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Abstract

For integers n > 0, an iterated triangulation Tr(n) is defined recursively as follows:
Tr(0) is the plane triangulation on three vertices and, for n > 1, Tr(n) is the plane
triangulation obtained from the plane triangulation Tr(n — 1) by, for each inner face F
of Tr(n — 1), adding inside F' a new vertex and three edges joining this new vertex to
the three vertices incident with F'.

In this paper, we show that there exists a 2-edge-coloring of Tr(n) such that Tr(n)
contains no monochromatic copy of the cycle C for any k > 5. As a consequence, the
answer to one of two questions asked in [4] is negative. We also determine the radius
two graphs H for which there exists n such that every 2-edge-coloring of Tr(n) contains
a monochromatic copy of H, extending a result in [4] for radius two trees.

1 Introduction

For graphs G and H, we write G — H if, for any 2-edge-coloring of G, there is a monochro-
matic copy of H. Otherwise, we write G /A H. We say that H is planar unavoidable if
there exists a planar graph G such that G — H. This notion is introduced and studied
in [4].

Deciding if G — H is clearly equivalent to asking whether a graph G admits a decom-
position (i.e., an edge-decomposition) such that one of the two graphs in the decomposition
contains the given graph H. The well-known Four Color Theorem [2, 3] (also see [9]) im-
plies that every planar graph admits a decomposition to two bipartite graphs; so planar
unavoidable graphs must be bipartite. A result of Goncalves [5] says that every planar
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graph admits a decomposition to two outer planar graph (although we have not seen a de-
tailed proof); so planar unavoidable graphs must be also outer planar. There are a number
of interesting results about decomposing planar graphs, see [1,6-8,10].

For any positive integer n, let P, denote the path on n vertices, and K, denote the
complete graph on n vertices. For integer n > 3, we use C), to denote the cycle on n vertices.
It is shown in [4] that P,, C4, and all trees with radius at most 2 are planar unavoidable.
This is done by analyzing several sequences of graphs.

In this paper, we investigate one such sequence — the iterated triangulations, which is
of particular interest as suggested in [4]. Let n > 0 be an integer. An iterated triangulation
Tr(n) is a plane graph defined as follows: Tr(0) = Kj is the plane triangulation with
exactly two faces. For each i > 0, let Tr(i 4+ 1) be obtained from the plane triangulation
Tr(i) by adding a new vertex in each of the inner faces of Tr(7) and connecting this vertex
with edges to the three vertices in the boundary of their respective face. The authors
of [4] asked whether for any planar unavoidable graph H there is an integer n such that
Tr(n) — H. They also asked whether there exists an integer k > 3 such that the even cycle
(9. is planar-unavoidable.

Our first result indicates that a positive answer to one of the above questions implies a
negative answer to the other. Let H' be the bipartite graph obtained by adding an edge
to the unique 6-vertex tree with 4 leaves and 2 vertices of degree three.

Theorem 1.1. For all positive integer n, Tr(n) 4 Cy for k > 5, Tr(n) /& H*, and
TI‘(TL) 7L> K273

As another direct consequence, we see that if B is a bipartite graph and Tr(n) — B for
some n then every block of B must be a Cy or Ky. This can be used to characterize all
radius two graphs B for which there exists n such that Tr(n) — B, generalizing a result
in [4] for radius two trees. To state this characterization, we need additional notations. A
flower Fy, is a collection of k copies of Cys sharing a common vertex, which is called the
center. A jellyfish Jj is obtained from F} and a k-ary tree of radius two by identifying the
center of Fy with the root of the k-ary tree. A bistar By is obtained from one C4 and two
disjoint K7 ys by identifying the roots of the Kj s with two non-adjacent vertices of Cy,
respectively.

Theorem 1.2. Let L be a graph with radius two. Then there exists n such that Tr(n) — L
if, and only if, L is a subgraph of a jellyfish or bistar.

We organize this paper as follows. In Section 2, we prove Tr(n) 4 Cj for k > 5 and
Tr(n) 4 H™ by finding a special edge coloring scheme for Tr(n). In Section 3, we complete
the proof of Theorem 1.1 by using another edge coloring scheme on Tr(n). From Theorem
1.1, we can derive the following: if L has radius 2 and Tr(n) — L for some n, then L is a
subgraph of a jellyfish or bistar. Hence to prove Theorem 1.2, it suffices to show that for
any k > 1 there exists some n such that Tr(n) — Ji and Tr(n) — Bj. We prove the former
statement in Section 4 and the latter one in Section 5 by showing that we can choose n to
be linear in k.



2 H" and C) for k> 5

In this section, we prove Theorem 1.1 for H* and Cj, with k > 5. First, we describe the
2-edge-coloring of Tr(n) that we will use. Let o : E(Tr(n)) — {0,1} be defined inductively
for all n > 1 as follows:

(i) Fix an arbitrary triangle 7" bounding an inner face of Tr(1), and let o(e) = 0 if
ec E(T)and o(e) =1if e € E(Tr(1)) \ E(T).

