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Abstract

Motivated by the classical conjectures of Lovász, Thomassen, and Smith, recent work has
renewed interest in the study of longest cycles in important graph families, such as vertex-
transitive and highly connected graphs. In particular, Groenland et al. proved that if two
longest cycles and in a graph share m vertices, then there exists a vertex cut of size O(m8/5)
separating them, yielding improved bounds toward these conjectures. Their proof combines
Turán-type arguments with computer-assisted search.

We prove two results addressing problems of Babai (1979) and Smith (1984) on intersec-
tions of longest cycles in vertex-transitive and highly connected graphs. First, we strengthen
the bound of Groenland et al. by showing that if two longest cycles and in a graph share m
vertices, then there exists a vertex cut of size O(m3/2) separating them. As a consequence,
we show that in every k-connected graph, any two longest cycles intersect in at least Ω(k2/3)
vertices, improving the best known bound toward Smith’s conjecture. Our proof is purely
combinatorial, employing supersaturation-type estimates beyond the existing Turán-type ap-
proach. Second, we prove that in every connected vertex-transitive graph on n vertices, any
two longest cycles intersect in at least f(n) vertices for some function f(n) → ∞ as n → ∞,
thereby resolving a problem of Babai (1979) for the class of vertex-transitive graphs central to
his original motivation. In doing so, we introduce a new method for constructing longer cycles
in vertex-transitive graphs based on a given cycle, which may be of independent interest.

1 Introduction

The study of longest cycles is a central theme in both extremal and structural graph theory. Our
work is motivated by several longstanding problems in this area, including two conjectures of
Lovász [18] and Thomassen (cf. [2]) on vertex-transitive graphs, a conjecture of Smith (cf. [3])
on highly connected graphs, and a problem of Babai [1], originally motivated by vertex-transitive
graphs but posed implicitly for 3-connected cubic graphs. The first two conjectures concern Hamil-
tonicity, while the latter two address the intersection sizes of longest cycles. Our main results make
progress toward these problems and highlight closer connections between them. Throughout, we
denote by c(G) the length of a longest cycle in the graph G.

1.1 Background

A graph G is said to be vertex-transitive if, for any two vertices u, v ∈ V (G), there exists an
automorphism of G that maps u to v. The classical conjectures of Lovász [18] and Thomassen
(cf. [2]) assert that every connected vertex-transitive graph on n ≥ 3 vertices contains a Hamiltonian
cycle (resp. path), with only finitely many exceptions. These conjectures remain widely open
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despite extensive study (see the survey [16], more recent papers [5,9], and the references therein).
In 1979, Babai [1] proved that every connected vertex-transitive graph G on n ≥ 3 vertices contains
a cycle of length at least Ω(

√
n). His elegant proof proceeds by double-counting the number T

of triples {C,D, v}, where C and D are distinct longest cycles in G and v ∈ V (C) ∩ V (D) is a
common vertex. Since G is vertex-transitive, every vertex lies in exactly d ≥ 1 longest cycles, so
G contains exactly nd/c(G) distinct longest cycles. We may assume that G is 3-connected.1 Since
any two longest cycles in every 3-connected graph intersect in at least three vertices,2 we have

n

(
d

2

)
= T ≥ 3 ·

(
nd/c(G)

2

)
,

which implies that c(G) ≥
√
3n. Observe that if any two longest cycles in such a graph G intersect

in at least f(n) vertices, then one immediately obtains the stronger bound c(G) ≥
√

n · f(n).
Motivated by this observation, Babai posed the following problem in the same paper [1], restricting
attention to 3-connected cubic graphs as an initial case.

Problem 1.1 (Babai [1], Problem 2). Is there a function f(n) → ∞ as n → ∞ such that in every
3-connected cubic graph on n vertices, any two longest cycles intersect in at least f(n) vertices?

It is therefore natural to ask the analogous question for all connected vertex-transitive graphs.

Problem 1.2. Is there a function f(n) → ∞ as n → ∞ such that in every connected vertex-
transitive graph on n vertices, any two longest cycles intersect in at least f(n) vertices?

The Ω(n1/2) bound on the length of the longest cycle in connected vertex-transitive graphs stood
for over four decades, until DeVos [6] improved it in 2023. Using the Orbit-Stabilizer Theorem,
DeVos [6] established a notable double-counting lemma relating the problem to the transversal of
longest cycles, a concept studied extensively (see [10,15,17,20]); a subset of vertices in a graph G
is called a t-transversal if it contains at least t vertices from every longest cycle in G. His lemma
shows that if a connected vertex-transitive graph G on n vertices contains a t-transversal A, then

c(G) ≥ tn/|A|. (1)

Combining this with the simple fact that if two longest cycles and in a graph share m vertices,
then there exists a vertex cut of size at most m2 separating them (which also forms a 1-transversal;
see Proposition 2.1), DeVos [6] showed that c(G) = Ω(n3/5) for every connected vertex-transitive
graph G on n vertices. Recently, Groenland, Longbrake, Steiner, Turcotte, and Yepremyan [12]
gave a unified treatment concerning longest cycles in vertex-transitive and highly connected graphs.
Their work extends DeVos’ approach and shows that for any connected vertex-transitive graph G,
c(G) = Ω

(
n13/21

)
. The central result underlying their unified approach is the following, whose

proof combines Turán-type arguments with computer-assisted search and linear programming.

Theorem 1.3 (Groenland et al. [12], Lemma 1.4). If two longest cycles in a graph G share m
vertices, then there exists a vertex cut of size O(m8/5) separating these two cycles.

More recently, Norin, Steiner, Thomassé, and Wollan [19] achieved a further improvement, showing
that c(G) = Ω

(
n9/14

)
for every connected vertex-transitive graph G on n vertices. Using equation

(1), their approach is to upper-bound the size of certain 1-transversals A as a function of c(G),
in contrast to [6, 12], where the bound is expressed in terms of the intersection size of two longest
cycles (cf. Theorem 1.3).

Another motivating problem is a longstanding conjecture on the intersection size of two longest
cycles in highly connected graphs, attributed to S. Smith and traceable to at least 1984. As noted
earlier in Babai’s work [1], such insights can be valuable for addressing other problems on cycles.

Conjecture 1.4 (Smith’s Conjecture; see, e.g., Conjecture 4.15 in [3]). For every k ≥ 2, any two
longest cycles in a k-connected graph intersect in at least k vertices.

