
ar
X

iv
:2

40
6.

05
67

5v
1 

 [
m

at
h.

C
O

] 
 9

 J
un

 2
02

4

Finding irregular subgraphs via local adjustments

Jie Ma∗ Shengjie Xie†

Abstract

For a graph H, let m(H, k) denote the number of vertices of degree k in H. A
conjecture of Alon and Wei states that for any d ≥ 3, every n-vertex d-regular graph
contains a spanning subgraph H satisfying |m(H, k) − n

d+1 | ≤ 2 for every 0 ≤ k ≤ d.
This holds easily when d ≤ 2. An asymptotic version of this conjecture was initially
established by Frieze, Gould, Karoński and Pfender, subsequently improved by Alon
and Wei, and most recently enhanced by Fox, Luo and Pham, approaching its complete
range. All of these approaches relied on probabilistic methods.

In this paper, we provide a novel framework to study this conjecture, based on lo-
calized deterministic techniques which we call local adjustments. We prove two main
results. Firstly, we show that every n-vertex d-regular graph contains a spanning sub-
graph H satisfying |m(H, k) − n

d+1 | ≤ 2d2 for all 0 ≤ k ≤ d, which provides the first
bound independent of the value of n. Secondly, we confirm the case d = 3 of the Alon-
Wei Conjecture in a strong form. Both results can be generalized to multigraphs and
yield efficient algorithms for finding the desired subgraphs H. Furthermore, we explore
a generalization of the Alon-Wei Conjecture for multigraphs and its connection to the
Faudree-Lehel Conjecture concerning irregularity strength.

1 Introduction

In this paper, we use the convention that the term “multigraph” refers to a graph allowing
parallel edges but with no loops, while the term “graph” denotes a simple graph (i.e., a graph
without parallel edges and loops). For a multigraph H and an integer k ≥ 0, let m(H, k)
denote the number of vertices of degree k in H , and m(H) = maxk≥0m(H, k).

Alon and Wei [1] proposed the problem of finding highly irregular subgraphs H in an n-
vertex d-regular graph G. In this context, m(H) can be viewed as a measure of the irregularity
of subgraphs H , where a smaller value of m(H) indicates a more dispersed distribution of
the vertex degrees of H , thus suggesting a higher level of irregularity. Additionally, using the
pigeonhole principle, it is easy to see that any spanning subgraph H of G satisfies m(H) ≥
⌈ n
d+1

⌉. Alon and Wei [1] made the following conjecture, which asserts the existence of a
spanning subgraph H with a small value of m(H) that nearly matches this lower bound.
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Conjecture 1.1 (Alon-Wei [1], see Conjecture 1.1). Every d-regular graph G on n vertices
contains a spanning subgraph H such that

∣

∣

∣

∣

m(H, k) −
n

d + 1

∣

∣

∣

∣

≤ 2 holds for for all 0 ≤ k ≤ d.

It is easy to see that this conjecture holds when d ≤ 2. If true, this is optimal in the sense
that the bound cannot be improved by “≤ 1”. A specific example is the vertex disjoint union
of two four-cycles, as shown in [1]. Additionally, other examples that support this conjecture
include all complete bipartite graphs Kd,d for odd integers d.1

Conjecture 1.1 is closely related to the problem of determining the irregularity strength
s(G) of a graph G. The irregularity strength s(G), introduced in [4], denotes the least positive
integer s for which there exists a function f : E(G) → {1, 2, . . . , s} such that the sums of
f(e) over all incident edges e to each vertex of G are distinct. A well-known conjecture of
Faudree and Lehel [9] states that there exists an absolute constant c > 0 such that for any
d ≥ 2, every n-vertex d-regular graph G has s(G) ≤ n

d
+ c. This conjecture is tight up to the

constant c and remains open, despite recent breakthroughs in [20–22]. Alon and Wei [1] built
a connection between these two problems (see its Theorems 1.7 and 1.8). In particular, they
proved that any d-regular graph G contains a spanning subgraph H with m(H) ≤ 2s(G)−2.
For further exploration of the irregularity strength, we recommend referring to the literature
that includes works such as [2, 3, 5–10, 12–22].

Returning to Conjecture 1.1, an early result of Frieze, Gould, Karoński and Pfender [12]
shows that every n-vertex d-regular graph contains a spanning subgraph H with

m(H, k) = (1 + o(1))
n

d + 1
for all 0 ≤ k ≤ d (1)

whenever d ≤ (n/ logn)1/4 is provided. Alon and Wei [1] enhanced this result by demon-
strating the same statement under a relaxed condition of d = o((n/ logn)1/3). Very recently,
Fox, Luo and Pham [11] proved that (1) holds under an even weaker condition, namely
d = o(n/(logn)12). It is worth noting that all of these aforementioned results are obtained
by employing probabilistic methods, specifically by considering random spanning subgraphs.

In this paper, we present a novel deterministic approach for addressing Conjecture 1.1.
Our approach is centered around the recursive updating of spanning subgraphs H through
a series of localized operations, referred to as local adjustments. In comparison to the previ-
ous probabilistic approach, our method demonstrates superior performance specifically when
applied to sparse d-regular graphs, offering two distinct advantages. Firstly, it provides a
deterministic algorithm with efficient time complexity for the construction of irregular span-
ning subgraphs. Secondly, it extends its applicability to a wider range of graphs, including
all d-regular multigraphs. This extension is particularly significant as it plays a critical role
in our discussion of a generalization of Conjecture 1.1 that would imply the Faudree-Lehel
conjecture (see Section 5 for details).

Our first result is the following. Throughout this paper, when we refer to a subgraph of
a multigraph, it is implied that the subgraph is also a multigraph.

1For odd d, it can be demonstrated (through non-trivial analysis) that any spanning subgraph H of Kd,d

has some 0 ≤ k ≤ d such that either m(H, k) = 0 or m(H, k) ≥ 3.
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Theorem 1.2. Every d-regular multigraph G on n vertices contains a spanning subgraph H
such that

∣

∣

∣

∣

m(H, k) −
n

d + 1

∣

∣

∣

∣

≤ 2d2 holds for all 0 ≤ k ≤ d.

Moreover, there exists an algorithm with time complexity Od(n
d+1) to find such H.

To determine the leading coefficient hidden in the time complexity Od(n
d+1), it suffices

to choose O(dd+2). We point out that this result implies the first bound for Conjecture 1.1
that is independent of the value of n. Furthermore, when compared with the result of Fox,
Luo and Pham [11], Theorem 1.2 gives a more precise bound, particularly when d = o(n1/3).

Our second result focuses on cubic multigraphs and confirms the validity of Conjecture 1.1
for the case d = 3 (in fact, in a slightly stronger form, as stated in Theorem 4.10).

Theorem 1.3. Every cubic multigraph G on n vertices contains a spanning subgraph H such
that

∣

∣

∣
m(H, k) −

n

4

∣

∣

∣
≤ 2 holds for all 0 ≤ k ≤ 3.

Moreover, there exists a linear time algorithm to find such a spanning subgraph H.

For an overview of both results, we refer readers to the beginning of Section 3 for an
outline of Theorem 1.2, and Subsection 4.1 for an outline of Theorem 1.3. We add a side
remark here that while both proofs of Theorems 1.2 and 1.3 utilize local adjustments, the
methodologies differ in detail. The proof of Theorem 1.2 involves continuously updating
spanning subgraphs of the host multigraph G. On the other hand, the proof of Theorem 1.3
incorporates an inductive argument where a sequence of host multigraphs Gi is constructed,
and the spanning subgraphs Hi are updated within each Gi.

The remaining sections of the paper are organized as follows. In Section 2, we intro-
duce the necessary notation and concepts, including an explanation of the mean of local
adjustments. In Section 3, we present the completed proof of Theorem 1.2. In Section 4,
we provide the proof of Theorem 1.3. Finally, in Section 5, we conclude with some closing
remarks. Throughout this paper, let [k] denote the set {1, 2, ..., k} for positive integers k.

2 Irregularity vectors and local adjustments

In this section, we provide notation and concepts necessary for the upcoming proofs. One of
the key notions we define is a quantitative measure that captures the irregularity exhibited
by spanning subgraphs (see the definition of (2) for the irregularity vector). Additionally, we
introduce our local adjustment techniques2 and illustrate how these techniques contribute to
the irregularity measure.

2By a local adjustment, we mean an operation of adding or deleting edges of some specific multigraphs
(for further details, we refer to Subsections 2.2 and 4.1).
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2.1 Irregularity vectors

Throughout this section, let G be a fixed n-vertex d-regular multigraph and H be a spanning
subgraph of G. For 0 ≤ i ≤ d, let V H

i = {v ∈ V (G) : dH(v) = i} be the set of vertices with
degree i in H . So m(H, i) = |V H

i |. By writing ai(H) = |V H
i | − n

d+1
, we define

a(H) = (a0(H), a1(H), . . . , ad(H))

to be the vector whose entries indicate the difference between |V H
i | and n

d+1
. The Alon-Wei

conjecture is equivalent to finding a spanning subgraph H such that the L∞ norm ‖a(H)‖∞
of a(H) is at most two. However, in establishing the general bound of Theorem 1.2, our focus
primarily lies on bounding the following convolution version b(H) of a(H): Define b0(H) = 0
and for 1 ≤ i ≤ d + 1, define bi(H) =

∑i−1
j=0 aj(H). (Note that we have bd+1(H) = 0.) Let

b(H) = (b1(H), b2(H), . . . , bd(H)) (2)

be the irregularity vector of H . It is clear that a(H) and b(H) completely determine each
other and moreover, since |ai(H)| = |bi+1(H) − bi(H)| ≤ |bi+1(H)| + |bi(H)|, we have

‖a(H)‖∞ ≤ 2 ‖b(H)‖∞ . (3)

An advantage of the approach of bounding ‖b(H)‖∞ is its simplicity in evaluating the changes
of b(H) that result from specific local adjustments; see Lemma 2.2.

