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Abstract

For integers n ≥ 0, an iterated triangulation Tr(n) is defined recursively as follows:
Tr(0) is the plane triangulation on three vertices and, for n ≥ 1, Tr(n) is the plane
triangulation obtained from the plane triangulation Tr(n− 1) by, for each inner face F
of Tr(n − 1), adding inside F a new vertex and three edges joining this new vertex to
the three vertices incident with F .

In this paper, we show that there exists a 2-edge-coloring of Tr(n) such that Tr(n)
contains no monochromatic copy of the cycle Ck for any k ≥ 5. As a consequence, the
answer to one of two questions asked in [4] is negative. We also determine the radius
two graphs H for which there exists n such that every 2-edge-coloring of Tr(n) contains
a monochromatic copy of H, extending a result in [4] for radius two trees.

1 Introduction

For graphs G and H, we write G→ H if, for any 2-edge-coloring of G, there is a monochro-
matic copy of H. Otherwise, we write G 6→ H. We say that H is planar unavoidable if
there exists a planar graph G such that G → H. This notion is introduced and studied
in [4].

Deciding if G→ H is clearly equivalent to asking whether a graph G admits a decom-
position (i.e., an edge-decomposition) such that one of the two graphs in the decomposition
contains the given graph H. The well-known Four Color Theorem [2, 3] (also see [9]) im-
plies that every planar graph admits a decomposition to two bipartite graphs; so planar
unavoidable graphs must be bipartite. A result of Goncalves [5] says that every planar
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graph admits a decomposition to two outer planar graph (although we have not seen a de-
tailed proof); so planar unavoidable graphs must be also outer planar. There are a number
of interesting results about decomposing planar graphs, see [1, 6–8,10].

For any positive integer n, let Pn denote the path on n vertices, and Kn denote the
complete graph on n vertices. For integer n ≥ 3, we use Cn to denote the cycle on n vertices.
It is shown in [4] that Pn, C4, and all trees with radius at most 2 are planar unavoidable.
This is done by analyzing several sequences of graphs.

In this paper, we investigate one such sequence – the iterated triangulations, which is
of particular interest as suggested in [4]. Let n ≥ 0 be an integer. An iterated triangulation
Tr(n) is a plane graph defined as follows: Tr(0) ∼= K3 is the plane triangulation with
exactly two faces. For each i ≥ 0, let Tr(i + 1) be obtained from the plane triangulation
Tr(i) by adding a new vertex in each of the inner faces of Tr(i) and connecting this vertex
with edges to the three vertices in the boundary of their respective face. The authors
of [4] asked whether for any planar unavoidable graph H there is an integer n such that
Tr(n)→ H. They also asked whether there exists an integer k ≥ 3 such that the even cycle
C2k is planar-unavoidable.

Our first result indicates that a positive answer to one of the above questions implies a
negative answer to the other. Let H+ be the bipartite graph obtained by adding an edge
to the unique 6-vertex tree with 4 leaves and 2 vertices of degree three.

Theorem 1.1. For all positive integer n, Tr(n) 6→ Ck for k ≥ 5, Tr(n) 6→ H+, and
Tr(n) 6→ K2,3

As another direct consequence, we see that if B is a bipartite graph and Tr(n)→ B for
some n then every block of B must be a C4 or K2. This can be used to characterize all
radius two graphs B for which there exists n such that Tr(n) → B, generalizing a result
in [4] for radius two trees. To state this characterization, we need additional notations. A
flower Fk is a collection of k copies of C4s sharing a common vertex, which is called the
center. A jellyfish Jk is obtained from Fk and a k-ary tree of radius two by identifying the
center of Fk with the root of the k-ary tree. A bistar Bk is obtained from one C4 and two
disjoint K1,ks by identifying the roots of the K1,ks with two non-adjacent vertices of C4,
respectively.

Theorem 1.2. Let L be a graph with radius two. Then there exists n such that Tr(n)→ L
if, and only if, L is a subgraph of a jellyfish or bistar.

We organize this paper as follows. In Section 2, we prove Tr(n) 6→ Ck for k ≥ 5 and
Tr(n) 6→ H+ by finding a special edge coloring scheme for Tr(n). In Section 3, we complete
the proof of Theorem 1.1 by using another edge coloring scheme on Tr(n). From Theorem
1.1, we can derive the following: if L has radius 2 and Tr(n) → L for some n, then L is a
subgraph of a jellyfish or bistar. Hence to prove Theorem 1.2, it suffices to show that for
any k ≥ 1 there exists some n such that Tr(n)→ Jk and Tr(n)→ Bk. We prove the former
statement in Section 4 and the latter one in Section 5 by showing that we can choose n to
be linear in k.
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2 H+ and Ck for k ≥ 5

In this section, we prove Theorem 1.1 for H+ and Ck, with k ≥ 5. First, we describe the
2-edge-coloring of Tr(n) that we will use. Let σ : E(Tr(n))→ {0, 1} be defined inductively
for all n ≥ 1 as follows:

(i) Fix an arbitrary triangle T bounding an inner face of Tr(1), and let σ(e) = 0 if
e ∈ E(T ) and σ(e) = 1 if e ∈ E(Tr(1)) \ E(T ).

