
ar
X

iv
:2

00
8.

05
43

0v
1 

 [
m

at
h.

C
O

] 
 1

2 
A

ug
 2

02
0

The inducibility of oriented stars

Ping Hu∗ Jie Ma† Sergey Norin‡ Hehui Wu§

August 13, 2020

Abstract

We consider the problem of maximizing the number of induced copies of an oriented star Sk,ℓ

in digraphs of given size, where the center of the star has out-degree k and in-degree ℓ. The case
kℓ = 0 was solved by Huang in [10]. Here, we asymptotically solve it for all other oriented stars
with at least seven vertices.

1 Introduction

A central problem in extremal graph theory is to determine the maximum number of induced copies
of any given graph H in graphs with fixed size. This problem was first studied by Pippenger and
Golumbic [13] and has been the subject of extensive research in recent years [2, 3, 7, 8, 11, 18].

Our focus in this paper is the analogous problem for digraphs. To be precise, let H be a digraph.
The induced density of H in a digraph G, denoted by i(H,G), is the number of induced copies of

H in G divided by
(|V (G)|
|V (H)|

)

. For integers n, let i(H,n) be the maximum of i(H,G) over all n-vertex

digraphs G. The inducibility of H is defined to be i(H) = limn→∞ i(H,n). This limit exists as
i(H,n) is decreasing for n ≥ 2.

There are very few digraphs for which the inducibility is known. One important class of examples
are directed stars. For nonnegative integers k and ℓ, let the oriented star Sk,ℓ be the digraph obtained
by directing edges of a star with k + ℓ leaves so that center has out-degree k and in-degree ℓ. A
directed star is an oriented star in which all the edges have the same direction, i.e. the star Sk,ℓ
such that k = 0 or ℓ = 0. The inducibility of S2,0 and S3,0 was determined by Falgas-Ravry and
Vaughan [5]. Resolving a conjecture made in [5], Huang [10] extended their result and determined
the inducibility of Sk,0 for all k ≥ 2, showing that it is asymptotically attained by an unbalanced
blow-up of an arc, iterated inside the part with in-degree 0. Note that since the inducibility of any
digraph equals the inducibility of the digraph obtained by reversing all arcs, it suffices to consider
oriented stars Sk,ℓ such that k ≥ ℓ. In particular, Huang’s result also determines inducibility of S0,ℓ
for all ℓ.

The smallest oriented star not covered by the result of [10] is S1,1, the directed path on three
vertices. Thomassé [16, Conjecture 6.32] conjectured that i(S1,1) = 2/5, which is attained by the
iterated blowup of the directed cycle on four vertices.
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In this paper we determine the inducibility of the remaining oriented stars on at least seven
vertices. The following is our main result, which reduces computations i(Sk,ℓ) to an optimization
problem.

Theorem 1.1. Let k ≥ ℓ ≥ 1 be integers such that k + ℓ ≥ 6. Then when k = ℓ,

i(Sk,ℓ) =
(2k + 1)!

22k(k!)2
·max

α

{

α(1 − α)2k + (1− α)α2k
}

;

and when k ≥ ℓ+ 1, i(Sk,ℓ) is equal to

(k + ℓ+ 1)!

k!ℓ!
max
α,d

{

α(1− α)k+ℓdk(1− d)ℓ +
(k − 1)k−1ℓℓ

(k + ℓ− 1)k+ℓ−1
(1− α)αk+ℓ(1− d)

}

,

where the maximum is over all possible pairs (α, d) ∈ [0, 12 ]× [0, k
k+ℓ ].

The lower bound on i(Sk,ℓ) in Theorem 1.1 comes from considering orientations of large complete
bipartite graph with bipartition (X,Y ) with |X|/|Y | = α/(1 − α) and d|X||Y | arcs directed from
X to Y , where α = (1 + o(1)) 1

k+ℓ+1 , d = (1 + o(1)) k
k+ℓ .

1 In fact, it follows from our proof that for
sufficiently large n the graphs achieving i(Sk,ℓ, n) are the orientations of complete bipartite graphs
with above properties.

As discussed above, the optimal constructions for ℓ = 0 and for k = ℓ = 1 are different, and it is
not hard to show that orientations of complete bipartite graphs can not achieve the inducibility in
these cases. However, we conjecture that Theorem 1.1 holds in all the remaining cases. 2

The rest of the paper is structured as follows. In Section 2, we outline the proof of Theorem 1.1,
introduce the necessary terminology, including the probabilistic notation that plays a crucial role
in the proofs, and establish some basic inequalities. In Section 3, we prove the stated lower bound
on i(Sk,ℓ) and reduce the proof of the upper bound to Lemma 3.2. We then prove Lemma 3.2 in
Section 4, while the proofs of some of the more technical estimates are relegated to Appendix A.
Finally, in Section 5, we make some concluding remarks.

2 Preliminaries

2.1 Proof outline

The techniques used to obtain majority of inducibility results can be loosely divided into three
categories:

• Razborov’s flag algebras allow one to automate the search for the proof. Their application,
however, frequently requires computer assistance, and, as such, is typically more successful
when investigating small (di)graphs. Flag algebras, in particular, were used by Hirst [9] to
determine the inducibility of the graphs obtained from a triangle by adding a vertex of degree
one or two, and by Falgas-Ravry and Vaughan [5] to determine the inducibility of S2,0 and
S3,0.

• Stability method was introduced by Simonovits [14]. In the context of inducibility operates
as follows. First, one establishes that if the induced density of a (di)graph H in a (di)graph
G is close to the maximum then G is close to the conjectured family of extremal examples F .
Second, one locally modifies G, arguing that the induced density increases in the process, until
reaching the graph that belongs to F . This technique requires fine control on the error terms.
As a result it is either paired with flag algebras [2, 4, 12], or is applied to the cases when H
is very large [6, 7].

1For a more detailed description of the extremal digraphs, we direct readers to Lemma 3.1.
2Tightening some of our estimates, it is possible to extend Theorem 1.1 to the cases (k, ℓ) = (2, 2) and (k, ℓ) = (3, 2),

but we choose not to do so, as it involves no new ideas, and noticeably lengthens the (already extensive) calculations.
On the other hand, solving the cases (k, 1) for k ≤ 4 may require some new ideas (see Section 5 for more discussion).
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• Analytical methods are applied by establishing a bound on the inducibility as a function of
local parameters (e.g. degrees) and optimizing this bound after relaxing the integrality require-
ment. Huang’s result [10] on the inducibility of directed stars is an example of applications of
such methods, which were also used in [3, 11]. Success of analytic methods seems to depend
on the presence symmetries in H, in particular in all of the above applications the (di)graph
H is edge- (or arc-)transitive.

One of the goals of this paper is addressing the technical challenge of bridging the gap between
small digraphs, which can be attacked using flag algebras, and large digraphs, which are susceptible
to stability method, and doing so in the presence of only moderate symmetries.

The large scale structure of our proof of Theorem 1.1 is motivated by the stability method.
More precisely, we partition the vertices of G into a set X of large degree vertices and a set Y
of small degree vertices, and attempt to show that the induced density is maximized when X and
Y are independent and complete to each other. However, rather than sequentially making local
modifications, we employ analytical techniques and show that global contribution of edges in X and
Y and non-adjacencies between X and Y is negative, while we simultaneously optimize the degrees
of vertices in X and Y to establish the claimed upper bound. As a result we are able to reduce the
size of the stars for which this approach is feasible to the point that the remaining cases are within
reach of the flag algebras.

Our approach overcomes the following issue that makes the direct application of stability method
difficult, which occurs when ℓ = 1. Consider a digraph G on n vertices, obtained by “blowing up”
the oriented star Sk,1 in the following iterated fashion. The vertex set is partitioned into three sets
X, Y and Z, where |X| = |Z| = (1+ o(1)) n

k+2 and |Y | = (1+ o(1)) k
k+2n, the edge set E(G) includes

all the arcs from X to Y and from Y to Z, and this construction is iterated within G[X] and G[Y ].
The resulting digraph is not an orientation of a complete bipartite graph, as we would like it to be,
yet the induced density of Sk,1 in it is very close to the maximum, and it is locally optimal, i.e.,
it is impossible to increase induced density by changing the arcs incident to a single vertex. The
existence of this example makes analysis in the case ℓ = 1 substantially more complicated, although
we never explicitly reference it in the course of the proof.

We use the probabilistic notation introduced in the next subsection to make our calculations
more intuitive. That is, instead of counting the copies of Sk,ℓ in G, we bound the probability that a
random map from V (Sk,ℓ) to V (G) induces such a copy.

2.2 Probabilistic point of view

For the remainder of the paper we fix integers k ≥ ℓ ≥ 1 such that k + ℓ ≥ 6.
Let G be an n-vertex digraph. We consider the set Φ = Φk,ℓ of all maps φ : V (Sk,ℓ) → V (G)

with the uniform probability distribution on them. Let S be the set of maps φ ∈ Φ such that φ is
an isomorphism between Sk,ℓ and G[Image(φ)], and let

s(G) = sk,ℓ(G) = Pr[φ ∈ S].

