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Abstract
Seymour conjectured that every 5-connected nonplanar graph contains a subdivision

of K5. We prove this conjecture for graphs containing K2,3. As a consequence, Seymour’s
conjecture is true if the answer to the following question of Mader is affirmative: Does
every simple graph on n vertices with at least 12(n− 2)/5 edges contain a K−

4 , a K2,3, or
a subdivision of K5?

1 Introduction

We follow the notation and terminology used in [10, 11]. In particular, for a given graph K
we use TK to denote a subdivision of K. The vertices of a TK corresponding to the vertices
of K are called the branch vertices of this TK. Hence the degree 4 vertices in a TK5 are its
branch vertices. A separation in a graph G is a pair (G1, G2) of subgraphs of G such that
G = G1 ∪ G2, E(G1) ∩ E(G2) = ∅, and E(Gi) ∪ (V (Gi) − V (G3−i)) 6= ∅ for i = 1, 2. If, in
addition, |V (G1 ∩G2)| = k then (G1, G2) is said to be a k-separation. A collection of paths is
said to be independent if no end of any path is internal to any other path in the collection.

Mader [12] proved that every simple graph on n ≥ 3 vertices and with at least 3n−5 edges
contains TK5, establishing a conjecture of Dirac [4]. In [8], Dirac’s conjecture is reduced to
the following conjecture of Seymour [15]: Every 5-connected nonplanar graph contains TK5.
(Kelmans [7] made the same conjecture two years later.) In [10, 11], Seymour’s conjecture is
established for graphs containing K−

4 (the graph obtained from K4 by removing an edge).

Theorem 1.1 (Ma and Yu [10,11]). Every 5-connected nonplanar graph containing K−
4 con-

tains TK5.
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One important step in [10] is to deal with the case when a 5-connected nonplanar graph G
admits a 5-separation (G1, G2) such that |G2| ≥ 7 and G2 has a plane representation in which
all vertices in V (G1 ∩G2) are incident with a common face. It is shown in [10] that in G2 one
can find a special collection of independent paths (used to construct a TK5 in G). This result
is also used in [5] by Kratovski, Stephens and Zha to show that Seymour’s conjecture holds
for graphs embedded in any surface (other than the sphere) with representativity at least 5.

It turns out to be very useful to exclude K−
4 . For example, by working with K−

4 -free graphs,
Kawarabayashi [6], Horev and Krakovski [1], and Ma, Thomas and Yu [9] independently proved
Seymour’s conjecture for apex graphs. (A graph is said to be apex if it has an apex vertex,
i.e., a vertex whose deletion results in a planar graph.) In this paper we prove Seymour’s
conjecture for graphs containing K2,3, and our proof makes heavy use of the fact that we can
assume the graphs to be K−

4 -free.

Theorem 1.2 Every 5-connected nonplanar graph containing K2,3 contains TK5.

Theorems 1.1 and 1.2 imply that Seymour’s conjecture holds if the answer to the following
question of Mader [12] is affirmative: Does every simple graph on n ≥ 4 vertices with at least
12(n− 2)/5 edges contain a K−

4 , a K2,3, or a subdivision of K5?
In order to give a high level description of our proof of Theorem 1.2, we need some notation

and terminology. Let H be a graph H and A ⊆ V (H). We use H[A] to denote the subgraph
of H induced by A, and use NH(A) to denote the neighborhood of A. For any subgraph K of
H, we write H[K] := H[V (K)] and NH(K) := NH(V (K)). When understood, the subscript
H may be omitted.

For any positive interger k, we say that H is (k, A)-connected if, for any cut set T of H
with |T | ≤ k − 1, each component of H − T contains a vertex in A.

We now introduce a concept that is closely related to existence of disjoint paths. A 3-planar
graph (G,A) consists of a graph G and a set A = {A1, . . . , Ak} of pairwise disjoint subsets of
V (G) (possibly A = ∅) such that

(a) for i 6= j, N(Ai) ∩Aj = ∅,
(b) for 1 ≤ i ≤ k, |N(Ai)| ≤ 3, and

(c) if p(G,A) denotes the graph obtained from G by (for each i) deleting Ai and adding new
edges joining every pair of distinct vertices in N(Ai), then p(G,A) can be drawn in a
closed disc with no edge crossings.

If, in addition, b0, b1, . . . , bn are vertices in G such that bi /∈ A for all A ∈ A and 0 ≤ i ≤ n,
p(G,A) can be drawn in a closed disc with no edge crossings, and b0, b1, . . . , bn occur on the
boundary of the disc in this cyclic order, then we say that (G,A, b0, b1, . . . , bn) is 3-planar. If
there is no need to specify A, we will simply say that (G, b0, b1, . . . , bn) is 3-planar.

We make a simple, but useful, observation. If P is a path in p(G,A) then we may produce
a path P ∗ in G with the same ends of P as follows: For each edge uv of P with {u, v} ⊆ N(Ai)
for some i, replace uv with a path in G[Ai ∪ {u, v}] between u and v. As a consequence, any
set of independent paths in p(G,A) gives a set of independent paths in G with the same ends.

Given a graph G and S ⊆ V (G), we say that (G,S) is planar if G has a drawing in the
closed disc without edge crossings such that the vertices in S all appear on the bouddary of
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the disc. We say that (G,S) is 3-planar the vertices in S can be ordered as b0, . . . , bn such
that (G, b0, . . . , bn) is 3-planar.

Another concept we need is from [3]. A block of a graph G is either a maximal 2-connected
subgraph of G or a subgraph of G induced by a cut edge. A block is nontrivial if it is
2-connected, and it is trivial otherwise. A connected graph C is a chain if its blocks can
be labeled as B1, . . . , Bk, where k ≥ 1 is an integer, and its cut vertices can be labeled as
v1, . . . , vk−1 such that

(i) V (Bi) ∩ V (Bi+1) = {vi} for 1 ≤ i ≤ k − 1 and

(ii) V (Bi) ∩ V (Bj) = ∅ if |i− j| ≥ 2 and 1 ≤ i, j ≤ k.

We write C := B1v1B2v2 . . . vk−1Bk for this situation, and also view C as
⋃k

i=1 Bi. If k ≥ 2,
v0 ∈ V (B1) − {v1} and vk ∈ V (Bk) − {vk−1}, or, if k = 1, v0, vk ∈ V (B1) and v0 6= vk,
then we say that C is a v0-vk chain or a chain from v0 to vk, and we denote this by C :=
v0B1v1 . . . vk−1Bkvk.

Let G be a graph and let C := v0B1v1 . . . vk−1Bkvk be a chain. If C is an induced subgraph
of G, then we say that C is a chain in G. We say that C is a planar chain in G if, for each
1 ≤ i ≤ k with |V (Bi)| ≥ 3 (or equivalently, Bi is 2-connected), there exist distinct vertices
xi, yi ∈ V (G)− V (C) such that

• (G[V (Bi) ∪ {xi, yi}]− xiyi, xi, vi−1, yi, vi) is planar, and

• Bi − {vi−1, vi} is a component of G− {xi, yi, vi−1, vi}.
We also say that C is a planar v0-vk chain. We say that C is a 3-planar chain if in the definition
of a planar chain we allow xi = yi and when xi 6= yi only require that (G[V (Bi) ∪ {xi, yi}] −
xiyi, xi, vi−1, yi, vi) be 3-planar.

We are now ready to give a high level description of our proof of Theorem 1.2. Let G
be a 5-connected graph and {x1, x2, y1, y2, y3} ⊆ V (G) such that G[x1, x2, y1, y2, y3] ∼= K2,3

in which x1, x2 have degree 3. We will force a K−
4 in G and invoke Theorem 1.1, or force a

5-separation (G1, G2) such that G2 is apex with apex vertex a and (G2−a, V (G1∩G2)−{a})
is planar, and then invoke Corollary 2.9 proved in Section 2.

Step 1. We show that either G contains TK5 or H := G−{y1, y2, y3} contains a 3-planar
chain from x1 to x2, say C, such that H − C is 2-connected. This is done by first producing
a nonseparating induced path X in H between x1 and x2, then augment a given 2-connected
block in H −X. In the case the given block cannot be augmented we find a TK5 or are left
with the desired 3-planar chain. This is dealt with in Section 3.

Step 2. There are two types of blocks in a 3-planar chain. In Section 4, we show that if
there is a block, say D, with two neighbors in H −C, say bD, cD, then G contains TK5. This
is done roughly as follows. Let D∗ be obtained from G[D + {bD, cD, y1, y2, y3}] by identifying
y1, y2, y3 to a signle vertex y, and let uD, vD be the ends of D. Then D∗ is an apex graph
with apex vertex y, and (D∗ − y, bD, uD, cD, vD) is 3-planar. We first show that G contains
TK5 or D∗ is (5, {bD, cD, uD, vD, y})-connected. We then prove two results in Section 2 which
in turn allow us to find a special collection of independent paths in D∗. Finally, we use these
paths to force a 5-separation (G1, G2) in G such that G2 is apex with apex vertex a and
(G2 − a, V (G1 ∩G2)− {a}) is planar, and invoke Corollary 2.9.
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Step 3. We may thus assume that each nontrivial block of C has only one neighbor in
H−C. We show that at least two of {y1, y2, y3} have neighbors in H−C. This makes it easier
to find a TK5. Again in this process, whenever we are stuck we are rescued by a K−

4 or a
5-separation (G1, G2) such that G2 is apex with apex vertex a and (G2−a, V (G1∩G2)−{a})
is planar. This is done in Section 5.

Step 4. Finally, we arrive at the case when C is simply an induced path X. It is then
easy to show that G contains TK5 or none of {y1, y2, y3} has a neighbor in X − {x1, x2}. So
G −X is 2-connected. If in G −X there is a cycle containing {y1, y2, y3} then such a cycle,
together with G[{x1, x2, y1, y2, y3}] ∪ X, gives a TK5 in G. So we may assume that such a
cycle does not exist in G − X. Then we know the structure of G − X, which is given by a
result of Watkins and Mesner in [21]. A case analysis similar to that in [10] finds TK5 in G.

2 Previous results and lemmas

In this section we list some known results and prove a few lemmas that are needed in our proof
of Theorem 1.2. We begin with a result of Tutte [20].

Lemma 2.1 (Tutte [20]). Let G be a 3-connected graph, e ∈ E(G) and v ∈ V (G) such that v
is not incident with e. Then G− v contains an induced cycle C such that e ∈ C and G−C is
connected.

We will need the following result of Seymour [16] about the existence of disjoint paths;
equivalent versions can be found in [14,17,19].

Lemma 2.2 (Seymour [16]). Let G be a graph and s1, s2, t1, t2 be distinct vertices of G. Then
either G contains disjoint paths from s1 to t1 and from s2 to t2, or (G, s1, s2, t1, t2) is 3-planar.

We state a simpler version for graphs with higher connectivity.

Corollary 2.3 Let G be a connected graph and s1, s2, t1, t2 be distinct vertices of G such that
G is (4, {s1, s2, t1, t2})-connected. Then either G contains disjoint paths from s1 to t1 and from
s2 to t2, or (G, s1, s2, t1, t2) is planar.

We will heavily use the k = 3 case of the following result of Perfect [13].

Lemma 2.4 Let G be a graph, u ∈ V (G), and A ⊆ V (G − u). Suppose there exist k inde-
pendent paths from u to distinct a1, . . . , ak ∈ A, respectively, and otherwise disjoint from A.
Then for any n ≥ k, if there exist n independent paths P1, . . . , Pn in G from u to n distinct
vertices in A and otherwise disjoint from A then P1, . . . , Pn may be chosen so that ai ∈ Pi for
i = 1, . . . , k.

We also need a result of Watkins and Mesner [21] on cycles through three vertices.

Lemma 2.5 (Watkins and Mesner [21]). Let R be a 2-connected graph and let y1, y2, y3 be
three distinct vertices of R. Then there is no cycle through y1, y2 and y3 in R if, and only if,
one of the following statements holds.
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(i) There exists a 2-cut S in R and, for u ∈ {y1, y2, y3}, there exist pairwise disjoint sub-
graphs Du of R− S such that u ∈ Du and each Du is a union of components of R− S.

(ii) For u ∈ {y1, y2, y3}, there exist 2-cuts Su in R and pairwise disjoint subgraphs Du of R,
such that u ∈ Du, each Du is a union of components of R − Su, Sy1 ∩ Sy2 ∩ Sy3 = {z},
and Sy1 − {z}, Sy2 − {z}, Sy3 − {z} are pairwise disjoint.

(iii) For u ∈ {y1, y2, y3}, there exist pairwise disjoint 2-cuts Su in R and pairwise disjoint
subgraphs Du of R− Su such that u ∈ Du, Du is a union of components of R− Su, and
R−V (Dy1 ∪Dy2 ∪Dy3) has precisely two components, each containing exactly one vertex
from Su.

The lemmas above are used in [10,11] to prove Theorem 1.1, which turns out to be useful
here as well. The following lemma is proved in [10] and will be needed here.

Lemma 2.6 Let G be a 5-connected nonplanar graph, and let (G1, G2) be a 5-separation of
G such that |V (G2)| ≥ 7 and (G2, V (G1) ∩ V (G2)) is planar. Then G contains TK5.

In order to prove Theorem 1.2, we need to generalize Lemma 2.6 by allowing G2 to be
apex. Our original work on this generalization is quite complex, which is simplified by the
following lemma (and its proof) due to Thomas [18].

Lemma 2.7 Let G be a connected graph with |V (G)| ≥ 7, let A ⊆ V (G) with |A| = 5, and let
a ∈ A such that G is (5, A)-connected, (G − a,A − {a}) is planar, and either (1) A − {a} is
independent and dG−a(v) ≥ 2 for all v ∈ A−{a} or (2) dG−a(v) ≥ 4 for all v ∈ A−{a}. Then
G contains K−

4 , or G has a 5-separation (G1, G2) such that a ∈ V (G1 ∩G2), A ⊆ V (G1), and
|V (G2)| ≥ 7.

Proof. Let A = {a, a1, a2, a3, a4}, and assume that G−a is drawn in a closed disc in the plane
without edge crossings such that a1, a2, a3, a4 occur on the boundary of the disc in clockwise
order. Since |V (G)| ≥ 7 and G is (5, A)-connected, a1a3, a2a4 /∈ E(G).

Let H = (G− a) + {a1a2, a2a3, a3a4, a4a1} if (1) holds, and let H = G− a if (2) holds; so
that when (1) occurs H is a plane graph with outer cycle a1a2a3a4a1. Note that the minimum
degree of H satisfies δ(H) ≥ 4. Since G is (5, A)-connected, for v ∈ V (H)− {a1, a2, a3, a4}, if
dH(v) = 4 then va ∈ E(G).

Let uvwu be a facial triangle in H. We say that uvwu (and the face it bounds) is bad if
|{u, v, w} ∩ A| = 2, or {u, v, w} ∩ A = {ai} and dH(ai) = 4 for some 1 ≤ i ≤ 4. Clearly, there
are at most 8 bad facial triangles in H. In fact, it is easy to show that if there are 8 bad facial
triangles in H then the outer cycle of H − {a1, a2, a3, a4} is a 4-cycle b1b2b3b4, and we may
choose the notation so that a1b1a2b2a3b3a4b4a1 is a cycle in H. If |V (G)| ≥ 11, then G has a
5-separation (G1, G2) such that V (G1 ∩G2) = {a, b1, b2, b3, b4}, A ⊆ V (G1), and |V (G2)| ≥ 7.
If |V (G)| = 10 then, since G is (5, A)-connected, the vertex in V (G)− {a, ai, bi : i = 1, 2, 3, 4}
is adjacent to all of {b1, b2, b3, b4}, forcing a K−

4 in G. So |V (G)| = 9. Then, since G is
(5, A)-connected, {b1, b2, b3, b4} ⊆ NG(a), or b1b3 ∈ E(G), or b2b4 ∈ E(G); so G contains K−

4 .
Thus, we may assume that H has at most 7 bad facial triangles.

We may assume that if uvwu is a facial triangle and is not bad, then two of {u, v, w}
must have degree at least 5 in H. Clearly {u, v, w} 6⊆ A because a1a3, a2a4 /∈ E(G). Now let
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v, w /∈ A. If dH(v) ≥ 5 and dH(w) ≥ 5 then we are done. So we may assume that dH(v) = 4;
hence va ∈ E(G). If dH(w) = 4 then wa ∈ E(G) and G[{a, u, v, w}] contains K−

4 . So we may
assume that dH(w) ≥ 5. Similar argument shows that if u /∈ A then dH(u) ≥ 5. So assume
u ∈ A. Then dH(u) ≥ 5 as uvwu is not bad.

Suppose G contains no K−
4 ; we will derive a contradiction by applying a simple discharging

to H. Let F (H) denote the set of faces of H, and for any f ∈ F (H) let dH(f) denote the
number of vertices incident with f . Let σ : V (H) ∪ F (H) → Z (the set of integers) such that
σ(x) = 4− dH(x) for all x ∈ V (H) ∪ F (H). Then by Euler’s formula, the total charge is

σ(H) =
∑

v∈V (H)

σ(v) +
∑

f∈F (H)

σ(f) = 8.

Note that for any x ∈ V (H)∪F (H), if σ(x) > 0 then x ∈ F (H), dH(x) = 3, and σ(x) = 1.
We now redistribute charges as follows, such that the total charge remains unchaged. For
each f ∈ F (H) with dH(f) = 3 and f not bad, pick two of its incident vertices with degree
at least 5 in H, and send a charge 1/2 from f to each of these two vertices. Let τ denote
the resulting charge function. Then τ(f) ≤ 0 for all f ∈ F (H) that is not bounded by a
triangle or is not bad, and τ(x) = 0 if x ∈ V (H) and dH(x) = 4. Now suppose x ∈ V (H) and
dH(x) ≥ 5. Since we assume K−

4 6⊆ G, x is contained in at most bdH(x)/2c facial triangles.
Hence τ(x) ≤ σ(x) + bdH(x)/2c/2 = 4− dH(x) + bdH(x)/2c/2. Note that

4− dH(x) + bdH(x)/2c/2 =





4− 3k, if dH(x) = 4k;
3− 3k, if dH(x) = 4k + 1;
5/2− 3k, if dH(x) = 4k + 2;
3/2− 3k, if dH(x) = 4k + 3.

Since dH(x) ≥ 5, k ≥ 1, and k ≥ 2 if dH(x) = 4k. Hence, τ(x) ≤ 4−dH(x)+bdH(x)/2c/2 ≤ 0.
Thus the total new charge is τ(H) ≤ 7 because there are at most 7 bad facial triangles. This
is a contradiction.

The following is an easy consequence of Lemma 2.7. It was proved independently by
Kawarabayashi [6], by Aigner-Horev and Krakovski [1], by Ma, Thomas and Yu [9].

Corollary 2.8 Every 5-connected nonplanar apex graph contains TK5.

Proof. Let G be a 5-connected nonplanar apex graph and a be its apex vertex. By Theorem 1.1,
we may assume that K−

4 6⊆ G. So G− a has a plane representation in which the outer cycle is
not a triangle. Let a1, a2, a3, a4 be four arbitrary vertices in the outer cycle of G− a, and let
A = {a, a1, a2, a3, a4}. Then G,A, a satisfy the conditions of Lemma 2.7 (in particular, (2)).
Hence, since K−

4 6⊆ G, G has a 5-separation (G1, G2) such that a ∈ V (G1 ∩G2), A ⊆ V (G1),
and |V (G2)| ≥ 7. We choose such (G1, G2) so that G2 is minimal, and let A′ = V (G1 ∩ G2).
If |V (G2)| = 7 then, since G2 is (5, A′)-connected and (G2 − a,A′ − {a}) is planar, K−

4 ⊆ G2,
a contradiction. So |V (G2)| ≥ 8. Hence, by the minimality of G2, A′ is independent in G2

and dG2(v) ≥ 2 for all v ∈ A′ − {a}. So G2, A
′, a satisfies the conditions of Lemma 2.7 (in

particular, (1)). As a consequence, K−
4 ⊆ G2, a contradiction.

As mentioned before, we need an apex version of Lemma 2.6, which is also an easy conse-
quence of Lemma 2.7.
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Corollary 2.9 Let G be a 5-connected nonplanar graph, (G1, G2) a 5-separation of G, and
a ∈ A := V (G1) ∩ V (G2) such that |V (G2)| ≥ 7 and (G2 − a,A − {a}) is planar. Then G
contains TK5.

Proof. We choose such separation (G1, G2) so that G2 is minimal. Then A−{a} is independent
in G2. If |V (G2)| = 7 then, since G2 is (5, A)-connected and (G2−a,A−{a}) is planar, K−

4 ⊆
G2. If |V (G2)| ≥ 8 then by the minimality of G2, A is independent in G and dG2−a(v) ≥ 2 for
all v ∈ A− {a}; so K−

4 ⊆ G2 by Lemma 2.7. Therefore, the assertion of this corollary follows
from Theorem 1.1.

In the proof of Lemma 2.6 in [10], an important step is to find a collection of independent
paths in G2, the planar part. For the purpose of this paper, we need to extend this to the apex
side of a 5-separation. The following result is due to Thomas [18] which significantly simplifies
our proofs of such results (see Corollaries 2.11 and 2.12).

Lemma 2.10 Let G be a connected graph with |V (G)| ≥ 7, A ⊆ V (G) with |A| = 5, and
a ∈ A such that G is (5, A)-connected, (G− a,A− {a}) is planar, and G has no 5-separation
(G1, G2) such that A ⊆ G1 and |V (G2)| ≥ 7. Let w ∈ V (G)−A and assume that the vertices
in G− a cofacial with w induce a cycle C in G− a. Then there exist paths P1, P2, P3, P4 in G
from w to A such that V (Pi ∩ Pj) = {w} for i 6= j, and |V (Pi ∩ C)| ≤ 1 and |V (Pi) ∩ A| = 1
for i = 1, 2, 3, 4.

Proof. Since G has no 5-separation (G1, G2) with A ⊆ G1 and |V (G2)| ≥ 7, A must be
independent in G. Let H := G− (C −N(w)).

Suppose H has four paths P1, P2, P3, P4 from w to A such that V (Pi ∩ Pj) = {w} and
|V (Pi) ∩ A| = 1. We may assume that these paths are induced paths. Hence |V (Pi ∩ C)| ≤ 1
for 1 ≤ i ≤ 4. (Note that |V (Pi) ∩ C| = 0 occurs when Pi = wa.) So Pi, i = 1, 2, 3, 4, are the
desired paths.

Thus we may assume that such paths in H do not exist. By Menger’s theorem, there is a
cut T , |T | ≤ 3, in H separating w from A. For convenience, assume that G− a is drawn in a
closed disc in the plane with no edge crossings such that A−{a} is contained in the boundary
of the disc. Thus there is a simple closed curve γ in the plane intersecting G − a only in
(T − {a}) ∪ (V (C) − N(w)) such that w is inside γ and A − {a} is outside of or on γ. The
elements of T − {a} divide γ into |T − {a}| simple curves (including the points in T − {a}),
called the segments of γ. For two distinct points u, v on γ we use uγv to denote the simple
curve in γ from u to v in clockwise order; and if u = v then uγv consists of the single point
u = v. We claim that

(1) if u, v ∈ V (C)−N(w) and uγv is contained in a segment of γ, then uCv−{u, v} contains
no neighbor of w.

