Subdivisions of K5 in graphs containing K 3
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Abstract

Seymour conjectured that every 5-connected nonplanar graph contains a subdivision
of K5. We prove this conjecture for graphs containing K 3. As a consequence, Seymour’s
conjecture is true if the answer to the following question of Mader is affirmative: Does
every simple graph on n vertices with at least 12(n — 2)/5 edges contain a K , a Ks 3, or
a subdivision of K57

1 Introduction

We follow the notation and terminology used in [10,11]. In particular, for a given graph K
we use T'K to denote a subdivision of K. The vertices of a T K corresponding to the vertices
of K are called the branch vertices of this TK. Hence the degree 4 vertices in a T K5 are its
branch vertices. A separation in a graph G is a pair (G1,G2) of subgraphs of G such that
G = G1 U Go, E(Gl) N E(Gz) = (Z), and E(GZ) U (V(GZ) — V(Gg_l)) #* 0 for i = 1,2. If, in
addition, |V (G1 NG2)| = k then (G1, G2) is said to be a k-separation. A collection of paths is
said to be independent if no end of any path is internal to any other path in the collection.
Mader [12] proved that every simple graph on n > 3 vertices and with at least 3n —5 edges
contains T'Kj, establishing a conjecture of Dirac [4]. In [8], Dirac’s conjecture is reduced to
the following conjecture of Seymour [15]: Every 5-connected nonplanar graph contains T K.
(Kelmans [7] made the same conjecture two years later.) In [10,11], Seymour’s conjecture is
established for graphs containing K (the graph obtained from K4 by removing an edge).

Theorem 1.1 (Ma and Yu [10,11]). Every 5-connected nonplanar graph containing K, con-
tains T K.
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One important step in [10] is to deal with the case when a 5-connected nonplanar graph G
admits a 5-separation (G1,G2) such that |Ga| > 7 and G3 has a plane representation in which
all vertices in V(G N G2) are incident with a common face. It is shown in [10] that in G one
can find a special collection of independent paths (used to construct a T K5 in G). This result
is also used in [5] by Kratovski, Stephens and Zha to show that Seymour’s conjecture holds
for graphs embedded in any surface (other than the sphere) with representativity at least 5.

It turns out to be very useful to exclude K . For example, by working with K -free graphs,
Kawarabayashi [6], Horev and Krakovski [1], and Ma, Thomas and Yu [9] independently proved
Seymour’s conjecture for apex graphs. (A graph is said to be apez if it has an apex vertex,
i.e., a vertex whose deletion results in a planar graph.) In this paper we prove Seymour’s
conjecture for graphs containing K> 3, and our proof makes heavy use of the fact that we can
assume the graphs to be K -free.

Theorem 1.2 FEvery 5-connected nonplanar graph containing Ko 3 contains T K.

Theorems 1.1 and 1.2 imply that Seymour’s conjecture holds if the answer to the following
question of Mader [12] is affirmative: Does every simple graph on n > 4 vertices with at least
12(n — 2)/5 edges contain a K , a Kj 3, or a subdivision of K5?

In order to give a high level description of our proof of Theorem 1.2, we need some notation
and terminology. Let H be a graph H and A C V(H). We use H[A] to denote the subgraph
of H induced by A, and use Ny (A) to denote the neighborhood of A. For any subgraph K of
H, we write H[K| := H[V(K)] and Ny (K) := Ny (V(K)). When understood, the subscript
H may be omitted.

For any positive interger k, we say that H is (k, A)-connected if, for any cut set T of H
with |T'| < k — 1, each component of H — T contains a vertex in A.

We now introduce a concept that is closely related to existence of disjoint paths. A 3-planar
graph (G, A) consists of a graph G and a set A = {Ay,..., Ax} of pairwise disjoint subsets of
V(G) (possibly A = ) such that

(a) for i # j, N(Ai) N A; = 0,
(b) for 1 <i <k, |N(4;)| <3, and
(

¢) if p(G,.A) denotes the graph obtained from G by (for each ¢) deleting A; and adding new
edges joining every pair of distinct vertices in N(A;), then p(G,.A) can be drawn in a
closed disc with no edge crossings.