Then we have

s(G) =
k!ℓ!

nk+ℓ+1

(

n

k + ℓ+ 1

)

· i(Sk,ℓ, G). (1)

Thus if G maximizes the induced density of Sk,ℓ among all n-vertex digraphs, then it also maximizes
s(G). We find it convenient to take the probabilistic approach and estimate s(G) rather than
i(Sk,ℓ, G), which also allows us to largely ignore the dependence on n.

Let

OPT(k, ℓ) =
1

22k
·max

α

{

α(1− α)2k + (1− α)α2k
}

if k = ℓ, and

OPT(k, ℓ) = max
α,d

{

α(1 − α)k+ℓdk(1− d)ℓ +
(k − 1)k−1ℓℓ

(k + ℓ− 1)k+ℓ−1
(1− α)αk+ℓ(1− d)

}

if k > ℓ.

3



Thus by (1) Theorem 1.1 is implied by the following.

Theorem 2.1. Let k ≥ ℓ ≥ 1 be integers such that k + ℓ ≥ 6. Then

sup
G
sk,ℓ(G) = OPT(k, ℓ).3

2.3 Notation

We write xy for an arc in a digraph G with the head y and the tail x (when the direction is not
essential, we also call it an edge in G).

Let A be a subset of V (G). Let µ(A) = |A|/n denote the proportion of vertices in G that lie in
A. We denote by N+

A (x) (respectively N−
A (x)) the set of all out-neighbors (respectively in-neighbors)

of x in G contained in A, and let NA(x) = N+
A (x) ∪N−

A (x). Let

ρ+A(x) = |N+
A (x)|/n, ρA(x) = |NA(x)|/n, ρ−A(x) = |N−

A (x)|/n and ρ0A(x) = µ(A)− ρA(x).

Thus ρ0A(x) denotes the proportion of vertices which lie in A and are non-adjacent to x. In the case
of A = V (G) we omit the subscript.

As we investigate maps in Φ it is convenient to fix notations for vertices of Sk,ℓ. Let c denote
the center of Sk,ℓ, and let I and O be the sets of in-leaves and out-leaves of Sk,ℓ, respectively. We
fix particular choices of i ∈ I and o ∈ O.

For a vertex v ∈ V (G), and z ∈ V (Sk,ℓ), let

s(z → v) = Pr [φ ∈ S|φ(z) = v] .4

Given U ⊆ V (G), let
s(U) = Pr[φ ∈ S|U ⊆ Im(φ)].

Typically, we list vertices of U and omit the brackets for brevity. For example, s(v) = s({v}) and
s(u, v) = s({u, v}).

Note that by the law of total probability, we have

s(v) =
s(c→ v) + ℓ · s(i→ v) + k · s(o→ v)

k + ℓ+ 1
(2)

and

s(G) =
∑

v∈V (G)

s(v)

n
=

∑

(u,v)∈V (G)

s(u, v)

n2
=

∑

v∈V (G)

s(z → v)

n
, (3)

where the last equality holds for any choice of z ∈ V (Sk,ℓ).

2.4 Basic inequalities

In this subsection we collect the basic inequalities and analytic tools we use throughout the paper.

Lemma 2.2. For reals a, b > 0, x, y ≥ 0, we have

xayb ≤
aabb

(a+ b)a+b
(x+ y)a+b. (4)

3We remark that one can show supG sk,ℓ(G) = lim supG sk,ℓ(G).
4We will omit the dependence on G in our notation, as the choice of G will be fixed throughout the bulk of the

proof.
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Proof. Clearly, (4) holds if xy = 0, so we assume x, y > 0. Taking the logarithm and dividing by
a+ b, we transform (4) into

a

a+ b
log
(x

a

)

+
b

a+ b
log
(y

b

)

≤ log

(

x+ y

a+ b

)

,

which holds by concavity of logarithm.

Lemma 2.3. Let a, b > 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b be reals. Then

(a− x)(b− y) ≤ ab

(

1−
x+ y

a+ b

)

. (5)

Proof. After multiplying by a + b, the inequality (5) reduces to ay(a − x) + bx(b − y) ≥ 0, which
holds by our assumptions.

Let

f(x) =



















(k−1)k−1ℓℓ

(k+ℓ−1)k+ℓ−1 · x, if x ∈
[

0, k−1
k+ℓ−1

]

xk(1− x)ℓ, if x ∈
[

k−1
k+ℓ−1 ,

k
k+ℓ

]

kkℓℓ

(k+ℓ)k+ℓ , if x ∈
[

k
k+ℓ , 1

]

.

Lemma 2.4. The function f is non-decreasing, concave and satisfies f(x) ≥ xk(1− x)ℓ on [0, 1].

Proof. Let g(x) = xk(1−x)ℓ, so g′(x) = xk−1(1−x)ℓ−1(k− (k+ ℓ)x). Since g′( k−1
k+ℓ−1) =

(k−1)k−1ℓℓ

(k+ℓ−1)k+ℓ−1

and g′( k
k+ℓ) = 0, we know f(x) is differentiable. As g′(x) is decreasing on [ k

k+ℓ −
√
kℓ

k+ℓ ,
k

k+ℓ +
√
kℓ

k+ℓ ],

with k
k+ℓ −

√
kℓ

k+ℓ ≤ k−1
k+ℓ−1 and k

k+ℓ +
√
kℓ

k+ℓ ≥ k
k+ℓ , it follows that f(x) is concave and non-decreasing.

Then since g(x) is maximized on [0, 1] at x = k
k+ℓ , we have f(x) ≥ g(x) for x ∈ [ k

k+ℓ −
√
kℓ

k+ℓ , 1].

As f(0) = g(0) and g(x) is convex for x ∈ [0, k
k+ℓ −

√
kℓ

k+ℓ ], it further follows that f(x) ≥ g(x) for

x ∈ [0, k
k+ℓ −

√
kℓ

k+ℓ ].

Lemma 2.5. For α ≤ 1/2 the function

f∗(d) = α(1− α)k+ℓf(d) +
(k − 1)k−1ℓℓ

(k + ℓ− 1)k+ℓ−1
(1− α)αk+ℓ(1− d)

achieves its maximum on [0, 1] for some d ∈
[

k−1
k+ℓ−1 ,

k
k+ℓ

]

.

Proof. We have

f∗(d) =







(k−1)k−1ℓℓ

(k+ℓ−1)k+ℓ−1

(

α(1− α)k+ℓ − (1− α)αk+ℓ
)

· d+ (k−1)k−1ℓℓ

(k+ℓ−1)k+ℓ−1 (1− α)αk+ℓ if d ∈
[

0, k−1
k+ℓ−1

]

,

kkℓℓ

(k+ℓ)k+ℓα(1 − α)k+ℓ + (k−1)k−1ℓℓ

(k+ℓ−1)k+ℓ−1 (1− α)αk+ℓ(1− d) if d ∈
[

k
k+ℓ , 1

]

.

Thus f∗(d) increases on [0, k−1
k+ℓ−1 ] and decreases on [ k

k+ℓ , 1], which implies the conclusion.

3 Lower bound and the main lemma

In this section we take the first steps in the proof of Theorem 2.1, reducing it to Lemma 3.2, the
proof of which occupies the rest of the paper. First, we establish the lower bound.

Lemma 3.1. Let k ≥ ℓ ≥ 1 be integers, then

sup
G
sk,ℓ(G) ≥ OPT(k, ℓ).
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Proof. Suppose first k ≥ ℓ+1, and let α, d achieve the maximum in the definition of OPT(k, ℓ). Let
G = G(n) be a random digraph on n vertices defined as follows. Let (X,Y1, Y2) be a partition of
V (G) such that

|X| = (1 + o(1))αn,

|Y1| = (1 + o(1))
k + ℓ− 1

k − 1
(1− d)(1 − α)n,

|Y2| = (1 + o(1))

(

1−
k + ℓ− 1

k − 1
(1− d)

)

(1− α)n,

The digraph G is the complete bipartite digraph with bipartition (X,Y1 ∪ Y2) such that all the arcs
between X and Y2 are directed towards Y2, and the direction of each arc between X and Y1 is chosen
independently at random so that it is directed towards Y1 with probability ℓ

k+ℓ−1 . A straightforward
calculation shows that almost surely every vertex in X has outdegree

(1 + o(1))

(

|Y2|+
ℓ

k + ℓ− 1
|Y1|

)

= (1 + o(1))d(1 − α)n

and indegree (1 + o(1))(1 − d)(1 − α)n. Thus the probability that the map φ ∈ Φ lies in S and
satisfies φ(c) ∈ X, φ(I ∪O) ∈ Y1 ∪ Y2 is

(1− o(1))α(1 − α)k+ℓdk(1− d)ℓ.

Meanwhile, almost surely every vertex in Y1 has outdegree (1 + o(1)) k−1
k+ℓ−1αn and indegree (1 +

o(1)) ℓ
k+ℓ−1αn. Thus the probability that the map φ ∈ Φ lies in S and satisfies φ(c) ∈ Y1, φ(I∪O) ∈ X

is

(1− o(1))
(k − 1)kℓℓ

(k + ℓ− 1)k+ℓ
αk+ℓ|Y1| = (1− o(1))

(k − 1)k−1ℓℓ

(k + ℓ− 1)k+ℓ−1
(1− α)αk+ℓ(1− d).