For, otherwise, we may choose such u, v that u and v are consecutive on γ. Then {a, u, v, w}
is a 4-cut in G separating uCv − {u, v} from A, contradicting the (5, A)-connectedness of G.

Note that γ ∩ V (C) ∩ N(w) = ∅ and T ∩ (V (C) − N(w)) = ∅. Also note that since G is
(5, A)-connected,

(2) |T |+ |γ ∩ (V (C)−N(w))| ≥ 5.
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We consider cases based on |T − {a}|.
Case 1. |T − {a}| ≤ 1.
First, suppose T −{a} = ∅. Then |γ ∩ (V (C)−N(w))| ≥ 4 by (2). Let u, v ∈ γ ∩ (V (C)−

N(w)). By (1), neither uCv−{u, v} nor vCu−{u, v} contains a neighbor of w. Hence, {a, u, v}
is a 3-cut in G separating w from A, a contradiction.

Now, suppose |T −{a}| = 1. Then |γ ∩ (V (C)−N(w))| ≥ 3 by (2). Let u, v ∈ γ ∩ (V (C)−
N(w)) such that T−{a} ⊆ vγu and, subject to this, vγu is minimal. Then by (1), uCv−{u, v}
contains no neighbor of w. So {a, u, v} ∪ (T − {a}) is a 4-cut in G separating w from A, a
contradiction.

Case 2. |T − {a}| = 2.
Let T − {a} = {t1, t2}. Then |γ ∩ (V (C)−N(w))| ≥ 2 by (2).
First, assume (t1γt2−{t1, t2})∩V (C) = ∅. Then for i = 1, 2, let ui ∈ (t2γt1−{t1, t2})∩V (C)

with ui closest to ti. By (1), N(w)∩ u1Cu2. Hence {a, t1, t2, u1, u2} is a 5-cut in G separating
w and N(w) from A, a contradiction (to the nonexistence of such a separation).

Thus (t1γt2 − {t1, t2}) ∩ V (C) = ∅. Similarly, (t2γt1 − {t1, t2}) ∩ V (C) = ∅.
For i = 1, 2, let ui ∈ (t2γt1−{t1, t2})∩V (C) with ui closest to ti, and vi ∈ (t1γt2−{t1, t2})∩

V (C) with vi closest to ti. Then by (1), N(w) ⊆ (u1Cv1 − {u1, v1}) ∪ (v2Cu2 − {u2, v2}). As
|N(w) ∩ V (C)| ≥ 4, we may assume by symmetry that |N(w) ∩ V (u1Cv1 − {u1, v1})| ≥ 2.
Hence {a, t1, u1, v1, w} is a 5-cut in G separating A from at least two vertices, a contradiction.

Case 3. |T − {a}| = 3.
Let T − {a} = {t1, t2, t3}. In this case, a /∈ T and a has no neighbors strictly inside γ. By

(2), |γ ∩ (V (C)−N(w))| ≥ 2.
First, assume γ ∩ (V (C) − N(w)) is contained in some segement of γ, say ⊆ t1γt2. For

i = 1, 2, let ui ∈ (t1γt2 − {t1, t2}) ∩ V (C) with ui closest to ti. By (1), N(w) ∩ u2Cu1. Hence
{t1, t2, t3, u1, u2} is a 5-cut in G separating w and N(w) from A, a contradiction.

Therefore, γ ∩ (V (C)−N(w)) is not contained in any segment of γ.
Next, assume that the interior of some segment of γ, say t3γt2 − {t2, t3}, is disjoint from

V (C). For i = 1, 2, let ui ∈ (t1γt2 − {t1, t2}) ∩ V (C) with ui closest to ti; and for i = 2, 3,
let vi ∈ (t2γt3 − {t2, t3}) ∩ V (C) with vi closest to ti. Then by (1), N(w) ⊆ (u2Cv2 −
{u2, v2}) ∪ (v3Cu1 − {u1, v3}). Since |N(w) ∩ V (C)| ≥ 4, |N(w) ∩ V (u2Cv2 − {u2, v2})| ≥ 2
or |N(w) ∩ (v3Cu1 − {u1, v3})| ≥ 2. In the first case, {t2, u2, v2, w} is 4-cut in G separating A
from some neighbor of w, a contradiction; and in the second case, {t1, t3, u1, v3, w} is a 5-cut
in G separating A from at least two vertices, a contradiction.

Thus, (tiγti+1 −{ti, ti+1})∩ (V (C)−N(w)) 6= ∅ for i = 1, 2, 3, where t4 = t1. For i = 1, 2,
let ui ∈ (t1γt2−{t1, t2})∩V (C) with ui closest to ti; for i = 2, 3, let vi ∈ (t2γt3−{t2, t3})∩V (C)
with vi closest to ti; and for i = 1, 3, let wi ∈ (t3γt1 − {t1, t3}) ∩ V (C) with wi closest to ti.
Then by (1), N(w) ⊆ (u2Cv2 − {u2, v2}) ∪ (v3Cw3 − {v3, w3}) ∪ (w1Cu1 − {u1, w1}). Since
|N(w) ∩ V (C)| ≥ 4, |N(w) ∩ V (u2Cv2 − {u2, v2})| ≥ 2 or |N(w) ∩ (v3Cw3 − {v3, w3})| ≥ 2 or
|N(w) ∩ V (w1Cu1 − {u1, w1})| ≥ 2. In the first case, {t2, u2, v2, w} is 4-cut in G separating
A from some neighbor of w, a contradiction; in the second case, {t3, v3, w3, w} is a 4-cut in G
separating A from some neighbor of w, a contradiction; and in the third case, {t1, u1, w1, w}
is a 4-cut in G separating A from some neighbor of w, a contradiction.

As consequences of Lemma 2.10, we derive the following two results about independent
paths.
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Corollary 2.11 Let G be a connected graph, A ⊆ V (G) with |A| = 5, and a ∈ A such that
(G − a,A − a) is planar. Suppose G is (5, A)-connected and |V (G)| ≥ 7, and G has no 5-
separation (G1, G2) with A ⊆ G1 and |V (G2)| ≥ 7. Let w ∈ N(a) such that w does not belong
to the outer walk of G− a. Then

(i) the vertices of G− a cofacial with w induce a cycle C in G− a,

(ii) G − a contains paths P1, P2, P3 from w to A − {a} such that V (Pi ∩ Pj) = {w} for
1 ≤ i < j ≤ 3, and |V (Pi ∩ C)| = |V (Pi) ∩A| = 1 for 1 ≤ i ≤ 3.

Proof. Let D denote the outer walk of G− a which contains A− {a}. Then w /∈ D. Since G
is (5, A)-connected and by planarity of G− a, the vertices of G cofacial with w induce a cycle
in G − a, denoted by C. Applying Lemma 2.10, we obtain four paths P1, P2, P3, P4 with one
of them, say P4, being wa. Now P1, P2, P3 are the desired paths.

The next consequence of Lemma 2.10 is more technical. We require that G−a be K−
4 -free

instead of G. This is because in certain applications of this corollary, the vertex a is the result
of identifying several vertices and therefore may be contained in some K−

4 .

Corollary 2.12 Let G be a connected graph, A ⊆ V (G) with |A| = 5, and a ∈ A such that
(G − a, (A − a) ∪ N(a)) is planar and K−

4 6⊆ G − a. Suppose G is (5, A)-connected and
|V (G)| ≥ 7, and assume that G has no 5-separation (G1, G2) with A ⊆ G1 and |V (G2)| ≥ 7.
Then G − a is 2-connected. Moreover, either G is the graph obtained from the edge-disjoint
union of an 8-cycle x1x2x3x4x5x6x7x8x1 and a 4-cycle x2x4x6x8x2 by adding a and the edges
axi, i = 2, 4, 6, 8, with A = {a, x1, x3, x5, x7}, or there exists w ∈ V (G)−A such that

(i) the vertices of G− a cofacial with w induce a cycle C in G− a,

(ii) there exist paths P1, P2, P3, P4 in G from w to A such that V (Pi ∩Pj) = {w} for 1 ≤ i <
j ≤ 4, and |V (Pi ∩ C)| = |V (Pi) ∩A| = 1 for 1 ≤ i ≤ 4, and

(iii) C ∩D = ∅, where D denotes the outer cycle of G− a, and either (a) a ∈ ⋃4
i=1 Pi or (b)

a ∈ ⋃4
i=1 Pi and we may write A − {a} = {a1, a2, a3, a4} such that a ∈ P1 and ai ∈ Pi

for i = 2, 3, 4, and a1, a2, a3, P1 ∩D, a4 occur D in cyclic order.

Proof. Since G has no 5-separation (G1, G2) such that A ⊆ G1 and |V (G2)| ≥ 7,

(1) A is independent in G and every vertex in A has degree at least 2 in G.

We claim that

(2) G− a is 2-connected.

Otherwise, we may write G−a = H1∪H2 such that |V (Hi)| ≥ 2 and |V (H1)∩V (H2)| ≤ 1. Then
|V (Hi)∩A| ≤ 2 for some i. Hence G has a separation (G1, G2) such that G2−(V (G1)∩V (G2)) =
G[(Hi −H3−i) ∪ {a}] and V (G1 ∩G2) = (V (Hi) ∩ A) ∪ V (H1 ∩H2) ∪ {a} (which has size at
most 4). Clearly, A ⊆ G1. Since A is independent in G and every vertex in A has degree at
least 2 in G, V (Gi) − V (G3−i) 6= ∅ for i = 1, 2. This contradicts the assumption that G is
(5, A)-connected.

By (2), let D denote the outer cycle of G− a; so A− {a} ⊆ D.
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(3) every edge in (G− a)− E(D) must join two neighbors of a vertex in A− {a}.
Let uv ∈ E(G − a) − E(D). Then G − a has a 2-separation (H1,H2) such that V (H1) ∩
V (H2) = {u, v} and V (Hi) − V (H3−i) 6= ∅ for i = 1, 2. By symmetry, we may assume that
|V (H1 − {u, v}) ∩A| ≤ |V (H2 − {u, v}) ∩A|.

First, suppose |V (H1 − {u, v}) ∩ A| = 2. Then, since A is independent and G is (5, A)-
connected, {a, u, v} ∪ (V (H1 − {u, v}) ∩A) is a 5-cut in G separating A from just one vertex,
say x, and x is adajcent to all of {a, u, v} ∪ (V (H1 − {u, v}) ∩ A). Then it is easy to see that
K−

4 ⊆ H1, a contradiction.
Thus, |V (H1−{u, v})∩A| ≤ 1. Since G is (5, A)-connected, {a, u, v}∪(V (H1−{u, v})∩A)

cannot be a cut in G separating A from some vertex; so |V (H1)| = 3 and the vertex in
V (H1)− {u, v} must belong to A.

Suppose V (G− a) = V (D). By (3) and because (G− a,A−{a}) is planar and G is (5, A)-
connected, we see that must be the graph obtained from the edge-disjoint union of an 8-cycle
x1x2x3x4x5x6x7x8x1 and a 4-cycle x2x4x6x8x2 by adding a and the edges axi, i = 2, 4, 6, 8,
with A = {a, x1, x3, x5, x7}.

So we may assume that V (G− a) 6= V (D). Furthermore,

(4) there exists w ∈ V (G− a)− V (D) such that w is not cofacial with any vertex of D.

For, suppose every vertex of V (G − a) − V (D) is cofacial with some vertex of D. Then
G− a− V (D) is outerplanar. So there exists w ∈ V (G− a)− V (D) such that w has degree at
most 2 in G− a− V (D).

Since G is (5, A)-connected and N(a) ⊆ V (D), w has at least three neighbors in D. Let
w1, . . . , wk be the neighbors of w on D (so k ≥ 3), and assume that they occur on D in this
clockwise order. Moreover, by planarity, we may choose w so that there is no vertex inside the
cycle ww1Dwkw. Since K−

4 6⊆ G− a, |V (w1Dwk)| ≥ 4. So by (1), V (w1Dwk−{w1, wk}) 6⊆ A.
Suppose for some v ∈ V (w1Dwk − {w1, wk}) − A, v /∈ N(w). Then since G is (5, A)-

connected and by (3), there exist vv1, vv2 ∈ E(G − a) − E(D) such that {v, vi} = N(ai) for
ai ∈ A (i = 1, 2), and N(v) = {a, a1, a2, v1, v2}. Assume v1 ∈ w1Dv2. Now by (1), {a, v1, v2}∪
(A ∩ V (v2Dv1)) is a 5-cut of G separating A from at least two vertices, a contradiction.

So V (w1Dwk − {w1, wk}) − A ⊆ N(w). Let v ∈ V (w1Dwk − {w1, wk}) − A. Since G is
(5, A)-connected, there exist vv1 ∈ E(G−a)−E(D). By (3), {v, v1} = N(ai) for some ai ∈ A.
By (1), v′ /∈ A; so v, v′ ∈ N(w). Now G[{ai, v, v′, w}] ∼= K−

4 , a contradiction.

Since G is (5, A)-connected and by planarity of G − a, we see that the vertices of G − a
cofacial with w induce a cycle in G− a, denoted by C. Then C ∩D = ∅ by (4).

By applying Lemma 2.10, there exist paths P1, P2, P3, P4 in G from w to A such that
V (Pi ∩ Pj) = {w} for 1 ≤ i < j ≤ 4, and |V (Pi ∩ C)| = |V (Pi) ∩ A| = 1 for 1 ≤ i ≤ 4. If
a /∈ ⋃4

i=1 Pi, we are done. So we may assume without loss of generality that a ∈ P1.
Let A−{a} = {a1, a2, a3, a4} such that ai ∈ Pi for i = 2, 3, 4, let wi denote the neighbor of

w in Pi for i = 1, 2, 3, 4, and let a′ dneote the neighbor of a in P1. If there exists a permutaion
ijk of {2, 3, 4} such that a1, ai, aj , a

′, ak occur D in cyclic order then (b) of (iii) holds. So we
may assume, without loss of generality, that a1, a

′, a2, a3, a4 occur on D in clockwise order.
Since C ∩ D = ∅, a1Da′ ∪ a′P1w1 contains a path P ′

1 such that V (P ′
1 ∩ C) = {w1}. Now

P ′
1, P2, P3, P4 show that (iii) holds.
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3 Planar chains

Throughout the rest of this paper, let G be a 5-connected nonplanar graph and x1, x2, y1, y2, y3 ∈
V (G) be distinct such that K := G[x1, x2, y1, y2, y3] ∼= K2,3 in which x1, x2 have degree 3. Let
H := G− {y1, y2, y3}.

In this section we will show that G contains TK5 or H contains a 3-planar chain C from
x1 to x2 such that H −C is 2-connected. We need the concept of a bridge. Let K be a graph
and L ⊆ G. An L-bridge of K is a subgraph of K induced by the edges of a component of
K − L and all edges from that component to L.

First, we prove a very useful lemma that G contains TK5 or no vertex other than x1 and
x2 may be adjacent to two of {y1, y2, y3}.

Lemma 3.1 Suppose x3 ∈ V (G) and |N(x3) ∩ {y1, y2, y3}| ≥ 2. Then G contains TK5.

Proof. Without loss of generality, we may assume that x3y1, x3y2 ∈ E(G). Note the symmetry
among x1, x2, y1, y2 and between x3 and y3.

If G−{x3, y3} contains four independent paths from some u ∈ V (G−{x3, y3})−{x1, x2, y1, y2}
to x1, x2, y1, y2, respectively, then these paths and K ∪ y1x3y2 form a TK5 in G with branch
vertices u, x1, x2, y1, y2. So we may assume that such paths do not exist. Then

(1) G has a 5-separation (H1,H2) such that {x3, y3} ⊆ V (H1) ∩ V (H2), u ∈ H1 −H2, and
{x1, x2, y1, y2} ⊆ H2.

We choose (H1,H2) in (1) so that H2 is minimal. Let S := V (H1∩H2)−{x3, y3} = {s1, s2, s3}.
We may assume that

(2) S 6⊆ {x1, x2, y1, y2}.

For, suppose S ⊆ {x1, x2, y1, y2}. By symmetry we may assume that x1 /∈ S. By Menger’s
theorem, H2−{y1, y2, y3} contains two indpendent paths P2, P3 from x1 to x2, x3, respectively.
If H1 − y3 contains disjoint paths from x2 to x3 and from y1 to y2 then these paths and
(K − y3)∪ y1x3y2 ∪P2 ∪P3 form a TK5 in G with branch vertices x1, x2, x3, y1, y2. So we may
assume that such disjoint paths do not exist. Then by Corollary 2.3, (H1 − y3, x2, y1, x3, y2)
is planar. If |V (H1) − V (H2)| ≥ 2 then, by Corollary 2.9, G contains TK5. So we may
assume that |V (H1) − V (H2)| = 1. Thus, since G is (5, A)-connected, the unique vertex in
V (H1)− V (H2) is adjacent to x2, y1, y2; so G contains K−

4 and hence TK5 by Theorem 1.1.

By (2) we may assume s1 /∈ {x1, x2, y1, y2}. We claim that

(3) H2 contains four paths Si, i = 0, 1, 2, 3, from {x1, x2, y1, y2} to si, respectively, where
s0 = s1, such that S0 ∩ S1 = {s1}, and Si ∩ Sj = ∅ whenever i 6= j and {i, j} 6= {0, 1}.

Let H ′
2 be obtained from H2 − {x3, y3} by duplicating s1, and use s0 to denote the duplicate

of s1. (Hence, s0 and s1 have the same neighborhood in H ′
2.) By the minimality of H2 and by

Menger’s theorem, H ′
2 contains four disjoint paths Si from {x1, x2, y1, y2} to si, i = 0, 1, 2, 3,

respectively. Note that S1, S2, S3 are paths in H2 − {x3, y3}. By identifying s0 with s1, we
view S0 as a path in H2 − {x3, y3} from s1.
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(4) We may assume that s1 has a unique neighbor in H1, and denote it by u.

If H1−{x3, y3} contains independent paths P2, P3 from s1 to s2, s3, then S0 ∪S1 ∪ (P2 ∪S2)∪
(P3 ∪S3)∪K ∪ y1x3y2 is a TK5 in G with branch vertices s1, x1, x2, y1, y2. So we may assume
that such paths do not exist. Then H1−{x3, y3} has a cut vertex v separating s1 from {s2, s3}.
Since G is 5-connected, the v-bridge of H1−{x3, y3} containing s1 is induced by the edye s1v.
Hence (4) holds.

(5) We may assume that there exist b0 ∈ S0 and b1 ∈ S1 such that in H2 − {x3, y3},
{b0, b1, s2, s3} separates s1 from {x1, x2, y1, y2}.

To see this let H ′′
2 be obtained from H2 − {x3, y3} by duplicating s1 twice and identifying s2

and s3 (also denote it by s2), and let s′1, s
′′
1 denote the duplicates of s1.

Suppose H ′′
2 contains four disjoint paths from {s1, s

′
1, s

′′
1, s2} to {x1, x2, y1, y2}. Then H2−

{x3, y3} has four independent paths to {x1, x2, y1, y2}, three from s1 and one from s2 or s3,
say s2. Thus, these four paths, K ∪ y1x3y2, and a path in H1−{x3, y3, s3} from s1 to s2 form
a TK5 in G with branch vertices s1, x1, x2, y1, y2.

So we may assume that such four paths in H ′′
2 do not exist. Then H ′′

2 has a separation
(R, R′) such that |V (R) ∩ V (R′)| ≤ 3, {s1, s

′
1, s

′′
1, s2} ⊆ R, and {x1, x2, y1, y2} ⊆ R′. Choose

(R, R′) so that V (R) ∩ V (R′) is minimal. By minimality of V (R) ∩ V (R′) and since s1, s
′
1, s

′′
1

have the same neighborhood in H ′′
2 , s1, s

′
1, s

′′
1 /∈ V (R) ∩ V (R′). By minimality of H2, we must

have s2 = s3 ∈ V (R) ∩ V (R′).
Thus, (H2 − {x3, y3})− {s2, s3} has a cut T := V (R ∩R′)− {s2 = s3} separating s1 from

{x1, x2, y1, y2}, and s1 /∈ T and |T | ≤ 2. Since s1 /∈ T and because of S0 and S1, |T | = 2; so
letting T = {b0, b1}, b0 ∈ S0, and b1 ∈ S1 we complete the proof of (5).

Let R∗ denote the component of (H2 − {x2, x3}) − {b0, b1, s2, s3} containing s1. Choose
{b0, b1} so that R∗ is minimal.

(6) We may assume that s2, s3 /∈ N(R∗), and for any w ∈ {x3, y3}, G[R∗+{b0, b1}w] contains
independent paths from s1 to w, b0, b1, respectively.

First, assume that s2 or s3, say s2, has a neighbor in R∗. Then by the minimality of R∗,
G[R∗+ {b0, b1, s2}] contains three independent paths from s1 to b0, b1, s2, respectively; and we
may assume that s1S0b0 and s1S1b1 are two of them. Now these three paths, S0 ∪ S1 ∪ S2 ∪
S3 ∪K ∪ y1x3y2, and a path in H1 − {s2, x3, y3} from s1 to s3 form a TK5 in G with branch
vertices s1, x1, x2, y1, y2.

So we may assume that R∗ contains no neighbor of {s2, s3}. If R∗ = {s1} then by (4),
s1x3, s1y3 ∈ E(G); so (6) holds. Hence we may assume that |V (R∗)| ≥ 2. Thus, since G is
5-connected and by (4), R∗ has neighbors of both x3 and y3. By the minimality of R∗, we see
that for any w ∈ {x3, y3}, G[R∗ + {b0, b1, w}] contains independent paths from s1 to w, b0, b1,
respectively. Again, we have (6).

Let R1 = G[R∗ + {b0, b1, x3, y3}]. Note that when R∗ 6= {s1} we have symmetry between
R1 and H1.

(7) We may assume that |V (H1)| ≥ 7.
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For, suppose |V (H1)| = 6. Then u (see (4)) is adjacent to all of {s1, s2, s3, x3, y3}. If
s1x3, s1y3 ∈ E(G) then G[s1, u, x3, y3] ∼= K−

4 , so G contains TK5 by Theorem 1.1. Thus
we may assume s1x3 /∈ E(G) or s1y3 /∈ E(G). This implies |V (R∗)| ≥ 2 (as s1 has degree at
least 5 in G). If |V (R∗)| ≥ 3 then |V (R1)| ≥ 7; so by the symmetry between R1 and H1, we
may assume |V (H1)| ≥ 7. Thus, we may assume R∗ = {s1, v}. Clearly v is adjacent to all
of {b0, b1, s1, x3, y3}. If s1b0 /∈ E(G) or s1b1 /∈ E(G) then s1x3, s1y3 ∈ E(G) by (4), and so
G[{s1, v, x3, y3}] contains K−

4 ; if s1b0, s1b1 ∈ E(G) then G[b0, b1, s1, v] contains K−
4 . Hence G

contains TK5 by Theorem 1.1, completing the proof of (7).

We may assume by symmetry that S0, S1, S2, S3 end at x1, y1, y2, x2, respectively. If H1−s3

contains no disjoint paths from x3 to y3 and from s1 to s2 then by Corollary 2.3, (H1 −
s3, x3, s1, y3, s3) is planar, and G contains TK5 by (7) and Corollary 2.9. So we may assume
such disjoint paths exist in H1 − s3. These disjoint paths, (K − x2y3) ∪ y1x3y2 ∪ b0S0x1 ∪
b1S1y1 ∪ S2, and three independent paths in G[R∗ + x3] from s1 to x3, b0, b1, respectively (by
(6)) form a TK5 in G with branch vertices s1, x1, x3, y1, y2.