(ii) Suppose for some 1 ≤ i < n, we have defined σ(e) for all e ∈ E(Tr(i)). We extend σ
to E(Tr(i+1)) as following. Let x ∈ V (Tr(i))\V (Tr(i−1)) be arbitrary, let v0v1v2v0
denote the triangle bounding the inner face of Tr(i−1) containing x, and fix a labeling
so that σ(xv1) = σ(xv2).

(iii) Let xj ∈ V (Tr(i + 1)) \ V (Tr(i)) be such that xj is inside the face of Tr(i) bounded
by the triangle xvjvj+1x, where j = 0, 1, 2 and the subscripts are taken modulo
3. Define σ(xv0) = σ(x0v0) = σ(x2v0) = σ(xjx) for all j = 0, 1, 2, and σ(xv1) =
σ(x0v1) = σ(x1v1) = σ(x1v2) = σ(x2v2).

We now proceed by a sequence of claims to show that σ has no monochromatic Ck for
k ≥ 5 nor monochromatic H+, thereby proving Tr(n) 6→ Ck for k ≥ 5 and Tr(n) 6→ H+.

(1) For 1 ≤ i ≤ n and x ∈ V (Tr(i)) \ V (Tr(i− 1)), |{σ(xv) : v ∈ V (Tr(i− 1))}| = 2.

We apply induction on i. The basis case i = 1 follows from (i) above. So assume 2 ≤ i ≤ n.
Let v0v1v2v0 be the triangle bounding the inner face of Tr(i − 1) containing x. Without
loss of generality assume that v0 ∈ V (Tr(i − 1)) \ V (Tr(i − 2)). Let v1v2v3v1 denote the
triangle bounding the face of Tr(i − 2), with v0 inside v1v2v3v1. By induction hypothesis,
|{σ(v0vk) : k = 1, 2, 3}| = 2.

Suppose σ(v0v1) = σ(v0v2). Then by (ii) and (iii), σ(xv0) = σ(v0v3) and σ(xv1) =
σ(xv2) = σ(v0v1). So |{σ(xvk) : k = 0, 1, 2}| = 2.

So assume σ(v0v1) 6= σ(v0v2). By symmetry, we further assume σ(v0v2) = σ(v0v3).
Then by (ii) and (iii), we see that σ(xv1) = σ(xv0) = σ(v0v1) and σ(xv2) = σ(v0v2). So
σ(xv2) 6= σ(xv1) and hence, |{σ(xvk) : k = 0, 1, 2}| = 2. 2

(2) Let v0v1v2v0 be a triangle bounding an inner face of Tr(i), where 0 ≤ i < n, let
v ∈ V (Tr(i + 1)) \ V (Tr(i)) with v inside v0v1v2v0. Then, for any v0w ∈ E(Tr(n))
with w inside v0v1v2v0, σ(v0w) = σ(v0v).

Let v0w ∈ E(Tr(n)) with w inside v0v1v2v0. Then there exists k ≥ 0 with i + k + 1 ≤ n,
such that w ∈ V (Tr(i + k + 1)) \ V (Tr(i + k)). We prove (2) by applying induction on k.
The basis case is trivial because k = 0 implies w = v.

So assume k ≥ 1. Let v0v3v4v0 be the triangle bounding an inner face of Tr(i+ k − 1)
with w inside v0v3v4v0, and let v5 ∈ V (Tr(i+ k)) \ V (Tr(i+ k− 1)) that is inside v0v3v4v0.
By symmetry, assume w is inside v0v5v4v0. By induction hypothesis, σ(v0v5)=σ(v0v).

Suppose σ(v4v5) = σ(v0v5). Hence by (ii) and (iii), σ(v0w) = σ(wv4) = σ(v0v5).
Thus σ(v0w) = σ(v0v). Now assume σ(v4v5) 6= σ(v0v5). Then σ(v3v5) = σ(v0v5) or
σ(v3v5)=σ(v4v5). It follows from (iii) that σ(v0w) = σ(v0v5). Hence, σ(v0w) = σ(v0v). 2
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(3) Let v0v1v2v0 be a triangle bounding an inner face of Tr(i) with 0 ≤ i ≤ n− 2, and let
v ∈ V (Tr(i+1))\V (Tr(i)) such that v is inside v0v1v2v0 and σ(vv0) 6= σ(vv1) = σ(vv2).
Then for any vw ∈ E(Tr(n)) with w inside v0v1v2v0, σ(vw) = σ(vv0).

To prove (3), let {w0, w1, w2} ⊆ V (Tr(i+2))\V (Tr(i+1)) such that wj is inside vvjvj+1v for
j = 0, 1, 2, with subscripts modulo 3. By (ii) and (iii), σ(vw0) = σ(vw2) = σ(vw1) = σ(vv0).
By (2), there exists some j ∈ {0, 1, 2} with σ(vw) = σ(vwj). Hence, σ(vw) = σ(vv0). 2

(4) Let v0v1v2v0 be a triangle bounding an inner face of Tr(i), where 0 ≤ i ≤ n−2, and let
v ∈ V (Tr(i+1))\V (Tr(i)) such that v is inside v0v1v2v0 and σ(vv0) ∈ {σ(vv1), σ(vv2)}.
Then for any w ∈ (N(v) ∩N(v0)) \ {v1, v2}, σ(wv0) 6= σ(wv).