The following proposition presents another useful perspective we adopt in the proof. It
establishes the symmetric properties of a and b between a spanning subgraph H of a d-regular
multigraph G and its complement G\H = (V (G), E(G)\E(H)) with respect to G.

Proposition 2.1. Let G be a d-regular multigraph and H be a spanning subgraph of G. Then
ai(G\H) = ad−i(H) for every 0 ≤ i ≤ d, and bi(G\H) = −bd+1−i(H) for every 1 ≤ i ≤ d.

Proof. For every 0 ≤ i ≤ d, we have V
G\H
i = V H

d−i and thus ai(G\H) = ad−i(H). Since
∑d

j=0 aj(H) = 0, this implies that for every 1 ≤ i ≤ d,

bi(G\H) =

i−1
∑

j=0

aj(G\H) =

d
∑

j=d−i+1

aj(H) = −
d−i
∑

j=0

aj(H) = −bd−i+1(H),

completing the proof.

We observe from this proposition that finding a satisfactory spanning subgraph H (say
with ‖a(H)‖∞ ≤ C) is equivalent to finding a satisfactory G\H (with the same bound
‖a(G\H)‖∞ ≤ C). In this context, we say that H and G\H are symmetric.

2.2 Local adjustments and their impacts on irregularity vectors

Now we introduce a family of specialized multigraphs (which are called multi-stars, see Fig-
ure 1) that serve as the foundation for our local adjustment approach. Subsequently, we
explore their influence on the irregularity vector (see Lemma 2.2).
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Recall H is a spanning subgraph of a multigraph G. For an edge xy ∈ E(G), we call xy an
H(i,j)-edge if dH(x) = i and dH(y) = j. We emphasize that i can be j or not, and xy can be
an edge in H or G\H . Let k, ℓ1, . . . , ℓs, α1, . . . , αs ≥ 1 be integers. Let S(k;ℓ1,...,ℓs;α1,...,αs)(H)
denote a multi-star of H with center u and distinct leaves v1, . . . , vs such that dH(u) = k,
dH(vi) = ℓi and there are αi multi-edges between u and vi for each i ∈ [s]. Note that every
edge between u and vi in this multi-star is an H(k, ℓi)-edge. Similarly, let S(k;ℓ1,...,ℓs;α1,...,αs)(H)
denote a multi-star of G\H with center u and distinct leaves v1, . . . , vs such that dH(u) = k,
dH(vi) = ℓi and there are αi multi-edges between u and vi for each i ∈ [s].

k

v1 :

v2 :

vs :

α1

α2

αs

u : dH(u) =

dH(v1) = ℓ1

dH(v2) = ℓ2

dH(vs) = ℓs

Figure 1: The multi-star S(k;ℓ1,...,ℓs;α1,...,αs)(H)

The next lemma will be frequently used in subsequent proofs. For i ∈ [d], let ei ∈ {0, 1}d

be the vector whose i-th entry is 1 and all other entries are 0.

Lemma 2.2. Let G be an n-vertex d-regular multigraph and H be a spanning subgraph of G.
Then the following hold:

(1) If xy ∈ E(H) is an H(i, j)-edge, then b(H − xy) = b(H) + ei + ej.

(2) If uv ∈ E(G\H) is an H(i, j)-edge, then b(H + uv) = b(H) − ei+1 − ej+1.

(3) Let H ′ be obtained from H by deleting the edges of a copy of S(k;ℓ1,...,ℓs;α1,...,αs)(H). Let
m =

∑s
i=1 αi. Then b(H ′) = b(H) +

∑m
i=1 ek+1−i +

∑s
i=1

∑αi

j=1 eℓi+1−j.

(4) Let H ′′ be obtained from H by adding the edges of a copy of S(k;ℓ1,...,ℓs;α1,...,αs)(H). Let
m =

∑s
i=1 αi. Then b(H ′′) = b(H) −

∑m
i=1 ek+i −

∑s
i=1

∑αi

j=1 eℓi+j.

Proof. To prove (1), we first consider the change of x’s degree after the deletion of the edge
xy. We see ai = adH (x) decreases by 1, and ai−1 = adH (x)−1 increases by 1. Hence bi increases
by 1 and all other bk’s (for k 6= i) remain the same. Similarly, considering the change of y’s
degree, we have bj increases by 1 and the others remain the same. Hence we have prove (1).

The proof of (2) is similar. After adding uv to H , both d(u) and d(v) increase by 1.
Hence bd(u)+1(H) and bd(v)+1(H) decrease by 1 respectively, while other bk’s remain the same.

For the proof of (3), let u be the center and v1, . . . , vs be distinct leaves of the deleted
multi-star, where dH(u) = k, dH(vi) = ℓi and there are αi multi-edges between u and vi

5



for each i ∈ [s]. Then H ′ can be generated from H by recursively deleting the m edges
(uv1)

1, . . . , (uv1)
α1 , . . . , (uvs)

1, . . . , (uvs)
αs in order. Let H(i) be obtained from H by deleting

the first i edges. In this process of evolution (from H = H(0) to H ′ = H(m)), the degree of u
is updated from k to k −m, while the degree of vi is updated from ℓi to ℓi − αi for i ∈ [s].
Using (1), it is easy to obtain the desired equation as follows

b(H ′) = b(H(0)) +
m
∑

i=1

(b(H(i)) − b(H(i−1))) = b(H) +
m
∑

i=1

ek+1−i +
s

∑

i=1

αi
∑

j=1

eℓi+1−j.

By utilizing (2), we can derive the proof of (4) in a similar manner.

3 General regular multigraphs: Theorem 1.2

This section is devoted to the proof of Theorem 1.2. Let G be an n-vertex d-regular multi-
graph throughout this section. We aim to show that there exists a spanning subgraph H
of G such that ‖a(H)‖∞ ≤ 2d2 and in view of (3), it suffices to show that ‖b(H)‖∞ ≤ d2.
Along the way, we explain that this proof can be turned into a deterministic algorithm with
time complexity Od(n

d+1).
First, we introduce a concept that help describing the process of updating spanning

subgraphs of G. We define C(H) as the increasing ordering of the sequence {|bi(H)|}di=1.

Definition 3.1. Let H,H ′ be two spanning subgraphs of G. We say H ′ is an improvement
of H in G, if they satisfy that either

(A).
∑d

j=1 |bj(H
′)| <

∑d
j=1 |bj(H)|, or

(B).
∑d

j=1 |bj(H
′)| =

∑d
j=1 |bj(H)| but C(H) < C(H ′) holds in the lexicographic order.

The following lemma is key for Theorem 1.2, whose proof will be postponed in Subsec-
tions 3.1 and 3.2.

Lemma 3.2. Let d ≥ 2. Let G be an n-vertex d-regular multigraph and H be its spanning
subgraph. Let M ≥ d be a constant. If there exists some i ∈ [d] with |bi(H)| > M , then

• either there exists some j ∈ [d] with |bj(H)| ∈ (M − d,M ],

• or one can construct an improvement of H in G, using linear time Od(n).

In the next lemma, we show that the number of successive improvements one can possibly
perform is finitely bounded.

Lemma 3.3. Let G be an n-vertex d-regular multigraph. Then any sequence (H0, H1, H2, . . .)
of spanning subgraphs of G such that Hi+1 is an improvement of Hi for each i ≥ 0 has length
at most Od(n

d).

6



Proof. Let H be any spanning subgraph of G. It is evident that
∑d

j=1 |bj(H)| ≤ dn. For

j ∈ [d], let c(j)(H) be the j-th smallest number in the sequence {|bi(H)|}di=1. Then we have

0 ≤ c(j)(H) ≤ n. (4)

Let Hi+1 be the improvement of Hi in the sequence. We say that Hi+1 has type 0 if
∑d

j=1 |bj(Hi+1)| <
∑d

j=1 |bj(Hi)|, and type k if
∑d

j=1 |bj(Hi+1)| =
∑d

j=1 |bj(Hi)|, c
(j)(Hi) =

c(j)(Hi+1) for every j ≤ k− 1 and c(k)(Hi) < c(k)(Hi+1). Here, k ranges between 1 and d− 1.
We point out that b(j)(H) ∈ 1

d+1
Z for all j. So

∑d
j=1 |bj(H)| ∈ 1

d+1
Z, and this summation

is strictly decreasing in all spanning subgraphs of type 0. This implies that in any considered
sequence (H0, H1, H2, . . .) of spanning subraphs of G, there are at most (d+1)dn+1 spanning
subgraphs of type 0. We can also derive from (4) that between two subgraphs of type 0, where
no other subgraphs of type 0 are in between, there are at most (d + 1)n + 1 subgraphs of
type 1. Similarly, between two subgraphs of type i, where no other subgraphs of type j for
some j ≤ i are in between, there are at most (d + 1)n + 1 subgraphs of type i + 1. Putting
the above all together, we see that the length of any sequence (H0, H1, H2, . . .) is at most

(

(d + 1)dn + 1
)

·
(

(d + 1)n + 1
)d−1

= Od(n
d).

We have completed the proof of this lemma.

With the two aforementioned lemmas in mind, we are now ready to provide the proof of
Theorem 1.2.

Proof of Theorem 1.2 (assuming Lemma 3.2). Let n > d ≥ 2 and G be any n-vertex
d-regular multigraph. Our goal is to find a spanning subgraph H of G in time complexity
Od(n

d+1) with ‖a(H)‖∞ ≤ 2d2.
By the discussion at the beginning of this section, it suffices to find such H with ‖b(H)‖∞ ≤

d2. We make the following claim.

Claim. Given any spanning subgraph H of G, either ‖b(H)‖∞ ≤ d2, or one can find an
improvement of H in G using linear time Od(n).