(ii) Suppose for some 1 < i < n, we have defined o(e) for all e € E(Tr(i)). We extend o
to E(Tr(i+1)) as following. Let x € V(Tr(7)) \ V(Tr(i — 1)) be arbitrary, let vovivavg
denote the triangle bounding the inner face of Tr(i—1) containing x, and fix a labeling
so that o(zvy) = o(zva).

(iii) Let z; € V(Tr(z + 1)) \ V(Tr(:)) be such that z; is inside the face of Tr(i) bounded
by the triangle zv;v;j 12, where j = 0,1,2 and the subscripts are taken modulo
3. Define o(xvg) = o(xovg) = o(z2v9) = o(xjz) for all j = 0,1,2, and o(zv) =
o(xov1) = o(xz1v1) = o(x1v2) = o(T202).

We now proceed by a sequence of claims to show that ¢ has no monochromatic C}, for
k > 5 nor monochromatic H*, thereby proving Tr(n) /4 Cy for k > 5 and Tr(n) /A HT.

(1) For 1 <i<mnandxz e V(Tr(i)) \ V(Tr(i — 1)), [{o(zv) :v € V(Tr(i — 1))} = 2.

We apply induction on i. The basis case i = 1 follows from (i) above. So assume 2 < i < n.
Let vgv1vavg be the triangle bounding the inner face of Tr(i — 1) containing x. Without
loss of generality assume that vo € V(Tr(i — 1)) \ V(Tr(i — 2)). Let vivavzv; denote the
triangle bounding the face of Tr(i — 2), with vy inside vivovsvy. By induction hypothesis,
Ho(vovg) : k=1,2,3} =2.

Suppose o(vgv1) = o(vgve). Then by (ii) and (iii), o(zvg) = o(vovs) and o(xvy) =
o(zva) = o(vov1). So [{o(xv) : k=0,1,2} = 2.

So assume o(vgv1) # o(vgvz). By symmetry, we further assume o(vova) = o(vovs).
Then by (ii) and (iii), we see that o(zv1) = o(xvy) = o(vov1) and o(xve) = o(vove). So
o(xve) # o(zvy) and hence, [{o(zvg):k=0,1,2}|=2. O

(2) Let vovivavg be a triangle bounding an inner face of Tr(i), where 0 < i < n, let
ve V(Tr(i + 1)) \ V(Tr(i)) with v inside vovivavg. Then, for any vow € E(Tr(n))
with w inside vovv9vg, o(vow) = o(vev).

Let vow € E(Tr(n)) with w inside vgvjvavg. Then there exists £ > 0 with i + &k + 1 < n,
such that w € V(Tr(i + k + 1)) \ V(Tr(i + k)). We prove (2) by applying induction on k.
The basis case is trivial because k£ = 0 implies w = v.

So assume k > 1. Let vgvsvavg be the triangle bounding an inner face of Tr(i + k — 1)
with w inside vovgvgvp, and let vs € V(Tr(i+k)) \ V(Tr(i + k — 1)) that is inside vovzvgvp.
By symmetry, assume w is inside vgvsv4vg. By induction hypothesis, o(vgvs)=0c(vgv).

Suppose o(vqvs) = o(vovs). Hence by (ii) and (iii), o(vow) = o(wvy) = o(vovs).
Thus o(vow) = o(vov). Now assume o(vqvs) # o(vovs). Then o(vsvs) = o(vgvs) or
o(v3vs)=0(v4vs). Tt follows from (iii) that o(vow) = o(vgvs). Hence, o(vow) = o(vgv). O



(3) Let vgvivevg be a triangle bounding an inner face of Tr(i) with 0 < i < n—2, and let
v € V(Tr(i+1))\V(Tr(¢)) such that v is inside vov1v2vg and o (vvg) # o(vv1) = o(vve).
Then for any vw € E(Tr(n)) with w inside vovivevg, o(vw) = o(vvy).

To prove (3), let {wo, w1, wz} C V(Tr(:+2))\V(Tr(i+1)) such that w; is inside vv;vj4qv for
j =0, 1,2, with subscripts modulo 3. By (ii) and (iii), o(vwp) = o(vws) = o(vwy) = o(vvy).
By (2), there exists some j € {0, 1,2} with o(vw) = o(vw;). Hence, o(vw) = o(vvg). O

(4) Let vgvivavg be a triangle bounding an inner face of Tr(¢), where 0 < i < n—2, and let
v € V(Tr(i+1))\V(Tr(i)) such that v is inside vov1vovg and o(vvg) € {o(vv1), o(vve)}.
Then for any w € (N(v) N N(vg)) \ {vi,v2}, o(wvg) # o(wv).

To prove (4), we may assume by symmetry and (1) that o(vvy) # o(vvg) = o(vvr). Then
o(wvg) = a(vvg) by (2), and o(wv) = o(vvy) by (3). Hence, o(wvg) # o(wv). O

(5) Suppose upv is a monochromatic path of length two in Tr(n) with uv € E(Tr(i + 1))
and p € V(Tr(n)) \ V(Tr(i + 1)). Then any monochromatic path in Tr(n) between u
and v and of the color o(up) has length at most two.

