8a, + 1). It is key to observe that for £ > r + 1, every Turan graph 7,.(¢)
is almost balanced. Define the constant (depending only on F)

4
P (a17~~~7a7‘) _ 6' (2)
£ sym(ay,...,a.) ai!---a.!-sym(ay,...,a.)




Here, sym(ayq, ..., a,) denotes the size of the symmetry group of the multiset {aq,...,a, }}. In other words,
if we let by, ..., b: denote the distinct elements of the multiple set {aq,...,a, }}, occurring with multiplicities
r1,...,Ts, respectively, then

sym(ay,...,a.) =71l
Let m,, denote the unique' integer that maximizes the discrete function f: [r,00) — R defined by

k—1),_ k—1)---(k— 1 .
fk) ::( ke_)l ! :( ) ke(—l Tt ), for every integer k € [r,00). (3)

The main result of this subsection is the following theorem, which confirms the conjecture of Bollobas-Egawa—
Harris—Jin [5] in a more general setting.

Theorem 1.1. Suppose that F is an almost balanced complete r-partite graph on £ > r + 1 vertices, and let
m = my. Then

(m — 1)7,,1 )

i(F) =kp - mi—1

Moreover, there exists a constant N such that for alln > Ng, the m-partite Turdn graph Tp,(n) is the unique
extremal graph for I(F,n).

In the balanced case F' = K,.(t) (i.e., every part of F' has the same size t), we are able to determine the exact
value of I(F,n) for every positive integer n (see Theorem 5.6).

It is clear that I(F,G) = I(F,G), where F and G denote the complements of F' and G, respectively. Thus
I(F,n) = I(F,n), and hence, Theorem 1.1 also determines the inducibility of graphs that are vertex-disjoint
unions of cliques, in which the smallest clique size a, and the largest clique size a; satisfy (1).

1.2 Inducibility of almost balanced graphs in H-free graphs

Given a graph H, we say that a graph G is H-free if it does not contain H as a (not necessarily induced)
subgraph. Let Iy (F,n) denote the maximum number of induced copies of F' in an H-free n-vertex graph, i.e.,

I (F,n) :==max {I(F,G): v(G) = n and G is H-free}.
The H-free inducibility of F' is then defined as

ig(F) = nl;n;oIH(F,n)/(v(F)).
When H = Ky is the complete graph on k + 1 vertices, we simply write I41(F,n) and ix41(F) instead of
Ik, ,,(F,n)and ig, ,, (F).

A classical example is the Erdés Pentagon Problem [8], which asks for the determination of I3(Cs, n), that
is, the maximum number of (induced) copies of C5 in an n-vertex Ks-free graph. This problem was solved
independently by Grzesik [14] and Hatami-Hladky—Kral-Norine-Razborov [16] for large n, and subsequently
by Lidicky—Pfender [21] for all n.

Very recently, Yuster [32] initiated a systematic study of inducibility problem in H-free graphs. Among many
other results, he determined (see [32, Theorem 1.6]), for all k > r, the value of ij41(F) when F is an r-partite
Turan graph on at most 3r + 1 vertices. He also remarked that it would be highly interesting to determine
whether the analogous result holds for all r-partite Turan graphs, that is, without the restriction on the
number of vertices.

Problem 1.2 ([32, Problem 1.8]). Is it true that for all 2 <r < £, there exists t = t(r, £) such that the following
holds? Let F be the r-partite Turdn graph on € vertices. For all k <t, ix11(F) is attained asymptotically by
the k-partite Turdn graphs, and for all k > t+ 1, ix(F), and hence also i(F), is attained asymptotically by the
t-partite Turdn graphs.

In the following theorem, we completely resolve Yuster’s problem (in fact, for a broader family) and determine
the value of t = t(r, £), namely the integer m, ¢ defined in the previous subsection.

1The uniqueness will be proved in Lemma 3.2.



Theorem 1.3. Suppose that F is an almost balanced complete r-partite graph on £ > r + 1 vertices, and let
m = my. Then

s (F) ke B i ke fnm -1,
k41 = _
Kp - 7(mm},)§’1, if k€ [m,o0).

1.3 Perfect stability

An interesting phenomenon, and also a very useful tool in extremal combinatorics, is stability, introduced
in the seminal work of Simonovits [29]. Partly inspired by the work of Norin—Yepremyan [25], a general
framework for establishing a strong form of stability in certain graph extremal problems that can be solved
using the Zykov symmetrization was developed recently by Liu-Pikhurko—Sharifzadeh—Staden [22]. This
framework will be used to prove the second assertion (i.e. the exact result) of Theorem 1.1.

For two graphs G and H with the same number of vertices, the edit distance edit(G, H) between G and H is
the minimum number of edges one needs to add or remove from G to make it isomorphic to H.

Definition 1.4 ([22, Definition 2]). The inducibility problem for a complete multipartite graph F is perfectly
stable if there exists a constant C' > 0 such that for every n-vertex graph G with n > C, there is an n-vertex
complete multipartite graph H satisfying

. I(F,n) — I(F,G) (n
edit(G, H) < C - . :
(G5 () (5)

In particular, perfect stability of F' implies that for all sufficiently large n, every extremal graph for the
inducibility problem I(F,n) is complete multipartite.

By the result of Brown and Sidorenko [7, Proposition 1], the inducibility problem for complete multipartite
graphs can be solved using Zykov symmetrization. Thus, the framework from [22] can be applied to this
problem. Indeed, as applications, Liu—Pikhurko—Sharifzadeh—Staden [22] established perfect stability for the
inducibility problem of F' when F' is a complete bipartite graph, a complete r-partite graph with each part of
size t > 1+ Inr, and for small cases such as K3 111 and K31,1. They further conjectured [22, Conjecture 1]
that the inducibility problem is perfectly stable for every complete multipartite graph F'.

We confirm their conjecture for all almost balanced complete multipartite graphs.

Theorem 1.5. Suppose that F is an almost balanced complete multipartite graph. Then the inducibility
problem I(F,n) is perfectly stable.

Organization: In Section 2, we present some necessary definitions and preliminary results. In Section 3, we
determine the values of i(F') and ixy1(F) for almost balanced complete multipartite graphs F. For technical
reasons, the proofs are divided into two parts: first, we handle the case ¢ < 2r — 1 (Subsection 3.2), and then
the case ¢ > 2r (Subsection 3.3). In Section 4, we present the proof of Theorem 1.5 (see Subsections 4.2
and 4.3). In Section 5, we determine the unique extremal construction for I(F,n) for sufficiently large n,
thereby completing the proof of Theorem 1.1. The last section (Section 6) contains some concluding remarks.

2 Preliminaries

In this section, we introduce some necessary definitions and preliminary results.

Let k be a positive integer. For every real number z, define (}) = (2)/k!, where
0, if 2<k-1,
(Z)k = .
z-(z—k+1), if z>k-—1.

For a positive integer k, let [k] := {1,...,k}. We denote by N the set of natural numbers {0,1,2,...}, and
by N4 the set of positive integers {1,2,3,...}. Given a (possibly infinite) set S C N, let (S), denote the
collection of ordered r-tuples with pairwise distinct entries, that is,

(8)r = {(x1,...,3,) € 8"+ x; # x; for all distinct i,j € [r]}.



In particular,
(N), = {(21,...,2,) € N": &; # x; for all distinct i,5 € [r]},
(Ny)p = {(&1,...,2,) € N_: x; # x; for all distinct ,j € [r]}.
For a complete multipartite graph F', let sc(F') denote the number of parts of F' that have size exactly one,

that is, the number of singleton parts. We have the following simple fact for counting the number of induced
copies of F' in a complete multipartite graph.

Fact 2.1. Let F = K,, ... 4, be the complete r-partite graph with part sizes a1 > --- > a, > 1. Suppose that
G is a complete multipartite graph whose non-singleton part sizes are by, ...,bg. Then

sc(F)

ot B0, 5, )

i=0 150t ) E([K])r—i J=1
In particular, if sc(F) =0 or sc(G) =0, then
1 e
Fe - — (Q. (4)
e o

sym(as,...,a)
A more convenient version of Fact 2.1 for the case in which each part of G has approximately the same size

and each part is large, which will be useful in the proof of perfect stability, is as follows.

Fact 2.2. Let F = K,, ... q, be the complete r-partite graph with part sizes a1 > --- > a, > 1. Suppose that
G is a complete m-partite graph in which each part has size (1 + o(1))n, where n is large. Then

uﬂmzuwm%hﬂwgﬁmmayf (5)

A foundation of our approach is the following result of Brown—Sidorenko [7].

Lemma 2.3 (|7, Proposition 1]). Suppose that F is a complete multipartite graph with at least two parts.
Then for every n > 1, there exists a complete multipartite graph G on n vertices such that I1(F,G) = I(F,n).

Roughly speaking, the main idea in the proof of Lemma 2.3 is to show that Zykov symmetrization does not
decrease the number of induced copies of F'. Thus, after finitely many symmetrizations, one always ends
up with a complete multipartite graph. Since Zykov symmetrization also preserves Ky 1-freeness, the proof
of Lemma 2.3 implies that (as observed in [32]), when F' is complete multipartite, there exists an extremal
construction for the inducibility problem Iy (F,n) that is complete multipartite (with at most k parts due
to the Kj1-freeness).

Lemma 2.4. Suppose that F is a complete r-partite graph with r > 2, and let k > r be an integer. Then

for every n > 1, there exists a complete multipartite graph G on n vertices with at most k parts such that
I(F,G) = Ii11(F,n).

Therefore, by Lemmas 2.3 and 2.4, in determining i(F') and iy41(F), it suffices to restrict our attention to the
class of complete multipartite graphs, which, in the limit, reduces to an optimization problem of homogeneous
polynomials (see [7, Corollary 6]). Since we also aim to prove perfect stability, we need to consider a slightly
more general polynomial (introduced in [22], see (7)) and prove the finiteness of the set of maximizers. For
this, we require the following definitions, mostly taken from [22, Section 2].

Define the partite limit space by

P = {(ml,mg,...)GRN+: r1 > 9 > -+ >0 and Zwigl}.

S\
For every sequence @ = (x1,23,...) € P, let 79 := 1 — Zi€N+ x;. Define the support of x as
supp(x) == {i € N;: z; > 0}.

A sequence in P gives rise to a complete multipartite graph on n vertices via the following definition (the
converse is straightforward).