If, in addition, by, b1, ...,b, are vertices in G such that b; ¢ A for all A € A and 0 < i < n,
p(G, A) can be drawn in a closed disc with no edge crossings, and by, by, ..., b, occur on the
boundary of the disc in this cyclic order, then we say that (G, A, bg, b1,...,b,) is 3-planar. If
there is no need to specify A, we will simply say that (G, bg, b1, ..., b,) is 3-planar.

We make a simple, but useful, observation. If P is a path in p(G,.A) then we may produce
a path P* in G with the same ends of P as follows: For each edge uv of P with {u,v} C N(A;)
for some 14, replace uv with a path in G[A4; U {u,v}| between u and v. As a consequence, any
set of independent paths in p(G,.A) gives a set of independent paths in G with the same ends.

Given a graph G and S C V(G), we say that (G,S) is planar if G has a drawing in the
closed disc without edge crossings such that the vertices in S all appear on the bouddary of



the disc. We say that (G,S) is 3-planar the vertices in S can be ordered as by, ...,b, such
that (G, by, ...,by,) is 3-planar.

Another concept we need is from [3]. A block of a graph G is either a maximal 2-connected
subgraph of G or a subgraph of G induced by a cut edge. A block is nontrivial if it is
2-connected, and it is trivial otherwise. A connected graph C is a chain if its blocks can
be labeled as Bi,..., B, where kK > 1 is an integer, and its cut vertices can be labeled as
v1,-..,Uk_1 such that

(i) V(Bi) NV (Biy1) ={v;} for 1 <i<k—1 and
(i) V(B)NV(Bj)=0if i —j| >2and 1 <i,j < k.

We write C' := Biv1Bovs ... v,_1 B}, for this situation, and also view C' as Ule B;. If k£ > 2,
vo € V(B1) —{v1} and vy € V(Bg) — {vk_1}, or, if k = 1, vp,vx € V(B1) and vy # vy,
then we say that C is a vg-vg chain or a chain from vy to vg, and we denote this by C :=
’U(]Bl’Ul e 'Uk—lBkUk;-

Let G be a graph and let C' := vy By .. .v,_1Brvg be a chain. If C' is an induced subgraph
of GG, then we say that C is a chain in G. We say that C' is a planar chain in G if, for each
1 < i < k with |V(B;)| > 3 (or equivalently, B; is 2-connected), there exist distinct vertices
zi,yi € V(G) — V(C) such that

o (G[V(B;) U{xi,yi}] — wiyi, i, vi—1, ¥i, v;) is planar, and
e B; —{v;_1,v;} is a component of G — {x;, y;, vi—1, v }.

We also say that C is a planar vg-vi, chain. We say that C is a 3-planar chain if in the definition
of a planar chain we allow z; = y; and when z; # y; only require that (G[V(B;) U{zi,yi}| —
iy Tiy Vi—1, Yi, Vi) be 3-planar.

We are now ready to give a high level description of our proof of Theorem 1.2. Let G
be a 5-connected graph and {z1,x2,y1,¥y2,y3} € V(G) such that Gz, z2,y1,y2,y3] = Ka3
in which 1,22 have degree 3. We will force a K, in G and invoke Theorem 1.1, or force a
5-separation (G, G2) such that G2 is apex with apex vertex a and (G2 —a, V(G1NG2) —{a})
is planar, and then invoke Corollary 2.9 proved in Section 2.

STEP 1. We show that either G contains T K5 or H := G — {y1,y2,y3} contains a 3-planar
chain from x; to xg, say C, such that H — C' is 2-connected. This is done by first producing
a nonseparating induced path X in H between z; and z9, then augment a given 2-connected
block in H — X. In the case the given block cannot be augmented we find a T K5 or are left
with the desired 3-planar chain. This is dealt with in Section 3.