Consider any monochromatic path P = agay...a, of the color o(up) with ag = v and a, = u.
First, suppose uwv € E(Tr(0)). Let Tr(0) = wowu and = € V(Tr(1)) \ V(Tr(0)). By (2),
o(ux) = o(up) and o(vz) = o(vp); so o(zxu) = o(zxv). Thus, by (i), o(wz) = o(wu) =
o(wv) # o(zu). Let vovy ... v, be a path in Tr(n) with vgp = w, v1 = z and for 1 < i < n,
v; € V(Tr(é)) \ V(Tr(i — 1)) is inside v;—juvv;—1. By (ii) and (iii), o(viu) = o(v;v) = o(vx)
for 1 <i < n, and o(v;viy1) = o(zw) for 0 < i < n — 1. By planarity, P is contained in
the closed region bounded by wvwu. So either P = wv or there exists some 1 < k <r —1
such that ay € {vo, ..., v, }. We may assume the latter case occurs. If {ax_1,ar11} = {u,v},
then » = 2. Hence without loss of generality, let a1 ¢ {u,v}. Then by (2) and (3),
olag_1ax) = o(vivit1) # o(pu) for i € {0,1,...n — 1}, a contradiction. Hence r < 2.1

Thus, we may assume wv ¢ E(Tr(0)). By symmetry, we may assume that v € V(Tr(i +
1)) \ V(Tr(q)) for some 0 < ¢ < n and v is inside the triangle ujugusu; bounding an inner
face of Tr(7) and u; = u. By (4), o(u1v) # o(ugv) = o(usv).

If ay is inside vuguzv then there exists 1 < k < r such that ay is inside vuzugv and agy1 €
{ua,us}; so by (2), o(agars+1) = o(vug) = o(vug) # o(u1v) = o(pu), a contradiction.

Therefore, suppose that P # uv, by symmetry, we may assume that a; is inside uqvugu.
Let vg = ug and let vivy...v,—;—1 be the path in Tr(n) such that, for 1 < ¢ <n—i—1,
ve e V(Tr(i +0+4 1)) \ V(Tr(i + ¢)) is inside ujvp—jvuy.

By (ii) and (iii), o(veu1) = o(vev) = o(ugv) for 1 < ¢ < n —1i—1, and o(vpvey1) =
o(vug) # o(vuy) for 0 < € < n —i—2. If ay is inside vpvps vV, for some £ with 0 < £ <
n —i—2, then exists 1 < k < r such that ay is inside vpvpi1vvy and agy1 € {vg, vp41}; so by
(3) o(agag+1) = o(vevey1), a contradiction. So a; = vy for some ¢ with 1 < ¢ <n —i—1.
Then as o(ajaz) = o(u1v) and by (3), we have ag = uy. Therefore, r = 2, proving (5). O

(6) If Ck is monochromatic in Tr(n) then k < 4.

!We remark that this paragraph also shows that such uv in E(Tr(0)) cannot be in a monochromatic Cl.



Let Cy = ajasz...aga; be a monochromatic cycle in Tr(n). By (i), E(Ck) € E(Tr(0)).
So we may assume that there exists some 1 <1 < k such that a;+; € V(Tr(¢+1))\ V(Tr(¢))
is inside the triangle a;uva; which bounds an inner face of some Tr(¢). We may further
assume that £ < n — 2, as otherwise, we could consider Tr(n + 1) instead of Tr(n).2

Suppose o(a;ai+1) € {o(ai+1u),0(a;+1v)}. By symmetry, we may assume o(a;ai+1) =
o(ai+iu). Then a;y2 = u by (3). Hence, by (5), any monochromatic path in Cj between a;
and a;42 = u has length at most 2. So k < 4.

Thus, we may assume o(a;a;+1) ¢ {o(a;11u),0(a;+1v)}; hence, o(a;r1u) = o(a;+1v).
Let w € V(Tr(¢ 4 2)) \ V(Tr(£ + 1)) be inside the triangle a;ua;1a;. By (ii) and (iii),
o(wa;) = o(wa;+1) = o(aa;+1). Hence, by (5), the monochromatic path Cj — a;a;4; in
Tr(n) of the color o(a;a;1+1) = o(wa;) has length at most 2; so k = 3. O

(7) There is no monochromatic H* in Tr(n).

Suppose that there is a monochromatic copy of H™ on {v; : 1 < i < 6} in which
v1VaV3V4v1 i a 4-cycle and vivs, vovg are edges. If vive € E(Tr(0)), then vivy satisfies the
conditions of (5) and by the footnote from the proof of (5), there is no monochromatic Cy
containing vyve, a contradiction. So v1ve ¢ E(Tr(0)). By symmetry, we may assume that
vg € V(Tr(i+1)) \ V(Tr(7)) for some i and that vjuwv, is the triangle bounding the inner
face of Tr(7) containing vy. Again as before we may assume that 0 <i <n — 2.