The next result will allow us to modify an existing x1-x2 path in H.

Lemma 3.2 Let Q be an x1-x2 path in H and let B(Q) be a 2-connected block in H − Q.
Then G has a TK5, or H has an induced x1-x2 path Q′ such that H − Q′ is connected and
B(Q) ⊆ H − Q′, or H has an induced x1-x2 path Q′ such that H − Q′ is connected and
{y1, y2, y3} ∈ N(B(Q′)) for some 2-connected block B(Q′) of H −Q′.

Proof. Suppose for any induced x1-x2 path Z in H with B(Q) ⊆ H − Z, H − Z has at least
two components. We choose Z so that

(1) β(Z) is minimum.

Let C denote a component of H − Z such that B(Q) ∩ C = ∅. Let u1, u2 ∈ N(C) ∩ V (Z)
such that u1Zu2 is maximal, and we may assume x1, u1, u2, x2 occur on Z in order.

Then

(2) N(C ∪ (u1Zu2 − {u1, u2})) = {u1, u2, y1, y2, y3}.
For, otherwise, since G is 5-connected, u1Zu2−{u1, u2} contains a neighbor of some component
of H − Z other than C. We now use Lemma 2.1 to find a path P in G[C + {u1, u2}] from u1

to u2. Let B1 . . . Bk denote the chain of blocks in G[C + {u1, u2}] from u1 to u2, with u1 ∈ B1

and u2 ∈ Bk. Let C ′ be obtained from G[C ∪ u1Zu2] by contracting G[C ∪ u1Zu2]−
⋃k

i=1 Bi

to a single vertex u. Then C ′ + u1u2 is 3-connected. So by Lemma 2.1, C ′ + u1u2 contains an
induced cycle T such that u1u2 ∈ E(T ), u /∈ V (T ) and C ′−T is connected. Let P := T −u1u2.
Then G[C ∪ u1Zu2]− P is connected. Let Q′ := u1Zx1 ∪ P ∪ u2Zx2. Then Q′ is an induced
x1-x2 path in H. Since (u1Zu2 − {u1, u2}) ∩ P = ∅ and u1Zu2 − {u1, u2} contains a neighbor
of some component of H − Z other than C, we have β(Q′) < β(X), contradicting (1).

We may assume that

(3) H −Z has just two components, namely C and the component D containing B(Q), and
if w1, w2 ∈ N(D) ∩ V (Z) such that N(D) ∩ V (Z) ⊆ V (w1Zw2) then u1Zu2 ⊆ w1Zw2

and {u1, u2} 6= {w1, w2}.
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Let D be an arbitrary component D of H −X with D 6= C.
First, suppose D ∩ B(Q) = ∅. If u1Zu2 ⊆ w1Zw2 then by (2) we have N(D) ∩ V (Z) =

{w1, w2} = {u1, u2} = N(C) ∩ V (Z). In G[C + {u1, u2, y1, y2, y3}] we apply Menger’s theo-
rem to find five independent paths P1, P2, P3, P4, P5 from some x ∈ V (C) to u1, u2, y1, y2, y3,
respectively. In G[D + {y1, y2}] we find a path P between y1 and y2. Now (P1 ∪ u1Zx1) ∪
(P2 ∪ u2Zx2) ∪ P1 ∪ P2 ∪ P ∪ K is a TK5 in G with branch vertices x, x1, x2, y1, y2. Thus
we may assume that u1Zu2 6⊆ w1Zw2. Then by (2) and by symmetry we may assume that
x1, w1, w2, u1, u2, x2 occut on Z in this order. By (2), we may use Menger’s theorem to find
in G[C ∪ u1Zu2 + {y1, y2, y3}] independent paths P1, P2, P3, P4, P5 from some x ∈ V (C) to
u1, u2, y1, y2, y3, respectively. If G[D ∪ w1Zw2 + {y1, y2}] contains disjoint paths Q1, Q2 from
y1, w1 to y2, w2, respectively, then (P1∪u1Zw2∪Q2∪w1Zx1)∪(P2∪u2Zx2)∪P1∪P2∪Q1∪K
is a TK5 in G with branch vertices x, x1, x2, y1, y2. So assume that Q1, Q2 do not exist. Then
by (2) and by Corollary 2.3, (G[D∪w1Zw2 +{y1, y2}], y1, w1, y2, w2) is planar. By Lemma 3.1,
|V (D) ∪ V (u1Zx2 − {u1, u2})| ≥ 2. So it follows from Corollary 2.9 that G contains TK5.

Therefore, we may assume that H − Z has only two components, namely C and D, and
B ⊆ D. If {w1, w2} = {u1, u2} then the argument in the first half of the above paragraph
shows that G contains TK5. Now suppose u1Zu2 6⊆ w1Zw2. Then by (2), we may assume that
x1, w1, w2, u1, u2 occur on Z in order. The argument in the second half of the above paragraph
shows that G contains TK5, completing the proof of (3).

By (2) and (3), we may assume x1, w1, u1, u2, w2, x2 occur on Z in this order. Note by (2)
that {u1, u2, y1, y2, y3} is a cut in G separating C ∪ u1Zu2 from D. By (3) and by symmetry,
we may assume that u1 6= w1. We now apply Lemma 2.1 as in the proof of (2) to find an
induced w1-w2 path P in G[D + {w1, w2}] such that G[D ∪ w1Xw2] − P is connected. Now
let Z ′ be obtained from Z by replacing w1Zw2 with P . Clearly Z ′ is induced, and H − Z ′ is
connected. If G[C ∪ (u1Zu2 − u2)] is 2-connected, then it is the desired B(Q′). So suppose
G[C ∪ (u1Zu2 − u2)] is not 2-connected. By Lemma 3.1, every vertex in u1Zu1 − {u1, u2} has
at east two nighbors in C. So G[C ∪ (u1Zu2 − u2)] has an endblock, say C ′, disjoint from
u1Xu2 − u2. Let v be the cut vertex of G[C ∪ (u1Zu2 − u2)] contained in C ′. Since G is
5-connected, y1, y2, y3 ∈ N(C ′). By Lemma 3.1, C ′ is 2-connected. So C ′ is the desired B(Q′).

The next lemma says that we can choose X so that the minimum degree of H −X is at
least 2. In particular, H −X has a 2-connected block.

Lemma 3.3 Let X ne an induced x1-x2 path in H such that H − X is connected. Then
K−

4 ⊆ G, or H contains an induced x1-x2 path X ′ such that H −X ′ is connected, contains all
2-connected blocks of H −X, and has minimum degree at least 2.

Proof. For an arbitrary induced x1-x2 path Z in H for which H−Z is connected and contains
all 2-connected blocks of H−X, let α1(Z) denote the number of vertices of H−Z with degree
at most 1 in H − Z, and let α2(Z) denote the number of vertices of H − Z with degree at
least 2 in H − Z. We choose such Z that α1(Z) is minimum and, subject to this, α2(Z) is
maximum. If α1(Z) = 0, then X ′ := Z is the desired path. So assume α1(Z) ≥ 1, and let u
be a vertex of degree at most 1 in H − Z.

Since G is 5-connected, Lemma 3.1 implies that u has at least three neighbors on Z. Let
u1, u2 ∈ N(u)∩V (Z) with u1Zu2 maximal, and we may assume that x1, u1, u2, x2 occur on Z
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in order. Let X ′ = x1Zu1uu2Zx2. Clearly, X ′ is an induced path in G, and all 2-connected
blocks of H − Z (hence those of H − Z) are contained in H −X ′.

By Lemma 3.1, each vertex of u1Zu2 − {u1, u2} has at least 1 neighbor in H − Z − u. If
|u1Zu2| = 3 then G[u1Zu2 +u] ∼= K−

4 . So we may assume |u1Zu2| ≥ 4. Then α1(X ′) ≤ α1(Z)
and α2(X ′) > α2(Z), a contradiction.

Recall that we wish to find an induced path X in H from x1 to x2 such that H − X
2-connected, which will be the work of the next two sections. But first we show that we can
find a 3-planar chain C in H from x1 to x2 such that H −C is 2-connected, and we also need
H − C to have neighbors of as many yi as possible. This leads to the following notation:

γ(X) := max{|N(B) ∩ {y1, y2, y3}| : B is a 2-connected block of H −X},

and let B(X) denote a 2-connected block of H −X with |N(B(X)) ∩ {y1, y2, y3}| = γ(X).
By Lemma 3.3, we see that there exists induced x1-x2 path X in H such that H −X has

2-connected blocks. So γ(X) and B(X) are defined for such X. Throughout the rest of this
paper, we choose X and B(X) so that the following are satisfied in order listed:

(1) γ(X) is maximum,

(2) |{yi : |N(yi) ∩ V (B(X))| ≥ 2}|, 1 ≤ i ≤ 3}| is maximum, and

(3) B(X) is maximal.

When understood, we will simply refer to B(X) as B.
One lemma we need before proceeding is that if a (B ∪X)-bridge of H is not an edge then

it has at least two attachments on X.

Lemma 3.4 We may assume that H contains no 2-cut separating B ∪X from some vertex.

Proof. Suppose that {u, v} is a 2-cut in H separating B ∪X from some vertex. Let D denote
a {u, v}-bridge containing neither B nor X. Since H −X is connected and B is a 2-connected
block of H, we may assume that H has disjoint paths Pu, Pv from v, u to x ∈ V (X), b ∈ V (B),
respectively, and internally disjoint from B ∪ D ∪ X and u /∈ B. Since G is 5-connected,
{y1, y2, y3} ⊆ N(D − {u, v}).

We claim that {y1, y2, y3} ⊆ N(B). If D−u is 2-connected then this follows from Lemma 3.2
and the choice of X (as D − u ⊆ H −X). So we may assume that D − u is not 2-connected,
and let C denote an endblock of D − u. Since G is 5-connected, {y1, y2, y3} ⊆ N(C). By
Lemma 3.1, we may assume that C is 2-connected. Hence, since C ⊆ H −X, it follows from
Lemma 3.2 and the choice of X that {y1, y2, y3} ⊆ N(B).

By Lemma 3.1 we may assume that no two of {y1, y2, y3} share a common neighbor.
Thus, since B is 2-connected, G[B + {y1, y2, y3}] has two disjoint paths Q1, Q2 with ends in
{b, y1, y2, y3}. Without loss of generality, we may assume that Q1 is between y1 and y2 and
Q2 is between y3 and b.

If G[D+{y1, y2, y3}]−u contains disjoint paths R1, R2 from y1, y2 to v, y3, respectively, then
Q1∪Q2∪(R1∪P1)∪R2∪X∪K is a TK5 in G with branch vertices x1, x2, y1, y2, y3. So we may
assume that such R1, R2 do not exist. Then by Corollar 2.3, (G[D+{y1, y2, y3}]−u, y1, y2, v, y3)
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is planar. By Lemma 3.1 we may assume that |V (D)−{u, v}| ≥ 3. Hence G contains TK5 by
Corollary 2.9.

In [3], it is shown that 4-connected graphs contain non-separating planar chains between
any two specific vertices. We now use a similar argument to show that H − B is a 3-planar
chain. We proceed by proving three lemmas.

Lemma 3.5 Suppose H has two connected subgraphs C, D such that |V (C ∩ B)| ≤ 1 and
|V (D ∩ B)| ≤ 1, V (C ∩ X) = {u, v} and V (D ∩ X) = {u, v} or V (D ∩ X) = V (uXv),
{u, v} ∪ V (C ∩B) is cut in H separating C from B ∪D ∪ (X − uXv), and {u, v} ∪ (V (D ∩B)
is a cut in H separating D from B ∪ C ∪ (X − uXv). Then G contains TK5.

Proof. Without loss of generality assume that x1, u, v, x2 occur on X in order. Let

SC := {u, v} ∪ V (C ∩B) ∪ (N(C − {u, v} − V (C ∩B)) ∩ {y1, y2, y3})

and
SD := {u, v} ∪ V (D ∩B) ∪ (N(D − {u, v} − V (D ∩B)) ∩ {y1, y2, y3}).

Since G is 5-connected, |SC | ≥ 5 and |SD| ≥ 5.
We claim that |N(B) ∩ {y1, y2, y3}| ≥ 2. Let A denote an endblock of C − {u, v} and let

a ∈ V (A) such that if A = C − {u, v} and C ∩ B 6= ∅ then a ∈ C ∩ B, if A = C − {u, v} and
C ∩ B = ∅ let a ∈ V (A) be arbitrary, and if A 6= C − {u, v} then let a be the cut vertex of
C−{u, v} contained in A. Since G is 5-connected, we see that |N(A−a)∩{y1, y2, y3}| ≥ 2. By
Lemma 3.1, A is 2-connected. Hence the claim follows from the choice of X and Lemma 3.2.

By Lemma 2.4, G[C + SC ] contains five independent paths P1, P2, P3, P4, P5 from some
vertex w ∈ V (C) to SC such that V (Pi ∩ Pj) = {w} for 1 ≤ i 6= j ≤ 5, V (Pi) ∩ SC | = 1 for
1 ≤ i ≤ 5, P1 ends at u, and P2 ends at v. By symmetry, we may assume that y1 ∈ P3 and
y2 ∈ P4.

If y1, y2 ∈ SD then G[D + {y1, y2}] − {u, v} contains a path Q between y1 and y2; and
(P1∪uXx1)∪(P2∪vXx2)∪P3∪P4∪Q∪K is a TK5 in G with branch vertices w, x1, x2, y1, y2.
Similary, if y1, y2 ∈ N(B) then G[B + {y1, y2}] contains a path Q between y1 and y2; again
(P1∪uXx1)∪(P2∪vXx2)∪P3∪P4∪Q∪K is a TK5 in G with branch vertices w, x1, x2, y1, y2.

Thus we may assume that y1 /∈ SD and {y1, y2} 6⊆ N(B). Hence y2, y3 ∈ SD and |V (D ∩
B)| = 1. Let d ∈ V (D∩B). By Menger’s theorem, G[D∪SD] contains five independent paths
Q1, Q2, Q3, Q4, Q5 from some x ∈ V (D) to u, v, y2, y3, d, respectively. If y2, y3 ∈ N(B) then
G[B + {y2, y3}] contains a path R between y2 and y3; so (Q1 ∪ uXx1) ∪ (Q2 ∪ vXx1) ∪Q3 ∪
Q4 ∪ R ∪K is a TK5 in G with branch vertices x, x1, x2, y2, y3. Similarly, if y2, y3 ∈ SC then
G[C + {y2, y3}]− {u, v} has a path R between y2 and y3; again (Q1 ∪ uXx1)∪ (Q2 ∪ vXx1)∪
Q3 ∪Q4 ∪R ∪K is a TK5 in G with branch vertices x, x1, x2, y2, y3.

Hence we may assume that {y2, y3} 6⊆ N(B) and {y2, y3} 6⊆ SC . Therefore, y1, y3 ∈ N(B)
and y3 /∈ SC . Thus G[B+{y1, y3}] contains a path R13 between y1 and y3, and G[C+{y1, y2}]−
{u, v}−V (C∩B) contains a path R12 between y1 and y2. If G[D+{y2, y3}]−d contains disjoint
paths R1, R2 from u, y2 to v, y3, respectively, then R12∪R13∪R2∪ (x1Xu∪R1∪ vXx2)∪K is
a TK5 in G with branch vertices x1, x2, y1, y2, y3. So we may assume that R1, R2 do not exist.
Then by Corollary 2.3, (G[D+{y2, y3}]−d, u, y2, v, y3) is planar. Since y2, y3 ∈ N(D−{d, u, v}),
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we may assume by Lemma 3.1 that |V (D)−{d, u, v}| ≥ 2. So G contains TK5 by Corollary 2.9.

Let B denote the set of B-bridges of H − X. For each D ∈ B, V (B) ∩ V (D) consists of
exactly one vertex, denoted by rD. For any x, y ∈ V (X), we denote x ≤ y if x ∈ V (X[x1, y]).
If x ≤ y and x 6= y, then we write x < y. By Lemma 3.4, we may assume that, for each D ∈ B,
D−rD has at least two neighbors on X. Let lD and hD denote the the neighbors of D−rD on
X such that lD < hD and lDXhD is maximal. For each vertex u of H −X, we define u∗ = rD

if u ∈ V (D) for some D ∈ B, and u∗ = u if x ∈ V (B). We say that a member D of B is a nice
bridge if there exist u, v ∈ NH(lDXhD − {lD, hD)) such that u, v /∈ V (D − rD) ∪ V (X) and
u∗ 6= v∗.

Lemma 3.6 There is no nice B-bridge in H, or G contains TK5.

Proof. Suppose D is a nice bridge in H. There exist u, v ∈ NH(lDXhD − {lD, hD}) such
that u, v /∈ V (D − rD) ∪ V (X)) and u∗ 6= v∗. We now use Lemma 2.1 to find a path P in
G[D + {lD, hD}]− rD from lD to hD.

Let B1 . . . Bk denote the chain of blocks in G[D+{lD, hD}]−rD from lD to hD, with lD ∈ B1

and hD ∈ Bk. Let C ′ be obtained from G[D ∪D XhD] by identifying G[D ∪ lDZhD]−⋃k
i=1 Bi

to a single vertex u. Then by Lemma 3.4, we may assume that C ′ + u1u2 is 3-connected. So
by Lemma 2.1, C ′ + u1u2 contains an induced cycle T such that u1u2 ∈ E(T ), u /∈ V (T ) and
C ′−T is connected. Let P := T −u1u2. Then G[D∪ lDXhD]−P has at most two components
each containing rD or lDXhD − {lD, hD}.

Let Q′ := x1XlD ∪ P ∪ hDXx2. Then Q′ is an induced x1-x2 path in H and H − X ′ is
connected. However, H −X ′ has a block properly containing B(X), contradicting the choice
of X.

We say that two B-bridges C and D in B overlap if E(lCXhC) ∩ E(lDXhD) 6= ∅. Define
an auxiliary graph G with V (G) = B such that C,D ∈ B are adjacent in G if, and only if, C
and D overlap. The following lemma is similar to results in [2, 3]. The difference is that we
need Lemma 3.5 here instead of 4-connectedness in [2, 3].

Lemma 3.7 Let D1D2D3 be a path in G. Then |{rDi : i = 1, 2, 3}| ≤ 2 or G contains TK5.
Moreover, if D1D2D3 is an induced path in G then rD1 = rD3 or G contains TK5.

Proof. First, suppose D1D2D3 is an induced path in G. Then D1 and D3 do not overlap.
Thus we may assume lD1 < hD1 ≤ lD3 < hD3 . Moreover, lD2 < hD1 and lD3 < hD2 . Let
u ∈ V (D1)−{rD1} such that uhD1 ∈ E(G) and let v ∈ V (D3)−{rD3} such that vlD3 ∈ E(G).
Clearly, u, v ∈ NH(lD2XhD2 − {lD2 , hD2}), u, v 6∈ (V (D2)− {rD2})∪ V (X), and u∗ = rD1 and
v∗ = rD3 . So by Lemma 3.6, rD1 = rD3 or G contains TK5.

Now assume that D1 and D3 overlap. By symmetry, we may assume that lD1XhD1 is
not properly contained in lDiXhDi for i = 2, 3. Then for each i ∈ {2, 3}, either lDiXhDi =
lD1XhD1 , or lDi ∈ lD1XhD1 − {lD1 , hD1}, or hDi ∈ lD1XhD1 − {lD1 , hD1}. Therefore, by
Lemma 3.5 and by relabeling D1, D2, D3 (if necessary), we may assume that there exist x ∈
V (lD1XhD1 − {lD1 , hD1}) ∩ N(D2 − rD2) and y ∈ V (lD1XhD1 − {lD1 , hD1}) ∩ N(D3 − rD3).
Let u be a neighbor of x in D2 − rD2 , and v be a neighbor of y in D3 − rD3 . Then u∗ = rD2

and v∗ = rD3 . By Lemma 3.6, we may assume u∗ = v∗; so |{rDi : i = 1, 2, 3}| ≤ 2.
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Lemma 3.8 Let Gi, i = 1, . . . , k, denote the components of the graph G. Then |{rD : D ∈
V (Gi)}| ≤ 2 for all i = 1, . . . , k, or G contains TK5.

Proof. For suppose |{rD : D ∈ V (Gi)}| ≥ 3 for some 1 ≤ i ≤ k. Choose D1, D2, D3 ∈ V (Gi)
such that rD1 , rD2 , rD3 are pairwise distinct and, subject to this, the connected subgraph of Gi

containing {rD1 , rD2 , rD3}, denote by T , has minimum number of edges.
Thus, T is a tree whose leaves must be contained in {D1, D2, D3}. So we may assume that

D1 and D2 are two leaves of T . Then by the minimality of T , rDj 6= rD for j = 1, 2 and for all
D ∈ V (Gi) − {Dj}. Moreover, |T | ≥ 4; otherwise, G contains TK5 by Lemma 3.7. Thus, D3

is not a leaf of T ; otherwise, T −D3 contradicts the minimality of T . Therefore, T is actually
a path between D1 and D2. Hence, since |T | ≥ 4 and |T | is minimum, T has a subpath of
length 2 with ends D1 and D such that the path is induced in G and rD1 6= rD; so G contains
TK5 by Lemma 3.7.

We are now ready to show that H −B is a 3-planar chain.

Lemma 3.9 H −B is a 3-planar chain from x1 to x2, or G contains TK5.

Proof. Let Gi, i = 1, . . . , k, denote the components of the graph G. For each i,
⋃

D∈V (Gi)
lDXhD

is a subpath of X; and let ui ≤ vi denote the ends of this path. By Lemma 3.4, we may assume
ui < vi for all i. Let Bi denote the subgraph of H −B that is the union of uiXvi and D− rD

fro all D ∈ V (Gi). Then Bi ∩Xi, i = 1, . . . , k, are pairwise edge-disjoint, and no cut vertex of
Bi separates ui from vi. By Lemma 3.8, |N(Bi − {ui, vi}) ∩ V (B)| ≤ 2.

Suppose |V (Bi)| ≥ 3. Then Bi is 2-connected. Since X is induced and H−X is connected,
|N(Bi−{ui, vi})∩V (B)| ≥ 1. If |N(Bi−{ui, vi})∩V (B)| = 1 then by Lemma 3.5, Bi−{ui, vi}
is connected. Now assume N(Bi − {ui, vi}) ∩ V (B) = {w1, w2}.