To prove (4), we may assume by symmetry and (1) that σ(vv2) 6= σ(vv0) = σ(vv1). Then
σ(wv0) = σ(vv0) by (2), and σ(wv) = σ(vv2) by (3). Hence, σ(wv0) 6= σ(wv). 2

(5) Suppose upv is a monochromatic path of length two in Tr(n) with uv ∈ E(Tr(i+ 1))
and p ∈ V (Tr(n)) \ V (Tr(i+ 1)). Then any monochromatic path in Tr(n) between u
and v and of the color σ(up) has length at most two.

Consider any monochromatic path P = a0a1...ar of the color σ(up) with a0 = v and ar = u.
First, suppose uv ∈ E(Tr(0)). Let Tr(0) = uvwu and x ∈ V (Tr(1)) \ V (Tr(0)). By (2),
σ(ux) = σ(up) and σ(vx) = σ(vp); so σ(xu) = σ(xv). Thus, by (i), σ(wx) = σ(wu) =
σ(wv) 6= σ(xu). Let v0v1 . . . vn be a path in Tr(n) with v0 = w, v1 = x and for 1 ≤ i ≤ n,
vi ∈ V (Tr(i)) \ V (Tr(i− 1)) is inside vi−1uvvi−1. By (ii) and (iii), σ(viu) = σ(viv) = σ(vx)
for 1 ≤ i ≤ n, and σ(vivi+1) = σ(xw) for 0 ≤ i ≤ n − 1. By planarity, P is contained in
the closed region bounded by uvwu. So either P = uv or there exists some 1 ≤ k ≤ r − 1
such that ak ∈ {v0, ..., vn}. We may assume the latter case occurs. If {ak−1, ak+1} = {u, v},
then r = 2. Hence without loss of generality, let ak−1 /∈ {u, v}. Then by (2) and (3),
σ(ak−1ak) = σ(vivi+1) 6= σ(pu) for i ∈ {0, 1, ...n− 1}, a contradiction. Hence r ≤ 2.1

Thus, we may assume uv /∈ E(Tr(0)). By symmetry, we may assume that v ∈ V (Tr(i+
1)) \ V (Tr(i)) for some 0 ≤ i < n and v is inside the triangle u1u2u3u1 bounding an inner
face of Tr(i) and u1 = u. By (4), σ(u1v) 6= σ(u2v) = σ(u3v).

If a1 is inside vu2u3v then there exists 1 ≤ k < r such that ak is inside vu3u2v and ak+1 ∈
{u2, u3}; so by (2), σ(akak+1) = σ(vu2) = σ(vu3) 6= σ(u1v) = σ(pu), a contradiction.

Therefore, suppose that P 6= uv, by symmetry, we may assume that a1 is inside u1vu2u1.
Let v0 = u2 and let v1v2 . . . vn−i−1 be the path in Tr(n) such that, for 1 ≤ ` ≤ n − i − 1,
v` ∈ V (Tr(i+ `+ 1)) \ V (Tr(i+ `)) is inside u1v`−1vu1.

By (ii) and (iii), σ(v`u1) = σ(v`v) = σ(u1v) for 1 ≤ ` ≤ n − i − 1, and σ(v`v`+1) =
σ(vu2) 6= σ(vu1) for 0 ≤ ` ≤ n − i − 2. If a1 is inside v`v`+1vv` for some ` with 0 ≤ ` ≤
n− i−2, then exists 1 ≤ k ≤ r such that ak is inside v`v`+1vv` and ak+1 ∈ {v`, v`+1}; so by
(3) σ(akak+1) = σ(v`v`+1), a contradiction. So a1 = v` for some ` with 1 ≤ ` ≤ n − i − 1.
Then as σ(a1a2) = σ(u1v) and by (3), we have a2 = u1. Therefore, r = 2, proving (5). 2

(6) If Ck is monochromatic in Tr(n) then k ≤ 4.

1We remark that this paragraph also shows that such uv in E(Tr(0)) cannot be in a monochromatic C4.
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Let Ck = a1a2 . . . aka1 be a monochromatic cycle in Tr(n). By (i), E(Ck) 6⊆ E(Tr(0)).
So we may assume that there exists some 1 ≤ i ≤ k such that ai+1 ∈ V (Tr(`+1))\V (Tr(`))
is inside the triangle aiuvai which bounds an inner face of some Tr(`). We may further
assume that ` ≤ n− 2, as otherwise, we could consider Tr(n+ 1) instead of Tr(n).2

Suppose σ(aiai+1) ∈ {σ(ai+1u), σ(ai+1v)}. By symmetry, we may assume σ(aiai+1) =
σ(ai+1u). Then ai+2 = u by (3). Hence, by (5), any monochromatic path in Ck between ai
and ai+2 = u has length at most 2. So k ≤ 4.

Thus, we may assume σ(aiai+1) /∈ {σ(ai+1u), σ(ai+1v)}; hence, σ(ai+1u) = σ(ai+1v).
Let w ∈ V (Tr(` + 2)) \ V (Tr(` + 1)) be inside the triangle aiuai+1ai. By (ii) and (iii),
σ(wai) = σ(wai+1) = σ(aiai+1). Hence, by (5), the monochromatic path Ck − aiai+1 in
Tr(n) of the color σ(aiai+1) = σ(wai) has length at most 2; so k = 3. 2

(7) There is no monochromatic H+ in Tr(n).