If o(vou) = o(vaw), then there exists some p € V(Tr(n)) \ V(Tr(i + 1)) such that vipve
has the same color as o(viv2). But vjv4vsvs is a monochromatic path of length 3 in Tr(n)
between v; and vy and of the color o(viv3), a contradiction to (5).

Hence, o(v1v2) € {o(vau), o(vow)} and by symmetry, we may assume o(viv2) = o(vau).
Then by (1), o(viva) # o(vew) and thus o(vevs) = o(vevg) # o(vaw). This shows w ¢
{vs,ve}. So there exists y € {vs,vs} \ {u,w}. By (3), o(vay) = o(vaw), a contradiction.
This completes the proof of this section.

3 Monochromatic Ks3

In this section, we prove Theorem 1.1 for K33 using a different coloring scheme on Tr(n)
described below. Let o : E(Tr(n)) — {0,1} be defined inductively as follows:

(i) Fix a triangle 7" bounding an inner face of Tr(1), and let o(e) = 0 if e € E(T') and
ole)=1if e e E(Tr(1)) \ E(T).

(ii) Suppose for some 1 < i < n, we have defined o(e) for all e € E(Tr(i)). We now
extend o to E(Tr(i + 1)). Let x € V(Tr(:)) \ V(Tr(i — 1)) be arbitrary, let vgvivavg
denote the triangle bounding the inner face of Tr(i — 1) containing x, with vg, v1, va
on the triangle in clockwise order, and let o(zv;) = o(xvy).

(iii) Let z; € V(Tr(i + 1)) \ V(Tr(¢)) such that x; is inside the face of Tr(i) bounded by
the triangle zv;v;j 12, where j = 0, 1,2 and the subscripts are taken modulo 3. Define
o(vozx) = o(voxg) = o(voxz) = o(zwe) = o(x1v1), and o(vex) = o(vaxy) = o(voxa) =
o(xxy) = o(xxg) = o(zov1).

2This is fair because Tr(n + 1) /4 Cj implies Tr(n) 4 Ck.



Note that in (ii) we have [{o(zv;) : j =0,1,2}| = 2 and that in (iii) we have o(x;v;) #
o(z;vj41) for j = 0,1,2. Hence, inductively, we have

(1) For 1 <i<mandxe€ V(Tr(i)) \ V(Tr(i — 1)), [{o(zv) : v € V(Tr(i — 1))} = 2.

(2) If z1zoxsx; is a triangle which bounds an inner face of Tr(i) for some 1 <7 <n — 2,
and if x € V(Tr(n)) \ V(Tr(i + 1)) is inside 1292321 with zz1, xxe € E(Tr(n)), then
o(xxy) # o(xxa).

These two claims are straightforward so we omit their proofs.

(3) For any 129 € E(Tr(n)), [{x € N(z1) N N(z2) : o(zz1) = o(zzs) = 0} < 2 and
{x € N(z1) N N(z2) : o(zx1) = o(zz) =1} < 2.

First, suppose z1z2 € E(Tr(0)). Then by (i) and (2), [{z € N(z1) N N(z2) : o(zz1) =
o(zxe) =0} <1and |[{z € N(z1) N N(x2) : o(xz1) = o(zz2) = 1}| < 1.

So we may assume that xjvwz; bounds an inner face of Tr(i) and zo € V(Tr(i +
1)) \ V(Tr(4)) inside zjvwzi. Let vy € Tr(i 4+ 2) be inside zjvzoz; and wy € Tr(i + 2)
be inside xjwzox;. By (iii), o(wiz1) # o(wize) or o(viz1) # o(vizs). By (2), for any
x € V(Tr(n)) \ V(Tr(i + 2)) inside zjvwzy with za1, zz9 € E(Tr(n)), we have o(zxxy) #
o(xxg). Hence, if (3) fails, then we may assume by symmetry between w; and v; that
o(vzy) = o(vry) = o(wry) = o(wxe) = o(viz1) = o(vize), and o(wiz1) # o(wize).
Then, by (1), o(x122) # o(x2v) = o(zew). Now by (iii), at least one of the two edges vz
and vizg has the same color as x1x9, a contradiction. This proves (3).

(4) If zyzowgzyzy is a 4-cycle in Tr(n), then x123 € E(Tr(n)) or xexy € E(Tr(n)).

We may assume that {x1,z2, 23,24} C V(Tr(i + 1)) and z; € V(Tr(i + 1)) \ V(Tr(z)) for
some 0 <i <n and j € [4]. Let uvwu be the triangle bounding an inner face of Tr(i) such
that x; is inside it. Then {zj_1,z;11} C {u, v, w}, implying that z;_12;41 € E(Tr(n)). O.

(5) There is no monochromatic Ks 3 in Tr(n).