We may assume that (G[Bi + {w1, w2}]− w1w2, ui, w1, vi, w2) is 3-planar. For, otherwise,
it follows from Lemma 2.2 that B′

i := G[Bi + {w1, w2}] contains disjoint paths P, Q from
ui, w1 to vi, w2, respectively. Let X ′ be obtained from X by replacing uiXvi by P . Then
B ∪ Q is contained in a 2-connected block of H −X ′. So by the choice of X, H −X ′ is not
connected and hence, by Lemma 3.2, y1, y2, y3 ∈ N(B). Let C denote a chain of blocks in
B′

i −Q from ui to vi. Since Bi is 2-connected, B′
i − C is connected. Let C ′ be obtained from

B′
i + uivi by contracting B′

i − C to a single vertex u. Note that C ′ is 2-connected and C ′ − u
is 2-connected. Suppose C ′ is 3-connected. Then by Lemma 2.1, C ′ contains an induced path
P ′ from ui to vi such that u /∈ P ′ and C ′ − P ′ is connected. Let X ′′ be obtained from X by
replacing uiXvi by P ′. Then H −X ′′ is connected, and B ∪Q is contained in a 2-connected
block of H − X ′′, contradicting the maxmimality of B. Thus, let {v, w} be a 2-cut of C ′.
Since C ′ − u is 2-connected, u /∈ {v, w}. So {v, w} is a cut in Bi + uivi. Let A denote a
{v, w}-bridge of Bi + uivi (so that uivi /∈ A). Since Bi is 2-connected, Bi contains disjoint
paths Pv, Pw from {ui, vi} to v, w, respectively. By choosing notation we may assume vi ∈ Pv

and ui ∈ Pw. Since G is 5-connected, y1, y2, y3 ∈ N(A − {v, w}). So by Menger’s theorem,
G[A+{y1, y2}] contains four independent paths P1, P2, P3, P4 from some vertex x ∈ A−{v, w}
from x to y1, y2, v, w, respectively. Let Q be a path in G[B + {y1, y2}] between y1 and y2.
Then P1 ∪P2 ∪ (P3 ∪Pv ∪ viXx2)∪ (P4 ∪Pu ∪ uiXx1)∪Q is a TK5 in G with branch vertices
x, x1, x2, y1, y2.

We may assume that Bi − {ui, vi} is connected. For suppose not, and let C1, C2 dneote
two components of Bi − {ui, vi}. Since Bi is 2-connected, {ui, vi} ⊆ N(Cj) for j = 1, 2. So by
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the above claim we may assume that w1 /∈ N(C2) and w2 /∈ N(C1). Now by Lemma 3.5, G
contains TK5.

Therefore, H −B is a 3-planar chain.

We adopt the following notation throughout the rest of this paper. Let D be a block in
H − B, and let uD, vD ∈ V (D ∩X) with uDXvD maximal such that x1, uD, vD, x2 occur on
X in order. If |N(D − {uD, vD}) ∩ V (B)| = 2, let N(D − {uD, vD}) ∩ B(X) = {bD, cD},
and we say that D is a block (of H − B) of type I. If |N(D − {uD, vD}) ∩ V (B)| = 1, let
N(D−{uD, vD})∩B(X) = {bD} and cD = bD, and call D a block (of H−B) of type II. Also,
let D′ be obtained from G[D + {bD, cD}] by deleting edges from {bD, cD} to {uD, vD}. Note
that D′ − {bD, cD} = D which is 2-connected when |D| ≥ 3.

4 Blocks of type I

The aim of this section is to show that if there is a block of type I in H −B, then G contains
TK5. So let D be a block of H − B of type I, and recall the notation for D′, bD, cD, uD, vD.
Also recall that D′ contains no edge from {bD, cD} to {uD, vD}, bD, cD ∈ B, and x1, uD, vD, x2

occur on X in order.
We will be interested in the graph obtained from G[D′+{y1, y2, y3}] by identifying y1, y2, y3

as y. The idea is to apply Corollaries 2.11 and 2.12 to this graph; so we need it to be
(5, {bD, cD, uD, vD, y})-connected. Thus, we need to know when D′ is not (4, {bD, cD, uD, vD})-
connected.

Lemma 4.1 Suppose S is a minimal cut in D′ such that |S| ≤ 3 and D′−S has a component
C disjoint from {bD, cD, uD, vD}. Then G contains TK5, or |S| = 3 and one of the following
holds:

(i) D − C contains a path P from uD to vD such that S 6⊆ V (P ), or

(ii) S ∩ {bD, cD, uD, vD} = {vD}, and S − {vD} is a 2-cut in D′ separating C + vD from
{bD, cD, uD}, or

(iii) S ∩ {bD, cD, uD, vD} = {uD}, and S − {uD} is a 2-cut in D′ separating C + uD from
{bD, cD, vD}.

Proof. Suppose D−C contains no path from uD to vD. Then let C1, C2 denote the components
of D − C containing uD, vD, respectively. Since |S| ≤ 3, |S ∩ V (C1)| ≤ 1 or S ∩ V (C2)| ≤ 1.
Suppose |S∩V (C2)| ≤ 1. Because D is 2-connected, we must have S∩V (C2) = {vD}, |S| = 3,
and bD, cD /∈ S. Note that bD, cD have no neighbors in C and, in D′, neither bD nor cD is
adjacent to vD. So S − {vD} is a 2-cut in D′ separating C + vD from {bD, cD, uD}, and (ii)
holds. Similarly, if |S ∩ V (C1)| ≤ 1 then (iii) holds.

Thus we may assume that D−C contains a path P from uD to vD. If S 6⊆ V (P ), then (i)
holds. So we may assume that S ⊆ V (P ) for any path P in D − C from uD to vD.

Let s1, s2 ∈ S with s1Ps2 maximal, and assume that uD, s1, s2, vD occur on P in order.
Since (D′, bD, uD, cD, vD) is 3-planar, D′ is the union of two subgraphs D1 and D2 such that
D1∩D2 = P , bD ∈ D1 and cD ∈ D2. Note that s2 = vD, or {s2, cD} is a 2-cut in D2 separating
vD from uD; otherwise we can modify P inside D2 to avoid s2. Similarly, s2 = vD, or {bD, s2}
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is a 2-cut in D1 separating vD from uD. Since D is 2-connected, we must have s2 = vD. By
the same argument, we also have s1 = uD. Since S is minimal and C is connected, C ⊆ D1 or
C ⊆ D2. However, as (D′, bD, uD, cD, vD) is 3-planar, {uD, vD} must be a cut in D′ separating
bD from cD. Thus G contains TK5 by Lemma 3.5.

The next result will allow us to assume that D′ is (4, {bD, cD, uD, vD})-connected.

Lemma 4.2 Suppose S is a minimal cut in D′ and C is a component of D′ − S such that
|S| ≤ 3 and V (C) ∩ {bD, cD, uD, vD} = ∅. Then G contains TK5.

Proof. Note that the minimality of S implies S ⊆ N(C). We choose S and C so that

(1) C is maximal.

Since D is 2-connected, |S − {bD, cD}| ≥ 2 and there exist s, t ∈ S − {bD, cD} such that

(2) D − (S − {s, t}) contains disjoint paths P ′, P ′′ from s, t to uD, vD, respectively.

By Lemma 4.1, we may assume that |S| = 3, and (i) or (ii) or (iii) of Lemma 4.1 holds.
Let S − {s, t} = {r}. Since G is 5-conected, |N(C) ∩ {y1, y2, y3}| ≥ 2. We may assume that

(3) |N(B)∩{y1, y2, y3}| ≥ |N(C ′)∩{y1, y2, y3}|, where C ′ is any 2-connected endblock of C.
Moreover, |N(B) ∩ {y1, y2, y3}| ≥ 2.

First, suppose there is a path P in D − C from uD to vD such that S 6⊆ V (P ), and let X ′ be
obtained from X by replacing uDXvD with P . Then C ′ ⊆ H −X ′; so by Lemma 3.2 and the
choice of X, we have |N(B)∩{y1, y2, y3}| ≥ |N(C ′)∩{y1, y2, y3}| for any 2-connected block C ′ of
C. If C is 2-connected, then C ′ = C and hence |N(B)∩{y1, y2, y3}| ≥ |N(C ′)∩{y1, y2, y3}| ≥ 2;
so (3) holds. Thus we may assume that C is not 2-connetced. Let C1, . . . , Ck denote the
endblocks of C, where k ≥ 2. Suppose |N(Ci)∩S| ≤ 2 for some i. Then, since G is 5-connected,
|N(Ci) ∩ {y1, y2, y3}| ≥ 2. Hence by Lemma 3.1, Ci is 2-connected. So Ci is contained in a
2-connected block of H−X ′, and (3) follows from the choice of X and Lemma 3.2. So we may
assume that |S| = 3 and S ⊆ N(Ci) for i = 1, . . . , k. This implies that G[C + (S − V (P ))]
is 2-connected, and hence is contained in a 2-connected block of H −X ′. By the choice of X
and by Lemma 3.2, we have (3).

Now, suppose that there is no path in D − C from uD to vD such that S 6⊆ V (P ). Then
by symmetry, we may further assume that S,C satisfy (ii) of Lemma 4.1. Then vD = t. Note
that bD, cD /∈ S, since D is 2-connected. Since G is 5-connected, |N(C) ∩ {y1, y2, y3}| ≥ 2. So
by Lemma 3.1, |V (C)| ≥ 3.

We claim that vD = x2 and there is no path in H from x2 to B internally disjoint from
B ∪X ∪ C. For, otherwise, H − C contains a path X ′ between x1 and x2 (which could use a
path in D−C from bD to uD). So by Lemma 3.2 and the choice of X, |N(B)∩ {y1, y2, y3}| ≥
|N(C ′) ∩ {y1, y2, y3}| for any 2-connected block C ′ of C. Clearly, |N(B) ∩ {y1, y2, y3}| ≥ 2 if
|N(C ′) ∩ {y1, y2, y3}| ≥ 2 for some choice of C ′. So assume |N(C ′) ∩ {y1, y2, y3}| ≤ 1 for any
choice of C ′. Then C ′ 6= C and S ⊆ N(C ′) (since G is 5-connected); so G[C + S] − vD is
2-connected and contained in H − X ′. It follows from Lemma 3.2 and the choice of X that
|N(B) ∩ {y1, y2, y3}| ≥ 2.
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Note that S − {vD} is a 2-cut in D separating vD = x2 from {bD, cD, uD}. Let J dneote
the (S − {vD})-bridge of D containing vD = x2. Suppose J is not 2-connected, and let z be
a cut vertex of J . Since D is 2-connected, z must separate some r ∈ S − {vD} from S − {r}.
By Lemma 3.4, the v-bridge of J containing r is induced by the edge rv. Let J ′ be obtained
from J by deleting each vertex in S−{vD} that has degree 1 in J ; then J ′ is 2-connected. Let
T = {v1, v2} ⊆ V (J ′) be the cut of D separating T from {bD, cD, uD}. Since G is 5-connected
and |C| ≥ 3, we may assume y2, y3 ∈ N(J ′ − {v1, v2, x2}). So by Lemma 3.1, |V (J ′)| ≥ 5.

Note that {v1, v2, y1, y2, y3} is a cut in G, and we can write G = G1 ∪ G2 such that
V (G1 ∩ G2) = {v1, v2, y1, y2, y3}, J ′ ⊆ G1, and B ⊆ G2. Since G2 − {v1, v2, y1} is connected,
it contains three independen paths from some vertex u ∈ V (G2) − V (G1) to x1, y2, y3, re-
spectively. Thus by Lemma 2.4, G2 has five independent paths P1, P2, P3, P4, P5 from u to
S′ := {v1, v2, x1, y1, y2, y3} such that Pi∩Pj = {u} for 1 ≤ i 6= j ≤ 5, |V (Pi)∩S′| = 1, x1 ∈ P1,
y2 ∈ P2, and y3 ∈ P3. We may assume that P4 ends in {v1, v2}.

We may assume that y1 ∈ N(J ′ − {v1, v2, x2}). For, suppose not. Then {v1, v2, x2, y3, y3}
is a 5-cut in G. Without loss of generality, assume v1 ∈ P4. If G[J ′ + {y2, y3}] − v2 contains
disjoint paths Q1, Q2 from v1, y2 to x2, y3, respectively, then P1∪(P4∪Q1)∪P2∪P3∪Q2∪K is
a TK5 in G with branch vertices u, x1, x2, y2, y3. So we may assume such Q1, Q2 do not exist.
Then by Corollary 2.3, (G[J ′ + {y2, y3}] − v2, v1, y2, x2, y3) is planar. So G contains TK5 by
Corollary 2.9.

We claim that for any vi, there exists {p, q} ⊆ {1, 2, 3} such that G[J ′ + {yp, yq}] contains
disjoint paths from vi, yp to x2, yq, respectively. To prove this let J ′′ be obtained from G[J ′ +
{y1, y2, y3}] by identifying y1 and y2 as y. If J ′′ contains disjoint paths from v1, y to x2, y3,
respecttively, then this claim holds for some p ∈ {1, 2} and q = 3. Otherwise, by Lemma 2.2,
(J ′′, v1, y, x2, y3) is planar. Then since J ′ is 2-connected, we see that the claim holds for p = 1
and q = 2.

Now without loss of generality we may assume that G[J ′+{y1, y2}] contains disjoint paths
R1, R2 from v1, y2 to x2, y3, respectively. (The notation can be choosen this way so that we
can use the paths P1, . . . , P5 above.) If v1 ∈ Pk for some k ∈ {4, 5}, then P1 ∪ (Pk ∪ R1) ∪
P2 ∪ P3 ∪ R2 ∪ K is a TK5 in G with branch vertices u, x1, x2, y2, y3. So we may assume
v1 /∈ P4 ∪ P5. Hence we may further assume that v2 ∈ P4 and y1 ∈ P5. Now by the above
claim there exists {p, q} ⊆ {1, 2, 3} such that G[J ′ + {yp, yq}] contains disjoint paths R′

1, R
′
2

from v2, yp to x2, yq, respectively. Then P1∪ (P4∪R′
1)∪R′

2∪K and P2∪P3 (if {p, q} = {2, 3}),
or P2∪P5 (if {p, q} = {1, 2}), or P3∪P5 (if {p, q} = {1, 3}) is a TK5 in G with branch vertices
u, x1, x2, y2, y3. This completes the proof of (3).

(4) We may assume {y1, y2, y3} 6⊆ N(C).

Suppose {y1, y2, y3} ⊆ N(C). Let S′ := S ∪ {y1, y2, y3}.
We may assume {y1, y2, y3} 6⊆ N(B). For, suppose {y1, y2, y3} ⊆ N(B). Since G[C +

{y1, s, t}] is connected, it contains three independent paths from some vertex u ∈ C to y1, s, t,
respectively. So Lemma 2.4 implies the existence of five independent paths P1, P2, P3, P4, P5

in G[C + S′] from u to S′, such that V (Pi ∩ Pj) = {u} for 1 ≤ i 6= j ≤ 5, |V (Pi) ∩ S′| = 1
for 1 ≤ i ≤ 5, y1 ∈ P1, s ∈ P3, and t ∈ P4. We may assume by symmetry (between y2 and
y3) that P2 ends at y2, and let Q denote a path in G[B + {y1, y2}] between y1 and y2. Then
(P3 ∪P ′ ∪ uDXx1)∪ (P4 ∪P ′′ ∪ vDXx2)∪P2 ∪P1 ∪Q∪K is a TK5 in G with branch vertices
u, x1, x2, y1, y2.
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If (i) of Lemma 4.1 holds, then let X ′ be the path obtained from X by replacing uDXvD

with P . We may assume that the paths P ′ and P ′′ are subpaths of P . Then G[C+r] ⊆ H−X ′.
If G[C + r] is 2-connected then by Lemma 3.2 and the choice of X, {y1, y2, y3} ⊆ N(B), a
contradiction. So G[C + r] is not 2-connected. Let J be an endblock of G[C + r] and v be
the cutvertex of G[C + r] contained in J such that r /∈ J − v. If {y1, y2, y3} ⊆ N(J − v)
then by Lemma 3.2 and the choice of X, we have {y1, y2, y3} ⊆ N(B), a contradiction. Hence
we may assume y1, y2 ∈ N(J − v) and y3 /∈ N(J − v); so s, t ∈ N(J − v). By Menger’s
theorem, G[J + {s, t, y1, y2}] contains five independent paths Q1, Q2, Q3, Q4, Q5 from some
u ∈ V (J − v) to y1, y2, s, t, v, respectively. Since y3 ∈ N(C) we see that P5 can be extened
through G[C−(J−v)+y3] to a path Q′

5 ending at y3. If y1, y2 ∈ N(B) then let Q be a path in
G[B+{y1, y2}] between y1 and y2; now Q1∪Q2∪(Q3∪P ′∪uDXx1)∪(Q4∪P ′′∪vDXx2)∪Q∪K
is a TK5 in G with branch vertices u, x1, x2, y1, y2. So we may assume that by (3) that
yi, y3 ∈ N(B) for some i ∈ {1, 2}. Let Q′ be a path in G[B +{yi, y3}] between yi and y3. Then
Qi∪Q′

5∪ (Q3∪P ′∪uDXx1)∪ (Q4∪P ′′∪vDXx2)∪Q′∪K is a TK5 in G with branch vertices
u, x1, x2, yi, y3.

Therefore, we may assume by symmetry that (ii) of Lemma 4.1 holds. So t = vD. Without
loss of generality and by (3), assume y1, y2 ∈ N(B). Note that G[C + {t, y1, y2}] contains
independent paths from some u ∈ V (C) to y1, y2, t, respectively. So by Lemma 2.4, G[C +
{r, s, t, y1, y2, y3}] contains five independent paths Q1, Q2, Q3, Q4, Q5 from u to S′ such that
V (Qi ∩ Qj) = {u} for 1 ≤ i 6= j ≤ 5, |V (Qi) ∩ S′| = 1 for 1 ≤ i ≤ 5, y1 ∈ Q1, y2 ∈ Q2,
and t ∈ Q3. We may assume that Q4 ends at v ∈ {r, s}. Since D is 2-connected, D − C
contains a path R from v to uD. Let Q be a path in G[B + {y1, y2}] between y1 and y2. Then
Q1 ∪ Q2 ∪ (Q3 ∪ vDXx2) ∪ (Q4 ∪ R ∪ uDXx1) ∪ Q ∪ K is a TK5 in G with branch vertices
u, x1, x2, y1, y2.

By (4), let y1, y2 ∈ N(C) and y3 /∈ N(C). Since G is 5-connected, C ′ := G[C + (S ∪
{y1, y2})] is (5, S ∪ {y1, y2})-connected. By Menger’s theorem, C ′ contains five independent
paths P1, P2, P3, P4, P5 from some vertex z ∈ C to y1, y2, s, t, r, respectively.

If y1, y2 ∈ N(B), then G[B + {y1, y2}] contains a path A from y1 to y2. So by (2),
P1 ∪P2 ∪ (P3 ∪P ′ ∪ uDXx1)∪ (P4 ∪P ′′ ∪ vDXx2)∪A∪K is a TK5 in G with branch vertices
x1, x2, y1, y2, z.

Hence we may assume that y1 /∈ N(B). Hence by (3), y2, y3 ∈ N(B). Let Q denote a path
in G[B + {y2, y3}] between y2 and y3.

(5) We may assyme y3 /∈ N(D − {uD, vD}).

Suppose y3 ∈ N(D − {uD, vD}). First, assume that G[D − C + y3] contains disjoint paths
Q1, Q2, Q3 from S to uD, vD, y3, respectively. Since we will not use P ′, P ′′ in this subscase,
we have symmetry among r, s and t. So we may assume that s ∈ Q1 and t ∈ Q2. Then
P2 ∪ (P5 ∪Q3)∪ (P3 ∪Q1 ∪ uDXx1)∪ (P4 ∪Q2 ∪ vDXx2)∪Q∪K is a TK5 in G with branch
vertices x1, x2, y2, y3, z.

So we may assume that G[D − C + y3] has a minimal cut T , |T | ≤ 2, separating S from
{uD, vD, y3}. So T is a cut in D separating C + S from {uD, vD}. Since D is 2-connected,
y3 /∈ T and |T | = 2. Let D1 denote the T -bridge of D containing C (so D1 − T is connected),
and let D2 denote the minimal union of T -bridges of D containing {uD, vD} (so D2 consists
of at most two T -bridges of D).
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If neither bD nor cD has a neighbor in D1 − T , then T is a cut of D′ separating D1 from
{bD, cD, uD, vD}; so T ∪ {y1, y2} is a cut in G, a contradiction. Hence, we may assume that
bD has a neighbor in D1 − T .

If cD has no neighbor in D1 − T then T ∪ {bD} is a minimal cut of D′ separating D1 from
{bD, cD, uD, vD}; so T ∪ {bD}, D1 contradict the choices of S,C in (1). Hence we may assume
that cD also has a neighbor in D1 − T .

Then G[D1 − T + {bD, cD}] contains a path from bD to cD. Since (D′, bD, uD, cD, vD) is
3-planar, it contains no disjoint paths from bD to cD and from uD to vD. Hence, uD and
vD belong to different components of D2, and this contradicts the 2-connectedness of D and
completes the proof of (5).

Observing the symmetry between bD and cD, we may assume that y2 has a neighbor
y′2 ∈ B − bD. Let y′3 be a neighbor of y3 in B.

(6) We may assume that D′ − cD has disjoint paths R1, R2, R3 from uD, vD, bD to s, t, r,
respectively.

Note that we will not be using P ′ and P ′′, so we have symmetry among vertices in S. So
if (6) fails then there is a minimal cut T in D′ − cD, with |T | ≤ 2, separating C ∪ S from
{bD, uD, vD}. Then T or T ∪ {cD} contradicts the choice of S in (1).

(7) We may assume N(y3) ⊆ uDXx1 ∪ vDXx2 ∪ {y′3}.

Since y3 has no neighbor in D − {uD, vD}, G − {y1, y2} has a path R from y3 to a vertex
y′′3 ∈ (B − y′3) ∪ (uDXx1 − x1) ∪ (vDXx2 − x2) and internally disjoint from D′ ∪ B ∪ X. If
y′′3 ∈ B − y′3, then G[B ∪ R + {y2, y3}] has independent paths Q1, Q2 from y3 to bD and y2,
respectively; so P2∪ (P5∪R3∪Q1)∪ (P3∪R1∪uDXx1)∪ (P4∪R2∪vDXx2)∪Q2∪K is a TK5

in G with branch vertices x1, x2, y2, y3, z. Thus we may assume that y′′3 /∈ B−y′3 for any choice
of R. So y′′3 ∈ X, R = y3y

′′
3 (as H −X is connected), and N(y3) ⊆ uDXx1 ∪ vDXx2 ∪ {y′3}.

(8) We may further assume that H − B has a 2-connected block F such that y3 ∈ N(F ),
y′3 ∈ {bF , cF }, and x1, uF , vF , uD, vD, x2 occur on X in order.

By (7) and by symmetry, we may assume that y3 has a neighbor y′′3 ∈ uDXx1 − x1. If y3 ∈
N(uD) then we find independent paths L1, L2 in G[D+y2] from uD to y2, vD, respectively; now
uDXx1∪(L2∪vDXx2)∪L1∪uDy3∪Q∪K is a TK5 in G with branch vertices uD, x1, x2, y2, y3.
Thus we may assume that y3 has a neighbor y′′3 ∈ V (uDXx1 − {uD, x1}).

Since X is induced, H −D has a path R from y′′3 to B internally disjoint from B ∪X.
We claim that R must end at y′3 and we may choose R to be a path of length at least 2.