Suppose that there is a monochromatic copy of H+ on {vi : 1 ≤ i ≤ 6} in which
v1v2v3v4v1 is a 4-cycle and v1v5, v2v6 are edges. If v1v2 ∈ E(Tr(0)), then v1v2 satisfies the
conditions of (5) and by the footnote from the proof of (5), there is no monochromatic C4

containing v1v2, a contradiction. So v1v2 /∈ E(Tr(0)). By symmetry, we may assume that
v2 ∈ V (Tr(i+ 1)) \ V (Tr(i)) for some i and that v1uwv1 is the triangle bounding the inner
face of Tr(i) containing v2. Again as before we may assume that 0 ≤ i ≤ n− 2.

If σ(v2u) = σ(v2w), then there exists some p ∈ V (Tr(n)) \ V (Tr(i+ 1)) such that v1pv2
has the same color as σ(v1v2). But v1v4v3v2 is a monochromatic path of length 3 in Tr(n)
between v1 and v2 and of the color σ(v1v2), a contradiction to (5).

Hence, σ(v1v2) ∈ {σ(v2u), σ(v2w)} and by symmetry, we may assume σ(v1v2) = σ(v2u).
Then by (1), σ(v1v2) 6= σ(v2w) and thus σ(v2v3) = σ(v2v6) 6= σ(v2w). This shows w /∈
{v3, v6}. So there exists y ∈ {v3, v6} \ {u,w}. By (3), σ(v2y) = σ(v2w), a contradiction.
This completes the proof of this section.

3 Monochromatic K2,3

In this section, we prove Theorem 1.1 for K2,3 using a different coloring scheme on Tr(n)
described below. Let σ : E(Tr(n))→ {0, 1} be defined inductively as follows:

(i) Fix a triangle T bounding an inner face of Tr(1), and let σ(e) = 0 if e ∈ E(T ) and
σ(e) = 1 if e ∈ E(Tr(1)) \ E(T ).

(ii) Suppose for some 1 ≤ i < n, we have defined σ(e) for all e ∈ E(Tr(i)). We now
extend σ to E(Tr(i + 1)). Let x ∈ V (Tr(i)) \ V (Tr(i − 1)) be arbitrary, let v0v1v2v0
denote the triangle bounding the inner face of Tr(i − 1) containing x, with v0, v1, v2
on the triangle in clockwise order, and let σ(xv1) = σ(xv2).

(iii) Let xj ∈ V (Tr(i + 1)) \ V (Tr(i)) such that xj is inside the face of Tr(i) bounded by
the triangle xvjvj+1x, where j = 0, 1, 2 and the subscripts are taken modulo 3. Define
σ(v0x) = σ(v0x0) = σ(v0x2) = σ(xx2) = σ(x1v1), and σ(v2x) = σ(v2x1) = σ(v2x2) =
σ(xx1) = σ(xx0) = σ(x0v1).

2This is fair because Tr(n + 1) 6→ Ck implies Tr(n) 6→ Ck.

5



Note that in (ii) we have |{σ(xvj) : j = 0, 1, 2}| = 2 and that in (iii) we have σ(xjvj) 6=
σ(xjvj+1) for j = 0, 1, 2. Hence, inductively, we have

(1) For 1 ≤ i ≤ n and x ∈ V (Tr(i)) \ V (Tr(i− 1)), |{σ(xv) : v ∈ V (Tr(i− 1))}| = 2.

(2) If x1x2x3x1 is a triangle which bounds an inner face of Tr(i) for some 1 ≤ i ≤ n− 2,
and if x ∈ V (Tr(n)) \ V (Tr(i+ 1)) is inside x1x2x3x1 with xx1, xx2 ∈ E(Tr(n)), then
σ(xx1) 6= σ(xx2).

These two claims are straightforward so we omit their proofs.

(3) For any x1x2 ∈ E(Tr(n)), |{x ∈ N(x1) ∩ N(x2) : σ(xx1) = σ(xx2) = 0}| ≤ 2 and
|{x ∈ N(x1) ∩N(x2) : σ(xx1) = σ(xx2) = 1}| ≤ 2.

First, suppose x1x2 ∈ E(Tr(0)). Then by (i) and (2), |{x ∈ N(x1) ∩ N(x2) : σ(xx1) =
σ(xx2) = 0}| ≤ 1 and |{x ∈ N(x1) ∩N(x2) : σ(xx1) = σ(xx2) = 1}| ≤ 1.

So we may assume that x1vwx1 bounds an inner face of Tr(i) and x2 ∈ V (Tr(i +
1)) \ V (Tr(i)) inside x1vwx1. Let v1 ∈ Tr(i + 2) be inside x1vx2x1 and w1 ∈ Tr(i + 2)
be inside x1wx2x1. By (iii), σ(w1x1) 6= σ(w1x2) or σ(v1x1) 6= σ(v1x2). By (2), for any
x ∈ V (Tr(n)) \ V (Tr(i + 2)) inside x1vwx1 with xx1, xx2 ∈ E(Tr(n)), we have σ(xx1) 6=
σ(xx2). Hence, if (3) fails, then we may assume by symmetry between w1 and v1 that
σ(vx1) = σ(vx2) = σ(wx1) = σ(wx2) = σ(v1x1) = σ(v1x2), and σ(w1x1) 6= σ(w1x2).
Then, by (1), σ(x1x2) 6= σ(x2v) = σ(x2w). Now by (iii), at least one of the two edges v1x1
and v1x2 has the same color as x1x2, a contradiction. This proves (3).