Adding these bounds, we conclude that almost surely s(G) ≥ (1− o(1))OPT(k, ℓ), as desired.
In the case k = ℓ, the construction is simpler. We define G to be a complete bipartite digraph

with bipartition (X,Y ) such that |X| = (1+ o(1))α and the direction of each arc between X and Y
is chosen independently at random with both directions having probability 1/2. Analogously to the
previous case we have s(G) ≥ (1− o(1))OPT(k, ℓ) almost surely.

By Lemma 3.1 it remains to show that sk,ℓ(G) ≤ OPT(k, ℓ) for every digraph G.
The hard part of the proof of the upper bound consists of proving the following statement.

Lemma 3.2. Let k, ℓ be as in Theorem 2.1 and let G be a digraph such that s(v) ≥ OPT(k, ℓ) for
every v ∈ V (G). Then s(G) ≤ OPT(k, ℓ).

In the remainder of this section we recall the standard argument that justifies making the as-
sumption made in Lemma 3.2 that s(v) is large for every v ∈ V (G), and thus deriving the upper
bound in Theorem 2.1 from this lemma.

Proof of Theorem 2.1 modulo Lemma 3.2. As we already noted, by Lemma 3.1, it suffices to show
that s(G) ≤ OPT(k, ℓ) for every digraph G. Suppose not that there exists some G such that
δ = s(G)−OPT(k, ℓ) > 0. We first show that we may assume that |V (G)| is large. Indeed, for any
integer t ≥ 1 consider the blowup G(t) obtained by replacing every v ∈ V (G) by an independent set
Uv with |Uv| = t, and for every arc vv′ ∈ E(G) and all u ∈ Uv and u′ ∈ Uv′ we add an arc uu′ to
G(t). It is easy to see that s(G(t)) ≥ s(G). Therefore we may replace G by G(t) for t sufficiently
large and assume that n = |V (G)| > (k+ ℓ)/δ. Moreover, we assume without loss of generality that
s(G) ≥ s(G′) for every G′ with |V (G′)| = n.

6



By Lemma 3.2, there exists v ∈ V (G) such that s(v) < OPT(k, ℓ). Meanwhile by (3) there exists
u ∈ V (G) such that s(u) ≥ s(G) > s(v)+ δ. Let G′ be a digraph obtained from G by deleting v and
adding a vertex u′ which has exactly the same in-neighbors and out-neighbors as u in G \ v. Then

s(G) ≥ s(G′) ≥ s(G) +
(k + ℓ+ 1)s(u)

n
−

(k + ℓ+ 1)s(v)

n
−

(k + ℓ+ 1)(k + ℓ)s(u, v)

n2

≥ s(G) +
k + ℓ+ 1

n

(

δ −
k + ℓ

n

)

> s(G),

a contradiction. This proves Theorem 2.1 (assuming Lemma 3.2).

4 Proof of Lemma 3.2

4.1 Further notation and first estimates

For brevity, let

m = k + ℓ, λ0 =
kkℓℓ

mm
and λ1 =

kkℓ(ℓ− 1)ℓ−1

(m− 1)m−1
.

By Lemma 2.2 we have
xkyℓ ≤ λ0(x+ y)m

for all x, y ≥ 0, and we frequently employ Lemma 2.2 in a similar manner.
We start by establishing a bound on s(v) in terms of ρ(v). This will imply that ρ(v) is either

close to one or to zero, allowing us to define the bipartition of G accordingly.

Claim 4.1. For every v ∈ V (G) we have

s(v) ≤
1

m+ 1

(

λ0ρ
m(v) + λ1ρ(v)(1 − ρ(v))m−1

)

. (6)

Proof. Any Sk,ℓ containing v as its center has ℓ vertices from N−(v) and k vertices from N+(v). So
we have

s(c→ v) ≤ ρ+(v)kρ−(v)ℓ ≤ λ0ρ
m(v). (7)

If φ ∈ S maps a leaf of Sk,ℓ to v then the center of this Sk,ℓ is mapped to a neighbor of v and other
leaves are mapped to non-neighbors of v. Thus using Lemma 2.2, we have

s(o→ v) ≤ ρ−(v)

[

(1− ρ(v))m−1

(

ℓ

m− 1

)ℓ( k − 1

m− 1

)k−1
]

, (8)

and symmetrically,

s(i→ v) ≤ ρ+(v)

[

(1− ρ(v))m−1

(

ℓ− 1

m− 1

)ℓ−1( k

m− 1

)k
]

. (9)

From (8) and (9) we derive

ℓ · s(i→ v) + k · s(o→ v) ≤
kkℓℓ

(m− 1)m−1
(1− ρ(v))m−1

(

ρ−(v)

(

k − 1

k

)k−1

+ ρ+(v)

(

ℓ− 1

ℓ

)ℓ−1
)

≤ λ1ρ(v)(1 − ρ(v))m−1. (10)

Plugging (7) and (10) into (2) we obtain (6).
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Let X be the set of vertices v ∈ V (G) such that ρ(v) ≥ 1/2, and let Y = V (G) \X. Our goal is
to show that any deviation of G from the family of examples described in Lemma 3.1 reduces s(G).
To facilitate our analysis we now partition S into several subsets. We say that a map φ ∈ S is

• Type 1, if φ(c) ∈ X, φ(I ∪O) ⊆ Y ,

• Type 2, if φ(c) ∈ Y , φ(I ∪O) ⊆ X,

• Type X, if Im(φ) ⊆ X,

• Type Y , if Im(φ) ⊆ Y ,

• Type 0, otherwise, i.e. when φ(I ∪O) ∩X 6= ∅ and φ(I ∪O) ∩ Y 6= ∅.

For a type T ∈ {1, 2,X, Y, 0}, let ST denote the set of maps in S of type T , let sT (G) = Pr[φ ∈ ST ],
and define sT (v), sT (c→ v), etc., accordingly, e.g. sT (v) = Pr[φ ∈ ST |v ∈ Im(φ)].

Our estimates are given in terms of the following parameters of G:

S = (m+ 1) min
v∈V (G)

s(v) ≥ (m+ 1)OPT(k, ℓ), D = min
x∈X

ρ(x),

α = µ(X) = |X|/|V (G)|, β = max
y∈Y

ρY (y),

S1 = min
x∈X

(ρ+Y (x))
k(ρ−Y (x))

ℓ, γ = min
x∈X

ρ−Y (x).

First, we upper bound the probability of a star with a leaf in X, given a fixed center.

Claim 4.2.

Pr[φ ∈ S ∧ (φ(I ∪O) ∩X 6= ∅)|φ(c) = v] ≤ λ1ρX(v)(1 −D)m−1. (11)

Proof. Using a variation of the estimates used in the proof of Claim 4.1 we obtain

Pr[φ ∈ S ∧ (φ(I ∪O) ∩X 6= ∅)|φ(c) = v]

≤ αEx∈X [ℓ · s(i→ x, c→ v) + k · s(o→ x, c→ v)]

≤ (1−D)m−1

(

ℓ
kk(ℓ− 1)ℓ−1

(m− 1)m−1
ρ−X(v) + k

(k − 1)k−1ℓℓ

(m− 1)m−1
ρ+X(v)

)

≤ λ1ρX(v)(1 −D)m−1,

where the last inequality holds because
(

k−1
k

)k−1
≤
(

ℓ−1
ℓ

)ℓ−1
, as desired.

Claim 4.3.

λ0(1− α)m ≥ γℓ(1− α− γ)k ≥ S1 ≥ S − λ1(1 + α)(1 −D)m−1. (12)

Proof. Note that if X = ∅ the claim trivially holds, and so we assume X 6= ∅.
We have

λ0(1− α)m ≥ γℓ(1− α− γ)k ≥ S1,

where the first inequality holds by (4), and the second by definition of S1.
To verify the last inequality in (12) choose x ∈ X such that S1 = (ρ+Y (x))

k(ρ−Y (x))
ℓ. Then

s1(c→ x) ≤ S1, and
ℓ · s(i→ x) + k · s(o→ x) ≤ λ1(1−D)m−1,

by (10). Using (11) to bound the remaining contribution to s(x), we obtain

S ≤ (m+ 1)s(x) = s(c→ x) + ℓ · s(i→ x) + k · s(o→ x)

≤ S1 + λ1ρX(v)(1 −D)m−1 + λ1(1−D)m−1

≤ S1 + λ1(1 + α)(1 −D)m−1

implying (12).
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It is easy to derive from Claim 4.3 that α 6= 1, i.e. Y 6= ∅. (For a stronger estimate on α, see
Claim 4.6 below.)

Claim 4.4. Either

λ1α
(

(1− α− β)m−1 + (1−D)m−1
)

+ (λ0 + λ1)β
m ≥ S, or

(λ0 + λ1)β
m +

m(m− 1)
(

m
k

) α(α + β)(1−D)m−2 ≥ S. (13)

Proof. Let y ∈ Y be chosen so that ρY (y) = β, and let α′ = ρX(y). Then

s1(y) ≤
1

m+ 1
λ1α

′(1− α− β)m−1

Meanwhile, repeating the estimates in the proof of Claim 4.1 gives

Pr[(φ ∈ S) ∧ (Im(φ) ⊆ Y )|y ∈ Im(φ)] ≤
1

m+ 1
(λ0 + λ1)β

m.