STEP 2. There are two types of blocks in a 3-planar chain. In Section 4, we show that if
there is a block, say D, with two neighbors in H — C, say bp, ¢p, then G contains T'K5. This
is done roughly as follows. Let D* be obtained from G[D + {bp, cp, y1, Y2, ys}| by identifying
Y1,Y2,ys to a signle vertex y, and let up,vp be the ends of D. Then D* is an apex graph
with apex vertex y, and (D* — y,bp,up,cp,vp) is 3-planar. We first show that G contains
TKj; or D* is (5,{bp,cp,up,vp,y})-connected. We then prove two results in Section 2 which
in turn allow us to find a special collection of independent paths in D*. Finally, we use these
paths to force a 5-separation (G1,G2) in G such that Go is apex with apex vertex a and
(G2 —a,V(G1 N Ga) —{a}) is planar, and invoke Corollary 2.9.



STEP 3. We may thus assume that each nontrivial block of C' has only one neighbor in
H —C. We show that at least two of {y1,y2,y3} have neighbors in H — C. This makes it easier
to find a TK5. Again in this process, whenever we are stuck we are rescued by a K, or a
5-separation (G1, G2) such that G2 is apex with apex vertex a and (G2 —a, V(G1NG2) —{a})
is planar. This is done in Section 5.

STEP 4. Finally, we arrive at the case when C' is simply an induced path X. It is then
easy to show that G contains T K5 or none of {y1,y2,ys} has a neighbor in X — {z1,z2}. So
G — X is 2-connected. If in G — X there is a cycle containing {y1,y2,y3} then such a cycle,
together with G[{x1,x2,y1,y2,y3}] U X, gives a TK5 in G. So we may assume that such a
cycle does not exist in G — X. Then we know the structure of G — X, which is given by a
result of Watkins and Mesner in [21]. A case analysis similar to that in [10] finds TK5 in G.

2 Previous results and lemmas

In this section we list some known results and prove a few lemmas that are needed in our proof
of Theorem 1.2. We begin with a result of Tutte [20].

Lemma 2.1 (Tutte [20]). Let G be a 3-connected graph, e € E(G) and v € V(QG) such that v
s not incident with e. Then G — v contains an induced cycle C' such that e € C and G — C' is
connected.

We will need the following result of Seymour [16] about the existence of disjoint paths;
equivalent versions can be found in [14,17,19].

Lemma 2.2 (Seymour [16]). Let G be a graph and s1, s2,t1,te be distinct vertices of G. Then
either G contains disjoint paths from sy to t1 and from sg to ta, or (G, s1, s2,t1,t2) is 3-planar.

We state a simpler version for graphs with higher connectivity.

Corollary 2.3 Let G be a connected graph and s1, s2,t1,t2 be distinct vertices of G such that
G is (4,{s1, s2,t1,t2})-connected. Then either G contains disjoint paths from sy to t, and from
s9 to ta, or (G, s1,82,t1,t2) is planar.

We will heavily use the k = 3 case of the following result of Perfect [13].

Lemma 2.4 Let G be a graph, uw € V(G), and A C V(G — u). Suppose there exist k inde-
pendent paths from u to distinct aq,...,ar € A, respectively, and otherwise disjoint from A.
Then for any n > k, if there exist n independent paths Pyi,..., P, in G from u to n distinct

vertices in A and otherwise disjoint from A then Py, ..., P, may be chosen so that a; € P; for
i=1,...,k.

We also need a result of Watkins and Mesner [21] on cycles through three vertices.

Lemma 2.5 (Watkins and Mesner [21]). Let R be a 2-connected graph and let yi,y2,ys be
three distinct vertices of R. Then there is no cycle through y1,y2 and y3 in R if, and only if,
one of the following statements holds.