1Unless G is 2-regular (see [11]), in which case it is simply the cycle Cn and the result of Babai holds trivially.
2We will elaborate on this fact and its generalizations shortly; see Conjecture 1.4.
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This conjecture has attracted considerable attention (see the survey [21]). It has been confirmed
for k ≤ 8 in [13, 22] and for k ≥ (n + 16)/7 in [14]. For the general case, Burr and Zamfirescu
(see [3]) proved that any two longest cycles in a k-connected graph intersect in at least

√
k − 1

vertices. This was later improved in 1998 by Chen, Faudree, and Gould [4] to Ω(k3/5) using a
Turán-type argument. Recently, Groenland et al. [12], based on Theorem 1.3, established the
best-known bound to date and proved that the intersection size of any two longest cycles in a
k-connected graph is Ω(k5/8).

1.2 Main results

In this paper, motivated by the aforementioned conjectures and problems, we present two results
on the intersection size of longest cycles in vertex-transitive and highly connected graphs.

Our first result strengthens Theorem 1.3 in the following quantitative form.

Theorem 1.5. If two longest cycles in a graph G share m vertices, then there exists a vertex cut
of size O(m

3
2 ) separating these two cycles.3

Our proof is purely combinatorial and relies on supersaturation-type estimates, extending beyond
the existing Turán-type approaches (e.g., [4,12]). Using this result, Menger’s Theorem immediately
yields the following bound for Conjecture 1.4, improving upon the current record, namely the
Ω(k5/8) bound of Groenland et al. [12].

Corollary 1.6. Let k ≥ 2 be any integer. Every two longest cycles in a k-connected graph intersect
in Ω(k2/3) vertices.

Another implication of Theorem 1.5 concerns the length c(G) of a longest cycle in a connected
vertex-transitive graph G on n vertices. To see this, let m denote the minimum size of the in-
tersection of two longest cycles in G. Then, evidently the vertex set of every longest cycle forms
an m-transversal, and by Theorem 1.5, there exists a 1-transversal of size O(m3/2). Applying
equation (1) twice, we obtain

c(G) ≥ min
m∈N

max

{√
mn,

n

O(m3/2)

}
= Ω(n5/8).

This improves the Ω(n13/21) bound of Groenland et al. [12], but falls short of the very recent
Ω(n9/14) bound of Norin et al. [19]. On the other hand, since every connected d-regular vertex-
transitive graph is Ω(d)-connected (see [11]), Theorem 1.5 outperforms the Ω(n9/14) bound for
connected d-regular vertex-transitive graphs when d = Ω(n3/7), as follows.

Corollary 1.7. Let n > d ≥ 2. Every connected d-regular vertex-transitive graph on n vertices
contains a cycle of length Ω(d

1
3n

1
2 ).

Our second result is motivated by Babai’s work [1]. We prove the following, showing that any
two longest cycles in a connected vertex-transitive graph intersect in sufficiently many vertices.

Theorem 1.8. Let n > d ≥ 2. Every two longest cycles in a connected d-regular vertex-transitive
graph on n vertices intersect in Ω

(
(logd n)

1/3
)
vertices.

Combining this with Corollary 1.6, we obtain the following corollary, which provides an affirmative
answer to Problem 1.2. Throughout, we use lnx to denote the natural logarithm.

Corollary 1.9. Every two longest cycles in a connected vertex-transitive graph on n vertices
intersect in Ω

(
(lnn/ ln lnn)1/3

)
vertices.

This can be seen as evidence (albeit arguably weak) supporting the conjecture of Lovász [18].

The rest of this paper is organized as follows. In Section 2, we provide the necessary preliminar-
ies, including the crucial relation that reduces the proof of Theorem 1.5 to a problem in extremal
graph theory. In Section 3, we present the proofs of Theorem 1.5 and Corollary 1.7. In Section 4,
we prove Theorem 1.8 and Corollary 1.9. Finally, in Section 5, we conclude with several remarks.

3We emphasize again that such a vertex cut forms a 1-transversal in G; see Proposition 2.1.
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2 Preliminaries

In this section, we first introduce the notations used throughout this paper, and then define a
useful auxiliary graph based on two longest cycles for the proof of Theorem 1.5. We also explain
how this auxiliary graph plays a key role in the proof of Theorem 1.5.

2.1 Notations

We mostly follow the standard graph-theoretic notation from [8]. All graphs are finite unless
otherwise specified, and the term disjoint always refers to vertex-disjoint. Let G be a graph. As
mentioned earlier, we write c(G) for the length of a longest cycle in G. Let A,B ⊆ V (G) be
two vertex subsets, not necessarily disjoint. A path P = x1 · · ·xt in G is called an (A,B)-path, if
V (P )∩A = {x1} and V (P )∩B = {xt}. If A = {a}, we abbreviate ({a}, B)-paths by (a,B)-paths.
For a subgraph H of G, we abbreviate (V (H), B)-paths by (H,B)-paths. We say that a vertex
subset S ⊆ V (G) separates A and B if every (A,B)-path intersects S. In this case, we call S an
(A,B)-separator. Note that necessarily A ∩ B ⊆ S. We also write G − A for the subgraph of G
induced by V (G) \A.

For a path P (or a cycle C), we write |P | (or |C|) for the number of its edges. Given u, v ∈ V (P ),
let P [u, v] denote the unique subpath of P with endpoints u and v. If P has endpoints a, b, and
we fix a direction from a to b, we define the associated linear order ≺ on V (P ) as follows: for
u, v ∈ V (P ), we write u ≺ v if a, u, v, b occur on P in the given direction.

For integers a ≤ b, we denote [a, b] = { i ∈ Z : a ≤ i ≤ b }. If a is positive, we write [a] for the
set [1, a].

2.2 An auxiliary graph associated with two longest cycles

In this subsection, let G be a 2-connected graph, and let X,Y be any two longest cycles in G.
Here, we discuss some basic propositions and define an auxiliary graph arising from this setting.

We begin with a simple fact. Recall the definition of a t-transversal given before equation (1).
We refer to a 1-transversal simply as a transversal.

Proposition 2.1. We have V (X) ∩ V (Y ) ̸= ∅, and any vertex-cut separating X and Y is a
transversal of G.

Proof. Suppose that V (X) ∩ V (Y ) = ∅. Since G is 2-connected, there exist two disjoint (X,Y )-
paths. Together with X ∪Y , these paths would form two cycles X ′ and Y ′ satisfying |X ′|+ |Y ′| >
|X|+ |Y |, which contradicts the maximality of X and Y .