Next we show that

Pr[(φ ∈ S) ∧ (φ(I ∪O) ∩X 6= ∅)|y ∈ φ(I ∪O)] ≤
1
(m
k

)(m− 1)(α− α′)(α′ + β)(1−D)m−2. (14)

To prove (14) we first upper bound the probability that a map φ ∈ Φ with y ∈ φ(I ∪ O) satisfies
φ(I ∪ O) ∩ X 6= ∅ and maps edges of Sk,ℓ to edges of G and non-edges to non-edges, while not
necessarily preserving edge directions. For each ofm−1 vertices in (I∪O)−{φ−1(y)}, the probability
that this vertex is mapped to a non-neighbor of y in X is α− α′. The probability that c is mapped
to a neighbor of y is ρ(y) ≤ α + β. Finally, the remaining vertices in I ∪ O must be mapped to
non-neighbors of the chosen leaf in X which happens with probability at most (1 − D)m−2. This
yields the upper bound (m − 1)(α − ρX(y))(ρX (y) + β)(1 − D)m−2 on the probability that φ has
the above properties. As the probability that such a map φ preserves directions is 1

(mk )
, (14) follows.

Combining the above inequalities and (11) we obtain

S ≤ (m+ 1)s(y)

≤ λ1α
′ ((1− α− β)m−1 + (1−D)m−1

)

+ (λ0 + λ1)β
m +

m(m− 1)
(m
k

) (α− α′)(α+ β)(1 −D)m−2.

As the last term is a linear function of α′, the inequalities hold either for α′ = α or α′ = 0, implying
(13).

Claim 4.5.

λ0α(1− α)m + λ1α(1 −D)m−1 + λ0(1− α)βm ≥
S

m+ 1
. (15)

Proof. Note that for any v ∈ V (G)

Pr[(φ ∈ S) ∧ (φ(I ∪O) ⊆ Y )|φ(c) = v] ≤ λ0ρ
m
Y (v), (16)

Using this and (11) we obtain

S

m+ 1
≤ s(G) ≤ Ev∈V (G)[s(c→ v)]

= Ev∈V (G) (Pr[φ ∈ S ∧ (φ(I ∪O) ⊆ Y )|φ(c) = v])

+ Ev∈V (G) (Pr[φ ∈ S ∧ (φ(I ∪O) ∩X 6= ∅)|φ(c) = v])

≤ αEx∈X [s1(c→ x)] + (1− α)Ey∈Y [sY (c→ y)] + λ1α(1 −D)m−1

≤ λ0α(1 − α)m + λ0(1− α)βm + λ1α(1−D)m−1,

as desired.
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The inequalities derived in this section can be used to derive fairly precise bounds on D,α, β, γ
and S1 with errors decaying exponentially as m grows. The following claims are the consequences
of such estimates needed in the subsequent analysis. The proofs of these claims are neither short,
nor especially difficult or inspiring, and are thus relegated to Appendix A.

Claim 4.6. α ≤ 1
m .

Claim 4.7. γ ≥ α/2.

Let

S2 = S1 −
(m− 1)

(m+ 1)
(m
k

)(α+ β)(1 − α)(1 −D)m−2. (17)

Claim 4.8. S2 ≥ λ1
1−α
α βm−1.

Claim 4.9. If ℓ = 1, then
αk+1

kk
−

αk+1

(k + 1)k+1

α

γ
≥
βk+1

2kk
. (18)

4.2 Contribution of non adjacencies between parts

We now embark on our quest of deriving an upper bound on s(G), which we obtain by bounding
s1(G), s2(G), sX(G), sY (G) and s0(G) separately. First we show that the missing edges between X
and Y lead to more losses in s1(G) than gains in s0(G).

Claim 4.10. For a pair of non-adjacent x ∈ X, y ∈ Y we have

s(x, y) ≤
m− 1

(m+ 1)
(

m
k

)(α+ β)(1 −D)m−2.

Proof. First, as in the proof of Claim 4.4, we bound from above the probability that a map φ ∈ Φ
with x, y ∈ Im(φ) maps the edges of Sk,ℓ to edges of G (possibly reversing the directions) and non-
edges to non-edges. Thus preimages of both x and y in φ must be leaves of Sk,ℓ, which happens with
probability m−1

m+1 . The center must be mapped to a neighbor of y, which happens with probability
ρ(y) ≤ α + β, and the remaining m − 2 leaves are mapped to non-neighbors of x, which happens
with probability at most (1−D)m−2, subject to the previous constraints. Thus the probability that
φ has above properties is upper bounded by

m− 1

m+ 1
(α+ β)(1−D)m−2.

The probability that the map φ as above preserves the edge directions is exactly 1

(mk )
, yielding the

claimed bound on s(x, y).

Let

d0 =
1

n2
|{(x, y)|x ∈ X, y ∈ Y, xy, yx 6∈ E(G)}|,

denote the probability that a random pair of vertices corresponds to a non-adjacent pair of vertices
where the first one is in X and the second one is in Y .

Claim 4.11. We have

s0(G) ≤
(m− 1)m

(m+ 1)
(m
k

)(α+ β)(1 −D)m−2d0.

10



Proof. We consider selecting a uniformly random map φ ∈ Φ as follows. First, we select vertices
(v1, v2, . . . , vm+1) independently and uniformly at random. Then we select a random permutation
(u1, u2, . . . , um+1) of V (Sk,ℓ), and let φ(ui) = vi. The probability that the resulting map is in S0 is
s0(G). As every map in S0 contains at least m− 1 pairs of leaves such that the first one is mapped
to X and the second one in Y , we have that with probability at least s0(G)

m−1
m(m−1) = s0(G)/m, the

resulting map satisfies v1 ∈ X, v2 ∈ Y and v1, v2 are non-adjacent. On the other hand, by Claim 4.10
this probability is at most

m− 1

(m+ 1)
(m
k

)(α+ β)(1−D)m−2 · d0,

implying the claim.

Claim 4.12. For every x ∈ X we have

s1(c→ x) ≤ (1− α)mf

(

1−
ρ−Y (x)

1− α

)

−
mρ0Y (x)

(1− α)
S1. (19)

Proof. By Lemma 2.4 the function f is non-decreasing and so we have

f

(

1−
ρ−Y (x)

1− α

)

= f

(

ρ+Y (x) + ρ0Y (x)

1− α

)

≥ f

(

ρ+Y (x)

1− α

(

1 +
ρ0Y (x)

ρ+Y (x) + ρ−Y (x)

))

.

As

1−
ρ+Y (x)

1− α

(

1 +
ρ0Y (x)

ρ+Y (x) + ρ−Y (x)

)

=
ρ−Y (x)

1− α

(

1 +
ρ0Y (x)

ρ+Y (x) + ρ−Y (x)

)

,

using the lower bound on f from Lemma 2.4 we further have

(1 − α)mf

(

ρ+Y (x)

1− α

(

1 +
ρ0Y (x)

ρ+Y (x) + ρ−Y (x)

))

≥

(

1 +
ρ0Y (x)

ρ+Y (x) + ρ−Y (x)

)m

(ρ+Y (x))
k(ρ−Y (x))

ℓ.

Using the above lower bound on the second term of (19) and the inequalities s1(c→ x) ≤ (ρ+Y (x))
k(ρ−Y (x))

ℓ,
S1 ≤ (ρ+Y (x))

k(ρ−Y (x))
ℓ for the other two terms, and dividing by (ρ+Y (x))

k(ρ−Y (x))
ℓ, we reduce (19) to

1 ≤

(

1 +
ρ0Y (x)

ρ+Y (x) + ρ−Y (x)

)m

−
mρ0Y (x)

(1− α)
,

which holds as ρ+Y (x) + ρ−Y (x) ≤ 1− α.

Let

d = 1− Ex∈X

(

ρ−Y (x)

1− α

)

= 1− Ey∈Y

(

ρ+X(y)

α

)

.

Thus d is the probability that choosing a uniformly random x ∈ X and a uniformly random y ∈ Y
we have yx 6∈ E(G).

Claim 4.13.

s1(G) ≤ α(1− α)mf(d)−
m

1− α
S1d0. (20)

Proof. Note that d0 = αEx∈Xρ0Y (x). Using (19) and the concavity of f we have

s1(G) = E[s1(c→ v)] = αEx∈X [s1(c→ x)]

≤ α(1− α)mEx∈X

[

f

(

1−
ρ−Y (x)

1− α

)]

−
mαEx∈Xρ0Y (x)

(1− α)
S1

≤ α(1− α)mf(d)−
m

1− α
S1d0,

as desired.
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4.3 Contribution of edges in Y

Our next goal is to show that the edges in Y contribute more losses to s1(G) than gains to sY (G).

For Z ⊆ V (G), let ρ(Z) = |E(G[Z])|
(|Z|

2 )
denote the density of edges in Z.

Lemma 4.14. If ℓ ≥ 2 then for any Z ⊆ V (G) and any v ∈ V (G) \ Z we have

Pr[(φ ∈ S) ∧ φ(I ∪O) ⊆ Z|φ(c) = v] ≤ (1− ρ(Z))(µ(Z)− ρ−Z (v))
k(ρ−Z (v))

ℓ ≤ (1− ρ(Z))λ0(µ(Z))
m.