To prove this claim, we repeatedly use Lemma 3.2. Let Mt = td for integers t ≥ 0. Suppose
that ‖b(H)‖∞ > d2 = Md (so there exists some jd ∈ [d] with |bjd(H)| > Md). By Lemma 3.2,
either there exists some jd−1 ∈ [d] with |bjd−1

(H)| ∈ (Md−1,Md], or one can find an improve-
ment of H in G using linear time Od(n). In the latter case, this claim becomes valid. So we
may assume the former case occurs. For every d−1 ≥ i ≥ 1, applying Lemma 3.2 for Mi in a
similar matter, we can conclude that there exists some ji−1 ∈ [d] with |bji−1

(H)| ∈ (Mi−1,Mi]
(as otherwise, one can find an improvement of H in G using linear time Od(n)). Putting
these all together, we obtain d+1 indices jd, jd−1, . . . , j0 ∈ [d] which are obviously all distinct.
This is a contradiction and thus proves the claim.

Now using the above claim, we can achieve our goal via the following algorithm: Initially
choose any spanning subgraph H0 of G. If ‖b(Hi)‖∞ ≤ d2 for some i ≥ 0, then we terminate;
otherwise, by the above claim one can find an improvement Hi+1 of Hi in G using linear
time Od(n), and then we iterate this process by considering Hi+1. In view of Lemma 3.3,
this algorithm must terminate in Od(n

d) iterations and thus terminate in time complexity

7



Od(n
d+1). When it terminates at some spanning subgraph say H∗, it is clear that we meet

the desired requirement ‖b(H∗)‖∞ ≤ d2, finishing the proof of Theorem 1.2.

In the remainder of this section, we complete the proof of Lemma 3.2 through two steps.

1. Firstly, we demonstrate that certain specific multi-stars exist when the running span-
ning subgraph H is far from being irregular (see Lemma 3.6).

2. Secondly, we establish that any multi-star obtained in the previous step can be utilized
in a local adjustment to construct an improvement of the current running spanning
subgraph (see Lemmas 3.7 and 3.8).

These two steps will be covered in Subsections 3.1 and 3.2, respectively. The proof of
Lemma 3.2 will be presented at the end of this section.

3.1 Constructing multi-stars

In this subsection, we prove the existence of suitable multi-stars (with additional restrictions)
whenever the spanning subgraph H deviates from being irregular.

The coming lemma is mainly derived using a double-counting argument.

Lemma 3.4. Let G be a d-regular multigraph and H be its spanning subgraph. Suppose A,B
are two disjoint subsets of {0, 1, . . . , d}. Then the following hold:

(a) Suppose for any i ∈ A and j /∈ B, there is no H(i, j)-edge in H. Let ni, mj ≥ 1 be
integers for i ∈ A and j ∈ B such that ni ≤ i and

∑

i∈A ni|V
H
i | >

∑

j∈B mj |V
H
j |. Then

there exists a multi-star S(k;ℓ1,...,ℓs;α1,...,αs)(H) with mk + 1 edges satisfying that k ∈ B,
ℓq ∈ A and 1 ≤ αq ≤ nℓq for each q ∈ [s].

(b) Suppose for any i ∈ A and j /∈ B, there is no H(i − 1, j − 1)-edge in G\H. Let
ni, mj ≥ 1 be integers for i ∈ A and j ∈ B such that ni ≤ d− i+ 1 and

∑

i∈A ni|V
H
i−1| >

∑

j∈B mj |V
H
j−1|. Then there exists a multi-star S(k−1;ℓ1−1,...,ℓs−1;α1,...,αs)(H) with mk + 1

edges satisfying that k ∈ B, ℓq ∈ A and 1 ≤ αq ≤ nℓq for each q ∈ [s].

Proof. Consider (a) first. Let i ∈ A and x ∈ V H
i . Note that any edge of H incident to x

must be incident to some vertex in ∪j∈BV
H
j . Since 1 ≤ ni ≤ i, we can select ni edges of H

incident to x and orient them to be directed edges with head x. Let Ex denote the set of these
directed edges. Let D be the directed multigraph induced by the edge set ∪i∈A ∪x∈V H

i
Ex.

Then all directed edges of D are oriented from ∪i∈AV
H
i to ∪j∈BV

H
j , where each x ∈ V H

i for
i ∈ A has out-degree exactly ni. It is straightforward to see that if there exists some vertex
y ∈ V H

k for some k ∈ B with in-degree at least mk + 1 in D, then we can find a desired
multi-star S(k;ℓ1,...,ℓs;α1,...,αs)(H), where ℓq ∈ A and 1 ≤ αq ≤ nℓq for each q ∈ [s]. So we may
assume that any vertex y ∈ V H

j for j ∈ B has in-degree at most mj in D. Then this leads to
that

∑

i∈A ni|V
H
i | = e(D) ≤

∑

j∈B mj |V
H
j |, a contradiction to the given condition.

The item (b) can be proved similarly, by considering the edges of G\H instead of H . Let
i ∈ A and x ∈ V H

i−1. So there are d− i + 1 edges of G\H incident to x. Since ni ≤ d− i + 1,
among them we can select ni edges and orient these edges with head x. Again, let Ex denote

8



the set of these directed edges. Let D′ be the directed multigraph induced by the edge set
∪i∈A ∪x∈V H

i−1
Ex. Using the same arguments for double-counting e(D′) as in the item (a), we

can finish the proof for the item (b).

We point out that the extra requirements αq ≤ nℓq will be crucial in controlling the
variations of irregularity vectors, while the practical meanings of the constants ni, mj are
revealed in Lemma 3.6. Next, we derive a special case for d = 3 from Lemma 3.4.

Lemma 3.5. Let G be a cubic multigraph and H be its spanning subgraph. If 3a3(H) >
a1(H) + 2a2(H), then there is an H(3, 3)-edge in H; if 3a0(H) > 2a1(H) + a2(H), then there
is an H(0, 0)-edge in G\H.

Proof. Suppose that 3a3(H) > a1(H) + 2a2(H) and H has no H(3, 3)-edges. Let A = {3}
and B = {0, 1, 2} with n3 = 3 and mj = j for each j ∈ B. Then 3|V H

3 | = 3a3(H) + 3n/4 >
(a1(H) +n/4) + (2a2(H) + 2n/4) =

∑

j∈B mj |V
H
j |. By Lemma 3.4, there must be an H(0, 3)-

edge in H , a multi-star consisting of two edges uv1, uv2 ∈ E(H) with dH(u) = 1, or a
multi-star consisting of three edges uv1, uv2, uv3 ∈ E(H) with dH(u) = 2. But clearly these
three types of subgraphs do not exist in H , a contradiction. This proves the first conclusion.
To show the second conclusion, we only need to consider G\H and use Proposition 2.1.

The goal of this subsection is accomplished by the following lemma. It asserts that under
some mild assumptions on the irregularity vector, one can always find appropriate multi-stars
for the use of local adjustments.

Lemma 3.6. Let G be a d-regular multigraph and H be its spanning subgraph. For any fixed
constant α > 0, let A+ = {i ∈ [d] : bi(H) > α} and A− = {i ∈ [d] : bi(H) < −α}.

• For i ∈ A+, let ni, mi > 0 be the smallest integers such that i+ni /∈ A+ and i−mi /∈ A+;

• For i ∈ A−, let ni, mi > 0 be the smallest integers such that i−ni /∈ A− and i+mi /∈ A−.

If both A+ and A− are not empty, then there exists at least one of the following subgraphs:

(I). an (i, j)-edge in H with i ∈ A− and j /∈ A+;

(II). an (i− 1, j − 1)-edge in G\H with i ∈ A+ and j /∈ A−;

(III). a multi-star S(k;ℓ1,...,ℓs;α1,...,αs)(H) with mk +1 edges with k ∈ A+, ℓq ∈ A− and 1 ≤ αq ≤
nℓq for each q ∈ [s];

(IV). a multi-star S(k−1;ℓ1−1,...,ℓs−1;α1,...,αs)(H) with mk + 1 edges with k ∈ A−, ℓq ∈ A+ and
1 ≤ αq ≤ nℓq for each q ∈ [s].

Proof. Consider any interval {j, j+1, . . . , k} in A+ with j−1, k+1 /∈ A+. Then by definition
for any j ≤ i ≤ k, ni = k − i + 1 and mi = i− j + 1. Thus we have

k
∑

i=j

(ni −mi) =
k

∑

i=j

((k − i + 1) − (i− j + 1)) =
k

∑

i=j

(k − 2i + j) = 0

9



This can be easily generalized to the following

∑

i∈A+

(ni −mi) = 0 and similarly
∑

i∈A−

(ni −mi) = 0 (5)

Suppose for a contradiction that all items (I)-(IV) do not occur. Then by Lemma 3.4, we
have

∑

i∈A−

ni|V
H
i | ≤

∑

j∈A+

mj |V
H
j | and

∑

j∈A+

nj |V
H
j−1| ≤

∑

i∈A−

mi|V
H
i−1|. (6)

Adding these two inequalities up, we can derive that

M :=
∑

i∈A−

(ni|V
H
i | −mi|V

H
i−1|) +

∑

i∈A+

(ni|V
H
i−1| −mi|V

H
i |) ≤ 0 (7)

In what follows, we will show that both above terms in M are positive. Therefore, M is
positive, which is a contradiction to (7) and thus completes the proof.

Let us first show that the second term is positive. To show this, it suffices to show that
for any interval {j, j + 1, . . . , k} in A+ with j − 1, k + 1 /∈ A+, we have

T :=

k
∑

i=j

(

ni|V
H
i−1| −mi|V

H
i |

)

> 0.

Indeed, by performing a detail calculation, we can verify this as follows. Write bi := bi(H).
Then bi+1 − bi = ai(H) = |V H

i | − n
d+1

. Therefore,

T =

k
∑

i=j

(

ni

(

bi − bi−1 +
n

d + 1

)

−mi

(

bi+1 − bi +
n

d + 1

)

)

=

k
∑

i=j

(

ni(bi − bi−1) −mi(bi+1 − bi)

)

+
n

d + 1
·

k
∑

i=j

(ni −mi)

=

k
∑

i=j

(

(k − j + 2)bi − (i− j + 1)bi+1 − (k − i + 1)bi−1

)

= 2(bj + bj+1 + . . . + bk) − (k − j + 1)(bk+1 + bj−1) > 0,

where the third equation holds because we have (5), ni = k − i + 1 and mi = i − j + 1 for
any j ≤ i ≤ k, and the last inequality follows by the fact that j − 1, k + 1 /∈ A+.