(4) If x1x2x3x4x1 is a 4-cycle in Tr(n), then x1x3 ∈ E(Tr(n)) or x2x4 ∈ E(Tr(n)).

We may assume that {x1, x2, x3, x4} ⊆ V (Tr(i + 1)) and xj ∈ V (Tr(i + 1)) \ V (Tr(i)) for
some 0 ≤ i < n and j ∈ [4]. Let uvwu be the triangle bounding an inner face of Tr(i) such
that xj is inside it. Then {xj−1, xj+1} ⊆ {u, v, w}, implying that xj−1xj+1 ∈ E(Tr(n)). 2.

(5) There is no monochromatic K2,3 in Tr(n).

For, suppose Tr(n) has a monochromatic copy of K2,3 on {v1, v2, v3, v4, v5} with v4vi, v5vi ∈
E(Tr(n)) for all i = 1, 2, 3. Then v4v5 /∈ E(Tr(n)) by (3) and, hence, it follows from (4)
that v1v2, v2v3, v3v1 ∈ E(Tr(n)). By planarity, v1v2v3v1 bounds an inner face of Tr(i) for
some i with 1 ≤ i < n and, by the symmetry between v4 and v5, we may assume that v4
is inside v1v2v3v1. Then v4 ∈ V (Tr(i + 1)) \ V (Tr(i)). However, this contradicts (1), as
σ(v4v1) = σ(v4v2) = σ(v4v3). We have completed the proof of Theorem 1.1.

4 Monochromatic Jk

In this section we prove that Tr(100k)→ Jk holds for any positive integer k.
We need the following result, which is Lemma 9 in [4]. The original statement in [4]

states Tr(16)→ C4, but the same proof in [4] actually gives the following stronger version.
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Lemma 4.1. If xyzx bounds the outer face of Tr(16), then any 2-edge-coloring of Tr(16)
gives a monochromatic C4 which intersects {x, y}.

Note that if the triangle xyzx bounds the outer face of Tr(n) and v ∈ V (Tr(1))\V (Tr(0))
then the subgraph of Tr(n) contained in the closed disc bounded by vxyv is isomorphic to
Tr(n− 1). Hence, the following is an easy consequence of Lemma 4.1.

Corollary 4.2. If xyzx bounds the outer face of Tr(17) then any 2-edge-coloring of Tr(17)
gives a monochromatic C4 which intersects {x, y} and avoids z.

Lemma 4.3. For any positive integer k, Tr(38k)→ Fk

Proof. Let σ : E(Tr(38k)) → {0, 1} be an arbitrary 2-edge coloring. Let uvwu be the
triangle bounding the outer face of Tr(38k). Let x0 := w and, for 1 ≤ ` ≤ 2k, let xl ∈
V (Tr(`))\V (Tr(`−1)) such that x` is inside x`−1uvx`−1. Let yi,0 := xi for i ∈ {0, 1, . . . , 2k−
1} and, for ` ∈ {1, . . . , 36k}, let yi,` ∈ V (Tr(i+ 1 + `)) \ V (Tr(i+ `)) such that yi,` is inside
yi,`−1uxi+1yi,`−1.

Suppose for each 0 ≤ i ≤ 2k− 1 there exists a monochromatic C4 inside xiuxi+1xi that
contains u and avoids xi. By pigeonhole principle, at least k of these C4s are of the same
color, which form a monochromatic Fk centered at u.

Hence, we may assume that there exists some i ∈ {0, 1, . . . , 2k − 1} such that no
monochromatic C4 inside xiuxi+1xi contains u and avoids xi. Since i ≤ 2k − 1, xiuxi+1xi
bounds the outer face of a Tr(36k) that is contained in Tr(38k).

Now for each h ∈ {0, 1, . . . , 2k− 1}, we view the closed region bounded by uxi+1yi,18hu
as a Tr(17). Note that these copies of Tr(17) share u, xi+1 as the only common vertices.
Taking yi,18h to be the vertex z in Corollary 4.2, we conclude from Corollary 4.2 that there
is a monochromatic C4 in the Tr(17) bounded by uxi+1yi,18hu such that xi+1 ∈ V (Gh) and
{u, yi,18h} ∩ V (Gh) = ∅. By pigeonhole principle, at least k of these C4s are of the same
color, which clearly form a monochromatic Fk centered at xi+1.

Lemma 4.4. Let k be a positive integer and let uvwu bound the outer face of Tr(9k + 2).
Suppose σ : E(Tr(9k + 2))→ {0, 1} is a 2-edge-coloring such that |{σ(ux) : x ∈ V (Tr(9k +
2))}| = 1 and there is no monochromatic C4 containing u. Then Tr(9k + 2) contains
monochromatic Jk centered at v.

Proof. Without loss of generality, assume σ(uv) = 0. Then σ(uy) = 0 for all y ∈ N(u).
Let x0 := w and, for 1 ≤ i ≤ 8k + 1, let xi ∈ V (Tr(i)) \ V (Tr(i− 1)) such that xi is inside
xi−1uvxi−1. Since no monochromatic C4 in Tr(9k + 2) contains u, there is at most one
i ∈ {0, 1, 2, ...8k + 1} such that σ(xiv) = 0. Hence, there exists i ∈ {0, 1, . . . 4k + 2} such
that σ(vxj) = 1 for j ∈ {i, i+ 1 . . . i+ 4k − 1}. We now make the following claim.