First, we may assume that C ′− y1 has disjoint paths L1, L2 from s, r to t, y2, respectively; for
otherwise, (C ′ − y1, r, s, y2, t) is not planar by Corollary 2.3, and hence G contains TK5 by
Corollary 2.9. If G[B∪R′+{y2, y3}] has disjoint paths M1,M2 from y′′3 , y3 to y2, bD, respectively,
then M1∪y′′3y3∪y′′3Xx1∪(y′′3XuD∪R1∪L1∪R2∪vDXx2)∪(M2∪R3∪L2)∪K is a TK5 in G with
branch vertices x1, x2, y2, y3, y

′′
3 . If G[B∪R′+{y2, y3}] has disjoint paths N1, N2 from y′′3 , y3 to

bD, y2, respectively, then (N1∪R3∪L2)∪y′′3y3∪y′′3Xx1∪(y′′3XuD∪R1∪L1∪R2∪vDXx2)∪N1∪K
is a TK5 in G with branch vertices x1, x2, y2, y3, y

′′
3 . So we may assume that M1,M2 do not

exist, and N1, N2 do not exist. Therefore, R must end at y′3. Moreover, we may choose R to
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be a path of length at least 2; as otherwise there are two edges from y′′3 to B, and M1,M2 or
N1, N2 would exist.

Note that R− y′3 is contained in a 2-connected block F of H −B, and let bF , cF , uF , vF be
defined as before; so y′3 ∈ {bF , cF }. Then x1, uF , vF , uD, vD, x2 occur on X in order.

By (7) and (8), let w denote a neighbor of y3 ∈ N(F ) in uF XvF − {uD, x1}. We may
assume that

(9) w /∈ {uF , vF }.
Suppose w ∈ {uF , vF } for any choice of w. Then y3 /∈ N(F −{uF , vF }). Hence we may assume
that y1, y2 ∈ N(F − {uF , vF }), which follows from 5-connectedness of G when bF = cF , or
from the planarity of (F ′, bF , uF , cF , vF ) when bF 6= cF (as otherwise G contains TK5 by
Corollary 2.9).

Let S′ := {bF , cF , uF , vF , y1, y2}. Since G[F + y1] is connected, it contains three indepen-
dent paths from some vertex u ∈ F−{uF , vF } to uF , vF , y1, respectively. Since G[F ′+{y1, y2}]
is (5, S′)-connected, it follows from Lemma 2.4 that G[F ′+ {y1, y2}] contains five independent
paths W1,W2,W3,W4,W5 from u to S′ such that V (Wi ∩ Wj) = {u} for 1 ≤ i 6= j ≤ 5,
|V (Wi) ∩ S′| = 1 for 1 ≤ i ≤ 5, uF ∈ W1, vF ∈ W2, and y1 ∈ W3. Without loss of generality,
we may assume that W4 ends in {bF , cF }. Thus W4 can be extended through G[B + y2] to a
path W ′

4 ending at y2.
If C ′−r contains disjoint paths L1, L2 from y1, s to y2, t, respectively, then W3∪W ′

4∪(W1∪
uF Xx1)∪ (W2∪ vF XuD ∪R1∪L2∪R2∪ vDXx2)∪L1∪K is a TK5 in G with branch vertices
u, x1, x2, y1, y2. Thus we may assume that L1, L2 do not exist in C ′ − r. By Corollary 2.3,
(C ′ − r, y1, s, y2, t) is planar; so G contains TK5 by Corollary 2.9.

By (9), we may assume that w ∈ F − {uF , vF }. Let S′ := {bF , cF , uF , vF } ∪ (N(F −
{uF , vF }) ∩ {y1, y2}). It is clear that G[F ′ + S′] is (4, S′)-connected. Also note that F has
independent paths from w to uF , vF , as it is 2-connected. So by Lemma 2.4, G[F ′ + S′]
contains four independent paths W1,W2,W3,W4 from w to S′ such that V (Wi ∩Wj) = {u}
for 1 ≤ i 6= j ≤ 4, |V (Wi) ∩ S′| = 1 for 1 ≤ i ≤ 4, uF ∈ W1 and vF ∈ W2. Without loss of
generality, we may assume that bF = y′3 and cF /∈ W3.

If W3 ends at y2, then wy3 ∪W3 ∪ (W1 ∪ uF Xx1) ∪ (W2 ∪ vF Xx2) ∪Q ∪K is a TK5 in G
with branch vertices w, x1, x2, y2, y3. (Recall that Q is given before (5).)

Now assume that W3 ends at y1. If C ′ − y2 has disjoint paths L1, L2 from r, s to y1, t,
respectively, then let Q′ denote a path in G[B + y3] between bD and y3; so wy3 ∪W3 ∪ (W1 ∪
uF Xx1)∪(W2∪vF XuD∪R1∪L2∪R2∪vDXx2)∪(Q′∪R3∪L1)∪K is a TK5 in G with branch
vertices w, x1, x2, y1, y3. So we may assume that L1, L2 do not exist. Then by Corollary 2.3,
(C ′ − y2, r, s, y1, t) is planar; so G contains TK5 by Corollary 2.9.

We may thus assume that W3 ends at bF = y′3. Recall that y′2 6= bD. In G[B + y2] we
find independent paths Q1, Q2 from bF to bD, y2, respectively. Then y3y

′
3 ∪W3 ∪ y3w∪ (x1y2 ∪

Q2)∪ x1y3 ∪ (x1XuF ∪W1)∪ (x1y1 ∪ P1)∪ (P5 ∪R3 ∪Q1)∪ (P3 ∪R1 ∪ uDXvF ∪W2)∪ (P4 ∪
R2 ∪ vDXx2 ∪ x2y3) is a TK5 in G with branch vertices w, x1, y3, y

′
3, z.

Let D∗ be obtained from G[D′ + {y1, y2, y3}] by identifying y1, y2, y3 to a single vertex y,
and let A∗ := {y, bD, cD, uD, vD}. Recall that D′ does not contain edges from {bD, cD} to
{uD, vD}, and note that

(D∗ − y, bD, uD, cD, vD) is planar.
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So we may assume
|N(D − {uD, vD}) ∩ {y1, y2, y3}| ≥ 2;

as otherwise, G contains TK5 by Corollary 2.9. By Lemma 3.1, |D| ≥ 4; so |D∗| ≥ 7. By
Lemma 4.2, we may assume that

D∗ is (5, A∗)-connected.

Let C denote the facial walk of D∗ − y containing A∗ − {y} and assume that it is the outer
walk of D∗ − y. Then C is a cycle, or bD (or cD) has degree 1 in C and C − bD (or C − cD) is
a cycle, or bD, cD both have degree 1 in C and C − {bD, cD} is a cycle.

We now show that there exist paths in D∗ as shown in Corollaries 2.11 and 2.12.

Lemma 4.3 G contains TK5, or there exist a vertex w ∈ D∗ −A∗ and a cycle Cw in D∗ − y
such that Cw consists of all vertices of D∗− y cofacial with w, and one of the following holds:

(1) w is a neighbor of y and D∗ − y has three independent paths P1, P2, P3 from w to
{bD, cD, uD, vD} such that V (Pi ∩ Pj) = {w} for 1 ≤ i < j ≤ 3, and |V (Pi ∩ Cw)| =
|V (Pi) ∩A∗| = 1 for i = 1, 2, 3.

(2) y has no neighbor in D∗ − C, C ∩ Cw = ∅, and D∗ − y has four independent paths
P1, P2, P3, P4 from w to A∗ such that V (Pi∩Pj) = {w} for 1 ≤ i < j ≤ 4, |V (Pi∩Cw)| =
|V (Pi) ∩ A∗| = 1 for 1 ≤ i ≤ 4, and either (a) y /∈ ⋃4

i=1 Pi, or (b) y ∈ ⋃4
i=1 Pi and

we can write A∗ − {y} = {a1, a2, a3, a4} such that a ∈ P1, ai ∈ Pi for i = 2, 3, 4,
a1, a2, a3, P1 ∩ C, a4 occur on C in cyclic order.

Proof. If D∗ has a 5-separation (F1, F2) such that {y, bD, cD, uD, vD} ⊆ F1 and |F2| ≥ 7, we
choose (F1, F2) so that F2 is minimal and let A := V (F1) ∩ V (F2); otherwise let F2 = D∗

and A := {y, bD, cD, uD, vD}. By the minimality of F2, A is independent in F2 and F2 − y is
2-connected. We may assume y ∈ A; for, otherwise, since (F2, A) is planar, G contains TK5

by Lemma 2.6.
By Menger’s theorem, there are four disjoint paths in F1 − y from A − {y} to A∗ − {y},

which allows us to extend the paths we will find in F2 to the desired paths in D∗. Let C ′

denote the the outer cycle of F2 − y, which contains A− y. We may assume D∗ − y contains
no K−

4 as otherwise G contains K−
4 , and hence G contains TK5 by Theorem 1.1.

If y has a neighbor inside C ′, say w, then (1) follows from Corollary 2.11 (after appropriate
extension of the paths to A∗). Hence we may assume that C ′ contains all neighbors of y in
F2. If F2 is not the exceptional graph in Corollary 2.12, then (2) follows from Corollary 2.12
(after appropriate extensions of the paths to A∗).

So we may assume that F2 is the exceptional graph. Let A = {b′, c′, u′, v′} and tuvwt be
the cycle in F2 − A such that C ′ = b′tv′uc′vu′wb′, and let Q1, Q2, Q3, Q4 be disjoint paths in
F1 − y from b′, c′, u′, v′ to bD, cD, uD, vD, respectively.

Since G is 5-connected and by Lemma 3.1, each of {t, u, v, w} has exactly one neighbor in
{y1, y2, y3}. Since G contains no K−

4 , we may assume by symmetry that y3 ∈ N(u) ∩ N(w)
and that either y2 ∈ N(t) ∩N(v) or y1 ∈ N(v) and y2 ∈ N(t).

Suppose y2 ∈ N(t) ∩ N(v). Then by Lemma 3.1, y1 /∈ N({t, u, v, w}). Note that G′ :=
G−{t, u, v, w, y2, y3} contains two paths R1, R2 from b′ to {c′, u′, v′} such that R1∩R2 = {b′};
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for otherwise, G′ has a cut T , |T | ≤ 1, separating b′ from {c′, u′, v′}, and so {b′, y2, y3} ∪ T
would be a cut in G, contradicting 5-connectedness of G. Clearly, R1, R2 can be extended,
using u′v or c′v and v′u or c′u, to give independent paths R′

1, R
′
2 in G−{t, u, v, w, y2, y3} from

b′ to u, v, respectively. Now b′t ∪ b′w ∪ R′
1 ∪ R′

2 ∪ tuvwt ∪ ty2v ∪ uy3w is a TK5 in G with
branch vertices b′, t, u, v, w.

Thus we may assume that y1 ∈ N(v) and y2 ∈ N(t). Note the triangle b′twb′ is contained
in a block of H − (x1XuD ∪Q3 ∪ u′vuv′ ∪Q4 ∪ vDXx2) and has two neighbors in {y1, y2, y3}.
So by Lemma 3.2 and by the choice of X, |N(B) ∩ {y1, y2, y3}| ≥ 2. If y1, y2 ∈ N(B) then let
Q be a path in G[B + {y1, y2}] between y1 and y2; now (twu′ ∪ Q3 ∪ uDXx1) ∪ (tv′ ∪ Q4 ∪
vDXx2) ∪ (tuvy1) ∪ ty2 ∪ Q ∪ K is a TK5 in G with branch vertices t, x1, x2, y1, y2. So by
symmetry we may assume that y2, y3 ∈ N(B). Let R denote a path in G[B +{y2, y3}] between
y2 and y3. Then (tuvu′ ∪Q3 ∪ uDXx1)∪ (tv′ ∪Q4 ∪ vDXx2)∪ twy3 ∪ ty2 ∪R∪K is a TK5 in
G with branch vertices t, x1, x2, y2, y3.

Lemma 4.4 Suppose D∗ contains w, Cw, P1, P2, P3 which satisfy (1) of Lemma 4.3. Then G
contains TK5.

Proof. Without loss of generality, we may assume that y1w ∈ E(G). Let L = Cw ∪ P1 ∪ P2 ∪
P3 ∪ y1w. We may assume that

(1) We may assume that {bD, cD} ⊆ L, and vD ∈ L (by symmetry).

If {uD, vD} ⊆ L, then (1) holds by letting vD ∈ L using symmetry between uD and vD. So
assume {uD, vD} ⊆ L. By symmetry, we may assume bD ∈ L.

We may assume that x1 = uD and x2− vD. Otherwise, we may assume by symmetry that
x1 6= uD. Then H has a path Q from x1 to bD and internally disjoint from X ∪ D′. Now
L ∪Q ∪ x1y1 ∪ x1XuD ∪ (x1y2x2 ∪ x2XvD) is a TK5 in G.

If |V (x2Cwx1)| = 2 then x1x2 ∈ E(G); so G[x1, x2, y1, y2] ∼= K−
4 , and G contains TK5 by

Theorem 1.1. So we may assume that |V (x2Cwx1)| ≥ 3.
Suppose w has no neighbor in x2Cwx1−{x1, x2}. Since D∗ is (5, A∗)-connected, {x1, x2, cD}

cannot be a cut in D separating {bD, cD, x1, x2} from some vertex. Therefore, x2Cwx1 =
x2cDx1. As D is of type I, cDw ∈ E(G). Now G[{cD, w, x1, x2}] ∼= K−

4 , and G contains TK5

by Theorem 1.1.
Therefore, we may assume that w has a neighbor w′ ∈ x2Cwx1 − {x1, x2}. If D contains a

path Q from w′ to cD and internally disjoint from Cw, then replacing the path in L from w to
uD with Q + {w, ww′} we get (1). So we may assume that such Q does not exist. Then since
(D∗ − y, bD, uD, cD, vD) is planar, there exist u ∈ V (w′Cwx1 − w′) and v ∈ V (x2Cww′ − w′)
such that {u, v, w} is a cut in D separating {bD, cD, x1, x2} from w′, contradicting the fact
that D∗ is (5, A∗)-connected.

(2) x1 /∈ Cw.

For if x1 ∈ Cw then L ∪ x1y1 ∪ (x1y2x2 ∪ x2XvD) and a path in B between bD and cD form a
TK5 in G with branch vertices w, x1 and Pi ∩ Cw, i = 1, 2, 3.

(3) We may assume that D− uD and D− vD are 2-connected, and D′−{uD, vD} is a chain
of blocks from bD to cD.
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First, suppose D − uD is not 2-connected. Then let C be an endblock of D − uD and v be
the cut vertex of D − uD contained in C such that vD /∈ C − v. Since D is 2-connected,
uD ∈ N(C − v) and uD ∈ N(D − uD − C). In particular, D − (C − v) contains a path from
uD to vD. Thus, since (D′, bD, uD, cD, vD) is planar, bD /∈ N(C − v) or cD /∈ N(C − v), say
the former. Then {cD, uD, v} is a cut in D′ separating C from {bD, cD, uD, vD}, contradicting
the assumption that D∗ is (5, A∗)-connected.

Thus we may assume that D − uD is 2-connected. Similarly, we may also assume that
D − vD is 2-connected.

By the definition of planar chain, D−{uD, vD} is connected. So D′−{uD, vD} is connected.
Now suppose D′−{uD, vD} is not a chain of blocks from bD to cD. Then let C be an endblock
of D′−{uD, vD} and v be the cut vertex of D−{uD, vD} such that D′−{uD, vD}−(C−v) has
a path between bD and cD. Then {uD, vD, v} is a cut in D′ separating C from {bD, cD, uD, vD},
contradicting the assumption that D∗ is (5, A∗)-connected.

(4) We may assume uD = x1, and H contains no path from x1 to B internally disjoint from
B ∪D′ ∪X.

Suppose (4) fails. Note that if uD 6= x1 then H contains a path from x1 to B internally disjoint
from B ∪ D′ ∪ X. So let R be an arbitrary path in H from x1 to x ∈ V (B) and internally
disjoint from B ∪D′ ∪ vDXx2.

Suppose x may be choosen so that there exists some yi ∈ N(B − x). Then G[B ∪ R + yi]
contains disjoint paths Q1, Q2 from {bD, cD} to x1, yi, respectively. Recall x1 /∈ Cw from (2).
If i = 1 then (y1x1 ∪Q1) ∪Q2 ∪ (y1x2 ∪ x2XvD) ∪ L is a TK5 in G. So assume i 6= 1. Then
Q1 ∪ (x1yi ∪Q2) ∪ x1y1 ∪ (x1y5−ix2 ∪ x2XvD) ∪ L is a TK5 in G.

Therefore, we may assume that x is unique and yi /∈ N(B − x) for all i = 1, 2, 3. So by
Lemma 3.1, |N(B) ∩ {y1, y2, y3}| ≤ 1. If H has a path from x2XvD to B internally disjoint
from B ∪D′ ∪X, then H has a path from x1 to x2 disjoint from D − vD; so by Lemma 3.2
and the choice of X, |N(B) ∩ {y1, y2, y3}| ≥ |N(D − vD) ∩ {y1, y2, y3}| ≥ 2, a contradiction.

Thus we may assume that H has no path from x2XvD to B internally disjoint from
B ∪D′ ∪X; so x2 = vD. Since {bD, cD, uD, x} cannot be a cut in G, we see that |B| = 3 and
x /∈ {bD, cD}. Since x has at least three neighbors outside B, G−D′ contains independent paths
Q1, Q2 from x to x1, yi, respectively, for some i ∈ {1, 2, 3}. If i = 1 then (Q1 ∪ x1y2x2) ∪Q2 ∪
(B−bDcD)∪L is a TK5 in G; and if i 6= 1 then (Q1∪x1y2)∪(Q2∪yix2∪x2XvD)∪(B−bDcD)∪L
is a TK5 in G.

(5) We may assume that y1 /∈ N(B − {bD, cD}) and |N(y1) ∩B| ≤ 1.

First, suppose |N(y1)∩B| ≥ 2. Then G[B + y1] has two independent paths Q1, Q2 from y1 to
bD, cD, respectively. So Q1 ∪Q2 ∪ (y1x2 ∪ x2XvD) ∪ L is a TK5 in G.

Now let y ∈ N(y1) ∩ V (B − {bD, cD}). Since G is 5-connected, x2XvD + {y2, y3} has a
neighbor in B−{bD, cD}. If G[B ∪ x2XvD + {y2, y3}] has three independent paths Q1, Q2, Q3

from y to bD, cD, x2XvD + {y2, y3}, respectively, then we may assume Q3 ends at vD; now
Q1 ∪Q2 ∪Q3 ∪ yy1 ∪ L is a TK5 in G. So we may assume that such Q1, Q2, Q3 do not exist.
Then there is a 2-cut S in G[B∪x2XvD +{y2, y3}] separating y from bD, cD, x2XvD +{y2, y3}.
Since B is 2-connected S ⊆ B. But then by (4), S ∪ {y1} is a 3-cut in G, a contradiction.
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Let S := {bD, cD, y2, y3} ∪ V (x2XvD). Then by (4) and (5), G′ := G − y1 − (D − vD) is
(5, S)-connected, and G′ − {y2, y3} contains a path from B to v ∈ V (x2XvD) and internally
disjoint from X. We choose v so that vXvD is minimal. Note that G′−{y2, y3}− (x2XvD−v)
has independent paths from some u ∈ V (B) − {bD, cD} to bD, cD, v, respectively. So by
Lemma 2.4, G − {x1, y1} − D′′ contains five independent paths Q1, Q2, Q3, Q4, Q5 from u
to bD, cD, v, z1, z2, respectively, where z1, z2 ∈ S − {v} such that |V (Qi) ∩ S| = 1 for 1 ≤
i ≤ 5. If v 6= x2 then Q4 can be extended through G[(x2Xv − v) + {y1, y2, y3}] to a path
Q′

4 ending at y1; so Q1 ∪ Q2 ∪ (Q3 ∪ vXvD) ∪ Q′
4 ∪ L is a TK5 in G. So assume v = x2.

Then by the minimality of vXvD, we see that z1 ∈ {y2, y3}, sat z1 = y2. Now by (2),
(Q1 ∪Q2 ∪ (Q3 ∪ vXvD) ∪ (Q4 ∪ y2x1y1) ∪ L is a TK5 in G.

Lemma 4.5 Suppose D∗ contains w, Cw, P1, P2, P3, P4 satisfying (2) of Lemma 4.3. Then G
contains TK5.

Proof. Let L = Cw ∪ P1 ∪ P2 ∪ P3 ∪ P4. If y /∈ L then L, uDXx1 ∪ x1y1x2 ∪ x2XvD and a
path in B between bD and cD form a TK5 in G. So we may assume that y ∈ P1. Since D∗ is
(5, A∗)-connected, D′ is (4, {bD, cD, uD, vD})-connected. Recall that (D∗ − y, bD, uD, cD, vD)
is planar. Let C denote the outerwalk of D∗ − y; note that C is a cycle, or C − bD is a cycle
and bD is of degree 1 in C, or C − cD is a cycle and cD is of degree 1 in C, or C − {bD, cD}
is a cycle and both bD and cD have degree 1 in C. Without loss of generality we may assume
that bD, uD, cD, vD occur on C in couterclockwise order.

Recall that Cw ∩ C = ∅. We have two cases: uD, vD ∈ L, or bD, cD ∈ L.

Case 1. uD, vD ∈ L
By symmetry, we may assume that uD ∈ P2, bD ∈ P3, and vD ∈ P4. Without loss of

generality we may view P1 as a path in G with y1 ∈ P1. Further, we may assume by symmetry
that cD, uD, bD, P1 ∩ C, vD occur on C in clockwise order.

We may assume that x2 = vD, H has no path from x2 to B internally disjoint from
B ∪ D ∪ X, and N({y2, y3}) ⊆ D ∪ X. For, otherwise, G − y1 has a path Q from vD to bD

disjoint from (D − vD) ∪ uDXx1, and L ∪Q ∪ (y1x1 ∪ x1XuD) is a TK5 in G.
Then uD 6= x1; as otherwise {bD, cD, x1, y1} would be a 4-cut in G. Hence H contains a

path X1 from x1 to some x′1 ∈ V (B) and internally disjoint from X ∪B ∪D′.
We may also assume N(y1) ⊆ B ∪D ∪ {x1, x2}. Otherwise, G− {y2, y3} contain a path P

from y1 to uDXx1 − x1 and internally disjoint from B ∪X ∪D′. Now P ∪X1 ∪ B ∪ uDXx1

contains disjoint paths from x1, y1 to bD, uD, respectively, which, together with L ∪ x1y2x2,
forms a TK5 in G.

Suppose y2, y3 have neighbors u, v, respectively, in uDXx1−x1. Without loss of generality
let x1, u, v, uD occur on X in order. Since H −X is connected and |N(u) ∩ {y1, y2, y3}| ≤ 1
(by Lemma 3.1), u has a neighbor in B or there is a path in H from u to B internally disjoint
from X ∪ B. Thus H contains a path Q from u to bD internally disjoint from X ∪D′. Now
L ∪ (x2y2u ∪Q) ∪ (y1x1y3v ∪ vXuD) is a TK5 in G.

So we may assume that N(y3) ⊆ D′ ∪ {x1, x2}.
We may assume that y2 has a neighbor in uDXx1 − {x1, uD}, say u, and choose u so that

uXx1 is minimal. For, otherwise, {bD, cD, uD, x1, y1} is a cut in G separating B∪uDXx1 from
D′. Let G1 denote the {bD, cD, uD, x1, y1}-bridge of G containing B ∪ uDXx1. If G1 − cD

contains disjoint paths Q1, Q2 from bD, uD to x1, y1, respectively, then L∪ (Q1 ∪ x1y2x2)∪Q2
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is a TK5 in G. Hence we may assume that such paths do not exist. Then by Corollary 2.3,
(G1 − cD, bD, uD, x1, y1) is planar. It follows from Corollary 2.9 that G contains TK5.