(1) There exists a 2-cut S in R and, for u € {y1,y2,ys}, there exist pairwise disjoint sub-
graphs Dy, of R — S such that u € D, and each D, is a union of components of R — S.

(13) Foru € {y1,y2,ys}, there exist 2-cuts Sy in R and pairwise disjoint subgraphs D,, of R,
such that w € Dy, each D, is a union of components of R — Sy, Sy, N Sy, NSy, = {z},
and Sy, —{z}, Sy, — {2}, Sy, — {2} are pairwise disjoint.

(tit) For u € {y1,y2,ys}, there exist pairwise disjoint 2-cuts S, in R and pairwise disjoint
subgraphs D, of R — S, such that v € D,, D, is a union of components of R — Sy, and
R—-V(D,, UD,,UD,,) has precisely two components, each containing exactly one vertex
from S,,.

The lemmas above are used in [10,11] to prove Theorem 1.1, which turns out to be useful
here as well. The following lemma is proved in [10] and will be needed here.

Lemma 2.6 Let G be a 5-connected nonplanar graph, and let (G1,G2) be a 5-separation of
G such that |V (G2)| > 7 and (Ga,V(G1) NV(G2)) is planar. Then G contains T K.

In order to prove Theorem 1.2, we need to generalize Lemma 2.6 by allowing G2 to be
apex. Our original work on this generalization is quite complex, which is simplified by the
following lemma (and its proof) due to Thomas [18].

Lemma 2.7 Let G be a connected graph with |V (G)| > 7, let A C V(G) with |A| =5, and let
a € A such that G is (5, A)-connected, (G — a, A — {a}) is planar, and either (1) A — {a} is
independent and dg—_q(v) > 2 for allv € A—{a} or (2) dg—q(v) >4 for allv € A—{a}. Then
G contains K , or G has a 5-separation (G1,G2) such that a € V(G1NGa), A CV(G1), and
V(Ga)| > 7.

Proof. Let A = {a,a1,as,a3,a4}, and assume that G — a is drawn in a closed disc in the plane
without edge crossings such that ai,as, as, aq occur on the boundary of the disc in clockwise
order. Since |V(G)| > 7 and G is (5, A)-connected, ajas, azas ¢ E(G).

Let H = (G — a) + {a1a2, asas, azaq, aga; } if (1) holds, and let H = G — a if (2) holds; so
that when (1) occurs H is a plane graph with outer cycle ajasasasa;. Note that the minimum
degree of H satisfies §(H) > 4. Since G is (5, A)-connected, for v € V(H) — {a1, as,as, a4}, if
dp(v) = 4 then va € E(G).

Let uwvwu be a facial triangle in H. We say that wvwu (and the face it bounds) is bad if
Hu,v,w} N Al =2, or {u,v,w}NA={a;} and dg(a;) = 4 for some 1 < i < 4. Clearly, there
are at most 8 bad facial triangles in H. In fact, it is easy to show that if there are 8 bad facial
triangles in H then the outer cycle of H — {a1, a9, as,as} is a 4-cycle bybabsby, and we may
choose the notation so that a1bjasbsagbsasbsay is a cycle in H. If |[V(G)| > 11, then G has a
5-separation (G1,G2) such that V(G1 N Ga) = {a,b1,be, b3, by}, A C V(G1), and |V (Ga)| > 7.
If [V(G)| = 10 then, since G is (5, A)-connected, the vertex in V(G) — {a,a;,b; : i =1,2,3,4}
is adjacent to all of {b1,b2,b3,bs}, forcing a K; in G. So |V(G)| = 9. Then, since G is
(5, A)-connected, {b1,ba,b3,bs} C Ng(a), or bibg € E(G), or babs € E(G); so G contains K .
Thus, we may assume that H has at most 7 bad facial triangles.