Claim. The subgraph of Tr(9k+2) contained in the closed disc bounded by vxi . . . xi+3k−1v
has a monochromatic Fk of color 1 and centered at v, which we denote by Fv.

To show this, it suffices to show that for each r with 0 ≤ r ≤ k − 1, the subgraph Tr of
Tr(9k+2)) inside vxi+3rxi+3r+1xi+3r+2v (inclusive) contains a monochromatic C4 of color 1
and containing v, as the union of such C4 is an Fk centered at v. So fix an arbitrary r, with
0 ≤ r ≤ k − 1. Note that σ(xi+3rxi+3r+1) = 1 or σ(xi+3r+1xi+3r+2) = 1, for 0 ≤ r ≤ k − 1;
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for, otherwise, xi+3rxi+3r+1xi+3r+2uxi+3r is a monochromatic C4 of color 0 and containing
u, a contradiction. Without loss of generality, assume σ(xi+3rxi+3r+1) = 1.

Let y ∈ V (Tr(i+ 3r + 2)) \ V (Tr(i+ 3r + 1)) such that y is inside xi+3rxi+3r+1vxi+3r.
If there are two edges in {yxi+3r, yxi+3r+1, yv} of color 0, then one can easily find a
monochromatic C4 of color 0 and containing u, a contradiction. Hence, at least two of
{σ(yxi+3r), σ(yxi+3r+1), σ(yv)} are 1. So {y, xi+3r, xi+3r+1, v} induces a subgraph which
contains a monochromatic C4 of color 1. This proves the claim. 2

Note that for i + 3k ≤ r ≤ i + 4k − 1, uxrxr−1u bounds the outer face of a Tr(k + 1).
Let zr,0 := xr−1 and, for r ∈ {i + 3k, i + 3k + 1, . . . i + 4k − 1} and ` ∈ {1, 2, . . . k}, let
zr,` ∈ V (Tr(r + `)) \ V (Tr(r + ` − 1)) such that zr,` is inside zr,`−1xruzr,`−1. Because
σ(uzr,j) = 0 (by assumption) and Tr(9k+ 2) has no monochromatic C4 containing u, there
is at most one y ∈ {zr,1, zr,2, . . . , zr,k} such that σ(yxr) = 0. So there exists k − 1 vertices
in {zr,1, ..., zr,k} which together with xrv form a monochromatic K1,k of color 1 centered
at xr, which we denote by Hr. Now Hi+3k, Hi+3k+1, . . . ,Hi+4k−1 form a monochromatic
k-ary radius 2 tree rooted at v of color 1. This radius 2 tree and Fv form a monochromatic
Jk of color 1, completing the proof of Lemma 4.4.

Now we are ready to prove the main result of this section, that is Tr(100k) → Jk. Let
σ : E(Tr(100k)) → {0, 1} be arbitrary. We show that σ always contains a monochromatic
Jk. By Lemma 4.3, Tr(76k) contains monochromatic copy of F2k, say F , and, without
loss of generality, assume it is of color 1. Let the C4s in F be xai,1ai,2ai,3x for i ∈ [2k].
For i ∈ [2k], let bi ∈ V (Tr(76k + 1)) \ V (Tr(76k)) such that bi is inside xai,1ai,2ai,3x and
ai,1ai,2biai,1 bounds an inner face of Tr(76k + 1). Let Ai be the family of all vertices
a ∈ N(ai,1) inside ai,1ai,2biai,1 and satisfying σ(aai,1) = 1.

(1) There exists some i ∈ {k + 1, k + 2, ...2k} such that |Ai| < k.

Otherwise, suppose |Ai| ≥ k for i ∈ {k+1, k+2, ...2k}. Then let Zi := {zi,1, zi,2, ...zi,k−1} ⊆
Ai. Now, for each i ∈ {k+1, . . . , 2k}, {x, ai,1}∪Zi induces a graph containing a monochro-
matic K1,k. Those K1,ks form a monochromatic radius-two k-ary tree of color 1 and rooted
at x, which we denote by Tx. Now Fk ∪ Tx is a monochromatic Jk. 2

Let u := ai,1. By (1), there exists an edge vw ∈ Tr(78k) such that uvwu bounds an
inner face of Tr(78k) and σ(uy) = 0 for any y ∈ N(u) in the closed disc bounded by uvwu.

Let G be the subgraph of Tr(n) contained in the closed disc bounded by uvwu. Clearly
G is isomorphic to a copy of Tr(22k). In the rest of the proof, we should only discuss the
graph G and all Tr(i) will be referred to this copy of Tr(22k). Let x0 := w and for i ∈ [4k],
let xi ∈ V (Tr(i)) \ V (Tr(i− 1)) such that xi is inside uxi−1vu.

(2) G contains a monochromatic copy of Fk, say F ′, which has color 0 and center u and is
disjoint from the union of closed regions bounded by uxixi+1u over all 0 ≤ i ≤ 2k−1.

If for each i ∈ {k, k + 1, ..., 2k − 1} there exists a monochromatic C4 inside ux2ix2i+1u and
containing u, then these k monochromatic C4s of color 0 form a desired monochromatic Fk

centered at u and thus (2) holds. Otherwise, since ux2ix2i+1u bounds the outer face of a
Tr(9k + 2), it follows from Lemma 4.4 that there exists a monochromatic Jk in G. 2
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For j ∈ {0, 1, ..., 2k − 1}, let Bj be the family of all vertices x ∈ N(xj) inside uxjxj+1u
and satisfying σ(xxj) = 0.