Definition 2.5 (|22, Definition 3]). Given & = (z1,22,...) € P and n € N, the n-verter realization of x,
denoted G, o, is the complete multipartite graph on the vertex set [n] with parts V,...,V,, (for some m)
and a set Vp of universal vertices (i.e., the collection of singleton parts of Gy, »,), obtained as follows: if zy = 0,
then take a partition [n] = V3 U--- UV, such that ||V;| — z;n| < 1 for each i, and set Vj = &; otherwise,
for all ¢ > 1 with z;n > 2, set |V;| = |;n] > 2, and let V) contain the remaining vertices in [n]. We call
Vo, -+« Vi the P-structure of Gy, 4.

For a tuple (di,...,d;) of positive integers and a sequence (x1,Ts,...) € RN+ of real numbers, let
Sdy ... dy (1, T2, ...) = Z x?ll . -xf:. (6)
(11,..,3t ) E(N4 )¢
For convenience, we set Sg(z1,22,...) = 1.
For two graphs F and G, let p(F,G) := I(F, G)/(ZE%) denote the induced density of F in G.

Let ay > --- > a, > 1 be integers, and let F' = K, . ,,. Define the limit function

.....

pr(x) = lim p(F,Gpq).

n—oQ

It follows from Fact 2.1 that (recall the definition of kg from (2))

sc(F)

pr(z) = kKp - ; (SC(iF)>x6-Sa1,m,ari(w)~ (7)

In particular, if sc(F) = 0 or xy = 0, this expression simplifies to

pr(®) = KF - Say.....0, (®)- (8)
Intuitively, Lemma 2.3 and Fact 2.1 together indicate that determining i(F") for a complete multipartite graph
amounts to finding the maximum of pp(x) over P. A rigorous proof is given in [22, Section 2].

Theorem 2.6 ([22]). Suppose that F is a complete multipartite graph. Then

i(F) = max pp(z).
xcP

For perfect stability, it is also necessary to understand the property of the maximizers of pr(x) over P. Thus,
for a complete multipartite graph F, we define

OPT(F) :={x € P: pp(z) =i(F)}.
So for every x € OPT(F), the graph G, 4 is asymptotically extremal for the inducibility problem I(F,n).

It follows relatively straightforwardly from Lemma 2.4 and standard results from the theory of graphons
(see [32, Section 1] for further details) that, for a complete multipartite graph F' = K, . 4., we have

ig+1(F) = max pp(x)=rKp - max Sg,..a. (T), 9)
xeSk-1 xeSk—1

where
Sk1 .= {(ml,...,xk,07...) eRY: 2, >0forie [k] and &1 + -4+ 2 = 1}.
Observe that S5~ C P and the union U,621 S¥=1 is the collection of sequences « € P with zg = 0. Define

OPTk+1(F) = {CE S Sk_l : pF(:B) = ik+1(F)} .

For convenience, set S = J;~, Sk=1 OPT o (F) = OPT(F), and i (F) = i(F). For every k € N, define
k= (1/k, ..., 1/k,0,...).
k

We call € = (21,22,...) € P balanced if x; = x; for all i, j € supp(x); otherwise it is unbalanced. In particular,
if such a balanced = belongs to S¥~!, then necessarily « = t for some integer t < k.

The following simple property of almost balanced complete multipartite graphs will be used multiple times.



Fact 2.7. Let F = K, . 4, be an almost balanced complete r-partite graph with a1 > --- > a,, and let
{=ay+ -+ a,.

(i) Ifter+1,2r—1], thenay = -=ap—r =2 and ap—py1 = -+~ = a, = 1.

(ii) If £ > 2r, then a, > 2.

Proof. Suppose that ¢ € [r + 1,2r — 1]. By the Pigeonhole Principle, we have a, = 1. By the definition of

almost balanced (see (1)), we have (“;!) < 1, which implies that a; < 2. Therefore,

ag=-=a,=2 and ap_,y1=---=a, =1.

Now suppose that ¢ > 2r. If a,, = 1, then the definition of almost balanced implies that (“12_1) < 1, which

forces a; < 2. Consequently, £ < 2r — 1, which is a contradiction. O

3 Asymptotic results and uniqueness of the maximizer
In this section, we prove the following theorem, which constitutes the most crucial part of the proofs in this
work. In particular, it implies Theorem 1.3 and the asymptotic part of Theorem 1.1.

Theorem 3.1. Let £ > r > 2 be integers, and let m = m,.¢. Suppose that F' is an almost balanced complete
r-partite graph on ¢ vertices. Then

{k}v Zf ke [7”, m — 1},

OoPT F)=
1 (F) {{m}7 if ke€[m, oo

In particular,

' K - 7(’“;,,1_)1’17 if kelr, m—1],
Zk+l(F) = (m—1),_1 .
KF © s if ke€lm, o0

In the next subsection, we establish some preliminary inequalities. We then present the proof of Theorem 3.1
in two cases according to the size of £: £ < 2r — 1 and £ > 2r.

We remark that the proof of the case £ < 2r — 1 in Theorem 3.1 is similar to that of [32, Theorem 1.6] (which
works for ¢ < 3r + 1), with one difference: for k = oo, Yuster proved the uniqueness of the maximizer of (8),
whereas we prove the uniqueness of the maximizer of (7) (slightly stronger but necessary for perfect stability).
In contrast, our proof for the case ¢ > 2r differs substantially from Yuster’s. It relies on a quite nontrivial
inequality (Proposition 3.7), whereas Yuster’s argument is based on properties of low-degree polynomials.

3.1 Basic properties of f in (3) and the integer m,
Let h: I — R be a function on I C R. We say that h is unimodal if there exists a point xg € I such that

e h is non-decreasing on I N (—oo, zy], and
e h is non-increasing on I N (zg, 00).

Lemma 3.2. Let £ > r > 2 be integers. The discrete function f: [r,00) = R, defined as in (3), is unimodal
and attains its mazimum at a unique integer my. ¢ € [r, 00).

Proof. Consider the real extension f: [r,00) = R of f defined by

. ) (r—r 41
flz)= (z-1) xf(j Tt ), for every real number z € [r, 00).

Straightforward calculations show that the derivative of f(z) is

N (CON A x
f(x)_$(x1++m_€+1>




Define

xr—1
i=1

g(z) = Z Yy 1, for every real number z € [r, c0). (10)

Observe that g(x) is strictly decreasing on [r, c0) and satisfies lim, o g(z) = r — £ < 0. Thus, the function f
is not monotone increasing and is unimodal. It follows that the discrete function f can have at most two
maximizers on the set of integers {r,r + 1,...}, and if there are two, they must be consecutive integers.

Suppose, for contradiction, that f attains its maximum at two consecutive integers ko and ko + 1. Note that,
for every k € {r,r+1,...}, we have f(k) < 1, in particular, f(k) is not an integer. Moreover, when written in
lowest terms, the denominator of f(ko) divides k5!, while the denominator of f(ko + 1) divides (ko + 1)~
Since kg and kg + 1 are coprime, ké_l and (ko + 1)1 are also coprime, and consequently the denominators
of f(ko) and f(ko + 1) are coprime (and both greater than 1, since both f(ko) and f(ko + 1) are not integers).
Hence, f(ko) # f(ko + 1), a contradiction. Therefore, the maximizer of f on {r,r +1,...} is unique. O

It follows from Lemma 3.2 that m, ¢ = r if and only if f(r) > f(r + 1), which is equivalent to

In(r+1)

> nar i

=(1+4+o(1))rlnr.

This is consistent with the result of Brown—Sidorenko |7, Theorem 9]. Refined bounds on m,. , will be provided
in Lemma 4.2.

3.2 Proof of Theorem 3.1 for ¢ < 2r
In this subsection we present the proof of Theorem 3.1 for £ < 27.

Proof of Theorem 3.1 for ¢ < 2r. Let F = K,, .. ,, be an almost balanced complete r-partite graph on
¢ e [r+1, 2r — 1] vertices (i.e. £ = a1+ ---+ a,), and assume that a; > --- > a,. Let m = m,, be the
integer give by Lemma 3.2. By Fact 2.7 (i), we have a1 = - - =ay_, =2 and ay_py1 = --- = a, = 1.

Case 1: k € [m, o0].

Since Sk~ C P, it suffices to prove that OPT(F) = {m} for this case.
Recall from (6) and (7) that for every & = (21, 7a,...) € P,

2r—/¢
pr(@) =rp- Y ()b > i (11)
J=0 (150 yir—5 ) ENY ) g

Claim 3.3. The following statements hold.

(i) If £ > r + 2, then every mazimizer x € OPT(F) is balanced.

(i) If ¢ = r + 1, then for every unbalanced maximizer x € OPT(F), there exists a balanced maximizer
y € OPT(F) such that

Yo =z and [supp(y)| < [supp(x)|.

Proof. Suppose to the contrary that this claim is not true (for both items). Let & = (21,2, ...) € OPT(F)
be a counterexample with minimum size of support. Then there exists some distinct pair 4, j € supp(x) such
that ZT; 7é Zj.

Fix all 2, where k € N\ {4,5}. Note that since > -, x; = 1, the sum 3 := x; + z; is also fixed. From (11),
there exist constants K7, ..., K5 independent of z; and x; such that
pF(m) = (iL’l -+ .Tj)Kl -+ (Ii2 -+ ij)KQ + ZL’iSUng -+ xlx](acl -+ SUj)K4 -+ (Zi$j)2K5
= (xz + Jjj)Kl + ((33‘Z + xj)Q — 233iacj) Ky + Z‘iijg + aclxj(xl + .1?j)K4 + (xixj)2K5. (12)

Since a; = 2 and a, = 1, we have min{Ky, K3, K4} > 0. Moreover, K5 > 0 if a,—1 = 1 (equivalently,
£ <2r—2),and K5 > 0 if az = 2 (equivalently, ¢ > r + 2).



Let a == x;x;. Then pp(x) can be rewritten as

V() = pp(x) = K1 + (52 —2a)Ks + aKs + oKy + A’ K
= Ksa? + (BKy + K3 — 2K3)a + (BK; + B*K>).

Now observe that, while 3 is fixed, the product o = z;z; can vary continuously from 0 to 3?/4 by adjusting
x; and x; under the constraint z; + =; = 8. Thus we may view ¢ () as a quadratic polynomial in a.