We may assume that if uvwu is a facial triangle and is not bad, then two of {u,v,w}
must have degree at least 5 in H. Clearly {u,v,w} € A because ajas,asas ¢ E(G). Now let



v,w ¢ A. If dg(v) > 5 and dg(w) > 5 then we are done. So we may assume that dg(v) = 4;
hence va € E(G). If dg(w) = 4 then wa € E(G) and G[{a,u,v, w}] contains K, . So we may
assume that dg(w) > 5. Similar argument shows that if u ¢ A then dy(u) > 5. So assume
u € A. Then dy(u) > 5 as uvwu is not bad.

Suppose G contains no K, ; we will derive a contradiction by applying a simple discharging
to H. Let F(H) denote the set of faces of H, and for any f € F(H) let dy(f) denote the
number of vertices incident with f. Let o : V(H) U F(H) — Z (the set of integers) such that
o(x) =4 —dy(x) for all z € V(H) U F(H). Then by Euler’s formula, the total charge is

oH)= > o)+ Y oa(f)=8

veV (H) fEF(H)

Note that for any x € V(H)UF(H), if o(z) > 0 then x € F(H), dg(z) = 3, and o(x) = 1.
We now redistribute charges as follows, such that the total charge remains unchaged. For
each f € F(H) with dg(f) = 3 and f not bad, pick two of its incident vertices with degree
at least 5 in H, and send a charge 1/2 from f to each of these two vertices. Let 7 denote
the resulting charge function. Then 7(f) < 0 for all f € F(H) that is not bounded by a
triangle or is not bad, and 7(z) =0 if € V(H) and dg(x) = 4. Now suppose € V(H) and
dpg(x) > 5. Since we assume K, ¢ G, x is contained in at most |dy(x)/2] facial triangles.
Hence 7(z) < o(x) + |du(z)/2]/2 =4 — dy(x) + |du(x)/2]/2. Note that

4-3k  ifdy(z) = 4k;
) 3-8k ifdu(e) = 4k + 1;
A= dul@) + 1 du(@)/20/2=9 590 "3k it dy(x) = 4k + 2
3/2 -3k, ifdy(z) =4k + 3.

Since dy(x) > 5,k > 1, and k > 2 if dy(x) = 4k. Hence, 7(x) < 4—dg(x)+ |du(x)/2]/2 < 0.
Thus the total new charge is 7(H) < 7 because there are at most 7 bad facial triangles. This
is a contradiction. |

The following is an easy consequence of Lemma 2.7. It was proved independently by
Kawarabayashi [6], by Aigner-Horev and Krakovski [1], by Ma, Thomas and Yu [9].

Corollary 2.8 FEvery 5-connected nonplanar apex graph contains T Ks.

Proof. Let G be a 5-connected nonplanar apex graph and a be its apex vertex. By Theorem 1.1,
we may assume that K, Z G. So G — a has a plane representation in which the outer cycle is
not a triangle. Let a1, a9, as, as be four arbitrary vertices in the outer cycle of G — a, and let
A = {a,a1,a2,a3,a4}. Then G, A, a satisfy the conditions of Lemma 2.7 (in particular, (2)).
Hence, since K; ¢ G, G has a 5-separation (G1,G2) such that a € V(G1 N G2), A C V(Gy),
and |V (G2)| > 7. We choose such (G1,G2) so that G is minimal, and let A’ = V(G N Ga).
If |V(G2)| = 7 then, since G is (5, A’)-connected and (G2 — a, A" — {a}) is planar, K, C G,
a contradiction. So |V(G2)| > 8. Hence, by the minimality of Gy, A’ is independent in Go
and dg,(v) > 2 for all v € A" — {a}. So Go, A, a satisfies the conditions of Lemma 2.7 (in
particular, (1)). As a consequence, K; C (3, a contradiction. 1

As mentioned before, we need an apex version of Lemma 2.6, which is also an easy conse-
quence of Lemma 2.7.