For, suppose Tr(n) has a monochromatic copy of K33 on {v1, v2, v3, v4, V5 } with v4v;, v5v; €
E(Tr(n)) for all i = 1,2,3. Then vqvs ¢ E(Tr(n)) by (3) and, hence, it follows from (4)
that vivg, vous, v3v1 € E(Tr(n)). By planarity, v1vevsv; bounds an inner face of Tr(i) for
some ¢ with 1 < ¢ < n and, by the symmetry between v4 and vs, we may assume that vy
is inside vjvovsvy. Then vy € V(Tr(i + 1)) \ V(Tr(i)). However, this contradicts (1), as
o(v4v1) = 0(v4v2) = o(v4v3). We have completed the proof of Theorem 1.1. ]

4 Monochromatic J,

In this section we prove that Tr(100k) — Ji holds for any positive integer k.
We need the following result, which is Lemma 9 in [4]. The original statement in [4]
states Tr(16) — Cjy, but the same proof in [4] actually gives the following stronger version.



Lemma 4.1. If xyzx bounds the outer face of Tr(16), then any 2-edge-coloring of Tr(16)
gives a monochromatic Cy which intersects {x,y}.

Note that if the triangle xyzz bounds the outer face of Tr(n) and v € V(Tr(1))\V (Tr(0))
then the subgraph of Tr(n) contained in the closed disc bounded by vzyv is isomorphic to
Tr(n — 1). Hence, the following is an easy consequence of Lemma 4.1.

Corollary 4.2. If zyzx bounds the outer face of Tr(17) then any 2-edge-coloring of Tr(17)
gives a monochromatic Cy which intersects {x,y} and avoids z.

Lemma 4.3. For any positive integer k, Tr(38k)— F},

Proof. Let o : E(Tr(38k)) — {0,1} be an arbitrary 2-edge coloring. Let uvwu be the
triangle bounding the outer face of Tr(38k). Let zp := w and, for 1 < ¢ < 2k, let z; €
V(Tr(£))\V (Tr(£—1)) such that x, is inside zy_juvzy_y. Let y; 0 :== x; fori € {0,1,...,2k—
1} and, for £ € {1,...,36k}, let y; 0 € V(Tr(i+1+£)) \ V(Tr(i + £)) such that y; ¢ is inside
Yie—1UTi41Yi0—-1-

Suppose for each 0 < i < 2k — 1 there exists a monochromatic Cy inside z;ux;412; that
contains u and avoids x;. By pigeonhole principle, at least k of these Cys are of the same
color, which form a monochromatic Fj, centered at w.

Hence, we may assume that there exists some i € {0,1,...,2k — 1} such that no
monochromatic Cy inside x;ux;112; contains u and avoids x;. Since i < 2k — 1, x;ux;112;
bounds the outer face of a Tr(36k) that is contained in Tr(38k).

Now for each h € {0,1,...,2k — 1}, we view the closed region bounded by uw;{1y; 185
as a Tr(17). Note that these copies of Tr(17) share w,x;4; as the only common vertices.
Taking y; 155 to be the vertex z in Corollary 4.2, we conclude from Corollary 4.2 that there
is a monochromatic Cy in the Tr(17) bounded by ux;1y;18pu such that z;11 € V(G}) and
{u,yi18n} N V(Gh) = 0. By pigeonhole principle, at least k of these Cys are of the same
color, which clearly form a monochromatic Fj centered at x;y1. |

Lemma 4.4. Let k be a positive integer and let uvvwu bound the outer face of Tr(9k + 2).
Suppose o : E(Tr(9k +2)) — {0,1} is a 2-edge-coloring such that |{o(uz) : x € V(Tr(9% +
2))} = 1 and there is no monochromatic Cy containing w. Then Tr(9k + 2) contains
monochromatic Ji centered at v.

Proof. Without loss of generality, assume o(uv) = 0. Then o(uy) = 0 for all y € N(u).
Let xp := w and, for 1 <i <8k + 1, let z; € V(Tr(:)) \ V(Tr(i — 1)) such that z; is inside
Zi—juvzi—1. Since no monochromatic Cy in Tr(9% + 2) contains u, there is at most one
i €{0,1,2,...8k + 1} such that o(z;v) = 0. Hence, there exists ¢ € {0,1,...4k + 2} such
that o(vaj) =1 for j € {i,i+1...i+ 4k — 1}. We now make the following claim.

Claim. The subgraph of Tr(9k+2) contained in the closed disc bounded by vz; ... z;13,-1v
has a monochromatic Fj of color 1 and centered at v, which we denote by F,.

To show this, it suffices to show that for each r with 0 < r < k — 1, the subgraph T, of
Tr(9k+2)) inside v&; 43, Tit+37+1Ti+3r+2v (inclusive) contains a monochromatic Cy of color 1
and containing v, as the union of such Cy is an Fj centered at v. So fix an arbitrary r, with
0 <r <k—1. Note that o(zi+3,Ti+3r+1) = 1 or 0(Xiy3r41Tit3r42) = 1, for 0 <r <k —1;



for, otherwise, T;43,Tit+37+1Ti+3r+2UTi+3, 1S & monochromatic Cy of color 0 and containing
u, a contradiction. Without loss of generality, assume o (z;4+3,%i+3r+1) = 1.