Let y and z be the sequences in P obtained from @ by replacing (z;, ;) with (z; + z;,0) and (m’g‘”, z;mf ),

respectively, and then reordering the entries accordingly. Note that yo = 29 = xg.

Suppose that ¢ > r + 2. Then K5 > 0. So ¢(«a) is a quadratic polynomial in «, and hence

pr(@) = v(a) < max {(0), ¥ (E5L) L = max {pr(y). pr(2)}.

However, this is a contradiction to the maximality of pz(a). This proves (i).

Now suppose that £ = r + 1. Then K5 = 0. Hence, 1(«) is linear in « with coefficient 8K, + K3 — 2K,. If
BK4+ K3 — 2K5 # 0, then similarly, we have

TiTI4 2
pr() = b(a) < max {9(0), v (“FE) = max {pr(y), pr(2)},
again a contradiction. So it must be the case that Ky + K3 — 2K = 0. It follows that

pr(x) = ¢(a) = $(0) = pr(y).

This means that y € OPT(F) as well. Since x does not satisfy Claim 3.3 (ii), the maximizer y must be
unbalanced. Since |supp(y)| < [supp(x)|, it follows from the minimality of « that y satisfies Claim 3.3 (ii).
That is, there exists a balanced maximizer w = (wy,ws,...) € OPT(F) with wg = yo = o and |[supp(w)| <
|supp(y)| < [supp(zx)|. However, w witnesses that x itself satisfies the assertion of Claim 3.3 (ii), contradicting
the assumption that x is a counterexample. This completes the proof of Claim 3.3. O

Now we establish the following inequality (which is slightly stronger than what we need) for sequences & € P
with 2y = 0. Recall that for every t € Ny, t = (1/¢,...,1/t,0,...).

Claim 3.4. There exists a constant € = e, ¢ > 0, such that for all x € P with £ = 0, we have

2 2

O(x) = pr(z) + 5( Z Ty — mml) + 6( Z LT — (m_lTZl(Qm_Q)) < ®(m),
(4,)€E(N1)2 (4,5,k)€(N4)s

and the equality holds if and only if * = m, where m = m, is the constant given by Lemma 5.2.

Proof. Recall that for any ¢t € N4, pp(t) = kp - “;B’fl = kp - f(t), where f(t) is defined in (3). In what
follows, we assume f(r — 1) = 0. Define

e = S min{f(m) — f(m — 1), f(m) = f(m+1)}.

It follows from Lemma 3.2 that € > 0.

Since f(z) is unimodal (by Lemma 3.2), for every integer t # m, we have

— m—1)2 - - m—1)(m— 2
O(t) = kp - f(t) +e (5L — m=2 +g(<t DE-2) _ (1) 2>)

<kp-max{f(m—1), f(lm+1)} +e+e¢
= kg (max {f(m —1), f(m+1)} + 2= -min {f(m) — f(m — 1), f(m) = f(m+1)})
< kg - f(m) = ®(m). (13)

Suppose to the contrary that this claim fails. Let = (z1,22,...) € P\ {m} be a counterexample with
xo = 0, ie., ®(x) > ®(m) but  # m. Using (13), we conclude that there exist 7, € supp(x) such that
x; # xj. Let a = x;x; and § = x; + x;. Similar to the proof of Claim 3.3 (more specifically, (12)), fix all z,



where k € N\ {i, j}. Note that since Y -,z = 1, the sum 8 = z; + z; is also fixed. So we may view ®(x)

as a polynomial in «:

d(a) = B(x) = pr(@) + & (2a+ J1)? +e(6a(l — B) + Jo)
= (K5 +4e +36e(1 — B)?) o® + (BK4 + K3 — 2K> + 4eJy +126(1 — B).J2)
+ (BKy + B°Ka +eJi +eJ3)

where Ji, Jy are constants independent of z;,z;, and Ki, ..., K5 are the same constants as in (12).

Let y and z be the sequences in P obtained from @ by replacing (z;, ;) with (z; + z;,0) and ( T

3?»;-’1-%]' ac,-+acj
2

)

respectively, and then reordering the entries accordingly. Note that yo = zp = z¢g = 0. Since ¢(a) is a

quadratic polynomial in o with coefficient K5 + 4¢ + 36¢(1 — 8)? > 0, we have

TiTXj 2
o(w) = g(a) < max {4(0), ¢ (“H2) ) = max {2(y), @(2)},
a contradiction to the maximality of ®(x). This completes the proof of Claim 3.4.

Claim 3.5. Suppose that x € P satisfies xo > 0. Then x ¢ OPT(F).

Proof. Suppose to the contrary that this is not true. Then by Claim 3.3, there exists a counterexample
x € OPT(F) withzg >0and 21 =+ - =z =y = 1‘% for some s > 1. For every integer k > 1, let *) be

Zo

the sequence obtained from x by appending the length-k sequence %2,..., 3%, and then reordering the entries.

By applying (11) to pr(x) and (8) together with (6) to pr(z(®)), we obtain that

2r—4{
pr(@) —pr@®) =rp- > (70— sy (s)r— iy
=0

2r—~¢
r—{ —sy\J —j
—kF- Z (2j )(k>a (1 ky) (S)rije I
Jj=0
L—r 2r—L nini
L—r\ (2r—L 1—s ) 0—25— 7
_KF'ZZ(i )( j )(k)i-i-j( ky) (8)r—i—jy %3,
i=1 j=0
Since % — 1 and the third term goes to 0 as k — oo (because (,fﬁjjj < 1 —0), we have

pr(x) —pr(®) 50 as k— oc.
Combining this with Claim 3.4, we obtain

0< @(m(k)) —pF(.’B(k)) < ®(m) —pp(:c(k))
=pr(m) —pr(x®™) <pr(x) —pr@®) -0 as &k — .

This implies that both

; (k) (F) _ m—1 _ : (k)
khm Z z, 'z, — "= =0, and lim Z T, T

()5 (6) _ (m=1)m=2) _
—00 k—o0
(4,7)€(Ny )2 (4,9,k)€(N4 )3

J m?

Simplifying this, we obtain

ML (1 s 4200 sy + sls — Do,
W = (1—5y)®> +3(1 — sy)?sy + 3(1 — sy)s(s — 1)y* + s(s — 1)(s — 2)y°.

It follows from the first equality that y = \/% Plugging it into the second equality we obtain

1_34_ 25 (m—1)(m—2)
m - (ms)3/2 m? ’

which implies s = m. However, this means that zo = 1 — sy = 0, contradicting the choice of .
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Suppose that € € OPT(F). It then follows from Claim 3.5 that 2y = 0, and from Claim 3.4 that x = m.
This shows that OPT(F) = {m} and thereby completes the proof of Case 1.

Case 2: k € [r,m —1].

An almost identical argument to the proof of Claim 3.3 yields the following result, so we omit the details here.

Claim 3.6. The following statements hold.

(i) If £ > r + 2, then every mazimizer € € OPTyy1(F') is balanced.
(ii) If £ =1+ 1, then for every unbalanced maximizer € € OPTy41(F), there exists a balanced mazimizer
y € OPTy1(F) such that [supp(y)| < |supp(x)].
Recall that for every integer ¢ > r, we have pp(t) = kp - f(t), with f(t) defined in (3). By Lemma 3.2, the
function f is strictly increasing on [r, k], so pr(t) < pr(k) for every t < k. Hence, ix41(F) = pr(k).
If £ > r + 2, then Claim 3.6 (i) immediately implies that OP T} (F) = k.

Now, suppose ¢ = r + 1. Take an arbitrary maximizer @ € OPTy 1 (F). If  # k, then by Claim 3.6 (ii) we
obtain another balanced maximizer y € OPTy41(F) with |supp(y)| < |supp(x)|. Consequently, pr(y) = pr(t)
for some t < k, contradicting ix1(F) = pr(k) > pr(t). Therefore, we must have x = k, and again
OPTj41(F) = {k}. This completes the proof of Theorem 3.1 for £ < 2r — 1. O

3.3 Proof of Theorem 3.1 for ¢ > 2r

In this subsection, we present the proof of Theorem 3.1 for £ > 2r. We will use the following inequality, which
constitutes the most crucial ingredient of our proof and distinguishes our approach from those in [7, 5, 23, 32].

Proposition 3.7. Let x and y be two positive real numbers. For positive integers d,dy,ds define
d
pg = (x +y)* — 2t —y", wa =z +y — 2 (H)7,
di1+d
'(/Jdl,dg — .1'(11 ydz + Z‘dedl, ¢d17d2 — 9 (%er) 1tdz xdlyd"’ _ .’Ededl.

Suppose that © # y, and let a,b, s,t be positive integers satisfying b >t > s > a > ( a). Then

Wt < Wa ¢9 ¢ (14)
Ht 1/)5 t
Equivalently,
Hiwa — pewy > 0, and Ha®s,t — Wats,t > 0. (15>

Proof. First we prove that £t < ‘:—“, which follows from the following claim.

Bt —

Claim 3.8. We have <L < Y for every integer k > a.
ME+1 HE

Proof. By definition, this is equivalent to showing
k k
(karl Lyhtt o € +1> (= Fy)k -k - yk) < (zk fyb—2 € ) ((z Foy)htt gkt yk+1) '
Simplifying this reduces to showing that:
(x4 y)" T < 2F T g (28 1) (ahy + 2y”). (16)
Since for every i € [k] it holds that
(Jiky + Ty ) (xzyk—&-l B 4 xk+1—iyi) — xy(xi—l _ yi—l)(xk—i _ yk—i) > 0’
it follows that
k k
Z k+1 £L’ Y+ l'y Z k+1 z k+1 7 + Z (k—l—l)xk+177,yz’
i=1 i=1 i=1
which implies that
(2k+1 _ 2) (z%y + 2ty > 2 ((x )it (l,k+1 Jrykﬂ))

After dividing both sides by 2 and rearranging, we obtain (16). O
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Next, we prove that % < % for b >t > s > a > 2. By definition, this inequality is equivalent to

(@ +y)* =2~y (2 (%)SH -yt — :vtys) > (ma +yt—2 (%)“) (@%y" + 'y*).
Simplifying this reduces to showing that:
() (@) — a2 =) > (297 = 1) (2% + 2ty (17)

We first prove the following auxiliary inequalities:

Claim 3.9. The following inequalities hold:

2072 ((z+y)* —a® —y*) > (2° = 2zy(z +y)* % (18)
2(55)" T s ety ety (19)

Proof. First, we prove (18). It is straightforward to verify that (18) holds with equality when a € {2,3}, so
we may assume that a > 4. For i € [a — 1], let

M; = 2072(7) — (2 = 2)(422),

7 i—1

noting that M; = M,_;. Let

(22—2)(977) ~ @iay

f@) = (%) 2" *a(a—1)
Observe that f(i) is decreasing in i for ¢ € (0,a/2) and increasing in 4 for i € (a/2,a). Also
a—2 a=2(,_
fO=fla-1)=%=5>1 and fa/2) = Tl <1
So there exists iy € [2,a/2] such that

M; >0, if 1 <19o0rt>a-—1g,
M; <0, if 7€ [io,a — Zo]
For i,j € [1,a/2] with i < j, we have

(2'y™~F + 2% iy) — (29y" I + 2 Tyl) = iyt (a7 — ) (2% — i) > 0.