Corollary 2.9 Let G be a 5-connected nonplanar graph, (G1,G2) a 5-separation of G, and
a € A:=V(G1)NV(Gs) such that |V(Ga)| > 7 and (G2 — a, A — {a}) is planar. Then G
contains T K.

Proof. We choose such separation (G, G2) so that Ga is minimal. Then A—{a} is independent
in Go. If [V(G2)| = 7 then, since G3 is (5, A)-connected and (G2 —a, A—{a}) is planar, K, C
Go. If |[V(G2)| > 8 then by the minimality of G2, A is independent in G and dg,—q(v) > 2 for
all v € A—{a}; so K, C G2 by Lemma 2.7. Therefore, the assertion of this corollary follows
from Theorem 1.1. 1

In the proof of Lemma 2.6 in [10], an important step is to find a collection of independent
paths in G2, the planar part. For the purpose of this paper, we need to extend this to the apex
side of a 5-separation. The following result is due to Thomas [18] which significantly simplifies
our proofs of such results (see Corollaries 2.11 and 2.12).

Lemma 2.10 Let G be a connected graph with |V(G)| > 7, A C V(G) with |A| = 5, and
a € A such that G is (5, A)-connected, (G — a, A — {a}) is planar, and G has no 5-separation
(G1,G2) such that A C G1 and |V(G2)| > 7. Let w € V(G) — A and assume that the vertices
in G — a cofacial with w induce a cycle C' in G — a. Then there exist paths Py, Py, P3, Py in G
from w to A such that V(P; N Pj) = {w} fori# j, and |V(P;NC)| <1 and |[V(P;)NAl=1
fori=1,2,3,4.

Proof. Since G has no 5-separation (Gp,G2) with A C G; and |V(G2)| > 7, A must be
independent in G. Let H := G — (C — N(w)).

Suppose H has four paths Py, P, P3, Py from w to A such that V(P N P;) = {w} and
|[V(P;) N Al = 1. We may assume that these paths are induced paths. Hence |V(P,NC)| <1
for 1 <i < 4. (Note that |V(FP;) NC| = 0 occurs when P; = wa.) So P;, i = 1,2,3,4, are the
desired paths.

Thus we may assume that such paths in H do not exist. By Menger’s theorem, there is a
cut T, |T| < 3, in H separating w from A. For convenience, assume that G — a is drawn in a
closed disc in the plane with no edge crossings such that A —{a} is contained in the boundary
of the disc. Thus there is a simple closed curve v in the plane intersecting G — a only in
(T —{a}) U (V(C) — N(w)) such that w is inside v and A — {a} is outside of or on . The
elements of T'— {a} divide v into |T' — {a}| simple curves (including the points in T' — {a}),
called the segments of ~. For two distinct points u,v on v we use uyv to denote the simple
curve in v from u to v in clockwise order; and if u = v then uyv consists of the single point
u = v. We claim that

(1) ifu,v € V(C)—N(w) and uyv is contained in a segment of v, then uCv —{u, v} contains
no neighbor of w.

For, otherwise, we may choose such w,v that u and v are consecutive on . Then {a, u,v,w}
is a 4-cut in G separating uCv — {u, v} from A, contradicting the (5, A)-connectedness of G.

Note that y N V(C) N N(w) = and TN (V(C) — N(w)) = 0. Also note that since G is
(5, A)-connected,

2) [T]+ N (V(C) = N(w))| = 5.



We consider cases based on |T — {a}|.

Case 1. |T —{a}| < 1.

First, suppose T'— {a} = (). Then |[yN (V(C)— N(w))| > 4 by (2). Let u,v € yN(V(C) —
N(w)). By (1), neither uCv—{u,v} nor vCu—{u, v} contains a neighbor of w. Hence, {a, u,v}
is a 3-cut in G separating w from A, a contradiction.