Now consider any vertex-cut A separating X and Y . Clearly, A contains all vertices in V (X)∩
V (Y ), which is non-empty. Let Z be any other longest cycle in G. Since V (Z) ∩ V (X) ̸= ∅ and
V (Z)∩V (Y ) ̸= ∅, there exists a subpath of Z which is a

(
V (Z)∩V (X), V (Z)∩V (Y )

)
-path. This

path must intersect A, implying V (Z) ∩A ̸= ∅. Hence, A is a transversal of G.

Let M = V (X) ∩ V (Y ) and m = |M |. Then X −M and Y −M decompose into m subpaths
X1, . . . , Xm and Y1, . . . , Ym, respectively (allowing empty subpaths). In the remainder of the paper,
we refer to these subpaths Xi or Yi as segments. The following proposition establishes a useful
property for any collection of disjoint (X −M,Y −M)-paths in G.

Proposition 2.2. For any 1 ≤ i, j ≤ m, there do not exist two disjoint (X −M,Y −M)-paths in
G whose endpoints belong to Xi and Yj.

Proof. Assume to the contrary that such paths L1 and L2 exist. Let V (Lt) ∩ V (Xi) = {ut} and
V (Lt) ∩ V (Yj) = {vt} for t ∈ [2]. Without loss of generality, we can assume that |Xi[u1, u2]| ≤
|Yj [v1, v2]|. Replacing the subpath Xi[u1, u2] in Xi by the new (u1, u2)-path L1 ∪ Yj [v1, v2] ∪ L2,
we obtain a cycle in G with more than |X| edges, contradicting the maximality of X.

With these propositions in place, we now formalize the notion of the auxiliary graph associated
with X and Y . It is defined for a given collection P of disjoint (X − M,Y − M)-paths and will
play a crucial role in the proof of Theorem 1.5.
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Definition 2.3. Let X,Y be two longest cycles in a graph G. Let M = V (X) ∩ V (Y ) and
m = |M |. Let {X1, · · · , Xm} and {Y1, · · · , Ym} denote the path decompositions of X − M and
Y −M , respectively. Consider any collection P of disjoint (X −M,Y −M)-paths in G. Then the
auxiliary graph F := F (X,Y,P) is constructed as follows:

(1) The graph F is bipartite with two parts A = {x1, · · · , xm} and B = {y1, · · · , ym}, where the
vertex xi (resp. yi) corresponds to the segment Xi (resp. Yi) in G.

(2) For i, j ∈ [m], define the edge xiyj ∈ E(F ) if and only if P contains a (Xi, Yj)-path.

We point out that by Proposition 2.2, the graph F is simple and has exactly 2m vertices and
|P| edges. The auxiliary graph F was explicitly considered in [4,12], where the main idea in both
papers is to show that F does not contain a fixed bipartite graph H as a subgraph (that is, F is
H-free). Applying known estimates for the Turán number of H then yields an upper bound on
|P| = e(F ) as a function ofm. In particular, [4] proves that F isK3,257-free, while [12] shows that F
is Q+

3 -free, where Q
+
3 denotes the graph obtained from K4,4 by deleting a matching of size three. In

the next section, we employ supersaturation arguments, extending beyond the earlier approaches
that rely solely on Turán-type bounds. Specifically, we establish Theorem 1.5 by proving that
the graph F contains only O(m) copies of K2,7, which implies |P| = e(F ) = O(m3/2). Menger’s
Theorem then provides the required vertex cut for Theorem 1.5.

3 Proof of Theorem 1.5

In this section, we prove Theorem 1.5. Throughout, let G be a graph and X,Y be two longest
cycles in G with M = V (X) ∩ V (Y ) and m = |M |. Our goal is to show that there exists a vertex
cut of size O(m3/2) separating X and Y . This is evident if X and Y lie in different blocks of G.
Hence, we may assume that G is 2-connected.

We fix a cyclic ordering for each of the cycles X and Y . Let {X1, . . . , Xm} and {Y1, . . . , Ym}
denote the path decompositions of X −M and Y −M , respectively, such that X1, . . . , Xm (resp.
Y1, . . . , Ym) appear sequentially according to the chosen cyclic ordering of X (resp. Y ).

Consider any collection P of disjoint (X −M,Y −M)-paths, and let F := F (X,Y,P) be the
bipartite graph defined in Definition 2.3. Our strategy is to use certain local structural conditions
of F to find two cycles Q1, Q2 in G such that

E(Q1) ∪ E(Q2) ⊇ E(X) ∪ E(Y ) and |Q1|+ |Q2| > |X|+ |Y |,

thereby contradicting the maximality ofX and Y . We call such a pair {Q1, Q2} of cycles awinning
certificate.

We now introduce a key concept – the types of 4-cycles in F , determined by the relative positions
in both X and Y of the endpoints of the four paths in P corresponding to its edges. Consider a
4-cycle xiykxjyℓ in F , where, throughout this section, we always assume that i < j and k < ℓ. By
Definition 2.3, the edge xiyk in F uniquely corresponds to an (Xi, Yk)-path Pik ∈ P in G; similarly,
the edges xiyℓ, xjyk, and xjyℓ correspond to the paths Piℓ, Pjk, and Pjℓ in P, respectively. For
convenience, we set

P ′ = {Pik, Piℓ, Pjk, Pjℓ}.

We denote by uik, uiℓ, ujk, ujℓ the endpoints of P ′ in X, where uik = V (X) ∩ V (Pik), and the
remaining three vertices are defined similarly. Similarly, let vik, viℓ, vjk, vjℓ be the corresponding
endpoints of P ′ in Y . See Figure 1 for an illustration. Let <X and <Y denote the cyclic ordering
of X and Y , respectively. Each segment Xi (resp. Yi) inherits the ordering <X (resp. <Y ).

Definition 3.1. A 4-cycle xiykxjyℓ in F is said to be of type (α, β), where α, β ∈ {0, 1} are
defined as follows:

(1) If both uik <X uiℓ and ujk <X ujℓ hold, or both uik >X uiℓ and ujk >X ujℓ hold, then let
α = 0; otherwise, α = 1.

(2) If both vik <Y vjk and viℓ <Y vjℓ hold, or both vik >Y vjk and viℓ >Y vjℓ hold, then let
β = 0; otherwise, β = 1.
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Figure 1: Corresponding paths in G for all types of 4-cycles in F .

Figure 1 illustrates the four possible types of 4-cycles in F . Intuitively, α = 0 if and only if the
order of uik, uiℓ on Xi coincides with the order of ujk, ujℓ on Xj with respect to <X ; similarly for
β. We note that the type of a 4-cycle is invariant under the choice of the cyclic ordering <X on
X. Indeed, reversing the ordering <X on X simultaneously reverses the relative orderings of both
{uik, uiℓ} and {ujk, ujℓ}. Therefore, reversing <X (and likewise <Y ) does not affect the type of
the 4-cycle. Below we examine the existence of 4-cycles of each type.