(3) There exists some j ∈ {0, 1, ..., k − 1} such that |Bj | < k.

Suppose on the contrary that there exist subsets Zj ⊆ Bj of size k for all j ∈ {0, 1, ..., k−1}.
Then each Zj ∪{u, xj} induces a graph containing a monochromatic K1,k which is centered
at xj and has color 0. These K1,ks together with F ′ form a monochromatic Jk of color 0.
This proves (3). 2

Let p0 := xj+1 and for 1 ≤ ` ≤ 4k, let p` ∈ V (Tr(j + `+ 1)) \ V (Tr(j + `)) such that p`
is inside uxjp`−1u. By (3), there exists some 0 ≤ ` ≤ 4k − 1 such that σ(zxj) = 1 for any
z ∈ N(xj) in the closed disc bounded by xjp`p`+1xj .

(4) There is a monochromatic Fk inside xjp`p`+1xj , say F ′′, with color 1 and center xj .

Let z0 := p`+1 and for s ∈ [2k], let zs ∈ V (Tr(j + ` + s + 2)) \ V (Tr(j + ` + s + 1)) such
that zs is inside xjzs−1p`xj . Note that each xjz2sz2s+1xj bounds a Tr(9k + 3). If for each
s ∈ [k] there exists a monochromatic C4 of color 1 inside xjz2sz2s+1xj and containing xj ,
then these monochromatic copies of C4 form the desired monochromatic Fk centered at xj .
Otherwise, it follows from Lemma 4.4 that there exists a monochromatic Jk. 2

As |Bj | < k, there exists a subset A ⊆ {p1, p2, ..., p4k} of size 2k such that σ(αxj) = 1
for each α ∈ A and moreover, there is no neighbors of A belonging to V (F ′′). Let A :=
{α1, ..., α2k}. Note that for each h ∈ [2k], we have σ(αhu) = 0 and σ(αhxj) = 1.

It is easy to see that there exist pairwise disjoint sets Nh ⊆ N(αh) of size 2k for h ∈ [2k].
Then there exists Mh ⊆ Nh such that |Mh| = k− 1 and σ(xαh) is the same for all x ∈Mh.
This gives 2k monochromatic copies of K1,k−1 with centers αh for h ∈ [2k]. At least k of
them (say with centers αh for h ∈ [k]) have the same color. If this color is 0, these copies
together with {uαh : h ∈ [k]} and F ′ give a monochromatic Jk with color 0 and center u.
Otherwise, this color is 1. Then these copies together with {xjαh : h ∈ [k]} and F ′′ give a
monochromatic Jk with color 1 and center u. This proves Tr(100k)→ Jk.

5 Monochromatic bistar

In this section we prove Tr(6k + 30)→ Bk. We first establish the following lemma.

Lemma 5.1. Let uvwu be the triangle bounding the outer face of Tr(k + 10). Let σ :
E(Tr(k + 10)) → {0, 1} such that |{σ(ux) : x ∈ V (Tr(k + 10))}| = 1 and there is no
monochromatic C4 containing u. Then Tr(k + 10)) contains a monochromatic Bk.

Proof. Without loss of generality, let σ(uv) = 0. Let x0 := w and, for i ∈ [6], let
xi ∈ V (Tr(i)) \ V (Tr(i− 1) such that xi is inside uvxi−1u.

Since Tr(k + 10) has no monochromatic C4 containing u, we see that |{0 ≤ i ≤ 6 :
σ(vxi) = 0}| ≤ 1. So there exists some i ∈ {0, 1, 2, 3, 4} such that σ(vxi) = σ(vxi+1) =
σ(vxi+2) = 1. We have either σ(xixi+1) = 1 or σ(xi+1xi+2) = 1; as otherwise uxixi+1xi+2u
is a monochromatic C4 of color 0 and containing u, a contradiction. We consider two cases.
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Case 1. σ(xixi+1) = σ(xi+1xi+2).
In this case, we have σ(xixi+1) = σ(xi+1xi+2) = 1. So xixi+1xi+2vxi is a monochromatic

C4 of color 1. Let y0 := xi+1 and for ` ∈ [k + 1], let y` ∈ V (Tr(i + 1 + `)) \ V (Tr(i + `))
such that y` is inside uy`−1xiu. Similarly let z0 := xi+1 and for ` ∈ [k + 1], let z` ∈
V (Tr(i+ 2 + `)) \ V (Tr(i+ 1 + `)) such that z` is inside uz`−1xi+2u.

Since Tr(k + 10) has no monochromatic C4 containing u, this shows that |{` ∈ [k +
1] : σ(xiy`) = 0}| ≤ 1 and |{` ∈ [k + 1] : σ(xi+2z`) = 0}| ≤ 1. Therefore, there exist
Y ⊆ {y` : ` ∈ [k + 1]} and Z ⊆ {z` : ` ∈ [k + 1]} such that |Y | = |Z| = k, σ(yxi) = 1 for
each y ∈ Y and σ(zxi+2) = 1 for each z ∈ Z. Hence, Tr(k + 10) has two monochromatic
K1,ks of color 1 with centers xi, xi+1 and leave sets Y,Z, respectively. These two K1,ks
together with vxixi+1xi+2v form a monochromatic Bk of color 1.