Proof. Let Z1 = N−
Z (v), Z2 = Z − Z1. Then either

• at least ρ(Z)
(|Z1|

2

)

pairs of vertices in G1 are adjacent, or

• at least ρ(Z)
(|Z2|

2

)

pairs of vertices in Z2 are adjacent, or

• at least ρ(Z)|Z1||Z2| pairs (z1, z2) such that z1 ∈ Z1, z2 ∈ Z2 are adjacent.

Suppose the first case holds. (The remaining cases are analogous.) We choose φ by first choosing
images of two vertices in I. They must be mapped to a pair of non-adjacent vertices in Z1 which
happens with probability at most (1 − ρ(Z))(ρ−Z (v))

2. The remaining vertices in O are mapped to
Z1, while the vertices in I are mapped to Z2 with probability (µ(Z)− ρ−Z (v))

k(ρ−Z (v))
l−2, giving the

desired bound.

Lemma 4.15. For every Z ⊆ V (G) we have

Pr[(φ ∈ S) ∧ (Im(φ) ⊆ Z)] ≤
(k − 1)k−1ℓℓ

(m− 1)m−1
µ2(Z) ·

ρ(Z)

2
·max
z∈Z

ρm−1
Z (z).

Proof. We have

Pr[(φ(c), φ(o) ∈ Z) ∧ (φ(c)φ(o) ∈ E(G))] =
|E(G[Z])|

n2
≤ µ2(Z)

ρ(Z)

2
.

For any such choice of φ(c) and φ(o), the probability that the remaining vertices are appropriately
mapped to in- and out-neighbors of c is

(ρ+Z (φ(c))
k−1(ρ−Z (φ(c))

ℓ ≤
(k − 1)k−1ℓℓ

(m− 1)m−1
ρm−1
Z (φ(c)),

which implies the claimed bound.

Claim 4.16. For ℓ ≥ 2 and any x ∈ X we have

s1(c→ x) ≤ (1− α)mf

(

1−
ρ−Y (x)

1− α

)

− S1ρ(Y ). (21)

Proof. Using Lemma 4.14 we obtain

s1(c→ x) ≤ (1− ρ(Y ))(1 − α− ρ−Y (x))
k(ρ−Y (x))

ℓ

≤ (1− α)mf

(

1−
ρ−Y (x)

1− α

)

− (ρ+Y (x))
k(ρ−Y (x))

ℓρ(Y ),

which gives the claimed bound by definition of S1.

Analogously to the proof of Claim 4.13, averaging (21) over x ∈ X we obtain the following.

Claim 4.17. For ℓ ≥ 2 we have

s1(G) ≤ α(1 − α)mf(d)− αS1ρ(Y ). (22)
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Combining the claims proved in this section, we now bound s1(G) + sY (G) + s0(G).

Claim 4.18. If ℓ ≥ 2 then

s1(G) + sY (G) + s0(G) ≤ α(1− α)mf(d). (23)

Proof. By Lemma 4.15 we have

sY (G) ≤
(k − 1)k−1ℓℓ

(m− 1)m−1
(1− α)2

ρ(Y )

2
βm−1. (24)

Let

ε =
1

S1
·

(m− 1)

(m+ 1)
(

m
k

)(α+ β)(1 − α)(1−D)m−2.

By Claim 4.8 we have

(1− ε)S1 = S2 ≥ λ1
1− α

α
βm−1 ≥

(k − 1)k−1ℓℓ

(m− 1)m−1

(1− α)2

α

βm−1

2
.

In particular ε ∈ [0, 1]. Thus taking a convex combination of (20) and (22)we get

s1(G) ≤ α(1 − α)mf(d)− ε
m

1− α
S1d0 − (1− ε)αS1ρ(Y )

≤ α(1 − α)mf(d)−
m(m− 1)

(m+ 1)
(

m
k

)(α+ β)(1 −D)m−2d0 −
(k − 1)k−1ℓℓ

2(m− 1)m−1
(1− α)2βm−1ρ(Y )

≤ α(1 − α)mf(d)− s0(G)− sY (G),

where the last inequality follows from Claim 4.10 and (24).

4.4 The case ℓ ≥ 2

In this subsection, we complete the proof of Lemma 3.2 for the case ℓ ≥ 2. In view of Claim 4.18, it
remains to bound s2(G) and sX(G) (see Claim 4.22 below, which in fact works for ℓ ≥ 1).

First, to dispatch the easier case k = ℓ, we use the following easy and rather weak consequence
of Claim 4.6.

Claim 4.19. If k = ℓ, then
(k − 1)k−1kk22k−1

(2k − 1)2k−1
≤

1− α

α
. (25)

Proof. We have

(k − 1)k−1kk22k−1

(2k − 1)2k−1
=

2k

2k − 1

(

4k(k − 1)

(2k − 1)2

)k−1

≤
2k

2k − 1
<

1− 1
2k

1
2k

≤
1− α

α
,

as desired, where the last inequality follows from Claim 4.6.

We are now ready to finish the proof of Lemma 3.2 in the case k = ℓ.

Proof of Lemma 3.2 in the case k = ℓ. By Lemma 4.14 we have

s2(G) ≤ (1− ρ(X))(1 − α)
αm

2m
,

and by Lemma 4.15 we have

sX(G) ≤
(k − 1)k−1kk

(2k − 1)2k−1
αm+1 ρ(X)

2
.
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Combining these inequalities and (25), we get

s2(G) + sX(G) ≤
1

2m
(1− α)αm + ρ(X)αm+1

(

(k − 1)k−1kk

2(2k − 1)2k−1
−

1− α

α2m

)

≤
1

2m
(1− α)αm.

Meanwhile, as f(d) ≤ 1
2m for any d ∈ [0, 1], Claim 4.18 implies

s1(G) + sY (G) + s0(G) ≤
1

2m
α(1− α)m.

Summing these two inequalities we obtain

s(G) ≤
1

2m
(α(1− α)m + (1− α)αm) ≤ OPT(k, ℓ),

as desired.

In the case k > ℓ, we need the following, more subtle estimates.

Claim 4.20. For every y ∈ Y , x ∈ N+
X (y)

(k − 1)k−1ℓℓ

(m− 1)m−1
αm ≥ αs2(c→ y, o→ x) + (m− 1)sX(o→ x). (26)

Proof. We have

s2(c→ y, o→ x) ≤ (ρ+X−NX(x)(y))
k−1(ρ−X−NX(x)(y))

ℓ ≤
(k − 1)k−1ℓℓ

(m− 1)m−1
(α− ρX(x))m−1.

Meanwhile, sX(o → x) ≤ (k−1)k−1ℓℓ

(m−1)m−1 ρX(x)(α − ρX(x))m−1. Substituting these upper bounds on

s2(c→ y, o→ x) and sX(o→ x), and dividing by (k−1)k−1ℓℓ

(m−1)m−1 , we reduce (26) to

αm ≥ α(α− ρX(x))m−1 + (m− 1)ρX(x)(α − ρX(x))m−1.

This last inequality holds as

α(α− ρX(x))m−1 + (m− 1)ρX(x)(α − ρX(x))m−1 = αm

(

1 + (m− 1)
ρX(x)

α

)(

1−
ρX(x)

α

)m−1

≤ αm

(

1 +
ρX(x)

α

)m−1(

1−
ρX(x)

α

)m−1

≤ αm.

So this claim is completed.

Claim 4.21. For every y ∈ Y we have

(k − 1)k−1ℓℓ

(m− 1)m−1
αm−1ρ+X(y) ≥ s2(c→ y) +

ρ+X(y)

γ
Ex∈N+

X
(y)[sX(o→ x)]. (27)

Proof. Averaging (26) over such x ∈ N+
X (y) and multiplying by ρ+X(y)/α, we obtain

(k − 1)k−1ℓℓ

(m− 1)m−1
αm−1ρ+X(y) ≥ s2(c→ y) +

(m− 1)ρ+X(y)

α
Ex∈N+

X
(y)[sX(o→ x)],

which implies (27) by Claim 4.7.

Claim 4.22.
(k − 1)k−1ℓℓ

(m− 1)m−1
(1− d)αm(1− α) ≥ s2(G) + sX(G). (28)
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Proof. Averaging (27) over y ∈ Y we obtain

(k − 1)k−1ℓℓ

(m− 1)m−1
αm−1

Ey∈Y (ρ
+
X(y)) ≥ Ey∈Y (s2(c→ y)) + Ey∈Y

(

ρ+X(y)

γ
Ex∈N+

X
(y)[sX(o→ x)]

)

.

Note that

(1− α)Ey∈Y

(

ρ+X(y)

γ
Ex∈N+

X
(y)[sX(o→ x)]

)

= αEx∈X

(

ρ−Y (x)

γ
sX(o→ x)

)

.

And since Ey∈Y (ρ
+
X(y)) = α(1 − d) and ρ−Y (x) ≥ γ for every x ∈ X, the above inequalities imply

that
(k − 1)k−1ℓℓ

(m− 1)m−1
αm(1− d) ≥

s2(G)

1− α
+

α

1− α
Ex∈X (sX(o→ x)) .