Our first lemma shows that, in our setting, F does not contain any 4-cycle of type (0, 0).
An equivalent statement was proved in [4], where it played a central role in showing that F is
K3,257-free with the aid of the Erdős–Szekeres theorem.

Lemma 3.2. The graph F contains no 4-cycle of type (0, 0).

Proof. Suppose for a contradiction that xiykxjyℓ is a 4-cycle of type (0, 0). Keeping the previous
notation for paths and endpoints, we can assume without loss of generality that

uik <X uiℓ, ujk <X ujℓ, vik <Y vjk, and viℓ <Y vjℓ.

For any distinct vertices u, v ∈ V (X), let
−→
X [u, v] denote the path from u to v along the fixed

cyclic ordering <X of X. The notation
−→
Y [u, v] is defined analogously for Y . Construct two cycles

Q1 and Q2 in G as follows (Figure 2 depicts Q1 in red and Q2 in blue):

Q1 = Pik[uik, vik] ∪
−→
Y [vjℓ, vik] ∪ Pjℓ[vjℓ, ujℓ] ∪Xj [ujℓ, ujk]

∪ Pjk[ujk, vjk] ∪
−→
Y [vjk, viℓ] ∪ Piℓ[viℓ, uiℓ] ∪Xi[uiℓ, uik],

Q2 = Pik[uik, vik] ∪ Yk[vik, vjk] ∪ Pjk[vjk, ujk] ∪
−→
X [uiℓ, ujk]

∪ Piℓ[uiℓ, viℓ] ∪ Yℓ[viℓ, vjℓ] ∪ Pjℓ[vjℓ, ujℓ] ∪
−→
X [ujℓ, uik].

It is straightforward to verify that (Q1, Q2) forms a winning certificate, since

E(Q1) ∪ E(Q2) ⊇ E(X) ∪ E(Y ) and |Q1|+ |Q2| = |X|+ |Y |+ 2
∑
P∈P′

|P | > |X|+ |Y |,

contradicting the maximality of X and Y .
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Figure 2: A winning certificate (Q1, Q2) corresponding to a 4-cycle of type (0, 0).

Next, we consider two 4-cycles in F of type (1, 0), which correspond to eight paths from P. To
streamline our arguments, we introduce the following notation.

Definition 3.3. For indices 1 ≤ i1 < j1 ≤ m and 1 ≤ i2 < j2 ≤ m, the pairs (i1, j1) and
(i2, j2) are crossing, if i1, j1, i2, j2 are pairwise distinct and the interval [i1, j1] contains exactly
one element in {i2, j2}; otherwise, we say that (i1, j1) and (i2, j2) are non-crossing.

We first show that a particular arrangement of the endpoints of these eight paths on X and Y
guarantees the existence of a winning certificate.

Lemma 3.4. Let xi1yk1
xj1yℓ1 and xi2yk2

xj2yℓ2 be two 4-cycles of type (1, 0) in F . If (i1, j1) and
(i2, j2) are crossing, then either {k1, ℓ1} ∩ {k2, ℓ2} ≠ ∅, or (k1, ℓ1) and (k2, ℓ2) are crossing.

Proof. Let (i1, j1) and (i2, j2) be crossing. Suppose, for the sake of contradiction, that {k1, ℓ1} ∩
{k2, ℓ2} = ∅ and that (k1, ℓ1) and (k2, ℓ2) are non-crossing. Let P ′ denote the collection of the
eight disjoint paths in P corresponding to the edges in the two 4-cycles.

We may assume, without loss of generality, that the four segments Xi1 , Xi2 , Xj1 , Xj2 are cycli-
cally arranged on X, and that Yk1

, Yℓ1 , Yk2
, Yℓ2 are cyclically arranged on Y ; see Figure 3.

By considering all possible relative orderings of the endpoints of the paths in P ′, we claim
that there are four non-isomorphic cases that need to be examined in general. To see this, we first
consider the four pairs of endpoints corresponding to the 4-cycle xi1yk1xj1yℓ1 , which are highlighted
by the ellipse-shaped shadows in Figure 3. Since this 4-cycle is of type (α, β) = (0, 1), we can select
the initial cyclic orderings of X and Y such that ui1k1

<X ui1ℓ1 and vi1k1
<Y vj1k1

. Then since
α = 0 and β = 1, it follows that uj1ℓ1 <X uj1k1

and vi1ℓ1 <Y vj1ℓ1 . In this way, we could assume
that the four pairs covered by the ellipse-shaped shadows are fixed. It remains to consider the four
pairs of endpoints corresponding to the second 4-cycle xi2yk2xj2yℓ2 , where the pairs {ui2k2 , ui2ℓ2}
and {uj2ℓ2 , uj2k2

} are highlighted by the triangle-shaped shadows and the pairs {vi2k2
, vj2k2

} and
{vi2ℓ2 , vj2ℓ2} are highlighted by the rectangle-shaped shadows in Figure 3. Since this cycle has type
(0, 1), the relative orderings in the two pairs covered by the triangle-shaped shadows are consistent
(as α = 0), yielding two possibilities (see the differences between Figures 3a and 3b). Similarly,
the relative orderings in the two pairs covered by the rectangle-shaped shadows are inconsistent
(as β = 1), also giving two possibilities. This proves the claim.

Therefore, it suffices to discuss the four cases, under the alternative orderings of the pairs
covered by the triangle-shaped and rectangle-shaped shadows. Consider one such instance in
Figure 3a. In this case, there exist two cycles Q1 and Q2 (depicted by red and blue, respectively)
satisfying

E(Q1) ∪ E(Q2) ⊇ E(X) ∪ E(Y ) and |Q1|+ |Q2| = |X|+ |Y |+ 2
∑
P∈P′

|P | > |X|+ |Y |,

contradicting the maximality ofX and Y . This forms a winning certificate (Q1, Q2). Figure 3b con-
siders another instance, where we preserve the relative orderings of pairs covered by the rectangle-
shaped shadows, and reverse that covered by the triangle-shaped shadows. It is clear from the figure
that the red and blue lines yield another winning certificate. The verifications for the remaining
two cases are similar, which we omit here.
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Two 4-cycles of type (1, 0) Cycle Q1 Cycle Q2

(a) A winning certificate (Q1, Q2) corresponding to a configuration of two 4-cycles of type (1, 0).
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Two 4-cycles of type (1, 0) Cycle Q1 Cycle Q2

(b) The counter configuration from (a) with reversed order of pairs in triangle-shaped shadows.