Case 2. σ(xixi+1) 6= σ(xi+1xi+2).
Without loss of generality, let σ(xixi+1) = 0 and σ(xi+1xi+2) = 1. Let y ∈ V (Tr(i+2))\

V (Tr(i+ 1)) be inside uxixi+1u. Because σ(uy) = 0 and Tr(k+ 10) has no monochromatic
C4 containing u, σ(yxi) = σ(yxi+1) = 1. Therefore, yxi+1vxiy is a monochromatic C4 of
color 1. Let y0 := y and, for ` ∈ [k+1], let y` ∈ V (Tr(i+2+`))\V (Tr(i+1+`)) such that y`
is inside uy`−1xiu. Let z0 := y and, for ` ∈ [k+1], let z` ∈ V (Tr(i+2+`))\V (Tr(i+1+`))
such that z` is inside uz`−1xi+1u.

The remaining proof is similar as in Case 1. We observe that |{` ∈ [k + 1] : σ(xiy`) =
0}| ≤ 1 and |{` ∈ [k + 1] : σ(xi+1z`) = 0}| ≤ 1. Therefore, there exist Y ⊆ {y` : ` ∈
[k + 1]} and Z ⊆ {z` : ` ∈ [k + 1]} such that |Y | = |Z| = k, σ(yxi) = 1 for y ∈ Y , and
σ(zxi+1) = 1 for z ∈ Z. Hence, Tr(k + 10) has two monochromatic K1,ks of color 1 with
centers xi, xi+1 and leave sets Y,Z, respectively. These two K1,ks together with yxi+1vxiy
form a monochromatic Bk of color 1. This proves Lemma 5.1.

We are ready to prove Tr(6k + 30)→ Bk. Let σ : E(Tr(6k + 30)→ {0, 1}. By Lemma
4.1, the copy of Tr(16) with the same outer face as of Tr(6k+30) contains a monochromatic
C4, say u1u2u3u4u1 of color 1. For each i ∈ {1, 3}, let viwi be an edge in Tr(18) such that
uiviwiui is a triangle inside u1u2u3u4u1. Note that uiviwiui bounds the outer face of a
Tr(6k + 12). Let Ai be the family of all vertices x ∈ N(ui) inside uiviwiui and satisfying
σ(xui) = 1. If |A1| ≥ k and |A3| ≥ k, then together with the monochromatic 4-cycle
u1u2u3u4u1, it is easy to form a monochromatic Bk of color 1.

Hence by symmetry, we may assume that |A1| < k. Then there exists an edge vw
in Tr(18 + k) such that u1vwu1 bounds an inner face of Tr(18 + k) and σ(u1x) = 0 for
all x ∈ N(u1) in the closed disc bounded by u1vwu1. We may assume that the induced
subgraph contained in the closed disc bounded by u1vwu1 has a monochromatic C4 say
u1xyzu1 (as otherwise, it contains a Bk by Lemma 5.1). Furthermore, we have {x, y, z} ⊆
V (Tr(2k + 28)).

Let {p0, q0} ⊆ V (Tr(2k+29))\V (Tr(2k+28)) such that both xyp0x and yzq0y bound two
inner faces of Tr(2k+29). For ` ∈ [3k], let p` ∈ V (Tr(2k+29+ `))\V (Tr(2k+28+ `)) such
that p` is inside xp`−1yx. Similarly, for ` ∈ [3k], let q` ∈ V (Tr(2k+29+`))\V (Tr(2k+28+`))
such that q` is inside yq`−1zy. Moreover, let

B1 := {p ∈ N(x) : p is inside xp0yx and σ(xp) = 0},

B2 := {q ∈ N(z) : q is inside yq0zy and σ(zq) = 0}.
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If |B1| ≥ k and |B2| ≥ k, we can find two monochromatic K1,ks of color 0, one inside
xp0yx rooted at x and one inside yq0zy rooted at z; these two K1,ks and u1xyzu1 form a
monochromatic Bk of color 0. So we may assume, without loss of generality, that |B1| < k.

Let C := {` ∈ [3k] : σ(yp`) = 0}. We claim |C| < k. Suppose on the contrary that
|C| ≥ k. Then there is a monochromatic K1,k with root y and leaves in C of color 0.
Since σ(u1p) = 0 for all p ∈ N(u1) inside u1vw, there is also a monochromatic K1,k with
root u1 and leaves inside u1xyzu1 of color 0. Now these two K1,ks and u1xyzu1 form a
monochromatic Bk of color 0.

So |B1| < k and |C| < k. Then there exist ph, ps with h, s ∈ [3k] such that σ(phx) =
σ(phy) = σ(psx) = σ(psy) = 1. Because xp0p1x bounds an inner face of Tr(2k + 30), it
also bounds the outer face of a Tr(4k). As |B1| < k, there exists a monochromatic K1,k

of color 1 with the root x and k leavers inside xp0p1x. Similarly, as |C| < k, there exists
a monochromatic K1,k of color 1 with root y and k leavers inside yp0p1y. Now these two
K1,ks and the 4-cycle xphypsx form a monochromatic Bk of color 1. This proves that
Tr(6k + 30)→ Bk and thus completes the proof of Theorem 1.2.
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