Let y € V(Tr(i +3r +2)) \ V(Tr(i + 3r + 1)) such that y is inside @43, Zit3r+10Ti43,
If there are two edges in {yziisr,yTitsr+1,yv} of color 0, then one can easily find a
monochromatic C4 of color 0 and containing u, a contradiction. Hence, at least two of
{o(yxit3r), o (yTitsr+1),0(yv)} are 1. So {y, Tit3r, Tit3r+1,v} induces a subgraph which
contains a monochromatic Cy of color 1. This proves the claim. O

Note that for i + 3k < r < i+ 4k — 1, uz,z,_1u bounds the outer face of a Tr(k + 1).
Let 2,0 := x,—1 and, for r € {i +3k,i+3k+1,...i+4k — 1} and ¢ € {1,2,...k}, let
2o € V(Tr(r+ )\ V(Tr(r + £ — 1)) such that z,, is inside z,_1z,uz, ;. Because
o(uz, ;) = 0 (by assumption) and Tr(9k 4 2) has no monochromatic Cy containing u, there
is at most one y € {z1,22,..., %k} such that o(yz,) = 0. So there exists k — 1 vertices
in {z1,..., 21} which together with x,v form a monochromatic K j of color 1 centered
at x,, which we denote by H,. Now H;ysx, Hiy3k+1,. .., Hirax—1 form a monochromatic
k-ary radius 2 tree rooted at v of color 1. This radius 2 tree and F;, form a monochromatic
Ji, of color 1, completing the proof of Lemma 4.4. |

Now we are ready to prove the main result of this section, that is Tr(100k) — Jj. Let
o : E(Tr(100k)) — {0,1} be arbitrary. We show that ¢ always contains a monochromatic
Ji. By Lemma 4.3, Tr(76k) contains monochromatic copy of Fy, say F', and, without
loss of generality, assume it is of color 1. Let the Cys in F' be za;a;2a; 32 for i € [2k].
For i € [2K], let b; € V(Tr(76k + 1)) \ V(Tr(76k)) such that b; is inside za;1a;2a; 32 and
a;10i2b;a;; bounds an inner face of Tr(76k + 1). Let A; be the family of all vertices
a € N(a;1) inside a;1a;2b;a;1 and satisfying o(aa; 1) = 1.

(1) There exists some i € {k+ 1,k + 2,...2k} such that |4;| < k.

Otherwise, suppose |A4;| > k for i € {k+1,k+2,..2k}. Thenlet Z; :== {2;1,2i2,...2ix—1} C
A;. Now, for each i € {k+1,...,2k}, {z,a;1}UZ; induces a graph containing a monochro-
matic K ;. Those K ;s form a monochromatic radius-two k-ary tree of color 1 and rooted
at x, which we denote by T,.. Now F} U T, is a monochromatic J. O

Let u := a;;. By (1), there exists an edge vw € Tr(78k) such that uvwu bounds an
inner face of Tr(78k) and o(uy) = 0 for any y € N(u) in the closed disc bounded by uvwu.

Let G be the subgraph of Tr(n) contained in the closed disc bounded by wvwu. Clearly
G is isomorphic to a copy of Tr(22k). In the rest of the proof, we should only discuss the
graph G and all Tr(7) will be referred to this copy of Tr(22k). Let x¢ := w and for i € [4k],
let z; € V(Tr(i)) \ V(Tr(i — 1)) such that x; is inside ux;_jvu.

(2) G contains a monochromatic copy of Fy, say F’, which has color 0 and center u and is
disjoint from the union of closed regions bounded by wx;z; 1w over all 0 < ¢ < 2k —1.

If for each ¢ € {k,k +1,...,2k — 1} there exists a monochromatic Cy inside uzg;z2;+1u and
containing wu, then these £ monochromatic Cys of color 0 form a desired monochromatic Fj
centered at u and thus (2) holds. Otherwise, since uxg;x2;+1u bounds the outer face of a
Tr(9k + 2), it follows from Lemma 4.4 that there exists a monochromatic Ji in G. O



For j € {0,1,...,2k — 1}, let B; be the family of all vertices x € N(z;) inside ux;z;1u
and satisfying o(zz;) = 0.

(3) There exists some j € {0,1,...,k — 1} such that |B;| < k.

Suppose on the contrary that there exist subsets Z; C Bj of size k for all j € {0, 1, ...,k—1}.
Then each Z; U{u,x;} induces a graph containing a monochromatic K , which is centered
at x; and has color 0. These K ;s together with I’ " form a monochromatic J;, of color 0.
This proves (3). O

Let po := xj41 and for 1 < ¢ < 4k, let pp € V(Tr(j 4+ ¢+ 1)) \ V(Tr(j + £)) such that p,
is inside uxjp,—ju. By (3), there exists some 0 < ¢ < 4k — 1 such that o(zz;) = 1 for any
z € N(z;) in the closed disc bounded by x;pepi12;.

(4) There is a monochromatic Fy, inside xjpspry12;, say F”, with color 1 and center x;.