Finally, note that sX(G) = αEx∈X [sX(o → x)], so (28) follows by multiplying the above by (1 −
α).

We can now finish the proof of Lemma 3.2 in the case ℓ ≥ 2.

Proof of Lemma 3.2 in the case ℓ ≥ 2. The case k = ℓ was proved earlier in this subsection. So it
suffices to consider k > ℓ ≥ 2. By Claims 4.18 and 4.22 we have

s(G) ≤ α(1 − α)mf(d) +
(k − 1)k−1ℓℓ

(m− 1)m−1
(1− d)αm(1− α).

By Claim 4.6 we have α ≤ 1/2, and so by Lemma 2.5 the right side is maximized as a function of

d ∈ [0, 1] for some d ∈
[

k−1
k+ℓ−1 ,

k
k+ℓ

]

. Thus s(G) is upper bounded by OPT(k, ℓ).

4.5 The case ℓ = 1

It remains to resolve the case ℓ = 1 and so we assume ℓ = 1, and thus m = k+1 for the duration of
this subsection. In this case crucially Lemma 4.14 is not applicable, and we need to work harder.

For y ∈ Y , let

h(y) =
(k − 1)k−1

kk
αkρ+X(y)− s2(c→ y)−

ρ+X(y)

γ
Ex∈N+

X
(y)[sX(o→ x)]. (29)

Thus h(y) is the slack in the inequality (27), so we have h(y) ≥ 0. Moreover, averaging (29) as in
the proof of Claim 4.22 we can obtain the following refinement of (28).

Claim 4.23.

(k − 1)k−1

kk
(1− d)αm(1− α) ≥ s2(G) + sX(G) + (1− α)Ey∈Y [h(y)]. (30)

Next we need a separate estimate of sX(G).

Claim 4.24.

sX(G) ≤
(k − 1)k−1

(k + 1)k+1
αk+2. (31)

Proof. For every x ∈ X we have

sX(o→ x) ≤ ρX(x)Ev∈N−
X
(x)

(

ρ−X−NX(x)(v)(ρ
+
X−NX (x)(v))

k−1
)

≤ ρX(x)

(

(k − 1)k−1

kk
(α− ρX(x))k

)

≤
(k − 1)k−1

kk

(

kk

(k + 1)k+1
αk+1

)

=
(k − 1)k−1

(k + 1)k+1
αk+1.

15



Thus

sX(G) = αEx∈X [sX(o→ x)] ≤
(k − 1)k−1

(k + 1)k+1
αk+2,

as desired.

We use Claim 4.24 in the following lower bound on h(y) which is useful when ρ−X(y) is very small.

Claim 4.25.

h(y) ≥
(k − 1)k−1

kk
αk+1 −

(

1 +
(k − 1)k−1

kk

)

ρ−X(y)αk −
(k − 1)k−1

(k + 1)k+1

αk+2

γ
. (32)

Proof. We obtain (32) by substituting into (29) the bounds

s2(c→ y) ≤ ρ−X(y)αk and ρ+X(y)Ex∈N+

X
(y)[sX(o→ x)] ≤ sX(G) ≤

(k − 1)k−1

(k + 1)k+1
αk+2,

where the last inequality is from Claim 4.24.

The next two claims give lower bounds on the negative contribution of edges in Y , replacing
Claim 4.16.

Claim 4.26. For every x ∈ X, y ∈ N+
Y (x) we have

ρ+Y (x)s1(c→ x, o→ y) ≤ (1− α)k+1f

(

1−
ρ−Y (x)

1− α

)

−
ρY (y)

(1− α)
S1. (33)

Proof. Let

ε1 =
µ(NY (y) ∩N

−
Y (x))

1− α
and ε2 =

ρY (y)

1− α
− ε1.

We have

ρ+Y (x)s1(c→ x, o→ y) ≤ ρ−Y−NY (y)(x)ρ
+
Y−NY (y)(x)(ρ

+
Y (x))

k−1

≤ (1− α)k+1

(

ρ−Y (x)

1− α
− ε1

)(

1−
ρ−Y (x)

1− α
− ε2

)(

1−
ρ−Y (x)

1− α

)k−1

≤ (1− α)k+1 (1− ε1 − ε2) f

(

1−
ρ−Y (x)

1− α

)

,

where the last inequality follows from Lemma 2.3. As

(1− α)k+1f

(

1−
ρ−Y (x)

1− α

)

≥ (ρ+Y (x))
kρ−Y (x) ≥ S1,

(33) follows.

Claim 4.27.

s1(G) ≤ α(1 − α)mf(d)− S1Ey∈Y [ρY (y)ρ
−
X(y)]. (34)

Proof. Averaging (33) over y ∈ N+
Y (x) we obtain

s1(c→ x) ≤ (1− α)mf

(

1−
ρ−Y (x)

1− α

)

−
S1

1− α
Ey∈N+

Y
(x)[ρY (y)]. (35)

We now average (35) over x ∈ X and use concavity of f , as in the proof of Claim 4.13:

s1(G) = αEx∈X [s1(c→ x)]

≤ α(1− α)mEx∈X

[

f

(

1−
ρ−Y (x)

1− α

)]

− S1
α

1− α
Ex∈X

(

Ey∈N+

Y
(x)ρY (y)

)

≤ α(1− α)mf(d)− S1Ey∈Y
(

ρY (y)ρ
−
X(y)

)

,

as desired.
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Finally, we need a new bound on sY (G).

Claim 4.28.

sY (G) ≤ (1− α)
(k − 1)k−1

2kk
βkEy∈Y (ρY (y)) . (36)

Proof. For every y ∈ Y we have

sY (c→ y) ≤
(

(ρ+Y (y))
k−1(ρY (y)− ρ+Y (y))

)

ρ+Y (y)

≤
(k − 1)k−1

kk
(ρY (y))

kρ+Y (y) ≤
(k − 1)k−1

2kk
βk
(

ρY (y) + (ρ+Y (y)− ρ−Y (y))
)

=
(k − 1)k−1

2kk
βkρY (y) +

(k − 1)k−1

2kk
βk(ρ+Y (y)− ρ−Y (y)).

Then since Ey∈Y (ρ
+
Y (y)− ρ−Y (y)) = 0, we have

sY (G) = (1− α)Ey∈Y

(

sY (c→ y)−
(k − 1)k−1

2kk
βk(ρ+Y (y)− ρ−Y (y))

)

≤ (1− α)
(k − 1)k−1

2kk
βkEy∈Y (ρY (y)) ,

as desired.

Claim 4.29.

s(G) ≤ α(1− α)mf(d) +
(k − 1)k−1

kk
(1− d)αm(1− α)

+ (1− α)Ey∈Y

(

(k − 1)k−1

2kk
βkρY (y)−

S2
1− α

ρY (y)ρ
−
X(y)− h(y)

)

. (37)

Proof. By taking a convex combination of (20) and (34) we obtain

s1(G) ≤ α(1− α)mf(d)− S2Ey∈Y [ρY (y)ρ
−
X(y)]−

(m− 1)m

(m+ 1)
(m
k

)(α+ β)(1 −D)m−2d0.

Thus by Claim 4.11 we have

s1(G) + s0(G) ≤ α(1− α)mf(d)− S2Ey∈Y [ρY (y)ρ
−
X(y)]. (38)

Adding together (30) and (36) we obtain (37).

It now suffices to show that the contribution of every y ∈ Y to the expectation in Equation (37)
is non-positive, which we do in the next claim.

Claim 4.30. For every y ∈ Y we have

S2
1− α

ρY (y)ρ
−
X(y) + h(y)−

(k − 1)k−1

2kk
βkρY (y) ≥ 0. (39)

Proof. Let ψ = ρY (y) and φ = ρ−X(y). As h(y) ≥ 0, (39) holds as long as S2

1−αφ ≥ (k−1)k−1

2kk
βk. Thus

we assume 0 ≤ φ ≤ (k−1)k−1

2kk
(1−α)
S2

βk. By (32) it suffices to show that

(k − 1)k−1

kk
αk+1−

(k − 1)k−1

(k + 1)k+1

αk+2

γ
−

(

1 +
(k − 1)k−1

kk

)

αkφ+
S2

1− α
φψ−

(k − 1)k−1

2kk
βkψ ≥ 0. (40)

The left side of this inequality is a linear function of φ, so it suffices to verify it for φ = 0 and

φ = (k−1)k−1

2kk
(1−α)
S2

βk.
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For φ = 0 we may additionally assume ψ = β as it appears with the negative coefficient. Thus
in this case (40) reduces to

(k − 1)k−1

kk
αk+1 −

(k − 1)k−1

(k + 1)k+1

αk+2

γ
−

(k − 1)k−1

2kk
βk+1 ≥ 0,

which holds by (18).

Finally, for φ = (k−1)k−1

2kk
(1−α)
S2

βk, (40) reduces to

(k − 1)k−1

kk
αk+1 −

(k − 1)k−1

(k + 1)k+1

αk+2

γ
−

(

1 +
(k − 1)k−1

kk

)

αk (k − 1)k−1

2kk
βk

(1− α)

S2
≥ 0. (41)

By Claims 4.7 and 4.8, we have α
γ ≤ 2 and S2 ≥ 1−α

α βk. Dividing (41) by (k−1)k−1

kk
αk+1 and substi-

tuting the above bounds we obtain

1−
2kk

(k + 1)k+1
−

1

2

(

1 +
(k − 1)k−1

kk

)

≥ 0,

which clearly holds as k ≥ 5.