Define v; :== 2'y®~% and B; := (7; + Ya—i)/2 for i € [1,a/2]. The inequality above shows that for i < j < a/2,
we have v, + Yo—i > 7; + Ya—; and consequently 5; > 8;. Also note that

a—1 a—1 a—1
SoM=2072) () - (20 =2 (40]) =207 (20 - 2) - (2° —2)2" =0,
=1 i=1 i=1

Then, using the Binomial Theorem and the symmetry M; = M,_; and §; = 5,_;, we obtain that

2072 ((z +y)* — 2% —y*) — (2° — 2)zy(z +y)* 2

a—1 a—1 a—1 io—1 a—1ig a—1
1
= Z Miyi = 5 Z (Miryi + Ma—iYa—i) = ZMiﬁi = Z M;Bi + Z M;Bi + 4 Z M; s
=1 =1 i=1 =1 1=10 i=a—ip+1
i0—1 a—1ig a—1
- (Z M’) 15%12‘13—1& - <Z MZ) foiSa—io bt < Z MZ) a—iof?gzl‘sa—lﬂl
i=1 i=ig 1=a—1io+1
io—1 a—io a-1 o1
= (Z Mz) Big—1 + (Z Mz) Bio + ( > Ml> Ba—io+1 =2 (Z Mi) (Big—1 — Big) 2 0,
i=1 i—io ima—ig+1 i=1

where the last equation uses the symmetry and the fact that Z::ll M; = 0. This proves (18).
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It remains to prove (19). The argument is adapted from the proof of [7, Theorem 3|, with some modifications.
Define, for every z € [0, 1],

g(z) =211 =) 271 - )t

We first show that g attains its maximum uniquely at z = 1/2.

Letting « :== (1 — z)/z. Straightforward calculations show that
g(2) = 2711 — )52 ((s )zt (- 1)att e (t— Dz — s+ 1),
Define
h(z)=(s— 1Dz —(t -2+t -1z —s+1
Let y := 2 — 1. Then for x > 1, we have

hz)=(s—1D)A+y) N —t-1)0+y) = +t-1)0+y) —s+1

= ((s—1)(t—s+1)—(t—l)(t—s)+(t—1))y+t§1((s—1)(t s+1) (t_l)(t;s))yi
1=2
:2(3—1—(t25))y+t SH %(s—l t—s+1)— (t—l)(t—s—z‘+1))yi
- t—s+1 1 . . - L .
>2<5—1—(2))y+12 Z( D(t—s+1)— (t— 1)t 1))y
t—s+1
:2(3—1—(t58))y+ Z %(s—l— )y >0,

where in the last inequality we used the assumption that (bga) <a—1 (and thus, s—1 > a—1> (b;“) > (t?))

It follows that ¢'(z) > 0 for z € (0,1/2), and hence, g is nondecreasing on [0,1/2]. Since g is symmetric
around z = 1/2 and is a polynomial which is not linear (since s,¢ > 2), it attains its maximum on the interval
[0, 1] uniquely at z = 1/2. Therefore, (19) holds. O

Combining (18) and (19), we obtain
x +t— a a a x +i— a x -2
(507 @ty = —y) > ()7 @ =2y (5)°
> 2¢ —Qxy( s— lyt—l +xt—1ys—1> _ (2a—1 _ 1) (msyt +xtys)’
which proves (17). This completes the proof of Proposition 3.7. O

We are now ready to prove Theorem 3.1 for ¢ > 2r.

Proof of Theorem 3.1 for ¢ > 2r. Let F = K,, .. 4, be an almost balanced complete r-partite graph on
£ > 2r vertices, that is, { = a; +--- + a,. Let m = m,¢ be the integer give by Lemma 3.2. Assume that
ay > -+ > a,. By Fact 2.7 (ii), we have a, > 2. Fix an integer k € [r, o0].

Claim 3.10. For every x € OPTy(F), we have xg = 0.

Proof. Tt follows from the definition of S¥=1 that 2o = 0 if k # co. Thus we may assume that k = co. Suppose
to the contrary that there exists @ = (z1,22,...) € OPT(F) with z¢ > 0. Since in every realization G,, o (see
Definition 2.5), no induced copy of F' can contain vertices from V, (because a; > -+ > a, > 2), we have

— ay ar
pr(®) = Kp - > alea
(i11<~~7ir)E(N+)r

Let & be the sequence obtained from x by replacing z1 with zg + 2. Note that & € P and pr(Z) — pr(x) > 0,
a contradiction to the optimality of . O
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Fix an arbitrary optimal sequence x € OPTy(F). By Claim 3.10, we have 2o = 0. We aim to show that all
nonzero entries of & are equal. Suppose to the contrary that there exist i, j € supp(x) with z; # z;.

Ti+z; xi+T,
2 T3 s
respectively, and then reordering the entries accordingly. Note that 3o = 29 = 29 = 0 and {y, z} C S¥71. In
addition, define & by replacing both x; and z; with 0 and then reordering the entries.

Let y and z be the sequence in P obtained from by replacing (z;,z;) with (z; + z;,0) and (

Let a == (a1, ..., a,). Recall the definition of S, () from (6). We shall prove the following key inequality:
Claim 3.11. We have

Sa(x) < max {Sa(y), Sa(z)}. (20)
Consequently, pp(x) < max {pr(y), pr(z)}.

Proof. For p,q € [r], let @” be the (r — 1)-tuple obtained from a by removing the element a,; let a?? be the
(r — 2)-tuple obtained from a by removing the elements a, and ay; and let

Ap = Saer(x) and Bpg = Sar.a(T).
It is clear that |supp(«)| > r. Thus, |supp(&)| > r — 2, and hence, B, , > 0 for all {p, ¢} C [r]. Define

a
. .0p ap zitz; \ P

o a ap ap
pp = (i + )" — x;" — ",

T+ aptaq ap _a a, a
Vpg = T§ :1: ¢+ Dp.q ::2(%) —aat -t
Suppose to the contrary that this claim fails. Then we have
0 < Sa(x) — Saly) = — Z ppAp + Z Yp,qBp.q> (21)
{p.are()
0 < Sq(x) Z wpA, — Z Gp.aBp.q- (22)
p€E[r] {p,q}e([g])

Considering the linear combination —w, x (21) — u, X (22), we obtain

Z (Mpwr - Mrwp)Ap + Z (trPp.q — wrwp,q)Bp,q <0. (23)
pe(r] {p,q}E([g])

However, it follows from (15) and B, 4 > 0 that

Z (Hpwr — prwp) Ap + Z (1 ®p,q — Wrbp,q) Bpg > 0,
pelr] {p.are('y)

a contradiction to (23). O

It follows from Claim 3.11 and the optlmahty of x that  must be balanced. Suppose that |supp(x)| = k for
some integer k < k. Then = = k = (1/k, . l/k 0,...), and hence, pp(x) = kp - (k),/k". It follows from
Lemma 3.2 and the maximality of pp(x) that k=mif k> m and lAc =k if K < m — 1. This completes the
proof of Theorem 3.1 for £ > 2r. O

4 Perfect stability

4.1 Preparations

In this subsection, we briefly review the sufficient conditions for perfect stability in the framework developed
by [22]. Their framework applies to the broader class of “symmetrizable” functions, but here we focus
specifically on the inducibility problem for complete multipartite graphs F. Very roughly, [22, Theorem 1.1]
asserts that if OPT(F) is finite and each maximizer & € OPT(F) satisfies certain strictness conditions, then
the inducibility problem for F' is perfectly stable.
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For convenience, we will use the following simplified variant of [22, Theorem 1.1] (see also [3, Theorem 8.2]).

For a graph G and a pair {z,y} C V(G) of vertices, let G @ xy denote the graph with vertex set V(G) and
edge set E(G) A {zy}. That is, G ® {zy} is obtained by adding the edge {z,y} if it is not present in G, and
by removing it otherwise. Suppose that G is a complete t-partite graph with parts Vi,...,V;. For every
A C [t], let G4 denote the graph obtained from G by adding a new vertex that is adjacent precisely to all
vertices in (J;c 4 Vi

Theorem 4.1. Let F be a complete multipartite graph with £ vertices. Suppose that OPT(F) contains a
unique sequence T with Ty =0 (i.e. 3_,cy, ¥; =1) and t == [supp(x)| < o0o. Suppose that there exist constants
€ > 0 and Ny such that for every n > Ny the following statements hold for the n-vertex realization G := Gy, o
with parts Vi,...,Vy:

(S1) For every pair {z,y} C V(G), we have
I(F,G) — I(F,G ® zy) > en*2
(S2) For every A C [t] with |A| #t— 1, we have
min {I(F,Ga-): A* C [t] and |A*| =t — 1} — I(F,G4) > en'™"
Then the inducibility problem for F is perfectly stable.

We also need the following refined estimates for m, ¢, the integer given by Lemma 3.2.

Lemma 4.2. Let £ > r > 2 be integers and let m = m, 4. Then

(i) m > max{g(&jg, r— 1}, and
(i) m < min{%, g}, where a == a(f/r) (1 —172/02,1) is the unique positive real Toot of the equation
el/m)=(1 — ) = 1. In particular, m < Vi 2 TQ

£(r—1)

Proof First, we prove (i). Since m > r holds trivially, it suffices to show that m > 50— equivalently,
g < T?Eff_jZ)r' Note that g(& - is decreasing in ¢ > r, and when £ = 2r, we have 2((T 1; < r. Thus we may

assume that r < £ < 2r.