The proof of
∑

i∈A−(ni|V
H
i | −mi|V

H
i−1|) > 0 can be derived analogously. The only differ-

ence is to observe that for an interval {j, j + 1, . . . , k} in A− with j − 1, k + 1 /∈ A−, we have
ni = i− j + 1 and mi = k − i + 1 for any j ≤ i ≤ k.

To conclude this section, we would like to remark that there exists an algorithm (i.e., the
greedy algorithm) with linear time complexity Od(|V (G)|) to compute A+, A− as well as to
find one of subgraphs listed in the four items of Lemma 3.6 (if it exists).
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3.2 Generating improvements from multi-stars

In the subsequent two lemmas, we show how the four subgraphs indicated by Lemma 3.6
(under some mild conditions) help generating improvements of spanning subgraphs.

Lemma 3.7. Let G be a d-regular multigraph and H be its spanning subgraph. Then the
following statements hold:

(1) If there exists an H(i, j)-edge e in H with bi(H) < −1 and bi(H) + bj(H) < −1, then
H − e is an improvement of H in G;

(2) If there exists an H(i− 1, j − 1)-edge e′ in G\H with bi(H) > 1 and bi(H) + bj(H) > 1,
then H + e′ is an improvement of H in G.

Proof. Consider (1). Let e ∈ E(H) be an H(i, j)-edge with bi(H) < −1 and bi(H) + bj(H) <
−1. Let H ′ = H − e. By Lemma 2.2, we have b(H ′) = b(H) + ei + ej . Let us first assume

that bj(H) < 0. If i 6= j, then it is clear that
∑d

k=1 |bk(H ′)| =
∑d

k=1 |bk(H)| − 1 + (|bj(H) +

1| − |bj(H)|) <
∑d

k=1 |bk(H)|; otherwise i = j, then bi(H) = bj(H) < −1 and we also have
∑d

k=1 |bk(H ′)| =
∑d

k=1 |bk(H)| + (|bi(H) + 2| − |bi(H)|) <
∑d

k=1 |bk(H)|. This shows that H ′

is an improvement of H (with the property (A)). It remains to consider when bj(H) ≥ 0.
In this case, we have bi(H

′) = bi(H) + 1 < −bj(H) ≤ 0 and bj(H
′) = bj(H) + 1. Hence

∑d
k=1 |bk(H ′)| =

∑d
k=1 |bk(H)|, but both |bi(H

′)| and |bj(H
′)| are strictly bigger than |bj(H)|.

Since all entries of b(H ′), except the i’th and j’th entries, remain the same as b(H), we can
easily derive that C(H) < C(H ′) in the lexicographic order. So H ′ is an improvement of H
(with the property (B)), finishing the proof for (1).

To see (2), let F = G\H . We observe that any H(i − 1, j − 1)-edge e′ in F is also an
F (d − i + 1, d − j + 1)-edge. By Proposition 2.1, we also have bd−i+1(F ) = −bi(H) < −1
and bd−i+1(F ) + bd−j+1(F ) = −bi(H) − bj(H) < −1. Applying (1) with respect to e′ and F ,
we conclude that F − e′ is an improvement of F . By Proposition 2.1 again, we observe that
C(G\G′) = C(G′) holds for any subgraph G′ of G. This fact implies that H+e′ = G\(F−e′)
is an improvement of H = G\F . We have completed the proof of this lemma.

Lemma 3.8. Let d ≥ 2. Let G be a d-regular multigraph and H be its spanning subgraph.
For a fixed constant α ≥ d, let A+, A− and ni, mi for i ∈ A+ ∪A− be defined the same as in
Lemma 3.6. Then the following statements hold:

(1) Assume that there exists a multi-star S := S(k;ℓ1,...,ℓs;α1,...,αs)(H) with mk + 1 edges with
k ∈ A+, ℓq ∈ A− and 1 ≤ αq ≤ nℓq for each q ∈ [s]. If bk−mk

(H) ≤ α− d, then H − S is
an improvement of H in G;

(2) Assume that there exists a multi-star S := S(k−1;ℓ1−1,...,ℓs−1;α1,...,αs)(H) with mk + 1 edges
with k ∈ A−, ℓq ∈ A+ and 1 ≤ αq ≤ nℓq for each q ∈ [s]. If bk+mk

(H) ≥ −(α − d), then

H + S is an improvement of H in G.

Proof. Suppose there exists a multi-star S with mk + 1 edges and satisfying other conditions
of (1). Let H ′ = H − S. By Lemma 2.2, we have b(H ′) = b(H) + c1 + c2 + c3, where

c1 =

mk
∑

i=1

ek+1−i, c2 =

s
∑

q=1

αq
∑

j=1

eℓi+1−j , and c3 = ek−mk
.
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By definition, we see that since k ∈ A+, we have k, k−1, . . . , k+1−mk ∈ A+ but k−mk /∈ A+;
since ℓq ∈ A− and 1 ≤ αq ≤ nℓq for each q ∈ [s], we have ℓq, ℓq−1, . . . , ℓq+1−αq ∈ A−. These

facts imply that after adding c1, the value of
∑d

i=1 |bi(·)| increases by mk, while after adding

c2, the value of
∑d

i=1 |bi(·)| decreases by
∑s

q=1 αq = mk + 1. Let b′ = b(H) + c1 + c2, then
∑d

i=1 |b
′
i| =

∑d
i=1 |bi(H)| + mk − (mk + 1) =

∑d
i=1 |bi(H)| − 1. Note that b(H ′) = b′ + c3 =

b′ + ek−mk
.

First we consider k − mk ∈ A−. Since s ≤ mk + 1 ≤ |A+| + 1 ≤ d, we have b′k−mk
≤

bk−mk
(H) + s < −α + d ≤ 0. Then

d
∑

i=1

|bi(H
′)| =

d
∑

i=1

|b′i| + (|b′k−mk
+ 1| − |b′k−mk

|) < (
d

∑

i=1

|bi(H)| − 1) + 1 =
d

∑

i=1

|bi(H)|,

implying that H ′ is an improvement of H (with property (A)).
Now we may assume that k−mk /∈ A−, in this case b′k−mk

= bk−mk
(H). If bk−mk

(H) < 0,
then we can derive from the previous analysis that

d
∑

i=1

|bi(H
′)| <

d
∑

i=1

|bi(H)| i.e., H ′ is an improvement of H (with property (A)).

Otherwise 0 ≤ bk−mk
(H) ≤ α − d. In this case, we have

∑d
i=1 |bi(H

′)| =
∑d

i=1 |bi(H)|. Next
we show that for all j ∈ [d] for which bj(H

′) has been updated differently, it satisfies that

|bj(H
′)| > |bk−mk

(H)|.

This is clear for j = k−mk and for those j ∈ A+; for those j ∈ A−, since s ≤ mk + 1 ≤ d, we
have |bj(H

′)| ≥ |bj(H)| − s > α − d ≥ |bk−mk
(H)| as desired. Hence, C(H) < C(H ′) holds

in the lexicographic order, i.e., H ′ is an improvement of H (with property (B)). This proves
the item (1). The proof for the item (2) can be derived similarly so we omit here.

Combining the above two lemmas with Lemma 3.6, we are able to prove the key lemma
for Theorem 1.2 as follows.

Proof of Lemma 3.2. We assume that there is no j ∈ [d] with |bj(H)| ∈ (M − d,M ], and
aim to show the existence of an improvement of H in G. The running time Od(n) will be
discussed at the end of the proof.

By symmetry between H and G\H , we may assume that there exists some i ∈ [d] with
bi(H) > M . Set α := M . Let A+ = {i ∈ [d] : bi(H) > α} and A− = {i ∈ [d] : bi(H) < −α}.
So A+ is nonempty. Let A+ =

⋃ℓ
s=1{js, js + 1, . . . , ks}, where each ks ≤ js+1 − 2. Then

∑

i∈A+

|Vi−1(H)| =
∑

i∈A+

(

bi(H) − bi−1(H)
)

+ |A+| · n/(d + 1) >
ℓ

∑

s=1

(bks(H) − bjs−1(H)) > 0.

This says, there exists a vertex of degree i − 1 in H for some i ∈ A+. Then there must be
some H(i − 1, j − 1)-edge e in G\H for some i ∈ A+ and j ∈ [d]. By Lemma 3.7, since
bi(H) > M > 1, if bi(H) + bj(H) > 1, then H + e is an improvement of H in G. So we may
assume that bj(H) ≤ −bi(H) + 1 < −(M − 1).

12



If −M ≤ bj(H) < −(M−1), then |bj(H)| ∈ (M−d,M ], a contradiction of our assumption.
So we may assume that bj(H) < −M , which implies that A− is also nonempty. By Lemma 3.6
(with α = M), there exists one of the four subgraphs listed from (I) to (IV), denoted by
F . Suppose this subgraph F is from (I), i.e., an H(i, j)-edge e∗ in H with i ∈ A− and
j /∈ A+. By our assumption that there is no j ∈ [d] with |bj(H)| ∈ (M − d,M ], the
fact that j /∈ A+ implies that bj(H) ≤ M − d. Hence, we have bi(H) < −M < −1 and
bi(H) + bj(H) < −M + (M − d) = −d ≤ −1. By Lemma 3.7 (1), we see H − e∗ is an
improvement of H in G. Similarly, if F is from (II), then one can use Lemma 3.7 (2) to find
an improvement of H in G.