Figure 3: Key steps in the proof of Lemma 3.4.
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The following lemma provides a key tool for obtaining an upper bound on the number of copies
of K2,7 in F . For x ∈ V (F ), let NF (x) denote its neighborhood. For 1 ≤ i < j ≤ m, we define
aij =

∣∣NF (xi) ∩NF (xj)
∣∣.

Lemma 3.5. Let L = {(i, j) : aij ≥ 7, 1 ≤ i < j ≤ m}. Then any two pairs (i1, j1) and (i2, j2) in
L are non-crossing.

Proof. Consider the pair (i1, j1) and a copy of K2,7 in F with vertex set {xi1 , xj1}∪ {ykt : t ∈ [7]}.
Let Q be the set of paths in P that correspond to the edges of this K2,7. Each segment Ykt

contains
two endpoints vi1kt

, vj1kt
from two paths in Q whose relative ordering can be either vi1kt

<Y vj1kt

or vi1kt
>Y vj1kt

. By the pigeonhole principle, at least ⌈7/2⌉ = 4 distinct Y -segments share the
same endpoint ordering. By Lemma 3.2, there is no 4-cycle of type (0, 0) in F . Therefore, we
obtain a subgraph K2,4 that only contains 4-cycles of type (1, 0).

Applying above arguments to pairs (i1, j1) and (i2, j2), we obtain indices 1 ≤ k1 < · · · < k4 ≤ m
and 1 ≤ ℓ1 < · · · < ℓ4 ≤ m such that both F [{xi1 , xj1 , yk1

, · · · , yk4
}] and F [{xi2 , xj2 , yℓ1 , · · · , yℓ4}]

are isomorphic to K2,4, and any 4-cycle in these subgraphs has type (1, 0).
We claim that there are two indices in {k1, · · · , k4} and two indices in {ℓ1, · · · , ℓ4} that are

pairwise distinct and form non-crossing pairs. Suppose there are three indices {h1, h2, h3} ⊆
{ℓ1, ..., ℓ4} distinct from {k1, k2}. By the pigeonhole principle, two of h1, h2, h3 (say h1, h2) must
both lie in the interval (k1, k2) or both in [1, k1)∪ (k2,m]. Then the two disjoint pairs (k1, k2) and
(h1, h2) are non-crossing, as claimed. Otherwise, we have {k1, k2} ⊆ {ℓ1, ..., ℓ4}; similarly, we may
assume that {k3, k4} ⊆ {ℓ1, ..., ℓ4}. This implies kt = ℓt for t ∈ [4]. Thus, the two pairs (k1, k2)
and (ℓ3, ℓ4) are non-crossing and share no common element, which proves the claim.

Using this claim, we can deduce from Lemma 3.4 that (i1, j1) and (i2, j2) are non-crossing,
completing the proof.

We need one more lemma that provides an upper bound on the number of pairs that are
pairwise non-crossing.

Lemma 3.6. Let m ≥ 2 be an integer, and let {(it, jt)}rt=1 be a collection of r distinct pairs with
1 ≤ it < jt ≤ m for all t ∈ [r], such that any two pairs are non-crossing. Then r ≤ 2m− 3.

Proof. Let f(m) denote the maximum number of such pairs. We proceed by induction on m to
show that f(m) ≤ 2m− 3. First observe that f(2) = 1 and f(m) is non-decreasing in m. Assume

that f(k) ≤ 2k − 3 holds for all 2 ≤ k ≤ m− 1. Consider a collection of pairs {(it, jt)}f(m)
t=1 of size

f(m). Define I = {[it, jt] : t ∈ [f(m)]} \ {[1,m]} to be a collection of close intervals. An interval
in I is called maximal, if it is maximal under interval inclusion. Without loss of generality, we
can assume that I ′ = {[it, jt]}st=1 contains all maximal intervals in I. We point out that these
maximal intervals must be pairwise internally-disjoint, because any two pairs (it, jt), (it′ , jt′) are
non-crossing. Moreover, each interval in I belongs to exactly one maximal interval.

If |I ′| = 1, then each pair (it, jt) except for (1,m) satisfies i1 ≤ it < jt ≤ j1. This implies

f(m) ≤ 1 + f(j1 − i1 + 1) ≤ 1 + f(m− 1) ≤ 2m− 4.

Now we may assume s = |I ′| ≥ 2. Then, using properties mentioned above, for each pair (it, jt) ∈ I
except for (1,m), there is exactly one index u ∈ [s] such that iu ≤ it < jt ≤ ju. This yields

f(m) ≤ 1 +
∑
u∈[s]

f(ju − iu + 1) ≤ 1 + 2
∑
u∈[s]

(
ju − iu

)
− s ≤ 1 + 2(m− 1)− s ≤ 2m− 3,

where the second inequality follows by induction and the third inequality holds because [iu, ju] for
all u ∈ [s] are pairwise internally-disjoint. The proof is complete.

We are ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let X,Y be two longest cycles in a graph G which shares m vertices.
Consider any collection P of disjoint (X −M,Y −M)-paths in G, where M = V (X) ∩ V (Y ). Let
F := F (X,Y,P) be defined from Definition 2.3, and let E = e(F ) = |P|. We aim to show that

|P| = E ≤
√
10m

3
2 +

m

2
.
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We may assume E ≥ m. Under this assumption, the convexity of the function x(x−1)
2 yields

∑
1≤i<j≤m

aij =
∑
i∈[m]

(
degF (yi)

2

)
≥ m ·

( ∑
i∈[m]

degF (yi)
/
m

2

)
= m

(
E/m
2

)
=

E(E −m)

2m
.

Let 1A denote the indicator function of event A. Then we have∑
1≤i<j≤m

aij · 1{aij≥7} ≥
∑

1≤i<j≤m

aij − 6

(
m

2

)
≥ E(E −m)

2m
− 3m(m− 1).

Recall that L = {(i, j) : aij ≥ 7, 1 ≤ i < j ≤ m}. Evidently aij =
∣∣NF (xi) ∩NF (xj)

∣∣ ≤ m for all
1 ≤ i < j ≤ m, so we can deduce that

|L| =
∑

1≤i<j≤m

1{aij≥7} ≥
∑

1≤i<j≤m

aij · 1{aij≥7}
/
m ≥ E(E −m)

2m2
− 3(m− 1).

By Lemma 3.5, the pairs in L are pairwise non-crossing. Applying Lemma 3.6, we obtain

E(E −m)

2m2
− 3(m− 1) ≤ |L| ≤ 2m− 3.