By Lemma 3.2, the discrete function f defined in (3) is unimodal. Therefore, the optimality of m implies that
f(m) > f(m+ 1), which yields
¢
1 T
1—— 1-— .
( m + 1) < m+1

Define g(z) := (1 — )¢ + rz — 1 for = € [0,1]. Then the inequality above implies that g (m+1> < 0.

Straightforward calculations show that the second derivative of g is ¢ (x) = £(¢ — 1)(1 — x)*~2, which is
nonnegative for « € [0, 1]. Thus, the function g is convex on the interval [0, 1]. Since g(0) =0 and g (m+1
to show that m—H < 7%%7 it suffices to prove the following claim.
Claim 4.3. We have g (ig_@;_rQ)T) > 0.
Proof. Tt is equivalent to show that

(r—1)¢ e_ 1 2(0—r) e>1_ 2r(—r)  (2r—£)(r—1)

(r+10)t—2r) re+l—2r) T pl+l—2r (r+1)0—2r"

Taking logarithms on both sides and then rearranging the terms, this simplifies to showing that

(Inl+ (¢ —1)In(r—1)— (¢ —1)In ((r+1)¢ —2r) —In(2r — ¢) > 0. (24)
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Define
Iz) =zlnz+(xz—1)n(r—1)—(z—1)In((r+ 1z —2r) —In(2r —z), for =z € [r,2r).
Straightforward calculations show that

4r?(z —r)((r + 2)z — 4r)

Ir)=9(r)=0 and 9"'(z)= 5 .
((r+1z—2r)"(2r —2)%

For z € [r,2r) and r > 2, we have (r + 2)z —4r > (r 4+ 2)r — 4r = r(r — 2) > 0. Hence ¥"(z) > 0. It follows
that ¢¥(z) > 0 for all x € [r, 2r), which implies (24). This completes the proof of Claim 4.3. O

It remains to prove (ii). Let ¢ := £/r and hy(z) := e*®(1 —x) — 1. First we show that the real number o defined
in the lemma lies in the interval (1 —1/t2 1). Note that the derivative h}(z) = e'*(t — 1 — tx) is positive when
x < 1—1/t and negative when & > 1 — 1/¢. Thus, h; is unimodal on (0, c0). Since h;(0) = 0 and hy(1) = —1,
the equation h:(x) = 1 has a unique positive root (i.e. «), which lies in the interval (0, 1).

To show that o > 1 — 1/#2, it suffices to verify that the following quantity is positive:
2 L1
ht(l—l/t):?e t—1.

Let u(t) :== e~ /t2. Since the derivative v/ (t) = u(t)(1 — 1/t)? is positive for ¢ > 1, the function u is strictly
increasing on (1, 00). Consequently, h:(1 —1/t*) = u(t) — 1 > u(l) — 1 =0 for ¢ > 1, as desired. This proves
that o € (1 —1/t%,1).

Next, we prove the upper bound for m. Since a < 1 and straightforward calculations show that 5%:3 > r for

all £ > r, we may assume that m > r (otherwise, we are done).

By Lemma 3.2, the discrete function f defined in (3) is unimodal. Therefore, the optimality of m implies that
f(m) > f(m — 1), which yields
¢
— 1
m r<<1—>. (25)
m m

Combining it with the inequality

we obtain m < 52‘;:3.

It remains to prove that m < r/«. Define 6 := r/m. Then it follows from (25) and the inequality In(1+2z) < z
for z > —1 that

m—r 1\* 1 L
1-0= <(1> exp<€ln(1>)§exp<>et9.
m m m m

In other words, we have hy(f) < 0. Since h; is unimodal on (0,00) and h:(0) = 0, we have 6 > «, which
implies that m < r/«. This proves (ii), and thus completing the proof of Lemma 4.2. O

4.2 Proof of Theorem 1.5 for ¢ < 2r

In this subsection, we present the proof of Theorem 1.5 for ¢ < 2r.

Lemma 4.4. Let ,r be integers such that r > 2 and r+1 <€ < 2r — 1. Let m = m, be the integer given
by Lemma 3.2. Then the discrete function h: [0,m] — Z defined by

h(q) = (q)r—1 - (27“ —0+2(m—q)(l— 7“)), for every q € [0,m],

satisfies h(q) < h(m — 1) for all integers q € [0,m] \ {m — 1}.
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Proof. Note that h(m — 1) = ¢(m — 1),_; > 0. So it suffices to prove that for every g € [r — 1,m] \ {m — 1},
h(q) = (@)r—1- (2r = £ +2(m — q)(£ — 7)) < £(m — 1)1 (26)

For ¢ = m, inequality (26) becomes (m),_1(2r — £) < ¢(m — 1),_1, which simplifies to 2(¢ — r)m > {(r — 1).
This follows from the lower bound on m given by Lemma 4.2 (i), and hence this case holds. It remains to
show h(q) < h(m — 1) for every q € [r,m — 2].

Claim 4.5. Suppose that q € [r,m —1]. Then h(q) — h(g—1) > 0.

Proof. First, we consider the case ¢ = m — 1. In this case we need to show (m —2),_1(30 —2r) < {(m —1),_1,

which is equivalent to 2(¢ — r)m < 3rf — 2r? — {. Since m < 5%:3 (by Lemma 4.2 (ii)), we have

06 —1)
20 —r)

200 —r)ym — (3rf — 22 —0) < 2(0 — 1) - —(3rt—2r* =)= (L —r)({—2r) <0.

This proves that h(m —2) < h(m — 1).

Next, we consider the case g € [r, m — 2]. It follows from m < 5%:3 (by Lemma 4.2 (ii)) that

20— 7)@r—m—1)+ (r—1)@r —0) >2( =) (3r— 1= §=B) + (= )(2r - )

=20 —7)3r—1) =Ll —1)+ (r—1)(2r — ¢)
={—r)dr—120) >0.

Since ¢ < m — 2, we have
(r=1)(m+1)—rg>(r—1)(m+1)—r(m—2)=3r—1—m.
Consequently,
20—1)((r=D(m+1)—rg) + (r—1)2r —£) > 20 —1)Br—m—1) + (r— 1)(2r—£) >0.  (27)
Now, fix ¢ € [r,m — 2], and let 3(q) := h(g) — h(g — 1). Then

5(q) = (@r—1(2r —€+2(m—q)(t —7)) = (g —1)p1(2r =L+ 2(m — g+ 1)({ — 1))
=(q— 12 (qg@r—t+2m—q)(t—7)) —(g—r+1)(2r —£+2(m—q+1)(¢—7)))
=(q—1)r—2 (2(€ — r)((r —1)(m+1) - rq) +(r—1)2r - 6)) >0,

where the last inequality follows from (27). This proves Claim 4.5. O
It follows from Claim 4.5 that h(q) < h(m — 1) for every g € [r,m — 2]. This proves Lemma 4.4. O

Proof of Theorem 1.5 for ¢ < 2r. Let F' = K,, .., be an almost balanced complete r-partite graph on
¢er+1, 2r —1] vertices (i.e. £ =a; +---+ a,). Let m = m, ¢ be the integer given by Lemma 3.2. Assume
that a; > -+ > a,. By Fact 2.7 (i), we have a1 = - - =ay_» =2 and ay—py1 = -+ = a, = L.

Let € > 0 be a sufficiently small constant such that, in particular,
e < (2m”1254(€ —r)l(2r — 6)!)71 .

It follows from Theorem 3.1 that OPT(F) = {m}. Thus, by Theorem 4.1, it suffices to verify (S1) and (S2)
for all sufficiently large n (with e there corresponding to ¢ here).

Fix a sufficiently large integer n and let k := |n/m]. For convenience, we will use o(-) to denote lower-order
terms. Let G := G, be the n-vertex realization with parts V1, ..., V,,, where |V;| = k for all i € [m)].

We first verify (S1) for all distinct z,y € V(G).
Claim 4.6. Suppose that (z,y) € V; x V; for distinct i, j € [m]. Then

I(F,G) — I(F,G ® zy) > en*"2
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Proof. By symmetry, we may assume that (z,y) € Vi x V. Since x and y lie in different parts, the pair
{z,y} is an edge of G. Let G denote the induced subgraph of G on V3 U --- UV, noting that G is complete
(m — 2)-partite.

Let C denote the collection of all induced copies of F' in G that contain {z,y}. Let

Ciy={T €C: (VinV(T)|,[VanV(T)]) = (1,1)},
Cio={T €C: (VinV(T)|,[Van V(D)) = (1,2)},
Con:={TeC: ((VinV(T)[,[VanV(T)]) = (2,1)},
Cop={T €C: ((VinV(T)],[VanV(T)]) =(2,2)},

noting that Cl,l U CLQ U Cg,l U 62,2 =C.

Observe that the size of C; 1 is 0 if £ = 2r — 1, and coincides with the value of I(Kal,...,ar,z, é) if £ <2r—2.
So, by Fact 2.2, we have

0, if =2r—1 (1+o0(1))(m —2),_o
IC1a] = o(1))(m— , = (2r —0)(2r — 1 — Ok 2,
P e ekt it f<ar—2 20 (- n)iRr 0]

Similar, we have

5 (1+0(1))(m = 2)r

=2.1(K = (=2
Cral +1Crel (Ka.o01:G) T (A T Yy T
and
0 if =r+1 (14+0(1))(m—2)r_2
Cop| = o (1)) (e ' = (=)l —r— 1)k
R S T
Therefore,

ICl = [C11| + [C12] +[Ci2
(I +0(1)(m —2)r—2 -
= )2 = )] (2r—0@2r—1—=04+4L—7)2r —0) +4(l —r)(L — 7 —1)) k2

(m —2),_o(? — 30+ 2r)
26=r(f — r)I(2r — £)!

+ [Ca.2|

= (1+o(1)) k2. (28)

Let C’ denote the collection of all induced copies of F in G @ zy that contain {z,y}. Observe that, in each
copy in C’, the pair {z,y} must form a part of size two. Thus, the size of C’ coincides with the value of
I(Kaz’m,ar, G)7 and hence, by Fact 2.2,

(L+oM)(m—=2)r1 4o
20=r=1(¢ —r — 1)I(2r — £)!

C'] =

Combining this with (28), we obtain

(1+ 0(1))(m — 2),._,

I(F,G) - I(F,G®zy) =|C| - |C'| = 2= (0 — 1)(2r — 0)!