We may assume that y1 has a neighbor in B − {bD, cD}. For, if y1 has no neighbor in
B − {bD, cD}, then {bD, cD, uD, x1, y2} is a cut in G separating B ∪ uDXx1 from D′. Let
G1 denote the {bD, cD, uD, x1, y2}-bridge of G containing B ∪ uDXx1. If G1 − cD contains
disjoint paths Q1, Q2 from bD, uD to y2, x1, respectively, then L ∪ (Q1 ∪ y2x2) ∪ (Q2 ∪ x1y1)
is a TK5 in G. Hence we may assume that such paths do not exist. Then by Corollary 2.3,
(G1 − cD, bD, uD, y2, x1) is planar. So by Corollary 2.9, G contains TK5.

We may further assume that D is the only block of H − B that is 2-connected. For,
suppose F is another block of H − B that is 2-connected. Since N(y1) ⊆ B ∪ D ∪ {x1, x2}
and N(y3) ⊆ D′ ∪ {x1, x2}, bF 6= cF and {bF , cF , uF , vF , y2} is a cut of G separating F from
B ∪D. Now G[F ′+ y2] is (5, {bF , cF , uF , vF , y2})-connected, and (F ′, bF , uF , cF , vF ) is planar.
Hence G contains TK5 by Corollary 2.9.

In particular, this and Lemma 3.4 allow us to assume that all (B ∪ X)-bridges of H not
contained in D′ are induced by edges between B and uDXx1.

Subcase 1.1. N(y2)− {u, x1, x2} 6⊆ vDCcD.
In G[B + {u, y1}] we find two independent paths Q1, Q2 from u to y1, cD, respectively.
Suppose y2 has a neighbor in D′ − vDCcD. Note that, because of P1, y1 has a neighbor

on bDCvD −{bD, vD}. So by planarity and since D′ is (4, {bD, cD, uD, vD})-connected, G[D +
{y1, y2}]−vDCDcD contains a path Q from y1 to y2. Now Q1∪(Q2∪vDCcD)∪uXx1∪uy2∪Q∪K
is a TK5 in G with branch vertices u, x1, x2, y1, y2.

Now assume that y2 has a neighbor v in uDXx1 − x1 and v 6= u. Then v ∈ uDXu −
u by the minimality of uXx1. Again, by planarity and since D is 2-connected and D′ is
(4, {bD, cD, uD, vD})-connected, G[D + {y1, y2}] − bD − vDCDcD contains a path Q′ from y1

to uD. Now Q1 ∪ (Q2 ∪ vDCcD) ∪ uXx1 ∪ uy2 ∪ (Q′ ∪ uDXv ∪ vy2) ∪K is a TK5 in G with
branch vertices u, x1, x2, y1, y2.

Subcase 1.2. N(y2)− {u, x1, x2} ⊆ vDCcD.
Let v1 be the neighbor of y1 in P1 and let v2 be the neighbor of y2 in vDCcD with v2CcD

maximal (so |V (vDCv2)| ≥ 3).
Since D′ is (4, {bD, cD, uD, vD})-connectced, D′ has no 2-cut {s1, s2} separating vD from

{bD, cD, uD}, with s1 ∈ bDCv1 and s2 ∈ v2CcD. Thus by planarity D′ contains three disjoint
paths Q1, Q2, Q3 from v1, v2, vD to bD, cD, uD, respectively. If G[B + {y1, u}] has disjoint
paths R1, R2 from y1, u to cD, bD, respectively, then uXx1 ∪ (uXuD ∪Q3) ∪ uy2 ∪ (R2 ∪Q1 ∪
v1y1) ∪ (R1 ∪ Q2 ∪ v2y2) ∪K is a TK5 in G with branch vertices u, x1, x2, y1, y2. So we may
assume R1, R2 do not exist. Then by Lemma 2.2, (G[B + {y1, u}], y1, u, cD, bD) is 3-planar.
Hence G[B + {y1, u}] contains disjoint paths L1, L2 from y1, bD to u, cD, respectively. Then
uXx1 ∪ (uXuD ∪Q3)∪ uy2 ∪L1 ∪ (y1v1 ∪Q1 ∪L2 ∪Q2 ∪ v2y2)∪K is a TK5 in G with branch
vertices u, x1, x2, y1, y2.

Case 2. {bD, cD} ⊆ L.
By symmetry, we may assume that cD ∈ P2, vD ∈ P3, and cD ∈ P4. Again, we view P1 as

a path in G, with y1 ∈ P1. Further, we may assume by symmetry that uD, bD, vD, P1 ∩ C, bD

occur on C in counterclockwise order.
Since Cw ∩ C = ∅, we can modify L to L′ by extending P4 to uD (possibly bD ∈ L′), and

modify L to L′′ by extending P2 to uD (possibly cD ∈ L′′).
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We may assume that H contains no path from x2XvD to B − {bD, cD} and internally
disjoint from B ∪ D ∪ X. For, otherwise, H contains a path Q from vD to bD disjoint from
(D − vD) ∪ x1XuD + cD. Now Q ∪ (y1x1 ∪ x1XuD) ∪ L′′ is a TK5 in G.

Therefore, S := {bD, cD, uD, y1, y2, y3} is a cut in G separating B∪uDXx1 from D∪vDXx2.
Let K denote the minimal union of S-bridges of G containing B ∪ uDXx1, and let K ′ be
obtained from K by identifying y2 and y3 as y and identifying uD and cD as u.

We may assume that (K ′, y1, y, u, bD) is 3-planar. For, otherwise, it follows from Lemma 2.2
that K ′ contains disjoint paths from y1, y to u, bD, respectively. Hence, K contains disjoint
paths R1, R2 from y1, yi (for some i ∈ {2, 3}) to z ∈ {uD, cD}, bD, respectively, with V (R2) ∩
{uD, cD} = {z}. If z = uD then R1 ∪ (R2 ∪ yix2 ∪ x2XvD) ∪ L′′ is a TK5 in G; and if z = cD

then R1 ∪ (R2 ∪ yix2 ∪ x2XvD) ∪ L is a TK5 in G.
Let K ′′ be obtained from K by identifying y2 and y3 as y. Suppose K ′′ − bD contains

disjoint paths from y1, y to cD, uD, respectively. Then K − bD contains disjoint paths R1, R2

from y1, yi (for some i ∈ {2, 3}) to cD, uD, respectively. Then R1 ∪ (R2 ∪ yix2 ∪ x2XvD) ∪ L′

is a TK5 in G.
Thus we may assume that K ′′ − bD does not contain disjoint paths from y1, y to cD, uD,

respectively. So by Lemma 2.2, (K ′′ − bD, y1, y, cD, uD) is 3-planar. Note that B − cD is
connected and disjoint from uDXx1 ∪ x1y1. So the 3-planarity of (K ′, y1, y, u, bD) implies
that K ′′ − cD has a cut vertex c separating {y1, y} from {bD, uD}. Since B is 2-connected,
{bD, cD, c, uD} is a 4-cut in G, a contradiction.

We can now summarize the results in this section as the following

Lemma 4.6 If some block of H −B is of type I then G contains TK5.

5 Blocks of type II

In this section we show, with the help of Lemma 4.6, that if H −B has a block of type II then
G contains TK5. Let D be a block of H −B of type II, and recall the notation D′, bD, uD, vD.
Let D′′ := D − {uD, vD} which is connected. Since G is 5-connected and D is of type II,
|N(D′′) ∩ {y1, y2, y3}| ≥ 2. An important step is to show that |N(B) ∩ {y1, y2, y3}| ≥ 2.

Lemma 5.1 If H−B has a block of type II then G contains TK5 or |N(B)∩{y1, y2, y3}| ≥ 2.

Proof. First, we may assume K−
4 6⊆ G, as otherwsie G contains TK5 by Theorem 1.1. Since

G is 5-connected, |N(D′′) ∩ {y1, y2, y3}| ≥ 2.

(1) We may assume that D′′ or G[D′′ + bD] is 2-connected.

Since G is 5-connected, |N(D′′) ∩ {y1, y2, y3}| ≥ 2. So |D′′| ≥ 2 by Lemma 3.1. In fact,
|D′′| ≥ 3 as D is 2-connetced and K−

4 6⊆ G. Let C1, . . . , Ck denote the endblocks of D′′.
We may assume k ≥ 2, as otherwise D′′ is 2-connected and (1) holds. Let vi ∈ V (Ci) such

that vi is a cut vertex of D′′.
Suppose there is some endblock of D′′, say Ck, such that uD, vD ∈ N(Ck − vk). Let X ′

be obtained from X by replacing uDXvD with a path in G[Ck + {uD, vD}] − vk between
uD and vD. If |N(Ci) ∩ {y1, y2, y3}| ≥ 2 for some 1 ≤ i ≤ k − 1, then by Lemma 3.1, Ci
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is 2-connected; so by the choices of X, we have |N(B) ∩ {y1, y2, y3}| ≥ 2. Thus we may
assume that for 1 ≤ i ≤ k − 1, |N(Ci) ∩ {y1, y2, y3}| ≤ 1. Then, since G is 5-connected,
{bD, uD, vD} ⊆ N(Ci − vi) for 1 ≤ i ≤ k − 1. This shows that H − B − Ck has a path
X ′′ from x1 to x2 (by replacing uDXvD with a path in G[(C1 − v1) + {uD, vD}] from uD to
vD). Lemma 3.2 and the choice of X imply that |N(B)∩ {y1, y2, y3}| ≥ |N(Ck)∩ {y1, y2, y3}|.
Hence, we may assume |N(Ck) ∩ {y1, y2, y3}| ≤ 1, which in turn forces bD ∈ N(Ck − vk) as G
is 5-connected. Thus, G[D′′ + bD] is 2-connected.

Hence we may assume that {uD, vD} 6⊆ N(Ci − vi) for 1 ≤ i ≤ k. If bD ∈ N(Ci − vi)
for 1 ≤ i ≤ k then G[D′′ + bD] is 2-connected. So we may assume that for some i, bD /∈
N(Ci − vi). Then y1, y2, y3 ∈ N(Ci − vi) as G is 5-connected. Note that X may be revised
so that X ∩ Ci = ∅. Hence by the choice of X and Lemma ref1comp, |N(B) ∩ {y1, y2, y3}| ≥
|N(Ci − vi) ∩ {y1, y2, y3}| = 3.

(2) D − uD and D − vD are 2-connected.

Now assume D− uD is not 2-connected. Since D is 2-connected, D− uD is connected. Let C
be an endblock of D− uD and let v be the cut vertex of D− uD such that vD /∈ C − v. Since
G is 5-connected, |N(C − v) ∩ {y1, y2, y3}| ≥ 2. So C is 2-connected by Lemma 3.1.

Since D′′ is connected, vD 6= v; so D − C contains a path P from uD to vD. By replacing
uDXvD with P we obtain from X a path X ′ in H between x1 and x2 such that C is contained in
a 2-connected block of H−X ′. Hence by Lemma 3.2 and the choice of X, |N(B)∩{y1, y2, y3}| ≥
|N(C) ∩ {y1, y2, y3}| ≥ 2.

(3) We may assume uD 6= x1, vD = x2, and H contains no path from x2 to B internally
disjoint from B ∪X ∪D′.

If uD = x1 and vD = x2 then, since G is 5-connected, |N(B − bD) ∩ {y1, y2, y3}| ≥ 2. So we
may assume by symmetry that x1 6= uD. Then H has a path from x1 to B internally disjoint
from B ∪D′ ∪X.

Suppose H also has a path from x2 to B internally disjoint from B ∪ D′ ∪ X. Then H
contains a path X ′ between x1 and x2 and disjoint from D − vD. So by (2) and Lemma 3.2
and by the choice of X, |N(B) ∩ {y1, y2, y3}| ≥ |N(D − vD) ∩ {y1, y2, y3}| ≥ 2.

So we may assume x2 = vD and H contains no path from x2 to B internally disjoint from
B ∪X ∪D′.

Since D′′ is connected, we have

(4) for any yi, yj ∈ N(D′′), G[D′′+ {x2, yi, yj}] contains three independent paths from some
vertex u ∈ D′′ to x2, yi, yj , respectively.

By (3), there are at most two 2-connected blocks in H −B. So we have two cases.

Case 1. D is the unique 2-connected block in H −B.

Subcase 1.1. N(yi) ⊆ D′ + {x1, x2} for some i ∈ {1, 2, 3}, say i = 1.
Then S := {bD, uD, x1, y2, y3} is a cut in G. Let G1 := G− (D′′ + {x2, y1}.
Suppose y2, y3 ∈ N(D′′). Then by (4), G[D′′ + {x2, y2, y3}] has independent paths from

some u ∈ V (D′′) to x2, y2, y3, respectively. So by Lemma 2.4 there exist four independent
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paths P1, P2, P3, P4 in G[D′ + {y2, y3}] from u to x2, y2, y3, s ∈ {bD, uD}, respectively, such
that |V (Pi) ∩ {uD, vD, x2, y2, y3}| ≤ 1 for 1 ≤ i ≤ 4. Let t ∈ {bD, uD} − {s}. If G1 − t has
disjoint paths Q1, Q2 from x1, y2 to s, y3, respectively, then P1 ∪P2 ∪P3 ∪ (P4 ∪Q1)∪Q2 ∪K
is a TK5 in G with branch vertice u, x1, x2, y2, y3. So we may assume that such paths do
not exist. Then by Corollary 2.3, (G1 − t, x1, y2, s, y3) is planar; and so G contains TK5 by
Corollary 2.9.

So we may assume that y3 /∈ N(D′′). Then {bD, uD, x2, y1, y2} is a cut in G separating D′′

from B ∪ uDXx1.
We may assume that G[D′ + y2] contains disjoint paths Q1, Q2 from uD, bD to x2, y2,

respectively; for, otherwise, it follows from Corollary 2.3 that (G[D′ + y2], uD, bD, x2, y2) is
planar; and so G contains TK5 by Corollary 2.9. Similarly, we may assume that G[D′ + y2]
contains disjoint paths Q′

1, Q
′
2 from uD, bD to y2, x2, respectively.

Suppose |N(y3) ∩ V (B)| ≥ 2. We may assume y2 /∈ N(B), or else the assertion of the
lemma holds. Hence y2 has a neighbor u ∈ uDXx1 − {uD, x1} (otherwise {x1, bD, uD, y3}
would be a 4-cut in G). Now G[B + {u, y3}] contains independent paths R1, R2 from y3 to
u, bD, respectively, and uy2 ∪R1 ∪ uXx1 ∪ (uXuD ∪Q1) ∪ (R2 ∪Q2) ∪K is a TK5 in G with
branch vertices u, x1, x2, y2, y3.

Thus we may assume that there exist distinct v, v′ ∈ N(y3)∩V (uDXx1−x1), and assume
that x1, v, v′, uD occur on X in order. We may assume that y2 /∈ N(B − bD); for otherwise
G[B + {y2, v}] has independent paths R1, R2 from v to y2, bD, respectively, and vy3 ∪ R1 ∪
vXx1∪ (R2∪Q′

2)∪ (y3v
′∪v′XuD∪Q′

1)∪K is a TK5 in G with branch vertices v, x1, x2, y2, y3.
So y2 has a neighbor u ∈ uDXx1 − {uD, x1}.

Suppose u ∈ x1Xv−v. Let R be a path in G[B+u] from u to bD. Then uy2∪(uXv∪vy3)∪
uXx1∪ (R∪Q′

2)∪ (y3v
′∪ v′XuD ∪Q′

1)∪K is a TK5 in G with branch vertices u, x1, x2, y2, y3.
Now assume u ∈ vXv′ − {v, v′}. Then in G[B + v] we find a path R from v to bD. So

vy3 ∪ (vXu ∪ uy2) ∪ vXx1 ∪ (R ∪Q′
2) ∪ (y3v

′ ∪ v′XuD ∪Q′
1) ∪K is a TK5 in G with branch

vertices v, x1, x2, y2, y3.
Therefore, we may assume u ∈ v′XuD − {uD, v′}. If G[B + {u, v, x1}] has disjoint paths

R1, R2 from x1, v to u, bD, respectively, then uy2∪(uXv′∪v′y3)∪R1∪(uXuD∪Q1)∪(y3v∪R2∪
Q2)∪K is a TK5 in G with branch vertices u, x1, x2, y2, y3. So we may assume R1, R2 do not
exist. Then by Lemma 2.3, (G[B + {u, v, x1}], v, x1, bD, u) is 3-planar. Thus, G[B + {u, v, x1}]
contains disjoint paths L1, L2 from x1, v to bD, u, respectively. Hence X ′ := Q′

2 ∪L1 is a path
in H between x1 and x2, and uXv ∪ L2 is a cycle in H −X ′ and contains neighbors of both
y1 and y2. It now follows from Lemma 3.2 and the choice of X that |N(B) ∩ {y1, y2, y3}| ≥ 2.

Subcase 1.2. N(yi) 6⊆ D′ + {x1, x2} for all i = 1, 2, 3.
We may assume |N(B) ∩ {y1, y2, y3}| ≤ 1, as otherwise the assertion of the lemma holds.

So by symmetry let y1, y2 /∈ N(B); hence y1, y2 ∈ N(x1XuD − {x1, uD}). Further, if y3 ∈
N(x1XuD−{x1, uD}) then we may assume that the neighbor of {y1, y2, y3} on x1XuD closest
to uD is a neighbor of y3, denoted by v3. Let vi ∈ N(yi) ∩ V (x1XuD − {x1, uD}), i = 1, 2.
We may assume that x1, v1, v2, uD occur on X in order. Note that each vi has at least two
neighbors in B. Let X1 denote a path in G[B + x1] from x1 to bD.

We may assume y3 ∈ N(D′′). For, suppose y3 /∈ N(D′′). Then {bD, uD, x2, y1, y2} is a
5-cut in G separating D′ from B ∪ uDXx1. In G[D′ + {y1, y2}] we apply Menger’s theorem
to find five independent paths P1, P2, P3, P4, P5 from some vertex u ∈ D′′ to y1, y2, x2, bD, uD,
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respectively. Now P1 ∪ P2 ∪ P3 ∪ (P4 ∪X1) ∪ (y1v1 ∪ v1Xv2 ∪ v2y2) ∪K is a TK5 in G with
branch vertices u, x1, x2, y1, y2.

Next we show that we may also assume y1, y2 ∈ N(D′′). For suppose, by symmetry,
that y1 /∈ N(D′′). Then y2, y3 ∈ N(D′′) as G is 5-connected, and {bD, uD, x2, y2, y3} is a
cut in G separating D′ from B ∪ uDXx1. By Menger’s theorem, G[D′ + {y2, y3}] has five
independent paths P1, P2, P3, P4, P5 from some vertex u ∈ D′′ to y2, y3, x2, bD, uD. If v3 is
defined then P1 ∪ P2 ∪ P3 ∪ (P4 ∪ X1) ∪ (y2v2 ∪ v2Xv3 ∪ v3y3) ∪ K is a TK5 in G with
branch vertices u, x1, x2, y2, y3. So assume that v3 is not defined. Thus y3 ∈ N(B) (otherwise
{bD, uD, x2, y2} would be a 4-cut in G), and G[B + {v2, y3}] contains a path R from v2 to
y3. If G[D′ + {y2, y3}]− bD has disjoint paths Q1, Q2 from uD, y2 to x2, y3, respectively, then
v2y2∪R∪v2Xx1∪(v2XuD∪Q1)∪Q2∪K is a TK5 in G with branch vertices v2, x1, x2, y2, y3. So
assume that Q1, Q2 do not exist. Then by Corollary 2.3, (G[D′ + {y2, y3}]− bD, uD, y2, x2, y3)
is planar; so G contains TK5 by Corollary 2.9.

Hence, by (4), G[D′′ + {x2, y1, y2}] has three inpdependent paths from some vertex u ∈
D′′ to y1, x2, y2, respectively. Let S := {bD, uD, x2, y1, y2, y3}. By Lemma 2.4, G[D′′ + S]
has five independent paths P1, P2, P3, P4, P5 from u to S such that |V (Pi ∩ Pj) = {u} for
1 ≤ i 6= j ≤ 5, |V (Pi) ∩ S| = 1 for 1 ≤ i ≤ 5, y1 ∈ P1, y2 ∈ P2, and x2 ∈ P3. We
may assume that P4 ends in {bD, uD}. We may further assume that P4 ends at uD; or else,
P1 ∪ P2 ∪ P3 ∪ (P4 ∪ X1) ∪ (y1v1 ∪ v1Xv2 ∪ v2y2) ∪ K is a TK5 in G with branch vertices
u, x1, x2, y1, y2.

We may also assume that v3 is not defined. For, othewise, v3 ∈ uDXv′ − {uD, v′} by the
definition of v3. Let X ′

1 be a path in G[B + {v3, x1}] from x1 to v3. Then P1 ∪P2 ∪P3 ∪ (P4 ∪
uDXv3 ∪X ′

1) ∪ (y1v1 ∪ v1Xv2 ∪ v2y2) ∪K is a TK5 in G with branch vertices u, x1, x2, y1, y2.
So y3 ∈ N(B−bD) since N(y3) 6⊆ D′+{x1, x2}. Let D∗ be obtained from G[D′+{y1, y2, y3}]

by identifying uD and bD as w.
Suppose D∗− y3 contains disjoint paths Q1, Q2 from y1, w to y2, x2, respectively. We view

Q2 as a path in G; so uD ∈ Q2 or bD ∈ Q2. If bD ∈ Q2 then let Q be a path in G[B + v1] from
v1 to bD; now v1y1 ∪ (v1Xv2 ∪ v2y2) ∪ v1Xx1 ∪ (Q ∪Q2) ∪Q1 ∪K is a TK5 in G with branch
vertices v1, x1, x2, y1, y2. So we may assume uD ∈ Q2. Let R be a path in G[B +{v2, x1}] from
v2 to x1. Then v2y2 ∪ (v2Xv1 ∪ v1y1)∪R∪ (v2XuD ∪Q2)∪Q1 ∪K is a TK5 in G with branch
vertices v2, x1, x2, y1, y2.

Therefore, we may assume that such Q1, Q2 do not exist in D∗ − y3. So by Lemma 2.2,
(D∗ − y3, y1, w, y2, x2) is 3-planar. Since D is 2-connected, D∗ − {y1, y2, y3} is 2-connected.
Thus, D∗ − y1 contains disjoint paths R1, R2 from y2, x2 to y3, w, respectively, or D∗ − y2

contains disjoint paths R1, R2 from y1, x2 to y3, w, respectively. We may assume the latter.
We view R2 as a path in G; so bD ∈ R2 or uD ∈ R2. Note that G[B + {v1, y3}] contains
independent paths L1, L2 from v1 to y3, bD, respectively. If bD ∈ R2, then v1y1 ∪L1 ∪ v1Xx1 ∪
(L2 ∪ R2) ∪ R1 ∪K is a TK5 in G with branch vertices v1, x1, x2, y1, y3. So we may assume
uD ∈ R2. Then v1y1∪L1∪v1Xx1∪ (v1XuD∪R2)∪R1∪K is a TK5 in G with branch vertices
v1, x1, x2, y1, y3.