Now suppose the subgraph F is from (III), i.e., a multi-star S(k;ℓ1,...,ℓs;α1,...,αs)(H) with
mk + 1 edges with k ∈ A+, ℓq ∈ A− and 1 ≤ αq ≤ nℓq for each q ∈ [s]. Note that by
definition, k − mk /∈ A+, implying that bk−mk

(H) ≤ M − d = α − d, where α = M ≥ d.
By Lemma 3.8 (1), we see H − F is an improvement of H in G. It remains to consider
the case when F is from (IV) of Lemma 3.6. By similar arguments, we can use Lemma 3.8
(2) to conclude that H + F is an improvement of H in G. This proves the existence of an
improvement of H .

By the remark after Lemma 3.6, it takes linear time Od(n) to compute A+, A− as well
as to find one of subgraphs listed in the four items of Lemma 3.6 (if it exists). Since all
improvements of H found in this proof are defined using H and these subgraphs solely, it is
evident that one can find such an improvement of H using linear time Od(n).

4 Cubic multigraphs: Theorem 1.3

In this section, we prove Theorem 1.3, by showing that any cubic multigraph G on n vertices
contains a spanning subgraph H satisfying that ‖a(H∗)‖∞ ≤ 2. In fact we shall prove a
slightly stronger statement (see Theorem 4.10).

Throughout this section, let G be the family of all cubic multigraphs. Let Kk
2 denote the

multigraph consisting of k parallel edges between two fixed vertices. In particular, K3
2 ∈ G.

4.1 Characterization and proof outline of cubic multigraphs

In this subsection, our objective is to establish a comprehensive structural description of all
cubic multigraphs (refer to Lemma 4.3). Subsequently, we provide a concise proof outline of
Theorem 1.3 based on this characterization.

The structural lemma states that any cubic multigraph can be generated from mK3
2 (i.e.,

the disjoint union of m copies of K3
2 ’s) for some m ≥ 1, through a series of elementary

operations which we define as follows (also illustrated by Figure 2).

Definition 4.1. Let G,G′ ∈ G satisfy that |V (G′)| = |V (G)|+2. We say that G′ is generated
from G, denoted by G →֒ G′, if one of the following holds:

(I). There exists an edge xy ∈ E(G) such that G′ is obtained from G by removing the edge
xy, introducing two new vertices u and v, and adding the edges xu and vy, along with
two parallel edges between u and v.
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(II). There exist two edges xy, zw ∈ E(G) such that G′ is obtained from G by removing
the edges xy and zw, introducing two new vertices u and v, and adding the edges
xu, uy, zv, vw and uv.

x y x y

v

u

Type (I)

x y

z w

u

v

x y

z w

Type (II)

Figure 2: The operation G →֒ G′

We shall point out that the two edges xy, zw in Type (II) may share some common
vertex or even be parallel. The next lemma indicates that for any graph G′ ∈ G which is not
a disjoint union of copies of K3

2 ’s, there exists some G ∈ G such that G →֒ G′.

Lemma 4.2. Let G′ be any connected cubic multigraph with at least four vertices. Then
there exists some G ∈ G such that G →֒ G′. Moreover, if the multiplicities of all edges are
provided, such G can be constructed with a time complexity of O(1).

Proof. We first claim that one can find an edge e = uv ∈ E(G′) such that

(1) if e has multiplicity one, then |NG′−e(u)| = |NG′−e(v)| = 2;

(2) otherwise, e = uv has multiplicity two and NG′(u)\{v} 6= NG′(v)\{u}.

If G′ is a simple cubic graph, then every edge uv ∈ E(G′) satisfies item (1), so the conclusion
holds. Hence we may assume that G has some edges with multiplicity at least two. Choose
any such edge e1 = uv. The multiplicity of e1 is two (as otherwise, it must be three and
then it contradicts the fact that G′ is connected and has at least four vertices). Then either
e1 satisfies item (2), or there exists some vertex w ∈ NG′(u) ∩ NG′(v). We assume the
latter case holds. Then there exists a unique edge wx incident to w with x /∈ {u, v} (as
otherwise, the degree of u or v would be four in G′[{u, v, w}]). Also wx has multiplicity
one. The only possibility that wx does not satisfy item (1) is when there are two parallel
edges between x and some new vertex y /∈ {u, v, w, x}. But then one of the parallel edges xy
satisfies item (2) as the other neighbour of y cannot be w (this is simply because we have
seen {u, v, x} ⊆ NG′(w)). This proves the claim. We point out that the edge e1 can be chosen
arbitrarily, and all the mentioned edges and vertices are within a constant distance from e1.
Therefore, if the multiplicities of all edges are provided, then the proof of the above claim
can be executed in O(1) time.

Consider the case when e = uv has multiplicity two. Let x 6= y be the two distinct vertices
satisfying that {x} = NG′(u)\{v} and {y} = NG′(v)\{u}. Let G = G′ − {u, v} + xy. Then
clearly G is a cubic multigraph, and G′ can be generated from G in type (I) in O(1) time.

Now suppose that e = uv has multiplicity one. Let {x, y} = NG′−e(u)\{v} and {z, w} =
NG′−e(v)\{u}. Note that {x, y} and {z, w} may overlap. Let G be obtained from G′ by
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deleting the vertices u, v and adding two new edges xy and zw. Since x 6= y and z 6= w, G is
also a cubic multigraph, and G′ can be generated from G in type (II), finishing the proof.

Next, we prove the main result of this subsection. Note that any graph in G has an even
number of vertices.

Lemma 4.3. Let G ∈ G be any multigraph on 2n vertices. Then there exists a sequence
G0, G1, . . . , Gk of cubic multigraphs such that G0 = mK3

2 , Gk = G, and Gi →֒ Gi+1 for every
0 ≤ i ≤ k − 1. Here, we have n = m + k.

Proof. We prove this by induction on n. This statement is trivial when n = 1. Now suppose
this holds for any graph in G with less than 2n vertices. Let G ∈ G have 2n vertices. If G itself
is a disjoint union of copies of K3

2 ’s, then the conclusion holds trivially. Otherwise, G has a
connected component F ∈ G with at least four vertices. By Lemma 4.2, there exists F ∗ ∈ G
such that F ∗ →֒ F . Then we also have G∗ →֒ G, where G∗ ∈ G denotes the disjoint union
of G − V (F ) and F ∗. Note that |V (G∗)| = |V (G)| − 2 = 2n − 2. By applying induction to
G∗, it becomes evident that, along with G∗ →֒ G, the induction provides a desired sequence
of cubic multigraphs for G.

Now we provide an outline of the proof for Theorem 1.3. Consider an arbitrary cubic
multigraph G. The overall approach (see Figure 3) involves recursively growing subgraphs
based on the sequence G0 = mK3

2 , G1, . . . , Gk = G as provided by Lemma 4.3. The crux
of the proof lies in an inductive argument: given a “suitable” subgraph Hi of Gi and the
operation Gi →֒ Gi+1, our aim is to find a “suitable” subgraph Hi+1 of Gi+1. This inductive
argument, as illustrated in Figure 4, involves several reductions among various states of
spanning subgraphs. The precise definitions of these states, which are technical in nature
(see Definition 4.4), will be provided in the subsequent subsection.

G0 = mK3
2 →֒ G1 →֒ . . . →֒ Gk = G

⊆ ⊆ ⊆

H0 7→ H1 7→ . . . 7→ Hk

Figure 3: The overall proof of Theorem 1.3

State-1 Proper

State-2 State-0

Lemma 4.7

Lemma 4.6Lemma 4.8

Lemma 4.9

(Inductive Step)

Figure 4: Proof of Hi 7→ Hi+1 as in Figure 3

4.2 Reduction among states of spanning subgraphs

In the upcoming lemmas, we present a series of reductions involving spanning subgraphs with
distinct properties, which we refer to as “states”. These reductions are depicted in Figure 4.

Before proceeding, let us provide the formal definitions of these states.

Definition 4.4. Let H be a spanning subgraph of a multigraph G ∈ G. Then we say

• H is in state-2 if a0(H) = −5
2
, a1(H) ∈ [1

2
, 5
2
], a2(H) ∈ [−1

2
, 3
2
] and a3(H) ∈ [−3

2
, 1
2
],
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• H is in state-1 if a0(H) = −5
2
and a1(H), a2(H), a3(H) ∈ [−1

2
, 3
2
],

• H is proper if ai(H) ∈ [−2, 2] holds for each 0 ≤ i ≤ 3 (i.e., ‖a(H)‖∞ ≤ 2), and

• H is in state-0 if a0(H), a3(H) ∈ [−2, 1
2
] and a1(H), a2(H) ∈ [−1

2
, 2].

We collect some basic facts on cubic multigraphs in the following.

Proposition 4.5. Let H be a spanning subgraph of an n-vertex multigraph G ∈ G. Then

(1) For all 0 ≤ i ≤ 3, ai(H) ∈ 1
2
Z. In particular, if n = 4k, then all ai(H) are integers;

and if n = 4k + 2, then all ai(H) ∈ Z + 1
2
.

(2) H is in state-0 (or proper) if and only if G\H is in state-0 (or proper).

Proof. The first item follows easily by the definition of ai(H), and the last item holds because
of that ai(H) = a3−i(G\H) given by Proposition 2.1.

To proceed, we need to introduce additional notation. Let H be a subgraph of a cubic
multigraph G. For integers 0 ≤ i, j ≤ 3, let Pij(H) denote the family of all H(i, j)-edges in H ,
and let Qij(H) denote the family of all H(i, j)-edges in G\H . Also define pij(H) = |Pij(H)|
and qij(H) = |Qij(H)|. Note that we always have p0j(H) = 0 and q3j(H) = 0 for any j.

Lemma 4.6. If a cubic multigraph G has a proper subgraph H, then it has a subgraph in
state-0. In addition, if Pij(H) and Qij(H) for all 0 ≤ i, j ≤ 3 are provided, then one can
construct a subgraph of G in state-0 using O(1) time.