Let zp := pg+1 and for s € [2k], let 2z, € V(Tr(j + ¢+ s+ 2)) \ V(Tr(j + £+ s+ 1)) such
that z is inside z;zs_1px;. Note that each x;20529,112; bounds a Tr(9%k + 3). If for each
s € [k] there exists a monochromatic Cy4 of color 1 inside Tj22s%2s+1%; and containing x;,
then these monochromatic copies of C4 form the desired monochromatic F} centered at z;.
Otherwise, it follows from Lemma 4.4 that there exists a monochromatic J. O

As |Bj| < k, there exists a subset A C {p1,p2, ..., pax} of size 2k such that o(az;) =1
for each @ € A and moreover, there is no neighbors of A belonging to V(F”). Let A :=
{au, ..., a0 }. Note that for each h € [2k], we have o(apu) = 0 and o(apzj) = 1.

It is easy to see that there exist pairwise disjoint sets Ny, C N (ay,) of size 2k for h € [2E].
Then there exists My C Ny, such that |[My| = k — 1 and o(xay,) is the same for all x € Mj,.
This gives 2k monochromatic copies of K ;1 with centers ay, for h € [2k]. At least k of
them (say with centers oy, for h € [k]) have the same color. If this color is 0, these copies
together with {uay, : h € [k]} and F’ give a monochromatic Jj, with color 0 and center w.
Otherwise, this color is 1. Then these copies together with {x;ay, : h € [k]} and F” give a
monochromatic J with color 1 and center u. This proves Tr(100k) — Jj. ]

5 Monochromatic bistar

In this section we prove Tr(6k + 30) — Bj,. We first establish the following lemma.

Lemma 5.1. Let uvwu be the triangle bounding the outer face of Tr(k + 10). Let o :
E(Tr(k + 10)) — {0,1} such that |[{o(uz) : x € V(Tr(k + 10))}| = 1 and there is no
monochromatic Cy containing w. Then Tr(k + 10)) contains a monochromatic By,.

Proof. Without loss of generality, let o(uv) = 0. Let zy := w and, for i € [6], let
x; € V(Tr(i)) \ V(Tr(¢ — 1) such that x; is inside wvx;_ju.

Since Tr(k + 10) has no monochromatic Cy containing u, we see that [{0 < i < 6 :
o(vx;) = 0} < 1. So there exists some i € {0,1,2,3,4} such that o(va;) = o(vaiy1) =
o(vzite) = 1. We have either o(z;z;y1) = 1 or o(zj412i42) = 1; as otherwise uz;z; 12 12u
is a monochromatic Cy of color 0 and containing u, a contradiction. We consider two cases.



Case 1. 0’(.%'1'.%'1'4_1) = U(xi+1xi+2)~

In this case, we have o(z;z;+1) = o(x;41242) = 1. So x;x; 112, 420x; is a monochromatic
Cy of color 1. Let yg := x;41 and for ¢ € [k+ 1], let yp € V(Tr(i + 1+ £)) \ V(Tr(i + ¢))
such that y, is inside uyy_qyx;u. Similarly let zp := x;41 and for £ € [k + 1], let 2z, €
V(Tr(i +24£))\ V(Tr(i + 1 + £)) such that z, is inside uzy_1z;12u.

Since Tr(k + 10) has no monochromatic Cy containing wu, this shows that [{¢ € [k +
1] : o(xiye) = 0} < 1 and [{¢ € [k + 1] : o(xiy22¢) = 0}] < 1. Therefore, there exist
Y C{ye:le[k+1]} and Z C {z : £ € [k + 1]} such that |Y| = |Z| = k, o(yxz;) = 1 for
each y € Y and o(zx;42) = 1 for each z € Z. Hence, Tr(k + 10) has two monochromatic
K s of color 1 with centers x;, ;11 and leave sets Y, Z, respectively. These two Kj s
together with va;z;112;42v form a monochromatic By of color 1.

Case 2. o(xiwit1) # o0(Tip12i42)-

Without loss of generality, let o(x;z;+1) = 0 and o(zjt12i42) = 1. Let y € V(Tr(i+2))\
V(Tr(i+ 1)) be inside uz;z;;1u. Because o(uy) = 0 and Tr(k + 10) has no monochromatic
C4 containing u, o(yz;) = o(yzi+1) = 1. Therefore, yz;11vz;y is a monochromatic Cy of
color 1. Let yp := y and, for £ € [k+1], let yp € V(Tr(i+2+4¢))\V(Tr(i+1+¥¢)) such that y,
is inside uyy_1zu. Let 29 := y and, for £ € [k+1], let 2z, € V(Tr(i+24+£0))\V(Tr(i+1+¢))
such that z, is inside uzy_12;41u.