Case 2. H −B has a 2-connected block D1 such that D1 6= D.
Then by (3), uD1 = x1, and H −B has exactly two 2-connected blocks, D1 and D2 := D.

Let bi := bDi for i = 1, 2, and v1 := vD1 and u2 := uD2 .

Subcase 2.1. y1, y2, y3 ∈ N(D′′
i ) for i = 1, 2.
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We may assume |N(B)∩ {y1, y2, y3}| ≤ 1, or else we have the assertion of this lemma. So,
since G is 5-connected, b1 6= b2 and there is an edge between v1Xu2 and B − {b1, b2}.

We claim that there exist {i, j} ⊆ {1, 2, 3} such that G[D′
1 + {yi, yj}] contains disjoint

paths Q1, Q2 from x1, yi to v1, yj , respectively. This is clear if there exist yi and yj both with
neighbors on v1Xx1, for X is induced, D1 is 2-connected, and D′

1− v1Xx1 is connected. Thus
we may assume (by pigeonhole principle) that there exist yi and yj both with neighbors in
D1 − v1Xx1. So, since H −X is connected, G[D′

1 + {yi, yj}] − v1Xx1 has a path between yi

and yj .
Without loss of generality, we may assume that {i, j} = {1, 2}. By (4), G[D′′

2 +{x2, y1, y2}]
has independent paths from some vertex u ∈ D′′

2 to y1, y2, x2, respectively. So G[D′
2 +

{y1, y2, y3}] contains five independent paths P1, P2, P3, P4, P5 from u to S := {b2, u2, x2, y1, y2, y3}
such that V (Pi ∩ Pj) = {u} for 1 ≤ i 6= j ≤ 5, |V (Pi) ∩ S| = 1 for 1 ≤ i ≤ 5, y1 ∈ P1, y2 ∈ P2,
and x2 ∈ P3. We may assume that P4 ends in {b2, u2}.

If P4 ends at u2 then P1 ∪ P2 ∪ P3 ∪ (P4 ∪ u2Xv1 ∪ Q1) ∪ Q2 ∪K is a TK5 with branch
vertices u, x1, x2, y1, y2. So assume that P4 ends at b2. Since there is an edge between v1Xu2

and B − {b1, b2} and because b1 6= b2, we see that G[B ∪ v1Xu2]− b1 contains a path Q from
b2 to v1. Hence P1 ∪ P2 ∪ P3 ∪ (P4 ∪ Q ∪ Q1) ∪ Q2 ∪K is a TK5 in G with branch vertices
u, x1, x2, y1, y2.

So by symmetry, we may assume that y1, y2 ∈ N(D′′
1), y3 /∈ N(D′′

1), and y1 ∈ N(D′′
2).

Subcase 2.2. y3 /∈ N(D′′
1) and y2 ∈ N(D′′

2).
Then by (4), G[D′′

2 + {x2, y1, y2}] has three independent paths from some u ∈ D′′ to
y1, y2, x2, respectively. So by Lemma 2.4, G[D′

2 + {y1, y2, y3}] contains five independent paths
P1, P2, P3, P4, P5 from u to S := {b2, u2, x2, y1, y2, y3} such that V (Pi ∩ Pj) = {u} for 1 ≤ i 6=
j ≤ 5, |V (Pi) ∩ S| = 1 for 1 ≤ i ≤ 5, y1 ∈ P1, y2 ∈ P2, and x2 ∈ P3. We may assume that P4

ends in {b2, u2}.
First, assume that P4 ends at u2. If G[D′

1 + {y1, y2}] − b1 has disjoint paths Q1, Q2 from
v1, y2 to x1, y1, respectively, then P1∪P2∪P3∪ (P4∪u2Xv1∪Q1)∪Q2∪K is a TK5 in G with
branch vertices u, x1, x2, y1, y2. So assume that Q1, Q2 do not exist. Then by Corollary 2.3,
(G[D′

1 + {y1, y2}]− b1, v1, y2, x1, y1) is planar. So G contains TK5 by Corollary 2.9.
Now assume P4 ends at b2. Let Q be a path in B from b2 to b1. If G[D′

1 +{y1, y2}]−v1 has
disjoint paths Q1, Q2 from b1, y2 to x1, y1, respectively, then P1∪P2∪P3∪(P4∪Q∪Q1)∪Q2∪K
is a TK5 in G with branch vertices u, x1, x2, y1, y2. So assume that Q1, Q2 do not exist.
Then by Corollary 2.3, (G[D′

1 + {y1, y2}] − v1, b1, y2, x1, y1) is planar. So G contains TK5 by
Corollary 2.9.

Subcase 2.3. y3 /∈ N(D′′
1), y2 /∈ N(D′′

2), and y2 ∈ N(B ∪ u2Xv1).
In G[D1+{y1, y2}] we use Menger’s theorem to find five independent paths Q1, Q2, Q3, Q4, Q5

from some u ∈ V (D′′
1) to y1, y2, x1, b1, v1, respectively. Since y2 ∈ N(B∪u2Xv1), G[B∪u2Xv1+

y2] has disjoint paths R1, R2 from s ∈ {b1, v1}, y2 to {b2, u2}.
We may assume that G[D′

2 +y1] contains disjoint paths L1, L2 from b2, u2 to x2, y1, respec-
tively; as otherwise by Corollary 2.3, (G[D′

2 + y1], b2, u2, x2, y1) is planar, and so G contains
TK5 by Corollary 2.9. Similarly, we may assume that G[D′

2+y1] contains disjoint paths L′1, L
′
2

from b2, u2 to y1, x2, respectively.
Let s ∈ Qi where i ∈ {4, 5}. If b2 ∈ R1, then Q1 ∪Q2 ∪Q3 ∪ (Qi ∪R1 ∪L1)∪ (R2 ∪L2)∪K

is a TK5 in G with branch vertices u, x1, x2, y1, y2. So assume u2 ∈ R1. Then Q1 ∪Q2 ∪Q3 ∪
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(Qi ∪R1 ∪ L′2) ∪ (R2 ∪ L′1) ∪K is a TK5 in G with branch vertices u, x1, x2, y1, y2.

Subcase 2.4. y3 /∈ N(D′′
1), y2 /∈ N(D′′

2) and y2 /∈ N(B ∪ u2Xv1).
Let v ∈ N(x1) ∩ V (D′′

1) and G′ := G[D′
1 + {y1, y2}]. By Menger’s theorem, G′ − x1 has

four independent paths Q1, Q2, Q3, Q4 from v to y1, y2, b1, v1, respectively. We amy assume
that Qi, 1 ≤ i ≤ 4, are induced in G′, and let L =

⋃5
i=1 Qi, where Q5 = vx1.

Note that |N(y2)∩V (D′′
1)| ≥ 3. So G′ has an L-bridge, say J , containing an edge y2u such

that u /∈ Q2 + x1. We now show that L, J may be choosen so that J has an attachment in
(Q1∪Q3∪Q4)−v. For, otherwise, all attachments of J are contained in Q2 +x1. Since G is 5-
connected, J has an attachment on Q2, say z; and we choose z so that zQ2v is minimal. Again
since G is 5-connected, there is a path in G′−x1 from y2Q2z−{y2, z} to (Q1∪Q3∪Q4)−v. Now
letting Q′

2 be obtained from Q2 by replacing y2Q2z with a path in J from y2 to z internally
disjoint from Q2 +x1, we see that for Q1, Q

′
2, Q3, Q4, the corresponding J, L satisfy the desired

properties.
Therefore, J contains a path Y from y2 to y ∈ V (Q1 ∪ Q3 ∪ Q4 − v) internally disjoint

from L. Let R be a path in B between b1 and b2. As in Subcase 2.3, we may assume that
G[D′

2 + y1] contains disjoint paths L1, L2 from b2, u2 to x2, y1, respectively, as well as disjoint
paths L′1, L

′
2 from b2, u2 to y1, x2, respectively.

If y ∈ Q1 − v then vx1 ∪ Q2 ∪ (Q3 ∪ R ∪ L1) ∪ (Q4 ∪ v1Xu2 ∪ L2) ∪ (Y ∪ yQ1y1) ∪K is
a TK5 in G with branch vertices v, x1, x2, y1, y2. If y ∈ Q3 − v then vx1 ∪ Q1 ∪ Q2 ∪ (Q4 ∪
v1Xu2 ∪ L′2) ∪ (Y ∪ yQ3b1 ∪ R ∪ L′1) ∪K is a TK5 in G with branch vertices v, x1, x2, y1, y2.
So y ∈ Q4− v. Then vx1 ∪Q1 ∪Q2 ∪ (Q3 ∪R∪L1)∪ (Y ∪ yQ4v1 ∪ v1Xu2 ∪L2)∪K is a TK5

in G with branch vertices v, x1, x2, y1, y2.

Lemma 5.2 If H −B has a 2-connected block then G contains TK5.

Proof. By Lemma 4.6, we may assume that no 2-connected block of H is of type I. For any
2-connected block D of H −B, recall the notation D′′, D′, bD, uD, vD. Since G is 5-connected,
|N(D′′) ∩ {y1, y2, y3}| ≥ 2.

Case 1. |N(D′′) ∩ {y1, y2, y3}| = 2 for any 2-connected block D of H −B.
Let D be a 2-connected block of H −B, Without loss of generality, let y1, y2 ∈ N(D′′) and

y3 /∈ N(D′′). By Menger’s theorem, we find independent paths P1, P2, P3, P4, P5 in G[D′ +
{y1, y2}] from some vertex u ∈ D′′ to y1, y2, uD, vD, bD, respectively.

If y1, y2 ∈ N(B) then in G[B + {y1, y2}] we find a path Q from y1 to y2, and P1 ∪ P2 ∪
(P3 ∪ uDXx1)∪ (P4 ∪ vDXx2)∪Q∪K is a TK5 in G with branch vertices u, x1, x2, y1, y2. So
we may assume that y1 /∈ N(B); hence by Lemma 5.1 we may assume y2, y3 ∈ N(B).

Subcase 1.1. N(y1) 6⊆ D + {x1, x2}.
Then G−{y2, y3} contains a path P from y1 to some vertex u ∈ (B ∪X)− (D′+ {x1, x2})

internally disjoint from B ∪D′ ∪X. If u ∈ B then G[B ∪P + y2] has a path Q between y1 and
y2, and P1 ∪ P2 ∪ (P3 ∪ uDXx1) ∪ (P4 ∪ vDXx2) ∪Q ∪K is a TK5 in G with branch vertices
u, x1, x2, y1, y2.

So we may assume that u /∈ B for any choice of P . Hence, since H −X is connected, all
neighbors of y1 outside D+{x1, x2} are on X; in particular, u ∈ (uDXx1−{uD, x1})∪(vDXx2−
{vD, x2}) and V (P ) = {y1, u}. By symmetry we may assume that u ∈ uDXx1 − {uD, x1}.
Since X is induced and H − X is connected and by Lemma 3.1, H contains a path from u
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to B and internally disjoint from B ∪ X ∪ D, which can be extended through G[B + y2] to
a path R from u to y2. If G[D′ + {y1, y2}] − bD has disjoint paths R1, R2 from y1, uD to
y2, vD, resepctively, then uy1 ∪ R ∪ uXx1 ∪ (uXuD ∪ R2 ∪ vDXx2) ∪ R1 ∪K is a TK5 in G
with branch vertices u, x1, x2, y1, y2. Thus we may assume that such R1, R2 do not exist. So
by Corollary 2.3, (G[D′ + {y1, y2}] − bD, y1, uD, y2, vD) is planar. Now G contains TK5 by
Corollary 2.9.

Subcase 1.2. N(y1) ⊆ D + {x1, x2}, and N(y2) ⊆ D′ + {x1, x2}.
Then N(y2)∩ V (B) = {bD}, and {bD, uD, vD, x1, x2} is a cut in G separating B + y3 from

D′ + {y1, y2}. So x1 6= uD and x2 6= vD, as G is 5-connected. Therefore, H − D contains a
path X ′ from x1 to x2. Note that D is 2-connected; so it is contained in a 2-connected block
of H − X ′. Also note that y1 and y2 each have at least two neighbors in D. So it follows
from Lemma 3.2 and the choice of X that y2, y3 should each have at least two neighbors in B,
contradicting the assumption that N(y2) ⊆ D′ + {x1, x2}.

Subcase 1.3. N(y1) ⊆ D + {x1, x2}, and y2 ∈ N(F ′′) for some 2-connected block F of
H −B.

Let v ∈ N(y2) ∩ V (F ′′). Without loss of generality, assume that x1, uF , vF , uD, vD, x2

occur on X in order. Since N(y1) ⊆ D + {x1, x2}, y1 /∈ N(F ′′); and since G is 5-connected,
y3 ∈ N(F ′′). Let Q be a path in G[B + y3] from y3 to bD. If G[F ′ + {y2, y3}] − bF contains
disjoint paths Q1, Q2 from uF , y2 to vF , y3, respectively, then P2∪(P5∪Q)∪(P3∪uDXvF ∪Q1∪
uF Xx1)∪(P4∪vDXx2)∪Q2∪K is a TK5 in G with branch vertices u, x1, x2, y2, y3. So we may
assume that Q1, Q2 do not exist. Then by Corollary 2.3, G[F ′ + {y2, y3}]− bF , uF , y2, vF , y3)
is planar. Hence G contains TK5 by Corollary 2.9.

Subcase 1.4. N(y1) ⊆ D + {x1, x2}, N(y2) 6⊆ D′ + {x1, x2}, and y2 /∈ N(F ′′) for any
2-connected block F of H −B other than D.

Therefore, since G is 5-connected, D is the unique 2-connected block of H − B. So let
v ∈ N(y2) such that v ∈ (B − bD)∪ (X − (uDXvD + {x1, x2}). By symmetry, we may assume
that v ∈ (B − bD) ∪ (x1XuD − {x1, uD}).

We may further assume that v ∈ B− bD. For, otherwise, N(y2)∩V (B) = {bD}. Hence by
Lemma 3.1, y3 ∈ N(B − bD). Thus, G[B + {v, y3}] contains independent paths R1, R2 from
bD to y3, v, respectively. Now y2bD ∪R2 ∪ vy2 ∪ (x1y2 ∪ x1Xv ∪ x1y3 ∪R1) ∪ (P2 ∪ P5 ∪ P1 ∪
y1x1 ∪ P3 ∪ uDXv) is a TK5 in G with branch vertices bD, u, v, x1, y2.

We may assume that G[D′ + y2] contains disjoint paths Q1, Q2 from bD, vD to y2, uD,
respectively; for otherwise by Corollary 2.3, (G[D′ + y2], bD, vD, y2, uD) is planar, and so G
contains TK5 by Corollary 2.9. Similarly, we may assume that G[D′ + y2] contains disjoint
paths Q′

1, Q
′
2 from bD, vD to uD, y2, respectively, as well as disjoint paths Q′′

1, Q
′′
2 from bD, uD

to vD, y2, respectively.
Suppose y3 has at least two neighbors in B. Then G[B + {v, y3}] contains independent

paths R1, R2 from y3 to v, bD, respectively. Then P2 ∪ (P5 ∪ R2) ∪ (P3 ∪ uDXx1) ∪ (P4 ∪
vDXx2) ∪ (R1 ∪ vy2) ∪K is a TK5 in G with branch vertices u, x1, x2, y2, y3.

Thus we may assume that y3 has only one neighbor in B. Therefore y3 must have at least
two neighbors in (uDXx1 − x1) ∪ (vDXx2 − x2).

First, assume that y3 has two neighbors w1, w2 ∈ vDXx2 − x2, with w1 ∈ x2Xw2. Since
v ∈ B − bD, G[B + {w1, y2}] has independent paths R1, R2 from w1 to bD, y2, respectively. So
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w1Xx2 ∪ (R1 ∪ Q′
1 ∪ uDXx1) ∪ R2 ∪ w1y3 ∪ (y3w2 ∪ w2XvD ∪ Q′

2) ∪ K is a TK5 in G with
branch vertices w1, x1, x2, y2, y3.

Next assume that y3 has exactly one neighbor w1 ∈ vDXx2 − x2. Then y3 also has a
neighbor w2 ∈ uDXx1 − x1. Clearly, x1, x2 ∈ N(B); so G[B + {x1, x2}] contains a path X ′

between x1 and x2. We claim that |N(y2) ∩ V (B)| ≥ 2; otherwise, we have a contradiction to
the choice of X and Lemma 3.2 because D is in a 2-connected block of H−X ′, y1, y2 ∈ N(D′′),
and |N(y1) ∩ V (D)| ≥ 3. Thus y2 has a neighbor w ∈ B such that x1 ∈ N(B − w). Suppose
w1 = vD. In G[D + y2] we find independent paths R1, R2 from w1 to uD, y2, respectively, and
let R be a path in G[B+{y2, y3}] from y2 to y3. Now w1y3∪R2∪w1Xx2∪(R1∪uDXx1)∪R∪K
is a TK5 in G with branch vertices w1, x1, x2, y2, y3. So we may assume that w1 6= vD. In
G[D′ + {y1, y2}]− {bD, uD} we find a path Q from vD to y2 through y1, which exists because
D is 2-connected and N(y1) ⊆ D′+ {x1, x2}. In G[B ∪uDXx1 + {w, w1}] we find independent
paths R1, R2 from w1 to x1, w, respectively. Then R1 ∪w1Xx2 ∪ (R2 ∪wy2)∪w1XvD ∪Q∪K
is a TK5 in G with branch vertices w1, x1, x2, y1, y2.

Thus we may assume that y3 has at least two neighbors in uDXx1 − x1. In particular, let
w ∈ N(y3) ∩ V (uDXx1 − {uD, x1}). If G[B + {w, y2, y3}] contains disjoint paths R1, R2 from
w, bD to y2, y3, respectively, then wy3 ∪R1 ∪wXx1 ∪ (wXuD ∪Q2 ∪ vDXx2)∪ (Q1 ∪R2)∪K
is a TK5 in G with branch vertices w, x1, x2, y2, y3. So assume that R1, R2 do not exist.
Then G[B + {w, y2, y3}] contains disjoint paths R′

1, R
′
2 from w, y2 to bD, y3, respectively. So

wy3∪ (R′
1∪Q1)∪wXx1∪ (wXuD ∪Q2∪ vDXx2)∪R′

2∪K is a TK5 in G with branch vertices
w, x1, x2, y2, y3.

Case 2. There exists a 2-connected block D of H −B such that {y1, y2, y3} ⊆ N(D′′).
By Lemma 5.1, we may assume that y1, y2 ∈ N(B).
We may further assume that G[H+y3] contains no path from y3 to B internally disjoint from

B∪X∪D′. For, let P be such a path in H. Then, for any {i, j} ⊆ {1, 2, 3}, G[B∪P +{yi, yj}]
contains a path Qij between yi and yj . Note that D contains independent paths from some
u ∈ V (D′′) to uD, vD, respectively. So by Lemma 2.4, G[D′+{y1, y2, y3}] has five independent
paths P1, P2, P3, P4, P5 from u to S := {bD, uD, vD, y1, y2, y3} such that V (Pi ∩ Pj) = {u} for
1 ≤ i 6= j ≤ 5, |V (Pi)∩S| = 1 for 1 ≤ i ≤ 5, uD ∈ P1, and vD ∈ P2. Without loss of generality,
we may assume that P3 ends at yi and P4 ends at yj . Now (P1 ∪ uDXx1) ∪ (P2 ∪ vDXx2) ∪
P3 ∪ P4 ∪Qij ∪K is a TK5 in G with branch vertices u, x1, x2, yi, yj .

In particular, N(y3) ⊆ D ∪X.

Subcase 2.1. D − uD is not 2-connected or D − vD is not 2-connected.
By symmetry we may assume that D−uD is not 2-connected. Let C denote an endblock of

D−uD, and let v ∈ V (C) be the cut vertex of D−uD contained in C such that vD /∈ C−v. By
Lemma 3.5 we may assume that vD 6= v. Since G is 5-connected, |N(C− v)∩{y1, y2, y3}| ≥ 2;
hence by Lemma 3.1 C is 2-connected.

Since D is 2-connected, D − C has a path P from uD to vD. So C is contained in a
2-connected block of H − (x1XuD ∪ P ∪ vDXx2). Hence, |N(C − v) ∩ {y1, y2, y3}| = 2,
for, otherwise, it follows from Lemma 3.2 and the choice of X that {y1, y2, y3} ⊆ N(B), a
contradiction. Hence bD ∈ N(C − v).

Suppose y1, y2 ∈ N(C−v). Then since G is 5-connected, there are five inpdepentdent paths
Q1, Q2, Q3, Q4, Q5 in G[C + {bD, uD, y1, y2}] from some vertex u ∈ C − v to uD, v, y1, y2, bD,
respectively. Let Q denote a path in G[B + {y1, y2}] from y1 to y2, and let R denote a path in
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D− uD − (C − v) from v to vD. Then (Q1 ∪ uDXx1) ∪ (Q2 ∪R ∪ vDXx2) ∪Q3 ∪Q4 ∪Q ∪K
is a TK5 in G with branch vertices u, x1, x2, y1, y2.

Thus, by symmetry, we may assume that y2, y3 ∈ N(C − v). So y1 /∈ N(C). Let C ′ :=
(D − uD)− (C − v).

We may assume that G[C ′ + {uD, y1}] has three independent paths from some vertex
u ∈ C ′ − {v, vD} to uD, vD, y1, respectively. For, suppose not. Then v is a cut vertex of C ′

separating vD from N(y1) ∩ V (C ′). Let Cv denote the v-bridge of C ′ containing vD, and let
Cy be a v-bridge of C ′ such that y1 ∈ N(Cy − v). Let X ′ be the path obtained from X by
replacing uDXvD with a path in G[Cv + uD]− v from uD to vD. Then X ′ ∩ (B ∪C ∪Cy) = ∅.
Suppose y3 ∈ N(Cy − v). Then G[Cy + {y1, y3}]− v has a path Q1 berween y1 and y3. Let Q2

be path in G[B +{y1, y2}] between y1 and y2, and Q3 be a path in G[C +{y2, y3}]−v between
y2 and y3. Now Q1 ∪ Q2 ∪ Q3 ∪X ′ ∪K is a TK5 in G with branch vertices x1, x2, y1, y2, y3.
Thus we may assume assume that y3 /∈ N(Cy − v). Hence, since G is 5-connected, bD, y1, y2 ∈
N(Cy − v). So by Menger’s theorem, G[Cy + {bD, uD, y1, y2}] contains five independent paths
Q1, Q2, Q3, Q4, Q5 from some vertex u ∈ Cy − v to uD, v, y1, y2, bD, respectively. Note that
the path Q2 can be extended through Cv to a path Q′

2 ending at vD. Let Q be a path in
G[B + {y1, y2}] between y1 and y2. Then (Q1 ∪ uDXx1) ∪ (Q′

2 ∪ vDXx2) ∪Q3 ∪Q4 ∪Q ∪K
is a TK5 in G with branch vertices u, x1, x2, y1, y2.