Proof. Fix G ∈ G. This proof will be divided into two steps: First, we show that there exists
a proper subgraph H of G satisfying that a0(H), a3(H) ∈ [−2, 1

2
]. Second, building on such

a proper subgraph, we find a subgraph H of G in state-0.
To show the first step, we choose H to be a proper subgraph of G with the minimum

f(H) := a0(H) + a3(H). By Proposition 2.1, we have f(G\H) = f(H), so by symmetry, we
may assume that −2 ≤ a0(H) ≤ a3(H). If a3(H) ≤ 1

2
, then we achieve the first step. So we

may assume a3(H) > 1
2
, and further by Proposition 4.5, a3(H) ≥ 1. Suppose that a2(H) ≤ 0.

Then 3a3(H) ≥ 3 > 2a2(H) + a1(H). By Lemma 3.5, we can find an H(3, 3)-edge e ∈ E(H),
i.e., e ∈ P33(H). Now consider H ′ = H − e, and we see that a3(H

′) = a3(H) − 2 ∈ [−1, 0],
a2(H

′) = a2(H) + 2 ∈ [0, 2] and all other aj(H
′) = aj(H) ∈ [−2, 2] remain the same. This

implies that H ′ is a proper subgraph of G with f(H ′) = f(H)−2, which is a contradiction to
the minimum of f(H). Therefore, we may assume that a2(H) > 0. Since a2(H) + a3(H) ∈ Z

and a2(H)+a3(H) ≥ 1+ 1
2

= 3
2
, we derive that a2(H)+a3(H) ≥ 2, which further implies that

both a0(H), a1(H) ≤ 0 (as otherwise 0 = a0(H)+a1(H)+a2(H)+a3(H) > 0+(−2)+2 = 0,
a contradiction). To complete the proof of this step, we consider the following two cases:

• There exists an H(2, 3)-edge e′ ∈ E(H). Then H ′ = H − e′ satisfies a(H ′) = a(H) +
(0, 1, 0,−1), which implies that H ′ is proper with f(H ′) = f(H) − 1, a contradiction.

• There does not exist H(2, 3)-edges in H . Using |V H
i | = ai(H) + n

4
, it is easy to

see that 2|V H
2 | > |V H

1 | ≥ p12(H), and 3|V H
3 | > |V H

1 | ≥ p13(H). Also note that
p02(H) = p03(H) = p23(H) = 0 and i|V H

i | =
∑

j∈[3]\{i} pij(H) + 2pii(H). These clearly
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imply the existence of an H(2, 2)-edge e1 ∈ E(H) and an H(3, 3)-edge e2 ∈ E(H).
Then H ′ = H− e1− e2 satisfies that a(H ′) = a(H) + (0, 2, 0,−2). So H ′ is proper with
f(H ′) = f(H) − 2, again a contradiction to the minimum of f(H).

Hence the proper subgraph H we have chosen must satisfy that a0(H), a3(H) ∈ [−2, 1
2
]. Now

we explain that provided Pij(H) and Qij(H) for all 0 ≤ i, j ≤ 3, such a proper subgraph can
be constructed in O(1) time. The above proof can be transformed into an algorithm that
generates a sequence of proper subgraphs H iteratively, where each subsequent subgraph has
a strictly decreasing f(H) value.3 Additionally, each subsequent proper subgraph in this
sequence is obtained from the current H by deleting or adding one or two edges from specific
families Pij(H) or Qij(H). It is worth noting that the choice of edges from these families can
be made arbitrarily. So each iteration only takes O(1) time.4 Since −4 ≤ f(H) ≤ 4 holds
for any proper H and the value f(H) in each iteration decrease at least 1, we conclude that
this algorithm must terminate in at most 8 iterations and thus using O(1) time.

For the second step, we choose a proper subgraph H satisfying that a0(H), a3(H) ∈
[−2, 1

2
], a2(H) ≤ a1(H),5 and subject to the above conditions, a2(H) is maximum. If a2(H) ≥

−1
2
, then such H is in state-0 and we are done. Hence we may assume that a2(H) < −1

2
(and

so a2(H) ∈ [−2,−1]). In this case, a1(H) = −a2(H) − a3(H) − a0(H) ≥ 1 − 1
2
− 1

2
= 0.

Suppose that a3(H) > 0. Then we have a1(H) + 2a2(H) ≤ 2 − 2 = 0 < 3a3(H), so
by Lemma 3.5, there exists an H(3, 3)-edge e ∈ E(H). Then H ′ = H − e satisfies that
a(H ′) = a(H) + (0, 0, 2,−2). It is easy to verify that H ′ is a subgraph in state-0. Hence, we
may assume that a3(H) ∈ [−2, 0]. Recall that a1(H) ∈ [0, 2] and a2(H) ∈ [−2,−1], which
imply that a0(H) ∈ [−1, 1

2
]. It remains to consider two cases as follows.

• There exists an H(0, 1)-edge e in G\H . Then H ′ = H + e satisfies a(H ′) = a(H) +
(−1, 0, 1, 0). So H ′ satisfies the same conditions as the chosen H , but a2(H

′) = a2(H)+
1 > a2(H). This is a contradiction to the choice of H .

• There does not exist H(0, 1)-edges in G\H . Recall the definition of qij(H). Similar
to the above discussion, we see that 3|V H

0 | > |V H
2 | ≥ q02(H), and 2|V H

1 | > |V H
2 | ≥

q12(H), from which we can find an H(0, 0)-edge e1 ∈ E(G\H) and an H(1, 1)-edge
e2 ∈ E(G\H). If a0(H) ≥ 0, then H ′ = H+e1+e2 satisfies a(H ′) = a(H)+(−2, 0, 2, 0)
and thus is a subgraph in state-0. Otherwise, we have either a0(H) = −1 or −1

2
.

In the former case, it is clear that a(H) = (−1, 2,−1, 0); in the latter case, using
Proposition 4.5 (1), we can derive that a(H) = (−1

2
, 3
2
,−3

2
, 1
2
). In each of the two cases,

H + e2 satisfies a(H + e2) = a(H) + (0,−2, 2, 0) and thus is a subgraph in state-0.

Now we have found a subgraph in state-0 as desired. Based on similar explanations as given
after the first step (considering that −2 ≤ a2(H) ≤ 2 is finite and bounded for any proper
H), we can conclude that the second step can also be executed in O(1) time, provided Pij(H)
and Qij(H) for all 0 ≤ i, j ≤ 3. This finishes the proof of Lemma 4.6.

The following two lemmas will employ similar arguments to those presented in Lemma 4.6.
For i ∈ {2, 3} and a subgraph H of a cubic multigraph G, let Si;1,1(H) denote a path xyz

3Upon generating proper subgraphs H , the algorithm also updates Pij(H) and Qij(H) for all 0 ≤ i, j ≤ 3.
4This O(1) time complexity also includes the time required for updating all Pij(H) and Qij(H).
5Here, we leverage the symmetry between H and G\H as stated in Propositions 2.1 and 4.5.
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contained in H , where dH(x) = dH(z) = 1 and dH(y) = i. Furthermore, we define Si(H) to
be the family consisting of all Si;1,1(H).

Lemma 4.7. If a cubic multigraph G has a subgraph H in state-1, then it has a proper
subgraph. In addition, if Pij(H), Qij(H), Si(H) and Si(G\H) for all 0 ≤ i, j ≤ 3 are
provided, then one can construct a proper subgraph of G using O(1) time.

Proof. Let H be a subgraph of G in state-1. Then a0(H) = −5
2
. By Proposition 4.5, we see

ai(H) ∈ Z + 1
2

for all i. So a1(H), a2(H), a3(H) ∈ {−1
2
, 1
2
, 3
2
}.

To turn such H into a proper subgraph, our first attempt is to increase the value of a0(·)
by finding some H(1, j)-edge in H for some j and then removing it. Indeed, if there exists
an H(1, 2)-edge e ∈ E(H), then H ′ = H − e satisfies that a(H ′) = a(H) + (1, 0,−1, 0) and
thus is a proper subgraph. So we may assume p12(H) = 0.

Next, suppose that there exists an H(1, 1)-edge f ∈ E(H). Let H ′ = H − f . Then
a(H ′) = a(H) + (2,−2, 0, 0). So H ′ is not proper if and only if a1(H) = −1

2
. This case forces

that a(H) = (−5
2
,−1

2
, 3
2
, 3
2
) and a(H ′) = (−1

2
,−5

2
, 3
2
, 3
2
). Since p12(H

′)+p23(H
′)+2p22(H

′) =

2|V H′

2 | > |V H′

1 | ≥ p12(H
′), there exists either an H ′(2, 2)-edge e1 or an H ′(2, 3)-edge e2 in H ′.

Let H1 = H ′−e1 and H2 = H ′−e2. As a(H1) = (−1
2
,−1

2
,−1

2
, 3
2
) and a(H2) = (−1

2
,−3

2
, 3
2
, 1
2
),

at least one of H1, H2 exists which is a proper subgraph of G. So we may also assume
p11(H) = 0.

Since p11(H) = p12(H) = 0, there must be an H(1, 3)-edge e in H . Let H ′ = H − e.
Then a(H ′) = a(H) + (1,−1, 1,−1). It is clear that H ′ is not proper if and only a2(H) = 3

2
.

Assume a2(H) = 3
2

occurs. Then a1(H) + a3(H) = 1, where a1(H), a3(H) ∈ {−1
2
, 1
2
, 3
2
}. It

follows that either (I) a1(H) = 3
2

and a3(H) = −1
2
, or (II) a1(H) ≤ 1

2
≤ a3(H).

Consider the case (I) a1(H) = 3
2

and a3(H) = −1
2
. In this case since |V H

1 | > |V H
3 |, by

(a) of Lemma 3.4 (by choosing A = {1}, B = {3} and n1 = m3 = 1), there exists some
S(3;1,1)(H). Let H1 be obtained from H by deleting the two edges of S(3;1,1)(H). Then we
have a(H1) = a(H) + (2,−1, 0,−1) = (−1

2
, 1
2
, 3
2
,−3

2
), which shows that H1 is proper.