Solving this inequality gives E2 −mE − (10m3 − 12m2) ≤ 0, which implies |P| = E ≤
√
10m

3
2 + m

2 ,

as desired. Thus, there are at most
√
10m3/2+ m

2 disjoint paths in G between X−M and Y −M .

By Menger’s Theorem, this implies the existence of a vertex cut of size at most
√
10m3/2 + m

2
separating X −M and Y −M . Adding the set M of size m, we obtain a vertex cut of size at most√
10m3/2 + 3m

2 separating X and Y in G, completing the proof.

We conclude this section with a proof of Corollary 1.7.

Proof of Corollary 1.7. Let G be a connected d-regular vertex-transitive graph on n vertices,
where n > d ≥ 2. Then G is Ω(d)-connected (see [11]). By Corollary 1.6, every two longest cycles
in G intersect in Ω(d2/3) vertices. Let A denote the set of vertices in a fixed longest cycle. Then
A is a t-transversal in G for some t = Ω(d2/3). Applying equation (1), we obtain

c(G) ≥
√
tn =

√
Ω(d2/3)n = Ω(d

1
3 · n 1

2 ).

This provides the existence of a desired cycle in G.

4 Proof of Theorem 1.8

In this section we prove Theorem 1.8, which asserts that any two longest cycles in a connected
vertex-transitive graph must share a sufficiently large set of vertices.

To proceed, we employ a structural lemma on connected vertex-transitive graphs due to DeVos
and Mohar [7]. It asserts that in a connected vertex-transitive graph, a small separator cannot
disconnect two large sets unless the graph possesses a special global structure. For a formal
statement, we first introduce some notation. Let G be a connected vertex-transitive graph. For
any x, y ∈ V (G), let dist(x, y) denote the length of a shortest (x, y)-path in G, and define

diam(G) = max
x,y∈V (G)

dist(x, y).

The neighborhood N(A) of a subset A ⊆ V (G) denotes the set of all vertices in V (G) \A adjacent
to some vertex in A. A partition σ = {B1, . . . , Bk} of V (G) is called a system of imprimitivity if
for every automorphism g of G and every set B ∈ σ, the image Bg := g(B) remains in σ. These
vertex sets B ∈ σ are called blocks. A cyclic system σ⃗ on G is a system of imprimitivity σ equipped
with a cyclic ordering of the blocks that is preserved by the automorphism group Aut(G) of G.
For positive integers s, t, we say G is (s, t)-ring-like with respect to σ⃗, if each block of σ⃗ has size
s and any two adjacent vertices in G belong to blocks that are at distance at most t in the cyclic
ordering of σ⃗.
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Theorem 4.1 (DeVos and Mohar, Theorem 1.9 in [7]). For every integer k ≥ 1 and every connected
vertex-transitive graph G with diam(G) ≥ 31k2, if a non-empty set A ⊆ V (G) satisfies |A| ≤
|V (G)|/2 , |N(A)| = k, and G[A ∪N(A)] is connected, then one of the following holds.

(1) |A| ≤ 2k3 + k2;

(2) There exist positive integers s, t with st ≤ k/2 and a cyclic system σ⃗ on G such that G is
(s, t)-ring-like with respect to σ⃗, and there exists an interval J of σ⃗ with Q :=

⋃
B∈J

B satisfying

Q ⊇ A and |Q \A| ≤ k3

2
+ k2.

The following observation can be verified directly.

Observation 4.2. Let X and Y be two cycles in a graph G. Let {P1, . . . , Pr} be a collection of
pairwise disjoint subpaths of X, and let {Q1, . . . , Qr} be a collection of pairwise disjoint subpaths
of Y such that, for each i ∈ [r],

• Pi and Qi have the same endpoints x2i−1, x2i,

• the vertices x1, x2, . . . , x2r appear in the same cyclic order along both X and Y , and

• each Qi could only intersect X at vertices of the subpaths Pj.

Then the subgraph obtained from X by replacing Pi with Qi for each i ∈ [r] (i.e., deleting all edges
of Pi and adding all edges of Qi) forms a cycle in G.

We now present the proof of Theorem 1.8, which uses the bound of Theorem 1.5. For a family
H of subgraphs, we define V (H) :=

⋃
H∈H V (H) and E(H) :=

⋃
H∈H E(H).

Proof of Theorem 1.8. Let G be a connected d-regular vertex-transitive graph on n vertices.
Let X,Y be any two longest cycles in G, and let m := |V (X) ∩ V (Y )| ≥ 1. Our goal is to show

m ≥
(
logd n

)1/3
/100. It suffices to assume that d ≥ 3.

Let k denote the size of a minimum (X,Y )-separator in G. Then there exists a subset A ⊆ V (G)
with |A| ≤ n/2 such that N(A) is a vertex cut of G of size k separating X and Y , and G[A∪N(A)]
contains exactly one of X and Y (without loss of generality, say X). This implies

|A| ≥ |V (X)| − |N(A)| = c(G)− k. (2)

Furthermore, we can assume that G[A ∪N(A)] is connected, as otherwise we instead consider the
intersection of A with the component of G[A∪N(A)] that containsX. By the proof of Theorem 1.5,

we have k ≤ 10m3/2 +3m/2. If k ≥ log
1/2
d n

10 , then m ≥ log
1/3
d n

100 , which gives the desired bound. We

may therefore assume k <
log

1/2
d n

10 and equivalently,

n > d100k
2

≥ 3100k
2

. (3)

Since G is d-regular, we have diam(G) ≥ logd−1(n/d) ≥ 31k2. Applying Theorem 4.1 for G and
A, we conclude that one of the items (1) or (2) holds.

First, suppose that item (1) holds; that is, |A| ≤ 2k3 + k2. By Babai [1] we have c(G) ≥ 3
√
n.

Together with (2), this yields 3
√
n−k ≤ c(G)−k ≤ |A| ≤ 2k3+k2. Hence, n ≤ 1

9 (2k
3+k2+k)2 <

3100k
2

, which contradicts (3). Therefore, from now on, we may assume that item (2) holds.
Then there exists a cyclic system σ⃗ on G such that G is (s, t)-ring-like with respect to σ⃗, where

st ≤ k/2, and there exists an interval J of σ⃗ satisfying that Q :=
⋃

B∈J B ⊇ A and |Q\A| ≤ k3

2 +k2.
Let B1, . . . , Bn/s be all blocks in the cyclic system σ⃗. Without loss of generality, we may assume
that for some j ∈ [n/s], V (X) ⊆

⋃
i∈[j] Bi, where V (X)∩V (B1) ̸= ∅ and V (X)∩V (Bj) ̸= ∅. Since

V (X) ⊆ A ∪N(A) ⊆
(⋃

B∈J B
)
∪N(A) and |N(A)| = k, we deduce that |J | ≥ j − k.