(02 =30+2r —2(m—7)(L— 7))k 2

By Lemma 4.2 (ii), we have m < ggf]:g, which implies that

23042 —2m— )0 —1) > 2 —3£+2r—2(§§§j§ —r) (—r)
=0 -30+2r Ll —1)+2r(—7)=2(r —1)(£—7).
Therefore,

2r =1l —7)(m — 2),—2
20=r( — r)I(2r — £)!

I(F,G) —I(F,G®zy) > (1+o0(1))

which proves Claim 4.6. U
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Claim 4.7. Suppose that {x,y} C V; for some i € [m]. Then
I(F,G) — I(F,G ® zy) > en*"2

Proof. By symmetry, we may assume that {z,y} C V. Note that the pair {z,y} is not an edge of G. Let G’
denote the induced subgraph of G on Vo U--- U V,,.

It is clear that the number of induced copies of F' in G that contain {x,y} coincides with the value of
I(Kq,,. ..a,,G'), which, by Fact 2.2, is

(m — 1)7’71 kef2
20=r=1(0 —r — 1)1(2r — £)!

(140(1))

If £ = 2r — 1, then F has only one part of size one, and hence, the number of induced copies of F' in G & xy
that contain {z,y} is 0. If £ < 2r — 2, then the number of induced copies of F' in G @ zy that contain {z,y}
coincides with the value of I(K,,, . 4, ,,G’), which, by Fact 2.2, is

(m — 1)7«_2

-2
20=r(f — )1 (2r — € — 2)!]C '

(1+0(1))

Therefore,

(1+ o(1))(m — 1),_s
20— (0 — r)l(2r — 0)!

I(F,G)— I(F,G®xy) = (2 —r)m—r+1)—©2r—0)2r—1-0))k"2

By Lemma 4.2 (i), we have m > g((;:i;. Therefore,

20—r)y(m—-r+1)—2r—£0)(2r—-1-14)
> 20— 1) (%—r—kl) —(2r—0)2r—1—0) = ({—r)(2r — 0).

It follows that

(L+o0(1))(m —1)r—s

20=r(f — r)1(2r — £)!

(L +o)(m 1),
20=r(f —pr — D)I(2r — £ —1)!

Y

I(F,G) - I(F,G & xy) (€ — r)(2r — O)k*2

K2 > 6n272,

which proves Claim 4.7. O

It follows from Claims 4.6 and 4.7 that (S1) holds. So it remains to verify (S2).
Claim 4.8. Suppose that B C [m] is a subset with |B| = g € [0,m]. Then

5 (1+o0(1)hlg)
Gl = Qé—r(f_r)!(%q— DIk

where h: [m] — Z is the discrete function defined in Lemma /.J.

Proof. Fix a subset B C [m] with |B| = ¢. Recall that G5 is the graph obtained from G by adding a new vertex
v, that is adjacent to precisely all vertices in | J;. 5 Vi. By symmetry, we may assume that B = {1,...,q}.

Let éq denote the collection of all induced copies of F' in G 4 that contain v,. Let CN‘} denote the collection
of all induced copies of F' in G4 in which v, forms a part of size one, and let C~§ denote the collection of all
induced copies of F' in G4 in which v, lies in a part of size two.

Note that the size of C} coincides with the value of I(K,,, 4, ,,K[Vi,...,V,]), which, by Fact 2.2, is

(R
20=r(f —)1(2r — £ —1)! '

.....

(1+0(1))(g)r—1 - _ (A 4o(1)(m —q)(@)r-1 ¢
2r—1(( —r — 1)I(2r — e)!ke Hm =gk = 2r=1(( —r — 1)l(2r — z)!kz '
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Therefore,

~ ~ 5 1+4+o0(1 r—1 _ 1+4+0(1))(m — r—1 0
Cal = ICal +1C41 = 2f—r((z - r()!()2)7(“q— ot 24(—7“—1((@ )—)i - 1)(1!22(5»)— o
1+ o(1 r 1 1+ o(1))h 1
= 24(7"(: (r;?((gi fle)! (@r =0 +2(m =g —r—1)k" = ((Z 5)!)()21"@) o K
This proves Claim 4.8. U

Fix an arbitrary set A C [m] with |A| #m — 1. Let
A =min{I(F,Ga~): A* C[m] and |[A*| =m — 1} — I(F,G.).
Then it follows from Claim 4.8 and Lemma 4.4 that

(L+o(d)h(m—1) ,, (L4 0(1)h(A])

20 (0 — r)l(2r — 0)! 20— (0 —r)l(2r — 0)!
h(m —1) = h(JA]) 1 1

T2l =) (270—6)!’# ok 2 o rC—r)2r —0)

A = k€1

k@ 1 O(klfl) 2 877/[71.

This shows that (S2) holds. So it follows from Theorem 4.1 that the inducibility problem for F is perfectly
stable, which completes the proof of Theorem 1.5 for ¢ < 2r — 1. U

4.3 Proof of Theorem 1.5 for ¢ > 2r

In this subsection, we prove Theorem 1.5 for the case £ > 2r. The proof parallels that of the previous section,
with several steps simplified by the fact that a, > 2 (which follows from ¢ > 2r).

Lemma 4.9. Let {,r be integers such that r > 2 and £ > 2r. Let m = m, o be the integer given by Lemma 3.2.
Then the discrete function H: [0,m] — Z defined by

H(q) = (m—q)(q)r-1, for every q € [0,m)],

satisfies H(q) < H(m — 1) for all integers q € [0,m] \ {m — 1}.

Proof. The inequality H(q) < H(m — 1) is clear for ¢ = m and ¢ < r — 2 since H(q) = 0 in these cases. For
the remaining case, it suffices to show that H(q) is increasing in ¢ for ¢ € [r — 1, m — 2].

It follows from Lemma 4.2 (ii) that

m < < = —. (29)

H(q) = H(q—1)=(m—q)(@)r-1 — (m —q+1)(¢— 1)r—1
=(q—1)r2((m—q)g—(m—q+1)(g—7r+1))
=(qg—1)p—2((r—=1)(m+1) —rq)
> (= Dya(3r—1—m) > (g = Do (¥ 1) > 0.

Here, in the first inequality we used the assumption that ¢ < m — 2, in the second inequality we used (29).
This completes the proof of Lemma 4.9. O

Proof of Theorem 1.5. Let F' = K,, . .. be an almost balanced complete r-partite graph on ¢ > 2r
vertices, that is, £ = a; +--- + a,. Let m = m,  be the integer given by Lemma 3.2. Since ¢ > 2r, it follows
from Lemma 4.2 (ii) that (29) holds.

Assume that a; > -+ > a,. By Fact 2.7 (ii), we have a,, > 2. Let by > --- > b; denote the distinct elements of
the multiple set {ay,...,a, }}, occurring with multiplicities r1, ..., 7, respectively.

It follows from Theorem 3.1 that OPT(F) = {m}. Thus, by Theorem 4.1, it suffices to verify (S1) and (S2)
for some constant € > 0 and all sufficiently large n.
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Fix a sufficiently large n and let k := |n/m]. For simplicity, we will use o(-) to denote lower-order terms.

Let G == G,, m be the n-vertex realization with parts V1,...,V,,, where |V;| =k for all i € [m]. Let
-1
€= (417”/'Irl ssym(ag,...,a;)-ay!l--- ar!) .
We first verify (S1) in the following two claims.

Claim 4.10. Suppose that {xz,y} C V; for some i € [m]. Then

I(F,G) — I(F,G @ zy) > en*~2.

Proof. By symmetry, we may assume that {x,y} C V;. Since each part of F has size at least two, there is no
induced copy of F in G @ xy containing {x,y}. However, it is clear that the number of induced copies of F in
G that contain {z,y} and with exactly a; vertices in V; is at least

(‘V1|72) : I(Kaz,..ﬂam K[VYQ’ Tt VmD

a172

By Fact 2.2, this is

1 _ (m—1)r-1 _
1 1 for—2 r pazttar -2
( +O( ))(CL1*2)' CLQ!“'(J,T!'SyHl(CLQ,...,(ZT) -
It follows that I(F,G) — I(F,G @ xy) > en’~2, which proves Claim 4.10. O

Claim 4.11. Suppose that (x,y) € V; x V} for distinct i,j € [m]. Then

I(F,G) — I(F,G ® zy) > en*"2

Proof. By symmetry, we may assume that (x,y) € V4 x V5. Recall that b; > --- > b; are the distinct elements
of the multiple set {aq,...,a, J}, occurring with multiplicities 71, ..., r;, respectively.

Let C denote the collection of all induced copies of F in G that contain {z,y}. For {7,j} C [t], let C; ; denote
the collection of all induced copies of F' in G that contain {z,y} with  lying in a part of size b; and y lying
in a part of size b;. For each ¢ € [t] with r; > 2, let C; denote the collection of all induced copies of F in G
that contain {x,y} with both = and y lying in parts of size b;.

For each {i,j} C [t], let F; ; denote the (r — 2)-partite subgraph of F' obtained by removing one part of size b;
and one part of size b;. Then, by Fact 2.2, we have

Cigl = (5N (3251 - I(Fiy, GIVs, -, Vi)

b;—14+b,—1 —9
= (1 +0(1) : | : 1 (b 1b 1) -1 (m' v L= =) LA
(bi — 1)(()_7 — 1) (bzb]) Hwe[ﬂ(bx) T . (’I"ﬂ’j) er[t] Ty
= (1 + 0(1)) (m _ 2)7‘72 !ribirjbjke_2.

[eciy(be)™ - Tacpy 7=

For each i € [t] with r; > 2, let F; denote the (r — 2)-partite subgraph of F' obtained by removing two parts of
size b;. Then, by Fact 2.2, we have

cil = (VI () - 1R, GLVa, - Vi)

bi—1
B o k2b¢72 (m . 2)7472 o,
= (14 0(1)) ((b; — N2 (b2 Hze[t](bwww il — 1)) Hze[t] m!k

= (1+o(1)) (m—2),_2 ra(rs — D)B2KE2

HzG[t] (ba!)7= H:L’G[t] ra!