With all the ingredients in place we can easily finish the proof of Lemma 3.2 in the last remaining
case.

Proof of Lemma 3.2 in the case ℓ = 1. By Claims 4.29 and 4.30 we have

s(G) ≤ α(1 − α)mf(d) +
(k − 1)k−1ℓℓ

(m− 1)m−1
(1− d)αm(1− α) ≤ OPT(k, 1),

where the second inequality follows from Lemma 2.5 (just as in the case k > ℓ ≥ 2).

5 Concluding remarks

Stability

The inducibility problem solved in Theorem 1.1 is stable in the following sense: For k + ℓ ≥ 6 every
sufficiently large graph with the induced density of Sk,ℓ sufficiently close to the maximum has the
structure which is close to the optimal one described in the proof of Lemma 3.1. We make this
statement precise for k > ℓ in the next theorem.5 It is obtained by careful, yet straightforward
examination of the inequalities used in the proof of Theorem 1.1. We omit the details.

Theorem 5.1. For all integers k > ℓ ≥ 1 such that k + ℓ ≥ 6 and every ε > 0, there exist δ, n0 > 0
satisfying the following.

Let (α, d) ∈ [0, 12 ]× [0, k
k+ℓ ] maximize the expression in the statement of Theorem 1.1, and let G

be a digraph such that n = |V (G)| ≥ n0, and i(Sk,ℓ, G) ≥ (1− δ)i(Sk,ℓ). Then there exists a partition
(X,Y1, Y2) of V (G) such that

1. |µ(X) − α| ≤ ε,

2. |µ(Y1)−
k+ℓ−1
k−1 (1− d)(1 − α)| ≤ ε and |µ(Y2)−

(

1− k+ℓ−1
k−1 (1− d)

)

(1− α)| ≤ ε,

3. |E(G[X])| + |E(G[Y1 ∪ Y2])| ≤ εn2,

4. at most εn vertices x ∈ X fail to satisfy

|ρ+Y1∪Y2
(x)− d(1− α)| ≤ ε and |ρ−Y1∪Y2

(x)− (1− d)(1− α)| ≤ ε,
5In the case k = ℓ the analogous result also holds.
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5. at most εn vertices y ∈ Y1 fail to satisfy |ρ+X(x)− l
k+ℓ−1α| ≤ ε and |ρ−X(x)− k−1

k+ℓ−1α| ≤ ε, and

6. finally, at most εn vertices y ∈ Y2 fail to satisfy ρ−X(x) ≥ α− ε.

It is likely that the methods used in the proof of Theorem 1.1 can also be used to obtain an
exact version of Theorem 5.1. More precisely, we believe that if G is an n-vertex digraph, which
satisfies i(Sk,ℓ, G) = i(Sk,ℓ, n) for n sufficiently large as a function of ε, then there exists a partition
(X,Y1, Y2) such that the conditions 1 and 2 of Theorem 5.1 still hold, conditions 4, 5 and 6 hold
for all vertices of X, Y1 and Y2, respectively, and condition 3 is replaced by the following stronger
property

3′. G[X] and G[Y1 ∪Y2] are edgeless, and every vertex of X is adjacent to every vertex of Y1 ∪Y2.

However, unlike Theorem 5.1, the above result does not directly follow from the bounds we estab-
lished, and we leave its validity open.

Approximating the optimum

Theorem 1.1 expresses inducibility of oriented stars in terms of a solution to a polynomial optimiza-
tion problem. This is unavoidable, as in general, the resulting optimization problem has no closed
form solution. However, it is possible to approximate this solution, and thus the inducibility with
great precision.

For example, for k > ℓ considering Taylor series of

F (α, d) = α(1− α)k+ℓdk(1− d)ℓ +
(k − 1)k−1ℓℓ

(k + ℓ− 1)k+ℓ−1
(1− α)αk+ℓ(1− d).

at a point ( 1
k+ℓ+1 ,

k
k+ℓ), we obtain that F is maximized on [0, 12 ]× [0, k

k+ℓ ] when

α =
1

k + ℓ+ 1

(

1 +
ℓ

k(k + ℓ)k+ℓ−2
+ ok

(

1

(k + ℓ)k+ℓ−1

))

,

d =
k

k + ℓ

(

1−
ℓ

k(k + ℓ)k+ℓ
+ ok

(

1

(k + ℓ)k+ℓ+1

))

,

and

max
(α,d)∈[0, 1

2
]×[0, k

k+ℓ
]
F (α, d) =

kkℓℓ

(k + ℓ+ 1)k+ℓ+1
+

(k − 1)k−1ℓℓ+1(k + ℓ)

(k + ℓ+ 1)k+ℓ+1(k + ℓ− 1)k+ℓ−1
×

(

1 +
ℓ

2k(k + ℓ)k+ℓ−3
+ ok

(

1

(k + ℓ)k+ℓ−2

))

.

Already for k = 4, ℓ = 2 the resulting approximation of the solution to our maximization problem is
correct up to eight significant digits.

Flag algebras

Theorem 1.1 might extend to the cases (k, ℓ) ∈ {(2, 1), (3, 1), (4, 1)}, although we were unable to
resolve these cases using our techniques. These cases, however, might be amenable to analysis using
flag algebras. For example, we are able to solve the case (k, ℓ) = (2, 1). But since it is standard
application of flag algebras we omit details here. (see Appendix B for numerical computations using
Flagmatic [15, 17] for (k, ℓ) = (2, 1)).
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[12] O. Pikhurko, J. Sliačan, and K. Tyros. Strong forms of stability from flag algebra calculations.
J. Combin. Theory Ser. B, 135:129–178, 2019.

[13] N. Pippenger and M. C. Golumbic. The inducibility of graphs. J. Combinatorial Theory Ser.
B, 19(3):189–203, 1975.

[14] M. Simonovits. A method for solving extremal problems in graph theory, stability problems.
In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 279–319. Academic Press, New York,
1968.
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Appendix A Proofs of the technical claims

Claim A.1.

S ≥
kkℓℓ

(m+ 1)m
. (42)

Proof. For any (α, d) ∈ [0, 12 ]× [0, k
k+ℓ ] we have

S ≥ (m+ 1)OPT(k, ℓ) > (m+ 1)α(1 − α)mdk(1− d)ℓ.

Substituting α = 1
m+1 , d = k

m , we obtain the claimed bound.

The next claim immediately follows by substituting (42) into the definitions of λ0 and λ1.

Claim A.2.

λ0 ≤

(

m+ 1

m

)m

S and λ1 ≤
(m+ 1)m

(m− 1)m−1
S. (43)

Claim A.3.

D ≥

(

1−
1

m3

)

m

m+ 1
.

Proof. Let x ∈ X be such that ρ(x) = D.
Substituting the upper bounds on λ0 and λ1 from Claim A.2 into (6) we obtain

Dm

mm
+
D(1−D)m−1

(m− 1)m−1
≥

1

(m+ 1)m
. (44)

As the left side of (44) is convex for D ≥ 2/m, it suffices to verify that (44) does not hold for
D = (1− 1

m3 )
m

m+1 and D = 1/2.

We consider D = (1− 1
m3 )

m
m+1 first. After substituting the value of D into (44), multiplying by

(m+ 1)m and rearranging, it remains to verify that

(

1−
1

m3

)m

+
(1− 1

m3 )m

(m− 1)m−1

(

1 +
1

m3

)m−1

< 1.

As
(

1 +
1

m3

)m−1

< 1 +
1

m2
,

(

1−
1

m3

)m

≤ 1−
1

m2
+

1

m4
and 1−

1

m3
≤ 1,

the above is implied by
1

m4
+

m2 + 1

m(m− 1)m−1
≤

1

m2
,

which clearly holds for m ≥ 6.

Next let D = 1/2. After multiplying (44) by 2m(m+ 1)m, we need to show

(

1 +
1

m

)m

+ (m+ 1)

(

1 +
2

m− 1

)m

< 2m.

It is easy to see that it suffices to verify this inequality for m = 6, which is straightforward.

Next an easy consequence of the above claim.

Claim A.4. For 0 ≤ p ≤ m− 1,

(1−D)p <
1

m(m+ 1)p−1
.
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Proof. By Claim A.3 we have

(1−D)p ≤
1

(m+ 1)p

(

1 +
1

m2

)p

≤
exp

( p
m2

)

(m+ 1)p
≤

exp
(

1
m+1

)

(m+ 1)p
≤

1

m(m+ 1)p−1
.

We are now ready to prove Claim 4.6, that is to show α ≤ 1/m.

Proof of Claim 4.6. By (12),

λ0(1− α)m + λ1(1 + α)(1 −D)m−1 ≥ S.