Now consider the case (II) a1(H) ≤ 1
2
≤ a3(H). Suppose that there exists an H(2, 2)-

edge f in H . Let H1 = H − f − e, where e is the H(1, 3)-edge in H mentioned above. Then
a(H1) = a(H) + (1, 1,−1,−1), implying that H1 is a proper subgraph of G. Hence, we may
assume that p22(H) = 0. Recall that we also have p12(H) = 0. So there must exist some
H(2, 3)-edge f ′ ∈ E(H). Let H ′ = H−f ′. Then a(H ′) = a(H)+(0, 1, 0,−1). So H ′ remains
in state-1, with a1(H

′) = a1(H) + 1 and a3(H
′) = a3(H) − 1. Repeating exactly the same

proof as above on H ′, we can find either a proper subgraph of G, or find an H ′(2, 3)-edge f ′′

in H ′ such that H ′′ = H ′ − f ′′ is also in state-1 and satisfying a1(H
′′) = 3

2
and a3(H

′′) = −1
2
,

i.e., the case (I). As shown above, the latter case can lead to a proper subgraph of G. So in
any situation, G has a proper subgraph.

Finally, we point out that if Pij(H), Qij(H), Si(H) and Si(G\H) for all 0 ≤ i, j ≤ 3 are
provided, then similar to Lemma 4.6, the above arguments also can be implemented in O(1)
time because all local adjustments are obtained by adding or deleting finite members from
Pij(H), Qij(H), Si(H) and Si(G\H). This finishes the proof.

Lemma 4.8. If a cubic multigraph G has a subgraph H in state-2, then it has a proper
subgraph. In addition, if Pij(H), Qij(H), Si(H) and Si(G\H) for all 0 ≤ i, j ≤ 3 are
provided, then one can construct a proper subgraph of G using O(1) time.
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Proof. Let H be a subgraph in state-2. That is, a0(H) = −5
2
, a1(H) ∈ [1

2
, 5
2
], a2(H) ∈ [−1

2
, 3
2
]

and a3(H) ∈ [−3
2
, 1
2
]. By Proposition 4.5, we see ai(H) ∈ Z + 1

2
for all i. If a1(H) ≤ 3

2
, then

a0(H) + a1(H) + a2(H) ≤ 1
2

and thus a3(H) ≥ −1
2
. This shows that H is also in state-1, so

by Lemma 4.7 we are done. Hence from now on, we may assume that a1(H) = 5
2
. Note that

we have a2(H) + a3(H) = 0 and x := a2(H) ∈ {−1
2
, 1
2
, 3
2
}.

If there exists an H(1, 1)-edge e in H , then H1 = H − e satisfies a(H1) = a(H) +
(2,−2, 0, 0) = (−1

2
, 1
2
, x,−x). If there exists some S(2;1,1)(H), then the subgraph H2 obtained

from H by deleting all edges of this S(2;1,1)(H) satisfies that a(H2) = a(H) + (3,−2,−1, 0) =
(1
2
, 1
2
, x− 1, 1 − x). Note that each of H1 and H2 is proper whenever x ∈ {−1

2
, 1
2
, 3
2
}. So we

may claim that p11(H) = 0 and there is no S(2;1,1)(H).
Suppose x ∈ {−1

2
, 1
2
}. If there is an H(1, 3)-edge f in H , then H3 = H−f satisfies a(H3) =

a(H)+(1,−1, 1,−1) = (−3
2
, 3
2
, x+1,−x−1) which is proper. So we may assume p13(H) = 0.

Since p11(H) = 0 and |V H
1 | > |V H

2 |, by Lemma 3.4 there exists some S(2;1,1)(H), which is a
contradiction. It remains to consider the case x = 3

2
. That is, a(H) = (−5

2
, 5
2
, 3
2
,−3

2
).

Suppose that there exist an H(1, 2)-edge e and an H(1, 3)-edge f in H . Clearly, e and f
are vertex-disjoint. Let H4 = H− e−f ⊆ G. Then we have a(H4) = a(H) + (2,−1, 0,−1) =
(−1

2
, 3
2
, 3
2
,−5

2
), implying that G\H4 is in state-1. By Lemma 4.7, G has a proper subgraph.

Hence, we may assume that either p12(H) = 0 or p13(H) = 0. In the former case,
we have p11(H) = p12(H) = 0, and since |V H

1 | > |V H
3 |, by Lemma 3.4 there exists some

S(3;1,1)(H). Let H5 be obtained from H by deleting all edges of this S(3;1,1)(H). Then
a(H5) = a(H) + (2,−1, 0,−1) = (−1

2
, 3
2
, 3
2
,−5

2
), implying that G\H5 is in state-1. Using

Lemma 4.7 again, there exists a proper subgraph of G. So we may assume that the latter
case p13(H) = 0 holds. However, since p11(H) = 0 and |V H

1 | > |V H
2 |, by Lemma 3.4 there

exists some S(2;1,1)(H), a contradiction to the above claim.
Similar to the previous lemma, this proof also can be implemented in O(1) time, if Pij(H),

Qij(H), Si(H) and Si(G\H) for all 0 ≤ i, j ≤ 3 are provided.

4.3 Completing the proof of Theorem 1.3

Before we can conclude the proof of Theorem 1.3, we need an additional lemma that addresses
the inductive step depicted in Figure 4.

Lemma 4.9. Let G,G′ ∈ G satisfy that G →֒ G′. If G has a subgraph H in state-0, then G′

has a proper subgraph. In addition, if Pij(H), Qij(H), Si(H) and Si(G\H) for all 0 ≤ i, j ≤ 3
are provided, then one can construct a proper subgraph of G′ using O(1) time.

Proof. There are two types of the operation G →֒ G′, and we distinguish between them.
Suppose G →֒ G′ is of Type (I). Let xy ∈ E(G) and u, v ∈ V (G′)\V (G) be as indicated

on the left-hand side of Figure 2. Let H be a spanning subgraph of G in state-0. So

−2 ≤ a0(H), a3(H) ≤
1

2
and −

1

2
≤ a1(H), a2(H) ≤ 2. (8)

By Proposition 4.5 (2), G\H is also in state-0. By symmetry between H and G\H , we may
assume that xy ∈ E(H). Let H ′ be obtained from H by removing the edge xy, adding
vertices u and v, and adding the edges xu, vy and two parallel edges between u and v. It is
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evident to see that H ′ ⊆ G′ with V H′

i = V H
i for i = 0, 1, 2 and V H′

3 = V H
3 ∪ {u, v}. Since

|V (G′)| = |V (G)| + 2, we have ai(H
′) = ai(H) − 1

2
for i = 0, 1, 2 and a3(H

′) = a3(H) + 3
2
.

Then H ′ is a proper subgraph of G′, unless that a0(H) = −2. In the latter case, we see
a0(H

′) = −5
2
, a1(H

′), a2(H
′) ∈ [−1, 3

2
] and a3(H

′) ∈ [−1
2
, 2]. By Proposition 4.5 (1), all

ai(H
′) ∈ Z + 1

2
. This shows that a0(H

′) = −5
2

and a1(H
′), a2(H

′), a3(H
′) ∈ [−1

2
, 3
2
], i.e., H ′

is in state-1. By Lemma 4.7, G′ has a proper subgraph. For the algorithmic aspect, suppose
that Pij(H), Qij(H), Si(H) and Si(G\H) for all 0 ≤ i, j ≤ 3 are provided. Then it takes
O(1) time to update and derive Pij(H

′), Qij(H
′), Si(H

′) and Si(G
′\H ′) for all 0 ≤ i, j ≤ 3.

Using Lemma 4.7 again, one can construct a proper subgraph of G′ using O(1) time.
Now we may assume that G →֒ G′ is of Type (II). Let xy, zw ∈ E(G) and u, v ∈

V (G′)\V (G) be as indicated on the right-hand side of Figure 2. Let H be a spanning
subgraph of G in state-0. So a(H) satisfies (8). By symmetry between H and G\H , we may
assume that xy ∈ E(H). Suppose that zw ∈ E(H). Let H ′ be obtained from H by removing
the edges xy and zw, adding vertices u and v, and adding the edges xu, uy, zv, vw and uv.
Then H ′ is a subgraph of G′ with V H′

i = V H
i for i = 0, 1, 2 and V H′

3 = V H
3 ∪{u, v}. Following

the exactly same proof as in the last paragraph, we can derive a proper subgraph in G′.
Therefore, we may assume that xy ∈ E(H) and zw /∈ E(H). Let H∗ be obtained from

H by removing the edge xy, adding vertices u and v, and adding the edges xu, uy and uv.
Then we see V H∗

i = V H
i for i ∈ {0, 2}, V H∗

1 = V H
1 ∪ {v} and V H∗

3 = V H
3 ∪{u}, implying that

a(H∗) = a(H) +

(

−
1

2
,
1

2
,−

1

2
,

1

2

)

.

Since a(H) satisfies (8), we see that H∗ is a proper subgraph of G′, unless one of the two
possibilities a0(H

∗) = −5
2

and a1(H
∗) = 5

2
occurs. Now suppose that a0(H

∗) = −5
2
. Using

Proposition 4.5 (1), we can derive that a1(H
∗) ∈ [1

2
, 5
2
], a2(H

∗) ∈ [−1
2
, 3
2
] and a3(H

∗) ∈
[−3

2
, 1
2
]. That is, H∗ is in state-2. By Lemma 4.8, one can find a proper subgraph in G′.

Therefore, we may assume that a0(H
∗) ≥ −2 and a1(H

∗) = 5
2
. Using Proposition 4.5 (1)

again, we have a0(H
∗) ∈ [−3

2
,−1

2
], a2(H

∗) ∈ [−1
2
, 3
2
] and a3(H

∗) ∈ [−3
2
, 1
2
]. This shows that

a0(H
∗) +a1(H

∗) +a3(H
∗) ≥ −1

2
and thus a2(H

∗) ∈ [−1
2
, 1
2
]. Note that uv is an H∗(1, 3)-edge

in H∗. Then H⋆ = H∗ − uv is a subgraph of G′ satisfying

a(H⋆) = a(H∗) + (1,−1, 1,−1).