Therefore,

(L+o(L)(m—2),—s
= ol TLggrl” (X mbbit X0 - 1)
ze[t] ze(t] (i,5)E([t])2 i€[t],ri>2

1+o(1))(m —2),— -
=3 ,( +aol( )S)(::(a ) 2a )]‘3Z ? Z aid;-. .
1! o Symiag, ..., Gr (6:)€(lr])2
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Let C’ denote the collection of all induced copies of F' in G @ zy that contain {x, y}. Let w denote the number
of parts of size two in F. Since a; > 2 for every ¢ € [r], we have (using (29))

4 2
Z a;a; —2(m —7r)w >4r(r—1) -2 (; - 7“) r= §7‘(57" —6). (31)
(i.)€([r])2

Suppose that w = 0. Since every part of F has size at least 3 and {z,y} in not and edge in G @ xy, there is
no induced copy of F in G @ xy, and hence, |C'| = 0.

Suppose that w > 1 (i.e. a, = 2), then b; = 2 and r; = w. Note that in this case, the size of C’ coincides with
the value of I(Kq, .. a, ., K[Va,...,Vin]), which, by Fact 2.2, is

.....

(o)m=2)s s (to)m=2s oy
ar! - ap—1!-sym(ag, ... ar_1) ar! - a.!-sym(ay, ..., a)

Combining this with (30) and (31), we obtain

(I +o@)(m—=2)r—2 5 .
IE,G) = I(F.G & ay) = = = = ((. );[ 1) aia; *Q(m—r)w)
%57 rl)2

> (1 +0(1))2r(5r — 6)(m — 2)r—2 K2 > ent2,
3ap!---a.!-sym(aq, ..., a,)

This completes the proof of Claim 4.11. U

By Claims 4.10 and 4.11, (S1) holds. So it remains to verify (S2).

Claim 4.12. Suppose that B C [m] is a set of size q¢ € [0,m]. Then the number of induced copies of F in Gp
that contain v, s

(1+0(1))f- H(q)

k@—l
Hie[r] ai!- Sym(a'lv . 7a7') ’

where H: [m] — Z is the discrete function defined in Lemma 4.9.

Proof. Fix a subset B C [m] with |B| = ¢q. Recall that G is the graph obtained from G by adding a new vertex
v, that is adjacent to precisely all vertices in | J;. 5 Vi. By symmetry, we may assume that B = {1,...,q}.

Let éq denote the collection of all induced copies of F' in G that contain v,. Since F' is complete r-partite
and a, > 2, if ¢ € [r — 2] U {m}, then |C,;| = 0. Thus, we may assume that g € [r — 1,m — 1].

Recall that by > --- > b; are the distinct elements of the multiple set { a1, ..., a, }}, occurring with multiplicities
T1,...,T¢, respectively. For each i € [t], let Fy denote the (r — 1)-partite subgraph of F' by removing a part of
size b;, and let Cé denote the collection of all induced copies of F' in Gp that contain v, such that v, lying in
a part of size b;. Then the size C~fz coincides with the value of Z;.":qﬂ (bWiD -I(F!,K[W,...,Vy]), which, by
Fact 2.2, is

R (@rs gt~ (AHoW)m =) @1, e

1+0(1))(m—gq —
( ( ))( )(blfl)' (bi!)_l Hie[r] a;! T ! -sym(a1,-~-,ar) Hie[r] ai!'sym(al""’ar)
It follows that

= (00— @s yos 5~ kol g)a) s s
? [Licpy @i - sym(a, ..., ar) b ! [Licpail-sym(ar, ... ar)

This completes the proof of Claim 4.12. O

Fix A C [m] with |A| # m — 1, and let
A =min{I(F,Ga~): A* C[m] and |[A*| =m — 1} — I(F,G.).
It follows from Claim 4.12 and Lemma 4.9 that

(1+ o(1))¢

- 14+ o(1))¥
ey o sym(ar ayt(Hm=1) - H(g) 2 (1 +0(1))

kf71 > (_:néfl'
" Liepy @i! - sym(ay, ..., ar) -

A —

This proves (S2). By Theorem 4.1, the inducibility problem for F' is perfectly stable, proving Theorem 1.5. [
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5 Exact results and uniqueness of the extremal construction

In this section, we show that, for large n, the extremal graph for I(F,n) is the Turédn graph if F is an almost
balanced complete multipartite graph, thus completing the proof of Theorem 1.1. We begin with the following
two lemmas.

Lemma 5.1. Lett > s > 1 be integers. Suppose x,y, N are real numbers satisfying y > x + 1 and
max{|z — N|, |y — N|} =o(N) as N — co. Then

() () - () = = - - DN oV, (32)

T+ =00 -

Proof. We start with the first equality. The case s = 1 is trivially true, so we may assume that s > 2. Let
¢: [s—1,00) = R be the function defined by ¢(z) = (,*,) for all z € [s —1,00). By the Mean Value Theorem,
there exists zp € [x,y — 1] (hence |z9g — N| = o(N)) such that

T+ =0 =) =(5) - (5) = @—y+1)¢'(20)
=(@—y+1) (Fon +o(:7?) = SN2 4 o(N*2),

s/ \t slt!

(z) (y) _ t+s—(t—s)? (y o 1)Nt+s—2 + O(Nt+s—2). (33)

as desired.

We now consider the second equality. Let
gz, y) =@+ ) (y—sh—st1+ @+ Dy—s)(r—s+1)i—s — (. —s+Dyly —s)t—s —y(@ — s+ 1)1_s41.

Claim 5.2. We have g(z,y) = (t+5— (t — 5)?) (y — 2 — )N~ 4+ o(N*7%).

Proof. The case t — s € {0, 1} follows directly from the following fact (which itself follows from straightforward
calculations):

2s(y —x — 1), if t—s=0,
9(x,y) = .
s(y—xz—1)(z+y—2s), if t—s=1.

So we may assume that ¢ — s > 2. Simplifying g(z,y), we obtain

gz, y) =s(yly — s)—s — @+ 1)(x+1—5)—s) —t(z+ 1)y((y*5y)t_s _ (E‘f’i;sl)t—s).
Let 41, 19: [t — 1,00) = R be functions defined by

(2 —8)1—s

P1(2) = 2(2 — 8)4—s and he(z2) = forall ze[t—1,00).

By the Mean Value Theorem, there exist 21, 29 € [z,y — 1] such that
Yy —s)i—s — (@ + (@ + 1= 8)i—s = (y —x — D¢ (21)
=(y—-z-1) ((t —s+ 1) + o(zt_s))
=y—z—-1)(t—s+1)N"° +0o(N'"),
and

(=es _@HI=8he (e

Yy x+1
=(y—z—1) ((t —5— 1)257572 + o(zt_s_Q))
=@y—ax—1)(t—s—1)N"2 4 o(N'"—°72).

Consequently, we have

gz, y)=sly—az -t —s+ DN +tlxz+Dyly —x — 1)t —s — 1)N*7*72 4 o(N'™%)
=(t+s—(t—9)?%) (y—z—1)N"*+0o(N'*),

which proves Claim 5.2. U
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It follows from Claim 5.2 that

D+ - OO -

(:;) (gz) _ (x)é_ll(;?sl_ 1)8—1
_tts-(t-s)?
N slt!

-g(z,y)
(y L 1)Nt+s—2 + O(NH'S_Z),

which completes the proof of Lemma 5.1. O

Lemma 5.3. Let F' = K,, ... 4, be an almost balanced complete r-partite graph with a1 > --- > a,, and let
¢:=a1+---+a,. Let m:=m,, be the constant given by Lemma 3.2. Then

() (3)

kelr
Proof. Suppose that a,, = 1. Then it follows from Fact 2.7 (i) that a; = -+ - =ay—, =2 and ap_, 41 = -+ =
a, = 1. Combining this with m < 2& 1) (by Lemma 4.2 (ii)), we obtain
0L—1) /
mZ( ) —r)<2(£_r)(£—r)—<2).

ke(r]
Now suppose that a, > 2 (consequently, ¢ > 2r). Observe that

rZ( ) (Z“k TZ“k)Z%((a1+---+ar)2+ > (ai—aj)Q—rz)

kelr] ke(r] {i7j}€([;])

= %(62 + Z (ai —aj)* — M). (34)

{iare('y)

For every {i,j} C [r], it follows from the almost balanced assumption that

a; — Qj a1 — Qyp
( 2J)§( 5 )Sar—lﬁaj—l,

(a; —a;)* < a; +a; — 2. (35)

which implies that

First, we consider the case r < 3. Since £ > 2r > lrllr(ll(f{})r) for r € {2, 3}, the integer m, 4 given by Lemma 3.2

satisfies that m, , = r. Combining this with (34) and (35), we obtain

mZ(a’“)_ Z(C;k>_;<€2+ > (ai—aj)Q—re)S%(£2+ > (a,-+aj—2)—r£)

ke T] ]CE[T‘] {i,j}G([g]) {i,j}e([;])

=_(+ (r—l)ﬁ—r(r—l)—ré)=%(€2—€—r(r—1)) < <§),

w\»—*

as desired. So it remains to prove the case when r > 4.

Claim 5.4. We have Z{i,j}e([gl)(ai —a;)><(r—1)¢-
Proof. Observe that

Yo ai—a)’= Y (ai—a)’+(@a—a)+ DY ((a1-a)+ (6 —an)?)