We first claim that j ≥ n/(2s). Suppose for a contradiction that j < n/(2s). By the vertex-
transitivity of G, there is an automorphism g ∈ Aut(G) that maps B1 to Bj+1. Then the image
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Xg is also a longest cycle in G, whose vertices belong to
⋃

i∈[j+1,2j+1] Bi. Since 2j + 1 ≤ n/s,

evidently we have V (X) ∩ V (Xg) = ∅, which contradicts Proposition 2.1. This proves our claim

that j ≥ n/(2s). In particular, j ≥ n/(2s) ≥ 3100k
2

/k ≥ 10k
2

.
We now proceed to establish the key step of the proof, namely that

j ≥ n/s− 10k
2

. (4)

Suppose, for the sake of contradiction, that this is not the case. Then 10k
2

< 3100k
2

/k ≤ n/(2s) ≤
j < n/s− 10k

2

. We aim to construct a cycle in G which is strictly longer than X.
For each ℓ ∈ [n/s − t + 1], let Eℓ denote the set of edges in X incident to some vertex in⋃

i∈[ℓ,ℓ+t−1] Bi. Note that the edges of Eℓ are decomposed into disjoint subpaths of X with length

at least two. By the vertex-transitivity ofG, for every i ∈ [j], there is an automorphism gi ∈ Aut(G)
that maps Bi to B1. For each ℓ ∈ [j], we write Egℓ

ℓ for the image of Eℓ under gℓ, so that

every edge in Egℓ
ℓ is incident to some vertex in

⋃
i∈[t]

Bi. (5)

We define an equivalence relation ∼ among these automorphisms g1, · · · , gj by writing gu ∼ gv for
some u, v ∈ [j], if the following hold:

(a). Egu
u = Egv

v (as two edge sets incident to
⋃

i∈[t] Bi);

(b). The edges in Egu
u appear in the same cyclic ordering along both longest cycles Xgu and Xgv .

Now we calculate the number of equivalence classes under ∼. By (5), every edge in Egu
u has

both endpoints in B∗ :=
⋃

i∈[−t+1,2t] Bi, where B−i := Bn/s−i for i ∈ [0, n/s − 1]. This implies

|Egu
u | ≤

(|B∗|
2

)
≤

(
3st
2

)
for every u ∈ [j]. We then consider the possible cyclic orderings for edges in

Egu
u . As noted above, the edges in Egu

u are decomposed into disjoint subpaths with length at least
two, say p such paths. Then p ≤ |B∗|/2 = 3st/2. As each such path can be placed in 2 ways, there
are exactly 2p(p− 1)! < (2p)! ≤ (3st)! possible cyclic orderings of Egu

u in longest cycles containing
these edges. Therefore, the number of equivalence classes under ∼ is at most

(3st2 )∑
i=0

((3st
2

)
i

)
· (3st)! = 2(

3st
2 ) · (3st)! ≤ 2(

3k/2
2 ) · (3k/2)! < 10k

2

.

By the pigeonhole principle, there exist indices 1 ≤ u < v ≤ 10k
2 ≤ j such that gu ∼ gv. Define

the automorphism g := (gv)
−1 ◦ gu ∈ Aut(G). Then we have

Bg
u = Bv and Eg

u = Ev.

Since j < n/s − 10k
2

, no edge connects
⋃

i∈[u−1] Bi and
⋃

i∈[u+t,j] Bi. Hence, every edge in

E(X) \ Eu is entirely contained in either G
[⋃

i∈[u−1] Bi

]
or G

[⋃
i∈[u+t,j] Bi

]
. These edges form

several disjoint subpaths of X. Define R to be the collection of disjoint paths formed by E(X)\Eu

within G[
⋃

i∈[u+t,j] Bi], and define R′ to be the collection of disjoint paths formed by E(X) \ Ev

within G[
⋃

i∈[v+t,j] Bi]; see Figure 4 for an illustration. Then we have E(R′) ⊆ E(R).

We claim that E(R) \ E(R′) ̸= ∅. Select an edge e ∈ Eu whose endpoints belong to Bα

and Bβ respectively, such that min{α, β} is maximized. Then the edge eg ∈ Eg
u = Ev, hence

eg /∈ E(R′). Note that eg is incident to blocks Bα+v−u and Bβ+v−u. We assert that eg /∈ Eu and
thus, eg ∈ E(R). Indeed, if eg ∈ Eu, then min{α+ v−u, β+ v−u} > min{α, β} would contradict
the maximality of min{α, β} for our choice of e. We have demonstrated that eg ∈ E(R) \ E(R′),
and the claim follows. This implies |E(R)| > |E(R′)|.

It is clear that the endpoints of subpaths (of X) formed by Ev is the same as that of E(X)\Ev;
4

similarly, the endpoints of subpaths (of X) formed by Eu is the same as that of E(X) \Eu, which
says equivalently, the endpoints of subpaths (of Xg) formed by Ev = Eg

u is the same as that

4Note that these subpaths may be viewed in different cycles, but these endpoints are determined solely by the
edge set Ev , and the same holds for other edge sets.
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R

Bu ∪ · · · ∪Bu+t−1

R

R′

IBv ∪ · · · ∪Bv+t−1

Bu ∪ · · · ∪Bu+t−1 Bv ∪ · · · ∪Bv+t−1

Rg

x1

x2

x3

x4

Eu Ev

Eu Ev

The cycle X

Figure 4: Finding a longer cycle than the given cycle X in vertex-transitive graphs G.

of (E(X) \ Eu)
g
. Summarizing, the endpoints of subpaths formed by Ev, by E(X) \ Ev, and by

(E(X) \ Eu)
g
are all the same. Let I denote the set of these endpoints that belong to

⋃
i∈[v+t,j] Bi.

Recall the definitions of R and R′. Let Rg be the image of R under the automorphism g.
Putting everything together, we can derive that the endpoints of the paths in R′ are the same as
those ofRg, that is, the vertices of I. Moreover, since gu ∼ gv, these vertices of I appear in the same
cyclic order along both X and Xg. Therefore, we can label the vertices as I = {x1, x2, · · · , x2r} and
write R′ = {P1, · · · , Pr} and Rg = {Q1, · · · , Qr}, such that Pi and Qi share the same endpoints
{x2i−1, x2i} for every i ∈ [r].