Substituting the upper bounds on λ0 and λ1 from Claim A.2, and on (1 −D)m−1 from Claim A.4,
we obtain

(

m+ 1

m

)m

(1− α)m +
(m+ 1)2

m(m− 1)m−1
(1 + α) ≥ 1. (45)

As the left side of (45) clearly decreases with α for α ≤ 1/m, it suffices to show that (45) does not
hold for α = 1/m, i.e. that

(

1−
1

m2

)m

+
(m+ 1)3

m2(m− 1)m−1
< 1.

Using the bound
(

1− 1
m2

)m
≤ e−1/m < 1− 1

m+1 , we reduce the above to

(m+ 1)4 < m2(m− 1)m−1,

which comfortably holds for m ≥ 6.

Claim A.5.

β <

(

1 +
2

m(m− 1)3

)

1

m+ 1
.

Proof. Using the upper bounds on λ0 and λ1 from Claim A.2, as well as upper bounds on powers
of 1 −D and on α from Claim A.4 and Claim 4.6, respectively, we see that Claim 4.4 implies that
either

(m+ 1)m

(m− 1)m−1
α(1 − α− β)m−1 +

(m+ 1)2

m2(m− 1)m−1
+

(

(m+ 1)m

(m− 1)m−1
+

(m+ 1)m

mm

)

βm ≥ 1, or

(46)
(

(m+ 1)m

(m− 1)m−1
+

(m+ 1)m

mm

)

βm +
(m+ 1)3

mkkℓℓ
(m− 1)
(m
k

)

(

1

m
+ β

)

≥ 1. (47)

As β ≤ 1/2, we have

(m+ 1)3

mkkℓℓ
(m− 1)
(m
k

)

(

1

m
+ β

)

≤
k!

kk
(m+ 1)3(m+ 2)(m− 1)

2m2 ·m!
≤

2

9

(m+ 1)3

2m!
≤

343

6480
≤ 0.1

and
(

(m+ 1)m

(m− 1)m−1
+

(m+ 1)m

mm

)

βm ≤
e2(m+ 1) + e

2m
≤

55

64
≤ 0.7. (48)

Thus (47) does not hold, and so (46) holds. By Lemma 2.2 we have

α(1− α− β)m−1 ≤
(m− 1)m−1

mm
(1− β)m.
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and so
(

m+ 1

m

)m

(1− β)m +
(m+ 1)2

m2(m− 1)m−1
+

((

m+ 1

m

)m

+
(m+ 1)m

(m− 1)m−1

)

βm ≥ 1. (49)

As the left side of (49) is convex, and it is easy to show using (48) that (49) does not hold for β = 1/2,
it suffices to show that (49) also does not hold for β = (1 +mε)/(m + 1), where ε = 2

m2(m−1)3
. As

1− β = (1− ε) m
m+1 , we rewrite (48) as

(1− ε)m +
(m+ 1)2

m2(m− 1)m−1
+

(

1

mm
+

1

(m− 1)m−1

)

(1 +mε)m ≥ 1. (50)

As ε ≤ 1/m3 we have (1 +mε)m < 1 + (m+ 1)mε and (1− ε)m ≤ 1− (m− 1)ε, so (50) implies
(

m− 1−
m(m+ 1)

mm
−

m(m+ 1)

(m− 1)m−1

)

ε ≤
(m+ 1)2

m2(m− 1)m−1
+

1

mm
+

1

(m− 1)m−1
,

which in turn implies

(m− 2)ε <
2(m+ 1)2

m2(m− 1)m−1
<

2(m− 2)(m − 1)2

m2(m− 1)m−1
≤

2(m− 2)

(m− 1)3
,

contradicting our choice of ε.

Claim A.6.
(

1−
2

(m− 1)2

)

1

m+ 1
≤ α.

Proof. By Claim A.5 we have

βm ≤

(

1 +
1

m(m+ 1)

)m 1

(m+ 1)m
≤

exp
(

1
m+1

)

(m+ 1)m
≤

1

m(m+ 1)m−1
.

Substituting this bound, as well as the bounds on λ0, λ1 and (1 − D)m−1 from Claim A.2 and
Claim A.4 into (15), we obtain

(m+ 1)m+1

mm
α(1− α)m +

(m+ 1)3

m(m− 1)m−1
α+

(m+ 1)2

mm+1
(1− α) ≥ 1. (51)

As the left part of (51) is increasing for α ≤ 1
m+1 , it suffices to show that (51) does not hold for

α =
(

1− 2
(m−1)2

)

1
m+1 . Let ε =

2
(m−1)2

. We upper bound different terms in (51) as follows:

(m+ 1)m+1

mm
α(1 − α)m = (1− ε)

(

1 +
ε

m

)m

≤ (1− ε)eε ≤ (1− ε)

(

1 + ε+
ε2

2
+
ε3

2

)

≤ 1−
ε2

2
= 1−

2

(m− 1)4
,

where the third inequality holds as ε ≤ 1, and

(m+ 1)3

m(m− 1)m−1
α+

(m+ 1)2

mm+1
(1− α) ≤

(m+ 1)2

m(m− 1)m−1
+
m+ 1

mm
.

Plugging these bound in (51) yields

0 ≤
(m+ 1)2

m(m− 1)m−1
+

(m+ 1)

mm
−

2

(m− 1)4
≤

1

(m− 1)m−2

(

(m+ 1)2

m(m− 1)
+

(m+ 1)(m− 1)m−2

mm
− 2

)

,

where the last inequality holds, as (m+1)2

m(m−1) +
(m+1)(m−1)m−2

mm decreases with m and evaluates to about

1.727 for m = 6. Thus, as desired, (51) does not hold for our choice of ε.
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Claim A.7.

S1 ≥
44

45
S.

Proof. By (12), plugging the previously obtained bounds we have

S1
S

≥ 1−
λ1
S
(1 + α)(1 −D)m−1

≥ 1−
(m+ 1)m+1

(m− 1)m−1

m+ 1

m

1

m(m+ 1)m−2
= 1−

(m+ 1)4

m2(m− 1)m−1
≥

44

45
,

where the last inequality holds for m = 6, and so for all m ≥ 6.

Proof of Claim 4.7. We have

γℓ(1− α− γ)k ≤
γ

α+ γ

(

(γ + α)ℓ(1− α− γ)k
)

≤
kkℓℓ

mm

γ

α+ γ
.

On the other hand, by (12) and Claims A.1 and A.7,

γℓ(1− α− γ)k ≥ S1 ≥
44

45
S ≥

44

45

kkℓℓ

(m+ 1)m
≥

(

44

45

(

m

m+ 1

)m) kkℓℓ

mm
≥

1

3

kkℓℓ

mm
.

It follows that 3γ ≥ α+ γ, as desired.

Having estimated all the quantities present in the statements of Claims 4.8 and 4.9, we are now
ready to prove them.

Proof of Claim 4.8. By Claims 4.6, A.1, A.4 and A.5, we have

1

S

(m− 1)

(m+ 1)
(m
k

)(α+ β)(1− α)(1 −D)m−2

≤
k!

kk
(m− 1)(m+ 1)m−1

m!
·
2

m
·

1

m(m+ 1)m−3

≤

(

2

9
·
2(m+ 1)2

m2

)

m− 1

m!
≤

1

144
.

It follows from Claim A.7 that

S2
S

=
S1
S

−
1

S

(m− 1)

(m+ 1)
(m
k

)(α+ β)(1 − α)(1 −D)m−2 ≥
44

45
−

1

144
≥

32

33
.

On the other hand.

λ1
S

1− α

α
βm−1 ≤

(m+ 1)m

(m− 1)m−1

(m+ 1)

1− 2
(m−1)2

1

m(m+ 1)m−2
≤

(m+ 1)3

(m− 1)m
≤ 0.03,

where the last inequality holds for m = 6 and so for all m. Therefore Claim 4.8 holds.

Proof of Claim 4.9. The statement of Claim 4.9 can be rewritten as

(

1−
kk

(k + 1)k+1

α

γ

)(

α

β

)m

≥
1

2
. (52)

As k ≥ 5, and α/γ ≤ 2 by Claim 4.7, we have

1−
kk

(k + 1)k+1

α

γ
≥

20203

23328
.
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Meanwhile, by Claims A.5 and A.6, we have

α

β
≥

1− 2
(m−1)2

1 + 2
m(m−1)3

≥ 1−
2

(m− 1)2
−

2

m(m− 1)3
≥ 1−

2

m(m− 2)
.

Therefore
(

α

β

)m

≥

(

1−
2

m(m− 2)

)m

≥ exp

(

−
m

m(m− 2)/2 − 1

)

≥ e−
6

11 .

Combining these estimates we have

(

1−
kk

(k + 1)k+1

α

γ

)(

α

β

)m

≥
20203

23328
e−

6

11 ≥
1

2
,

and so (52) holds.

Appendix B Flagmatic

Here we use Flagmatic maintained by Sliačan [15]. First install Sage [1], then download Flagmatic
from https://github.com/jsliacan/flagmatic, which also contains directions on how to install
and run it. The following code will give a numerical result for S2,1.

from flagmatic.all import *

P = OrientedGraphProblem(5,density="4:121341")

P.solve_sdp(solver="csdp")

The output would be 0.2025, which is the same as the conclusion from Theorem 1.1 for k = 2
and ℓ = 1, where the maximum is achieved by (α, d) = (3/10, 9/14).
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