{iite(h {i.gre(®y 1) i€[2,r—1]
< Z (ai —a;)* + (a1 —a,)* + Z (a1 — a,)?
{igye(® 1) i€[2,r—1]

= Z (a; —a;)* + (r —1)(a1 — a,)?,
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where the inequality follows from the fact that, for all z >y > 2z > 0,
2
(@=y)?+y—2)7=(r-y) +(@—2) 2@ -y(y—2) <(x-2)7"

Repeating this argument for ) . je ([z,Tfl])(ai — a;)?, and continuing similarly, then applying (35), we obtain
K 2

Z (@i —a;)” < (r—1)(a1 —a,)* + (r —3)(a2 —ar—1)* + -+ (r —2[5] + 1) (ajr/2) — av-+1—v-/2j)2
{i.re(')

/2] r/2]
= > (r=2i+1)(a; —arp1-)* < Y (r—2i+1)(a; + ar1-; — 2).
i=1 =1

So it suffices to show that

/2]
S (r=2i+1)(ai+ari—2) < (r—1)L—r%

=1

Suppose that r = 2k for some k > 2. Then

lr/2]
S r=2i+1)(ai+ar-i—2) =Y (r—1)(a+ar——2)— Y _ (20 —2)(a; + arp1-; — 2)
i=1 iclk] ic[k]
S(r=D-r) =) (2i-2)(2+2-2)
i€ k]
-2 —4
=(r—-1){l-1r)— rr=2) _ (r—1)f—r*— r(r2 ) < (r—1)0—72,
as desired.
Now suppose that » = 2k — 1 for some k > 3. Then
Lr/2]
> (r=2i+1)(ai+ ars1-i —2)
i=1
= Z (T — 1)(0,1' + ary1—i — 2) - Z (27, - 2)(&1 + ary1—i — 2)
iclk—1] i€[k—1]
=Y (r=D(@-1)—(r=1(a—1) = > (2i—2)(a;i+ar41-;—2)
i=1 i€[k—1]
Sr-D-r—(r-D2-1)- Y (2i-2)2+2-2)
i€lk—1]
1 —4)+1
:(r—1)(6—7“)—(7‘—1)—5(7“2—47“—1—3) z(r—l)é—TQ—% < (r—1)0 -1
also as desired. This completes the proof of Claim 5.4. O

It follows from (34), Claim 5.4, and the inequality m < % (by Lemma 4.2 (ii)) that

rz (a;'):%.rz (“2’6):%.%@2—5— Z (ai—aj)Q—r€>

ke[r] kelr] {i,j}E([g])

2 14 r2¢ 14
< 2 — 2 — - .
R (6 +(r—1)0—r rﬁ) <2> 2@ =17 < <2)

This completes the proof of Lemma 5.3. O

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. Let F' = K,, .. ,, be an almost balanced complete r-partite graph on ¢ vertices,

that is, { = a1 +--- + a,. Let m = m,., be the integer given by Lemma 3.2. Let n be a sufficiently large
integer, and let NV := n/m. Let G be an n-vertex graph satisfying I(F,G) = I(F,n).
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It follows from Theorems 3.1 and 1.5 that G is complete m-partite with each part of size (1 4+ o(1))N. Write
the part sizes of G as ny > no > - -+ > n,,, noting that 2111 n; = n and |n; — N| = o(n) for every i € [m)].
Let y := n; and x == n,,. Suppose to the contrary that G is not a Turan graph, that is, y > = + 2.

For convenience, for every graph H, let I(F, H) =sym(ay,...,a,) - I(F, H).

Claim 5.5. The complete m-partite graph G = Ky, 1 n,,....n,.+1 Satisfies
I(F,G.) —I(F,G) >0

Proof. Recall that m = 2 when r = 2 by Lemma 3.2. For each i € [r], let
filwy) = (00 + () = () = (@)

0, if r=2,
4= .y = (Rt o)) N1
Z(sk)kem\{i} ey (al’“)» it r=>3,

where the tuple (sg)re[]\fi} ranges over ([2, m — 1])T71 in the summation.

For each {i,j} C [r], let
gi3(w,y) = () C) + (SN 0D = G @) = (@) (),

Bij _ {1; if r= 2, _ ((m 2)'7 2 alllaJi i ( )) ]\ﬂfaifaj7
Z(Sk)k€[7']\{i,j} ke ti (Zskk)7 if 723 :
where the tuple (sg)re[]\fi,j) Tanges over ([2, m — 1])“2 in the summation.

Since sc(G) = 0, applying (4) and simplifying, we obtain

I(F,G.) =Y A fimy)+ > Bij-gig(zy) (36)
i€[r] iire('y)

It follows from (32) that

~aia; — 1) ai—2
Ai'fi(xay)**T(y*fE*lJFO(l))N : al---a,!
(m—=2),1

ai!---a.!

(m — 2)7~_1 . (Zi!

+ 0(1)> Nt-e
=ai(a; —1)(y—z—1) N2 4 o(N*2). (37)

It follows from (33) that

ai +a; — (@i — a; 2 a;+a;— m_QT— 'ai!a'! —ai—a;
Bm.gm(%y)_ J ( ]) (y—x—l—l—o(l))N i+a; 2(( ) 2 J _|_0(1)) NE—ai—a;

aila;! ay)---a,!
= (a;+a; — (a; —a;)?) (y —z — 1)7(2'_2);}2 N2 4 o(N2). (38)
Let
Ui=—Y (m-raie;-1)+ Y (a+a;—(a—a;)?).
i€lr] tiire('D)
Then

U=—Y (m-r)a—a)+ Y. (a;+a;—a?—a?+2a0)

ie(r] {i,iye()
:Z(—(m—r)(a?—az) (r—1)(a —az Zal Z
i€lr] ielr]  je[r]\{i}
:—Z( -1 a—ai)+zaz — Qg
i€lr] i€(r]
==Y @)+ Y- Da=2((4) - m 3 (3)):
i€[r] i€[r] i€[r]
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Combining this with (36), (37), and (38), we obtain

IA(FaG*) — j(F,G) =v. (y —r— 1)%]\%72 +O(N€*2)
=2(() - m X () G- DN o
ie[r] 7.

By Lemma 5.3, the factor (g) —mY_, (%) is positive and hence at least one. It follows that I(F,G,)—I(F,G) >

0, which establishes Claim 5.5. O

It follows from Claim 5.5 that G is not extremal, contradicting the assumption that I(F,G) = I(F,n). This
completes the proof of Theorem 1.1. O

For the balanced case K,.(t) = T).(rt), the requirement that n be sufficiently large can be dropped, though the
extremal graph may no longer be unique.

Theorem 5.6. Let r,t > 2 be integers. The following holds for every n > rt. Suppose that G is an n-vertex
complete multipartite graph satisfying I(K,(t),G) = I(K,(t),n). Then G = Ty(n) for some integer k > r. In
particular, for every integer n > rt, there exists an integer k such that I(K,(t),Tx(n)) = I(K-(t),n).

Proof. Fix integers r > 2 and ¢ > 2, and let F = K,.(t). Fix n > rt. By Lemma 2.3, there exists a complete
multipartite graph G such that I(F,G) = I(F,n). Write G = K,, .. 4, for some integer k, and assume that
a1 > -+ > ag. Clearly, we must have k > r and a;, > ¢, since otherwise I(F,G) = 0.

Suppose to the contrary that a; > ar + 2. Let G’ be the complete k-partite graph with part sizes a; —
l,a9, -+ ,ak—1,ar + 1, and let G” be the complete (k — 1)-partite graph with part sizes a; + ag, a2, -+ ,ar_1.

Claim 5.7. We have I(F,G) < max{I(F,G"), I(F,G")}.

Proof. Let x := aj and y := a1, noting that y — 1 > x > t. Define

A 0, if r=2,

T Z(il,...,ir_l)e([Q,k—l])r_l (‘) - (a”[l), if r>3,

2, if r=2,
B =

r(r =1 Xy iy e(2ho, s (1) (), i r >3

Since min;ey a; >t and k > r, it follows directly from the definition that B > 0.

Suppose for a contradiction that both I(F,G) > I(F,G') and I(F,G) > I(F,G") hold. Applying (4) and
then simplifying, we obtain

0<r!(I(F,G) = I(F,G")) = 1A — 31 B, (39)

0 <r!(I(F,G)—I(F, G”)) = (2B — as A, (40)
where
ar= )+ () - (1) =) =) - () -
Since y > z >t > 2, we have

ar=(2) = () >0 = 370 (D(L) >0 B =252(5)(0) >0 B>0.
i€t—1]

() A=) =D, 8=

Combining this with (39), (40), and B > 0, we obtain

B_A_B
ar ~ BT oas

which after rearranging yields

0< fhar = praz = () () () + () = 1) = 0) = (CHE = OO -6 - @)
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OED(E =)= O - EN) = E(EM e - 60)
()~ EPYE ) - = () @H )
=)D BT - @) E) - -2 - D).
It follows that
y("7) — @+ D)~ -2 - (") 2 0. (41)

Let ¢: [t,00) — R be the function defined by ¢(z) = (%) for every z € [t,00). Since ¢ is strictly convex on
[t,00) for t > 2, it follows from Jensen’s inequality that

41 (J:) 4+ y=z=1 (7;+y) > (’”%-x-&-y%ﬁ*l(xﬂ/)) _ (y—l)'

Yy t Yy t t t

However, this is a contradiction to (41). This completes the proof of Claim 5.7. O

It follows from Claim 5.7 that G is not extremal, contradicting the assumption that I(F,G) = I(F,n). This
completes the proof of Theorem 5.6. O

6 Concluding remarks

Let F be a complete r-graph on £ > r + 1 vertices. Observe that if a maximizer = (z1,22,...) € OPT(F)
satisfies 9 = 0 and x; = x; for all 4, j C supp(a), then necessarily * = m, ¢, where m, , is the integer given
by Lemma 3.2.

A natural next step beyond Theorem 1.1 is to understand to what extent the “almost balanced” hypothesis
can be relaxed.

Problem 6.1. For all integers £ > r > 3, characterize the complete r-partite graphs F' on £ vertices for which

OPT(F) = {m,..}.

We remark that a necessary condition for a complete r-partite graph F' = K, . 4, on ¢ vertices satisfying
OPT(F) = {m, ¢} is given by the following inequality, which is slightly weaker than that in Lemma 5.3:

9=me5 (%)

By (8), we have

where
S(0) =3 ((1+8)" +(1=08)™) and T(5):= Y (1+8)*(1—6)".
i€[r] {i.3}Clr]
Writing ¢(6) = (m — r)S(d) + T'(6), a direct calculation yields

T

¢0)=0 and ¢"(0)= Q(mz (%) - (5)) > 0.

i=1
It follows that m cannot be a maximizer, as claimed.

It should be pointed out that (42) is not a sufficient condition for OPT(F) = {m, ¢} to hold (even when
replaced by a strict inequality). In forthcoming work [13], we will determine i(F) and establish the perfect
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stability for all complete 3-partite graphs F. In particular, our result will show that F' = Ko 7 7 satisfies (42)

l-a 11—«

with strict inequality. However, the unique maximizer in OPT(F) is (a, =%,55,0,.. .), where a ~ 0.396884
is the largest real root of

1302° 4+ 252* — 9023 + 8022 — 40z + 7 = 0.

On the other hand, the sufficient condition (1) is not necessary in general. For example, F' = K, g3 is
not almost balanced (since (8;4) = 6 > 4), yet our result will show that the unique maximizer for F is
(1/3,1/3,1/3,0,...).

Thus, the answer to Problem 6.1, in terms of the algebraic relations among ag, ..., a,, lies strictly between
the hypersurfaces defined by (1) and (42), and appears to be quite complicated.
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