We view all Pi ∈ R′ as subpaths of the cycle X and all Qi ∈ Rg as subpaths of the cycle Xg. To
apply Observation 4.2, it remains to verify that each Qi could only intersect X at vertices of some
Pj . This follows since all vertices of Qi ∈ Rg are entirely contained in

⋃
j∈[v+t,j+v−u] Bj , whereas

the vertices in V (X)\V (R′) must belong to
⋃

j∈[v+t−1] Bj . Since j+(v−u) < n/s−10k
2

+(v−u) <

n/s, these two block intervals are disjoint, which completes the verification. Finally, we can apply
Observation 4.2 to conclude that the edges in E(X) ∪ E(Rg) \ E(R′) form a cycle in G of length
|X| + |E(R)| − |E(R′)| > |X|, which contradicts the maximality of X. This proves (4), namely,

j > n/s− 10k
2

. Hence, we have |J | ≥ j − k ≥ n/s− 10k
2 − k.

Recall that Q =
⋃

B∈J B. Since |Q \A| ≤ k3

2 + k2, we obtain the following inequality

n

2
≥ |A| ≥ |Q| −

(
k3

2
+ k2

)
= s|J | −

(
k3

2
+ k2

)
≥ s(n/s− 10k

2

− k)−
(
k3

2
+ k2

)
> n− 10k

2

· k,

which gives n < 2k · 10k2

< 3100k
2

, contradicting (3), and completes the proof of Theorem 1.8.

To conclude this section, we derive Corollary 1.9 from Theorem 1.8.

Proof of Corollary 1.9. By Corollary 1.6 and Theorem 1.8, every two longest cycles in a con-
nected d-regular vertex-transitive graph on n vertices intersect in at least

min
d≥2

max
{
Ω
(
(logd n)

1/3
)
,Ω(d2/3)

}
= Ω

(
(lnn/ ln lnn)1/3

)
vertices, where the minimum is achieved when d = Θ

(
(lnn/ ln lnn)1/2

)
.
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5 Concluding remarks

In this paper, we obtain two results on the intersection of longest cycles in graphs G, which are
closely related to the problems of estimating the size of transversals and the parameter c(G).

In the proof of Theorem 1.8, given a cycle X, we exploit the “block structure” of vertex-
transitive graphs to construct a longer cycle by assembling certain subpaths of X and their images
under automorphisms. It would be interesting to see whether this approach can be further improved
and applied in other contexts.

Next we discuss a natural extension of longest cycles to the so-called maximum R-subdivisions,
a concept studied in [15,17], and we present a corresponding generalization of Theorem 1.5.

Definition 5.1. Let R be a multigraph. A maximum R-subdivision in a graph G is a subdivision
of R with the maximum number of vertices in G.

Let P2 be a single edge and C1 a single vertex with a loop. Then a longest path (respectively,
cycle) in a graph G is a maximum P2-subdivision (respectively, C1-subdivision) in G.

The following result extends Theorem 1.5 to maximum R-subdivisions for any multigraph R.
Notably, the analogous statement of Theorem 1.5 also holds for longest paths.

Theorem 5.2. For any multigraph R, if two maximum R-subdivisions in a graph G share m
vertices, then there exists a vertex cut of size OR(m

3
2 ) separating them.

Proof sketch. Let X and Y be two maximum R-subdivisions in G, and define M = V (X) ∩
V (Y ) and m = |M |. For each e ∈ E(R), let Pe(X) denote the subdivided path or cycle in X
corresponding to e – specifically, a path if e = P2, or a cycle if e = C1.

By the pigeonhole principle, among the e(R)2 edge pairs (e, e′) ∈ E(R)2, any collection P of k
disjoint (X −M,Y −M)-paths must include at least k/e(R)2 paths whose endpoints lie in Pe(X)
and Pe′(Y ), for some pair (e, e′) ∈ E(R)2. Decompose Pe(X) − V (Y ) (resp. Pe′(Y ) − V (X))
into segments X1, . . . , Xm (resp. Y1, . . . , Ym)5, and construct the auxiliary bipartite graph F :=
F (Pe(X), Pe′(Y ),P) as in Definition 2.3. Here, each vertex of F represents a segment Xi or Yj ,
and F contains at least k/e(R)2 edges, each representing an (X−M,Y −M)-path whose endpoints
lie in the corresponding segments.

We assert that e(F ) = OR(m
3/2). The proof largely follows Section 3 (which covers the case

R = C1). Here, we focus on e = e′ = P2, highlighting only the differences and providing detailed
explanations as needed; the other cases where e or e′ is C1 can be handled similarly.

In this case, Pe(X) and Pe′(Y ) are two paths in G, and the definition of a winning certificate
should be adapted to a pair (Q1, Q2) of paths satisfying the following conditions:

• Q1 has the same endpoints as Pe′(Y ), and Q2 has the same endpoints as Pe(X).

• V (Q1) ∩ V (Y ) ⊆ V (Pe′(Y )), and V (Q2) ∩ V (X) ⊆ V (Pe(X)).

• E(Q1) ∪ E(Q2) ⊇ E(Pe(X)) ∪ E(Pe′(Y )), and |Q1|+ |Q2| > |Pe(X)|+ |Pe′(Y )|.

Given such a winning certificate, replacing Pe(X) by Q2 in X and Pe′(Y ) by Q1 in Y produces two
R-subdivisions X ′ and Y ′ such that e(X ′) + e(Y ′) > e(X) + e(Y ), contradicting the maximality
of X and Y . The red and blue paths in Figure 2 and Figure 3 still serve as examples of such
winning certificates. The main difference, compared to the proof in Section 3, arises in the proof
of Lemma 3.4, where we can no longer assume that the Y -segments are arranged as in Figure 3
and there would be 32 cases rather than 4 cases to be verified. To see this, in addition to the
configuration in Figure 3, the segments on Y may also be arranged as (Yk1

, Yℓ1 , Yℓ2 , Yk2
). For each

4-cycle, there are two possible relative orderings of the two vertex pairs on the X-segments (and
similarly for the Y -segments). This gives four distinct relative orderings per 4-cycle. In total, there
are 2 · 42 = 32 possible configurations to consider. We omit the detailed verification that, using
constructions almost identical to Lemma 3.4, each case indeed produces a winning certificate.

It follows that k/e(R)2 ≤ e(F ) = O(m3/2), which implies k = OR(m
3/2). The conclusion then

follows by Menger’s Theorem.

5If e or e′ is P1, the number of segments becomes m+ 1.
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