So by Lemma 2.4, G[C ′+{bD, uD, y1, y2, y3}] has five independent paths Q1, Q2, Q3, Q4, Q5

from u to S := {bD, uD, vD, v, y1, y2, y3} such that V (Qi ∩ Qj) = {u} for 1 ≤ i 6= j ≤ 5,
|V (Qi) ∩ S| = 1 for 1 ≤ i ≤ 5, uD ∈ Q1, vD ∈ Q2, and y1 ∈ Q3. We may assume P4 ends in
{v, y2, y3}.

If y2 ∈ Q4 then let Q be a path in G[B + {y1, y2}] between y1 and y2; now Q3 ∪ Q4 ∪
(Q1 ∪ uDXx1) ∪ (Q2 ∪ vDXx2) ∪ Q ∪K is a TK5 in G with branch vertices u, x1, x2, y1, y2.
If v1 ∈ Q4 then we extend Q4 through G[C + y2] to a path Q′

4 ending at y2; now Q3 ∪ Q′
4 ∪

(Q1 ∪uDXx1)∪ (Q2 ∪ vDXx2)∪Q∪K is a TK5 in G with branch vertices u, x1, x2, y1, y2. So
assume that y3 ∈ Q4 ends at y3. Let Q be a path in G[B ∪ C + {y1, y3}]− v between y1 and
y3; then Q3 ∪Q4 ∪ (Q1 ∪ uDXx1)∪ (Q2 ∪ vDXx2)∪Q∪K is a TK5 in G with branch vertices
u, x1, x2, y1, y3.

Subcase 2.2. D − uD and D − vD are 2-connected.
First, assume uD = x1 and vD = x2. Then since N(y3) ⊆ D ∪ X, {bD, x1, x2, y1, y2} is

a cut in G separating B from D. In G[B + {x1, x2, y1, y2}] we use Menger’s theorem to find
five independent paths P1, P2, P3, P4, P5 from some vertex u to x1, x2, y1, y2, bD, respectively.
In G[D′′ + {y1, y2}] we find a path Q between y1 and y2. Now P1 ∪ P2 ∪ P3 ∪ P4 ∪Q ∪K is a
TK5 in G with branch vertices u, x1, x2, y1, y2.

Thus we may assume that uD 6= x1. We may further assume that vD = x2, and H contains
no path from vD to B internally disjoint from B ∪D′ ∪X. For, otherwise, since uD 6= x1, H
contains a path X ′ from x1 to x2 internally disjoint from D ∪X. Thus D− vD is contained in
a 2-connected block of H −X ′. Since y1, y2, y3 ∈ N(D′′), it follows from Lemma 3.2 and the
choice of X that y1, y2, y3 ∈ N(B), a contradiction.

Suppose N(y3) ⊆ N(D). Then {bD, uD, x1, y1, y2} is a cut in G separating B ∪ uDXx1

from D′. Let G1 denote the {bD, uD, x1, y1, y2}-bridge of G containing B ∪ uDXx1. Since
D − uD is 2-connected, G[D′′ + {vD, y1, y2}] has independent paths from some u ∈ D′′ to
y1, y2, vD, respectively. So in G[D′ + {y1, y2, y3}] we use Lemma 2.4 to find five independent
paths Q1, Q2, Q3, Q4, Q5 from u to S := {bD, uD, vD, y1, y2, y3} such that V (Qi ∩ Qj) = {u}
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for 1 ≤ i 6= j ≤ 5, |V (Qi) ∩ S| = 1 for 1 ≤ i ≤ 5, y1 ∈ Q1, y2 ∈ Q2, and vD ∈ Q3. We may
assume Q4 ends in {bD, uD}. If uD ∈ Q4 then let Q be a path in G[B + {y1, y2}] between
y1 and y2; now Q1 ∪ Q2 ∪ Q3 ∪ (Q4 ∪ uDXx1) ∪ Q ∪ K is a TK5 in G with branch vertices
u, x1, x2, y1, y2. So we may assume bD ∈ Q4. If G1 − uD contains disjoint paths R1, R2 from
x1, y2 to bD, y1, respectively, then Q1 ∪ Q2 ∪ Q3 ∪ (Q4 ∪ R1) ∪ R2 ∪ K is a TK5 in G with
branch vertices u, x1, x2, y1, y2. So we may assume that such R1, R2 do not exist; then by
Corollary 2.3, (G1 − uD, x1, y2, bD, y1) is planar. Hence G contains TK5 by Corollary 2.9.

Thus, we may assume that there exists u ∈ N(y3) ∩ V (uDXx1 − {uD, x1}).
We claim that for any permutation ijk of {1, 2, 3} there are (not necessarily distinct)

vertices v1, v, v2 on X in order from x1 to uD or there exist a 2-connected block F 6= D of
H−B and v ∈ F ′′ with v1 = uF and v2 = vF , and there are independent paths P1, P2, P3, P4 in
H + {yi, yj} from v to v1, v2, yi, yj , respectively, and internally disjoint from v1Xx1 ∪ v2Xx2 ∪
D ∪ K. This is easy to verify when u /∈ F for any 2-connected block F of H − B; as in
this case u has at least two neighbors in B and, since y1, y2 ∈ N(B), we get the desired
paths by setting v = v1 = v2 = u. So we may assume that u ∈ F for some 2-connected
block F in H − B. By Lemma 3.1, we see that F contains a path from u to bF internally
disjoint from X; so, because y1, y2 ∈ N(B), the claim holds whenever 3 ∈ {i, j} by taking
v1 = v2 = v = u. Now suppose {i, j} = {1, 2}. Let v1 = uF and v2 = vF . First, assume
yi ∈ N(F ′′) and yj /∈ N(F ′′). Then by Menger’s theorem we find five independent paths
P1, P2, P3, P

′
4, P

′
5 in G[F + {yi, y3}] from some vertex v ∈ F ′′ to v1, v2, yi, bF , y3, respectively.

By extending P ′
4 through G[B+yj ] to a path P4 ending at yj , we find the desired paths. So we

may assume that yi, yj ∈ N(F ′′). Note that G[F + yi] contains independent paths from some
vertex v to v1, v2, yi, respectively (as F is 2-connected). So by Lemma 2.4, G[F ′+ {y1, y2, y3}]
contains five independent paths P1, P2, P3, P

′
4, P

′
5 from v to S := {bF , v1, v2, yi, yj , y3}, such

that |V (Pi ∩ Pj) = {v} for 1 ≤ i 6= j ≤ 5, |V (Pi) ∩ S| = 1 for 1 ≤ i ≤ 5, v1 ∈ P1, v2 ∈ P2, and
yi ∈ P3. We may assume P ′

4 ends in {bF , yj}. If P ′
4 ends at yj then let P4 := P ′

4; if P ′
4 ends at

bF then we extend P ′
4 through G[B + yj ] to a path P4 ending at yj . Now P1, P2, P3, P4 give

the desired paths.
Let D∗ be obtained from G[D + {y1, y2, y3}] by identifying y1 and y2, and use y to denote

the new vertex.
Suppose D∗ contains disjoint paths Q1, Q2 from uD, y to vD, y3, respectively. Then in G,

Q2 is a path from yi to y3 for some i ∈ {1, 2}. Using the paths P1, P2, P3, P4 for {i, j} = {i, 3},
we see that (P1 ∪ v1Xx1)∪ (P2 ∪ v2XuD ∪Q1)∪ P3 ∪ P4 ∪Q2 ∪K is a TK5 in G with branch
vertices v, x1, x2, yi, y3.

Thus we may assume that such Q1, Q2 do not exist. So by Lemma 2.3, (D∗, uD, y, vD, y3)
is 3-planar. Since D is 2-connected, we see that G[D +{y1, y2}] has disjoint paths R1, R2 from
uD, y2 to vD, y1, respectively. Therefore, using the paths P1, P2, P3, P4 for {i, j} = {1, 2}, we
see that (P1 ∪ v1Xx1) ∪ (P2 ∪ v2XuD ∪ R1) ∪ P3 ∪ P4 ∪ R2 ∪ K is a TK5 in G with branch
vertices v, x1, x2, y1, y2.

6 H −B = X

By Lemmas 4.6 and 5.2, it suffices to deal with the case when H−B = X is simply an induced
path. First, we show that at least two of {y1, y2, y3} each have at least two neighbors in B.
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Lemma 6.1 Suppose H −B = X. Then |{yi : |N(yi) ∩ V (B)| ≥ 2, i = 1, 2, 3}| ≥ 2.

Proof. Suppose on the contrary that |{yi : |N(yi) ∩ V (B)| ≥ 2, i = 1, 2, 3}| ≤ 1. Then since G
is 5-connected and X is induced in G, there exist distinct vertices v1, v2 ∈ X − {x1, x2} such
that each vi is a neighbor of some {y1, y2, y3} with at least two neighbors in X −{x1, x2}. We
choose v1 and v2 so that v1Xv2 is maximal.

Without loss of generality, we may assume that x1, v1, v2, x2 occur on X in this order,
|N(yi) ∩ V (B)| ≤ 1 for i = 1, 2, and v1 ∈ N(y1) and v2 ∈ N({y1, y2}). Note that, since G is
5-connected and by Lemma 3.1, each vi has at least two neighbors in B.

First, assume that v2 ∈ N(y1). Without loss of generality, let w2, u2 ∈ N(y2) ∩ V (X −
{x1, x2}) such that v1, w2, u2, v2 occur on X in order. In G[B + {v1, x2}] there is a path P
from v1 to x2. Thus v1Xx1 ∪P ∪ v1y1 ∪ (v1Xw2 ∪w2y2)∪ (y2u2 ∪ u2Xv2 ∪ v2y1)∪K is a TK5

in G with branch vertices v1, x1, x2, y1, y2.
Hence we may assume that v2 ∈ N(y2). For i = 1, 2, let wi ∈ N(yi) ∩ V (v1Xv2 −

{v1, v2}). Note that the only possible cut vertex in G[B + {v1, v2, x1}] exists when x1 has a
unique neighbor in B. Thus G[B + {v1, v2, x1}] has independent paths P, Q from v2 to x1, v1,
respectively. Then P ∪ v2Xx2 ∪ v2y2 ∪ (Q ∪ v1y1) ∪ (y1w1 ∪ w1Xw2 ∪ w2y2) ∪K is a TK5 in
G with branch vertices v2, x1, x2, y1, y2.

We now reduce the problem to that case when N(yi) ⊆ V (B)∪ {x1, x2} for i = 1, 2, 3. We
will make use of Lemma 2.5.

Lemma 6.2 G contains TK5, or N(yi) ⊆ V (B) ∪ {x1, x2} for i = 1, 2, 3.

Proof. By Lemma 6.1, we may assume that |N(yi) ∩ V (B)| ≥ 2 for i = 1, 2.
Suppose there exists some i ∈ {1, 2, 3} such that yi ∈ N(B) and yi ∈ N(X−{x1, x2}). Let

u ∈ N(yi) ∩ V (X − {x1, x2}). Then there exists j ∈ {1, 2} − {i} such that G[B + {u, yi, yj}]
contains two independent paths P1 and P2 from yj to u, yi respectively. Now uyi∪P1∪X∪P2∪K
is a TK5 in G with branch vertices u, x1, x2, yi, yj .

Thus, we may assume that N(yi) ⊆ V (B) ∪ {x1, x2} for i = 1, 2, and N(y3) ⊆ V (X) or
N(y3) ⊆ V (B) ∪ {x1, x2}. We may further assume that N(y3) ⊆ V (X), or else the assertion
of the lemma holds. Let u1, u2 ∈ N(y3) ∩ V (X − {x1, x2}) such that u1 ∈ x1Xu2 − {x1, u2}.
Since G is 5-connected, x1 has a neighbor in B, say x. Note that G[B + {u1, u2, y1, y2}] is
2-connected. Let G∗ denote the graph obtained from G[B + {u1, u2, y1, y2}] by identifying y1

and y2, and let y denote the new vertex. Then G∗ is also 2-connected.
Suppose there exist disjoint paths P1 and P2 in G∗ from u1, u2 to y, x, respectively. Without

loss of generality, we may assume that P1 is a path in G ending at y1. Then (P1 ∪ y1x2) ∪
(P2 ∪ xx1) ∪X ∪ u1y3 ∪ u2y3 ∪ (K − y1) is a TK5 with branch vertices u1, u2, x1, x2, y3.

Thus we may assume that such paths do not exist. Then by Lemma 2.3, (G∗, u1, u2, y, x)
is 3-planar. Note that R := G[B + {u2, y1, y2}] is 2-connected.

We now show that R has a cycle T containing {u2, y1, y2}. For, otherwise, by Lemma 2.5,
R has 2-cuts Si, i = 1, 2, 3, such that if Di (for i = 1, 2) denotes the components of R − Si

containing yi and D3 denotes the component of R − S3 containing u2 then D1, D2, D3 are
pairwise disjoint. If some yi is a cut vertex of R[Di ∪ Si] separating the vertices in Si then,
since yi has at least three neighbors in Di, R − yi is not 2-connected, a contradiction. Thus,
for each i ∈ {1, 2}, R[Di ∪ Si] − yi contains a path Qi between the vertices in Si. So Q1 and
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Q2 can be used to form a cycle in R − {u2, y1, y2} which separates u2 from {y1, y2}. But this
contradicts the fact that (G∗, u1, u2, y, x) is 3-planar.

Then T ∪X ∪K is a TK5 in G with branch vertices x1, x2, y1, y2, u2.

We now show that G contains TK5. By Lemma 6.2, we may assume that N(yi) ⊆ V (B)∪
{x1, x2} for i = 1, 2, 3; so R := G[B + {y1, y2, y3}] is 2-connected and each yi has degree at
least 3 in R.

If R has a cycle C containing {y1, y2, y3}, then C ∪ X ∪ K is a TK5 in G with branch
vertices x1, x2, y1, y2, y3. So we may assume that such a cycle does not exist in R. Then by
Lemma 2.5, we have three cases to consider.

Case 1. There exists a 2-cut S in R and there exist three distinct components D1, D2, D3

of R− S such that yi ∈ V (Di) for each i ∈ {1, 2, 3}.
Let S = {a, b}. Since each yi has degree at least 3 in R, |Di − yi| ≥ 1 for 1 ≤ i ≤ 3.

Since G is 5-connected, N(Di − yi) ∩ V (X − {x1, x2}) 6= ∅. Moveover, since B is 2-connected,
G[Di + S] − yi is a chain of blocks from a to b; so let Qi ⊂ G[Di ∪ S] be a path from a to b
containing yi.

We may assume ab /∈ E(G). For, suppose ab ∈ E(G). Since X is induced, x1 has at least
two neighbors in some Di, say i = 3. Then G[D3 + S + x1] has independent paths L1, L2 from
x1 to a, b, respectively. Now Q1 ∪Q2 ∪ ab∪ y1x2y2 ∪L1 ∪L2 ∪ x1y1 ∪ x1y2 is a TK5 in G with
branch vertices a, b, x1, y1, y2.

Let Ai be a path in G from a to some ai ∈ N(Di−yi)∩V (X−{x1, x2}) which is internally
disjoint from (B −Di) ∪X. We may assume |{a1, a2, a3}| ≥ 2. For otherwise, a1 = a2 = a3.
Then by symmetry, we may assume that G[B + a1] has independent paths Pi from a1 to
qi ∈ V (y1Qib) and internally disjoint from Qi. Now a1Xx1 ∪ a1Xx2 ∪ (P1 ∪ q1Q1y1) ∪ (P2 ∪
q2Q2y2) ∪ (y1Q1a ∪ aQ2y2) ∪K is a TK5 in G with branch vertices a1, x1, x2, y1, y2.

We may further assume that R − S has only three components and N(a) ∩ V (X) = ∅.
Otherwise, there exists a path A from a to some a′ ∈ V (X) which is internally disjoint from
D1 ∪D2 ∪D3 ∪X. Without loss of generality, we may assume that a′ ∈ x1Xa3 − a3. Then
aQ1y1∪aQ2y2∪ (y1Q1b∪ bQ2y2)∪ (A3∪a3Xx2)∪ (A∪a′Xx1)∪K is a TK5 in G with branch
vertices a, x1, x2, y1, y2.

Therefore, a has degree at least 5 in R. By Lemma 3.1, |N(a) ∩ {y1, y2, y3}| ≤ 1. Hence,
since ab /∈ E(G), there exists some i ∈ {1, 2, 3} such that |(N(a)∩ V (Di))− yi| ≥ 2, say i = 1.

We claim that G[D1∪X+a]−y1 has independent paths P1, P2 from a to some c1, c2 ∈ V (X)
internally disjoint from X. For, suppose P1, P2 do not exist. Then G[D1∪X +a]−y1 has a cut
vertex c separating a from X. Hence, {a, b, c, y1} is a cut in G as |(N(a) ∩ V (D1))− y1| ≥ 2,
a contradiction.

Now (P1 ∪ c1Xx1) ∪ (P2 ∪ c2Xx2) ∪ aQ2y2 ∪ aQ3y3 ∪ (y2Q2b ∪ bQ3y3) ∪K is a TK5 in G
with branch vertices a, x1, x2, y2, y3.

Case 2. There exist a vertex b of R, 2-cuts S1, S2, S3 in R and components Di of R − Si

containing yi, for all i ∈ {1, 2, 3}, such that S1 ∩ S2 ∩ S3 = {b} and Si − {b} = {ai} where
a1, a2, a3 are distinct.

For convenience, let R′ := R−(D1∪D2∪D3). We choose S1, S2, S3 such that D1∪D2∪D3

is maximal. Then R′ − b is connected.
As in Case 1, let Qi ⊆ G[Di ∪ Si] be a path from ai to b which passes through yi, and

let Ai be a path from ai to ci ∈ N(Di − yi) ∩ V (X − {x1, x2}) and internally disjoint from
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(B −Di) ∪X. We may choose ci so that |{c1, c2, c3}| ≥ 2; the proof is the same as in Case 1
(for showing |{a1, a2, a3}| ≥ 2) since R′ − b is connected.

Suppose there exists a vertex u ∈ R′ −{a1, a2, a3, b} such that R′ − b has two independent
paths from u to two distinct vertices of {a1, a2, a3}, say a1 and a2. Let S = {a1, a2, a3, b} ∪
(N(R′) ∩ V (X)). Note that G[R′ + S] − b is (4, S − {b})-connected and R′ − a3 contains
independent paths from u to a1, a2, respectively. So by Lemma 2.4, there exist four independent
paths P1, P2, P3, P4 in G[R′ + S] − b from u to S − {b} such that |V (Pi ∩ Pj) = {u} for
1 ≤ i 6= j ≤ 4, |V (Pi) ∩ (S − {b})| = 1 for 1 ≤ i ≤ 4, a1 ∈ P1, and a2 ∈ P2. We may assume
that P3 ends at some vertex v ∈ V (X) and P4 ends at some vertex w ∈ V (X)∪{a3}. If w ∈ X
then by symmetry we may assume v ∈ x1Xw; now (P1 ∪ a1Q1y1) ∪ (P2 ∪ a2Q2y2) ∪ (P3 ∪
vXx1)∪ (P4∪wXx2)∪ (y1Q1b∪bQ2y2)∪K is a TK5 in G with branch vertices u, x1, x2, y1, y2.
So we may assume that w = a3. If v 6= c3 then by symmetry we may assume v ∈ x1Xc3;
now (P1 ∪ a1Q1y1) ∪ (P2 ∪ a2Q2y2) ∪ (P3 ∪ vXx1) ∪ (P4 ∪A3 ∪ c3Xx2) ∪ (y1Q1b ∪ bQ2y2) ∪K
is a TK5 in G with branch vertices u, x1, x2, y1, y2. So we may assume that v = c3. Then
v 6= c1 or v 6= c2. By symmetry, we may assume that v 6= c2, and v ∈ x1Xc2. Then
(P1 ∪ a1Q1y1) ∪ (P4 ∪ a3Q3y3) ∪ (P3 ∪ vXx1) ∪ (P2 ∪A2 ∪ c2Xx2) ∪ (y1Q1b ∪ bQ3y3) is a TK5

in G with branch vertices u, x1, x2, y1, y3.
So we may assume that for any vertex u ∈ R′ − {a1, a2, a3, b}, there exists a 2-cut Su =

{b, bu} in R′ separating u from {a1, a2, a3}. We choose u and Su so that the Su-bridge of R′

containing u is maximal. Then bu ∈ {a1, a2, a3}, say bu = a3, and R′ − {a1, a2} is the unique
bu-bridge of R′ − b containing u. Since R− {y1, y2, y3} is 2-connected, R[{a1, a2, a3}] must be
connected.

We may assume that R[{a1, a2, a3}] is a triangle. Otherwise, for some permutation ijk
of {1, 2, 3}, we have aiaj /∈ E(G) and aiak, ajak ∈ E(G). Then {b, ak} is a 2-cut such that
y1, y2, y3 belong to three different components of G − {b, ak} whose union properly contains
D1 ∪D2 ∪D3, contradicting the choice of S1, S2, S3 to maximize D1 ∪D2 ∪D3.

Suppose for some i ∈ {1, 2}, N(ai) 6⊆ {a1, a2, a3, b}∪V (Di). Then H has an edge aivi with
vi ∈ X. Since {ai, b, yi, vi} is not a cut in G, we see that Ai may be choosen so that ci 6= vi.
Without loss of generality, we may assume that vi ∈ x1Xci − ci. Let {i, j} = {1, 2}. Now
(Ai ∪ ciXx2) ∪ (aivi ∪ viXx1) ∪ (aiaj ∪ ajQjyj) ∪ (aia3 ∪ a3Q3y3) ∪ (yjQjb ∪ bQ3y3) ∪K is a
TK5 in G with branch vertices ai, x1, x2, yj , y3.

Thus we may assume that for all i ∈ {1, 2}, N(ai) ⊂ {a1, a2, a3, b} ∪ V (Di). We may
further assume that there exists some i ∈ {1, 2} such that aib /∈ E(G), say i = 1; otherwise,
G[{a1, a2, a3, b}] is a K−

4 , and so G contains TK5 by Theorem 1.1.
Then |N(a1) ∩ V (D1 − y1)| = |N(a1)− {a2, a3, y1}| ≥ 2. So 5-connectedness of G implies

that there exist two independent paths P1, P2 in G[(D1+a1)∪X]−y1 from a1 to c1, c2 ∈ V (X)
respectively, and internally disjoint from X. Without loss of generality, assume c1 ∈ x1Xc2.

Now (P1∪c1Xx1)∪ (P2∪c2Xx2)∪ (a1a3∪a3Q3y3)∪ (a1a2∪a2Q2y2)∪ (y3Q3b∪ bQ2y2)∪K
is a TK5 in G with branch vertices a3, x1, x2, y2, y3.

Case 3. There exist pairwise disjoint 2-cuts S1, S2, S3 in R and components Di of R − Si

containing yi, for all i ∈ {1, 2, 3}, such that D1, D2, D3 are pairwise disjoint and R−D1∪D2∪D3

has exactly two components, each containing exactly one vertex from Si, for all i ∈ {1, 2, 3}.
Let Si = {ai, ti} for all i ∈ {1, 2, 3} such that {a1, a2, a3} is contained in a component A of

R− (D1 ∪D2 ∪D3) and {t1, t2, t3} is contained in a component T of R− (D1 ∪D2 ∪D3).
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Note that any TK5 we found in Case 2 only uses b to connect y1 and y2, which can be done
in this case by using T . So by treating T,A as b,R′− b, respectively, in Case 2, the arguments
in Case 2 work for Case 3 as weel and produce a TK5 in G.
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