The remaining proof is similar as in Case 1. We observe that |{¢ € [k + 1] : o(z;y¢) =
0} < 1and |{¢ € [k+1] : o(zit12¢) = 0} < 1. Therefore, there exist Y C {y, : £ €
[k +1]} and Z C {2 : £ € [k + 1]} such that |Y| = |Z| = k, o(yx;) = 1 for y € Y, and
o(zxi41) = 1 for z € Z. Hence, Tr(k + 10) has two monochromatic Kj s of color 1 with
centers x;, z;4+1 and leave sets Y, Z, respectively. These two K ;s together with yx;1vz;y
form a monochromatic By, of color 1. This proves Lemma 5.1. |

We are ready to prove Tr(6k + 30) — By. Let o : E(Tr(6k + 30) — {0,1}. By Lemma
4.1, the copy of Tr(16) with the same outer face as of Tr(6k+30) contains a monochromatic
Cly, say ujugusuguy of color 1. For each i € {1,3}, let v;w; be an edge in Tr(18) such that
w;v;w;u; is a triangle inside uquougugquq. Note that w;v;w;u; bounds the outer face of a
Tr(6k 4+ 12). Let A; be the family of all vertices x € N(u;) inside w;v;w;u; and satisfying
o(xu;) = 1. If |A1] > k and |As| > k, then together with the monochromatic 4-cycle
UL U2U3U4UT, 1t 1S easy to form a monochromatic By of color 1.

Hence by symmetry, we may assume that |A;| < k. Then there exists an edge vw
in Tr(18 + k) such that ujvwu; bounds an inner face of Tr(18 + k) and o(ujx) = 0 for
all x € N(up) in the closed disc bounded by ujvwu;. We may assume that the induced
subgraph contained in the closed disc bounded by wjvwu; has a monochromatic Cy say
uizyzuy (as otherwise, it contains a By, by Lemma 5.1). Furthermore, we have {x,y,z} C
V(Tr(2k + 28)).

Let {po, g0} C V(Tr(2k+29))\V (Tr(2k+28)) such that both xypoz and yzqgpy bound two
inner faces of Tr(2k+29). For ¢ € [3k], let p;, € V(Tr(2k+294¢))\ V(Tr(2k+28+¢)) such
that py is inside 2py_1yx. Similarly, for ¢ € [3k], let ¢p € V(Tr(2k+29+40))\V (Tr(2k+28+¢))
such that ¢, is inside yqgy_12zy. Moreover, let

B; :={p € N(x) : p is inside zpoyz and o(xp) = 0},

By :={q € N(z) : q is inside ygozy and o(zq) = 0}.
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If |By| > k and |Bs| > k, we can find two monochromatic K s of color 0, one inside
xpoyx rooted at x and one inside yqozy rooted at z; these two K s and ujzyzu; form a
monochromatic By of color 0. So we may assume, without loss of generality, that |B;| < k.

Let C := {¢ € [3k] : o(ype) = 0}. We claim |C| < k. Suppose on the contrary that
|C| > k. Then there is a monochromatic K with root y and leaves in C' of color 0.
Since o(u1p) = 0 for all p € N(uy) inside ujvw, there is also a monochromatic K with
root u; and leaves inside ujzyzu; of color 0. Now these two K s and ujryzu; form a
monochromatic By, of color 0.

So |By| < k and |C| < k. Then there exist pp,ps with h,s € [3k] such that o(ppz) =
o(pry) = o(psz) = o(psy) = 1. Because xpppix bounds an inner face of Tr(2k + 30), it
also bounds the outer face of a Tr(4k). As |Bi| < k, there exists a monochromatic Kj j
of color 1 with the root x and k leavers inside xpopix. Similarly, as |C| < k, there exists
a monochromatic K7y of color 1 with root y and & leavers inside ypop1y. Now these two
K s and the 4-cycle zppypse form a monochromatic By of color 1. This proves that
Tr(6k + 30) — By and thus completes the proof of Theorem 1.2. ]

References
[1] I. Algor and N. Alon. The star arboricity of graphs, Discrete Math. 75 (1989) 11-22.

[2] K. Appel and W. Haken, Every planar map is four colorable. I. Discharging, Illinois
J. Mathematics 21 (3) (1977) 429-490.

[3] K. Appel, W. Haken, and J. Koch, Every planar map is four colorable. II. Reducibility,
Lllinois J. Mathematics 21 (3) (1977) 491-567.

[4] M. Axenovich, U. Schade C. Thomassen, and T. Ueckerdt, Planar Ramsey graphs,
FElectronic J. Combinatorics 26 (4) (2019) #P4.9.

[5] D. Goncalves, Edge partition of planar graphs into two outerplanar graphs, in
STOC?05: Proceedings of the 37th Annual ACM Symposium on Theory of Com-
puting, pages 504-512, 2005.

[6] L. J. Cowen, R. H. Cowen, and D. R. Woodall, Defective colorings of graphs in surfaces:
partitions into subgraphs of bounded valency, J. Graph Theory 10 (1986) 187-195.

[7] S. Hakimi, On the degrees of the vertices of a directed graph, J. Franklin Institute 279
(1865) 290-308.

[8] S. Hakimi, J. Mitchem, and E. Schmeichel, Star arboricity of graphs, Discrete Mathe-
matics 149 (1996) 93-98.

[9] N. Robertson, D. Sanders, P. Seymour, and R. Thomas, The four-colour theorem, .J.
Combin. Theory Ser. B 70 (1) (1997) 2-44.

[10] K. S. Poh, On the linear vertex arboricity of a planar graph, J. Graph Theory 14
(1990) 73-75.

11