This shows that a0(H
⋆) ∈ [−1

2
, 1
2
], a1(H

⋆) = 3
2
, a2(H

⋆) ∈ [1
2
, 3
2
] and a3(H

⋆) ∈ [−5
2
,−1

2
]. It is

key to observe that G′\H⋆ is proper or it is in state-1. Now, applying Lemma 4.7 once again,
the proof of this lemma is completed. In the case of Type (II), we omit the “moreover” part
as it can be derived analogously to the proof for Type (I).

Finally, we can establish Theorem 1.3 by proving the following slightly stronger statement.

Theorem 4.10. Let G be any cubic multigraph. Then there exists a spanning subgraph H
of G in state-0, that is, a0(H), a3(H) ∈ [−2, 1

2
] and a1(H), a2(H) ∈ [−1

2
, 2]. Moreover, there

exists a linear time algorithm to find such a spanning subgraph H.

Proof. Let G be any cubic multigraph on 2n vertices. First, we point out that one can find
all connected components of G and the multiplicities of all edges of G in linear time O(n).6

6To do so, one can employ a Depth-First Search Tree algorithm on G.
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To finish the proof, it is enough to prove the following statement by induction on n:

(⋆) There exists an absolute constant C > 0 such that provided all connected components
of a cubic multigraph G on 2n vertices and the multiplicities of all edges of G, one can use
at most C · n time to construct a spanning subgraph H of G in state-0 as well as Pij(H),
Qij(H), Si(H) and Si(G\H) for all possible 0 ≤ i, j ≤ 3.

We choose a sufficiently large constant C > 0 that surpasses the O(1) constant terms in
Lemmas 4.2, 4.6 and 4.9. We first prove the statement (⋆) for nK3

2 , where n ≥ 1 is arbitrary.
This is sufficient to establish the base case. Let n = 4k + r where 0 ≤ r ≤ 3. Take H ′ as
the disjoint union of kK0

2 , kK1
2 , kK2

2 and kK3
2 . Then H ′ is a proper subgraph of 4kK3

2 with
ai(H) = 0 for all 0 ≤ i ≤ 3. If r = 0, let H = H ′; otherwise 1 ≤ r ≤ 3, let H be the disjoint
union of H ′ and one copy of each of the first r graphs in the sequence K1

2 , K
2
2 , K

0
2 , K

3
2 . In the

latter case, for each i among the first r indices in the sequence 1, 2, 0, 3, we have ai(H) = 2− r
2
,

and for other indices j, we have aj(H) = − r
2
. So H is a desired spanning subgraph of nK3

2 in
state-0. It is also straightforward to constuct Pij(H), Qij(H) and Si(H) = ∅ = Si(nK

3
2\H)

for all 0 ≤ i, j ≤ 3 (say with at most C · n time).
Now assume (⋆) holds for any cubic multigraph with less than 2n vertices. Let G ∈ G

be a cubic multigraph on 2n vertices, with given connected components and multiplicities of
edges. We may assume that G has a connected component F ∈ G with at least four vertices.
By Lemma 4.2, one can use at most C/3 time to construct F ∗ ∈ G (and also update the
multiplicities of all edges of F ∗) such that F ∗ →֒ F . Then G∗ →֒ G, where G∗ ∈ G denotes the
disjoint union of G−V (F ) and F ∗. It is worth noting that |V (G∗)| = |V (G)| − 2 = 2(n− 1),
and all connected components of G∗ and the multiplicities of all edges of G∗ are inherited
from those of G (plus F ∗). By applying induction to G∗, one can use at most C · (n−1) time
to construct a spanning subgraph H∗ of G∗ in state-0 as well as Pij(H

∗), Qij(H
∗), Si(H

∗)
and Si(G

∗\H∗) for all possible 0 ≤ i, j ≤ 3. By Lemma 4.9, one can use at most C/3 time to
construct a proper subgraph H1 of G and update Pij(H1), Qij(H1), Si(H1) and Si(G\H1) for
all 0 ≤ i, j ≤ 3. Then using Lemma 4.6, one can further take at most C/3 time to construct
a subgraph H2 of G in state-0 and update Pij(H2), Qij(H2), Si(H2) and Si(G\H2) for all
0 ≤ i, j ≤ 3. Note that the construction of the desired H2 and the corresponding families
requires at most C · n time in total. We have completed the proof of the statement (⋆).

5 Concluding remarks

In this paper, we address Conjecture 1.1 proposed by Alon and Wei. We prove two main
results: a upper bound 2d2, which is the first bound that is independent of the number n of
vertices, and a confirmation of the case d = 3. Both results extend to multigraphs and yield
efficient algorithms. While we are aware that a similar argument, albeit potentially more
extensive, can be employed to prove the conjecture for small values of d, it is evident that
additional innovative ideas will be required to resolve the conjecture in its general form.

While investigating related properties of multigraphs, we find it intriguing to ask the
following strengthening of Conjecture 1.1.

Conjecture 5.1. There exists an absolute constant c > 0 such that for any n, d ≥ 2 and any
n-vertex d-regular multigraph G which does not contain Kd

2 , there exists a spanning subgraph
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H of G satisfying
∣

∣

∣

∣

m(H, k) −
n

d + 1

∣

∣

∣

∣

≤ 1 +
c

n
for all 0 ≤ k ≤ d. (9)

We exclude the multigraph Kd
2 in this conjecture, because otherwise the disjoint union

nKd
2 would violate (9) for some appreciate choices of d, n. There exist examples showing that

the bound of (9) is tight up to the constant c. The first example is the complete bipartite
graphs Kd,d for odd d, for which we can derive from the footnote of the second page that

min
H⊆Kd,d

‖a(H)‖∞ = 3 −
2d

d + 1
= 1 +

4

n + 2
.

Another example is the multigraph K2
d/2,d/2 obtained from Kd/2,d/2 by replacing every edge

with a pair of parallel edges for d satisfying d ≡ 2 mod 4. Using a result of Gyárfás [13],
any spanning subgraph H of K2

d/2,d/2 has m(H, k) ≥ 2 for some 0 ≤ k ≤ d, implying that

min
H⊆K2

d/2,d/2

‖a(H)‖∞ = 2 −
d

d + 1
= 1 +

1

n + 1
.

Our proof of Theorem 1.3 may potentially be extended to cover the case d = 3 of Conjec-
ture 5.1.

Another motivation for considering Conjecture 5.1 arises from its connection to the
Faudree-Lehel conjecture which we restate here.

Conjecture 5.2 (Faudree and Lehel [9]). There exists an absolute constant c > 0 such that
for any n > d ≥ 2 and any n-vertex d-regular graph G,

s(G) ≤
n

d
+ c.

We point out that a confirmation of Conjecture 5.1 would imply Conjecture 5.2.

Proposition 5.3. If Conjecture 5.1 holds, then Conjecture 5.2 holds.

Proof. Let n > d ≥ 2 and G be any n-vertex d-regular graph. For integers s ≥ 1, let Gs be
the multigraph generated from G by replacing every edge e = uv ∈ E(G) by s parallel edges
e1, . . . , es with endpoints u and v. Let Ee = {e1, . . . , es} for each e ∈ E(G).

Note that Gs is sd-regular. We first claim that if Gs has a spanning subgraph H such
that m(H, k) ∈ {0, 1} for all 0 ≤ k ≤ sd, then s(G) ≤ s + 1. To see this, let fH be the
(s + 1)-edge-weighting of G satisfying fH(e) := |Ee ∩H| + 1 ∈ {1, 2, . . . , s + 1}. Then for all
0 ≤ k ≤ sd, we have |{v :

∑

e:v∼e fH(e) = k + d}| = m(H, k) ≤ 1. Equivalently, this says
that

∑

e:v∼e fH(e) are distinct for all v ∈ V (G).
Assume that Conjecture 5.1 holds. Since d ≥ 2, it is evident that Gs does not contain

Ksd
2 . Then there exists an absolute constant c > 0 such that for any s ≥ 1, Gs contains a

spanning subgraph H with
∣

∣

∣

∣

m(H, k) −
n

sd + 1

∣

∣

∣

∣

≤ 1 +
c

n

22



for all 0 ≤ k ≤ sd. Now choosing s = n
d

+ c, so sd ≥ n + 2c. If n ≥ 2c + 1, then for all k,

m(H, k) ≤ 1 +
n

sd + 1
+

c

n
≤ 1 +

n

n + 2c + 1
+

2c

n + 2c + 1
< 2.

Hence, m(H, k) ∈ {0, 1} holds for all 0 ≤ k ≤ sd. Using the above claim, we see that
s(G) ≤ n

d
+ c + 1 for any n-vertex d-regular graph G with n ≥ 2c + 1. In the case when

n < 2c+1, there are finite many d-regular graphs for all d ≥ 2. Since the irregularity strength
s(G) exists for such G due to Faudree-Lehel [9], we may take a sufficiently large constant
C ≫ c such that s(G) ≤ n

d
+ C for any n-vertex d-regular graph G, finishing the proof.

Alon and Wei [1] also proposed the following conjecture, which can be viewed as a one-
sided generalization of Conjecture 1.1.

Conjecture 5.4 (Alon and Wei [1]). Let G be an n-vertex graph with minimum degree δ
and maximum degree ∆. Then there exists a spanning subgraph H in G such that m(H, k) ≤
n

δ+1
+ 2 holds for every k ≥ 0.

Despite their similar spirit, it is important to highlight a significant distinction between
Conjecture 1.1 and Conjecture 5.4. In Conjecture 5.4, the symmetry between H and G\H
no longer holds, whereas this symmetry is crucial in our proofs concerning Conjecture 1.1.
Alon and Wei have addressed several other open problems in [1]. For further details and
in-depth discussions, we would like to direct interested readers to refer to [1].
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