Now, suppose |T'—{a}| = 1. Then |[yN(V(C)— N(w))| > 3 by (2). Let u,v € yN(V(C) —
N(w)) such that T—{a} C vyu and, subject to this, vyu is minimal. Then by (1), uCv—{u, v}
contains no neighbor of w. So {a,u,v} U (T — {a}) is a 4-cut in G separating w from A, a
contradiction.

Case 2. |T — {a}| = 2.

Let T — {a} = {t1,t2}. Then |y N (V(C) — N(w))| > 2 by (2).

First, assume (¢1yta—{t1,t2})NV(C) = 0. Then fori = 1,2, let u; € (t2yt1—{t1,t2})NV(C)
with u; closest to t;. By (1), N(w)NujCug. Hence {a,t1,t2,u1,us} is a 5-cut in G separating
w and N(w) from A, a contradiction (to the nonexistence of such a separation).

Thus (tl’ytg — {tl,tg}) N V(C) = @ Similarly, (tQ’}/tl — {tl,tg}) N V(C) = @

Fori=1,2, let u; € (tayt1—{t1,t2})NV(C) with u; closest to t;, and v; € (t1yta—{t1,t2})N
V(C) with v; closest to ¢;. Then by (1), N(w) C (u1Cvy — {ug,v1}) U (v2Cus — {ug,v2}). As
|IN(w) N V(C)| > 4, we may assume by symmetry that |N(w) NV (u1Cv1 — {ui,vi})| > 2.
Hence {a,t1,uj,v1,w} is a 5-cut in G separating A from at least two vertices, a contradiction.

Case 3. |T —{a}| = 3.

Let T'— {a} = {t1,t2,t3}. In this case, a ¢ T and a has no neighbors strictly inside 7. By
(2), Iy 1 (V(C) - N(w))| > 2.

First, assume v N (V(C) — N(w)) is contained in some segement of v, say C ¢;7yt2. For
i=1,2,let u; € (t1yta — {t1,t2}) N V(C) with wu; closest to t;. By (1), N(w) N uaCu;. Hence
{t1,t2,t3,u1,u2} is a 5-cut in G separating w and N(w) from A, a contradiction.

Therefore, v N (V(C) — N(w)) is not contained in any segment of .

Next, assume that the interior of some segment of v, say t3yta — {to,t3}, is disjoint from
V(C). For i = 1,2, let u; € (t1yta — {t1,t2}) N V(C) with wu; closest to t;; and for i = 2,3,
let v; € (tayts — {ta2,t3}) N V(C) with v; closest to ¢t;. Then by (1), N(w) C (uaCvs —
{ua,v2}) U (v3Cuy — {uy,v3}). Since |[N(w) NV (C)| > 4, |[IN(w) NV (uaCvy — {ug,v2})| > 2
or |[N(w)N (vsCuy — {u1,vs})| > 2. In the first case, {t2,u2,v2, w} is 4-cut in G separating A
from some neighbor of w, a contradiction; and in the second case, {¢1,t3,u1,v3, w} is a 5-cut
in G separating A from at least two vertices, a contradiction.

Thus, (t;vtiv1 — {ti,tix1}) N (V(C) — N(w)) # 0 for i = 1,2,3, where t4 = t1. Fori=1,2,
let u; € (t1yta—{t1,t2})NV(C) with u; closest to t;; for i = 2,3, let v; € (taytzs—{t2,t3})NV(C)
with v; closest to ¢;; and for i = 1,3, let w; € (t3yt1 — {t1,t3}) NV (C) with w; closest to t;.
Then by (1), N(w) C (u2Cvy — {ug,va}) U (v3Cw3 — {vs,ws}) U (w1Cuy — {u1,w1}). Since
IN(w)NV(C)| >4, |IN(w) NV (ugCvg — {ua,va})| > 2 or |[N(w) N (v3Cws — {v3, w3})| > 2 or
IN(w) N V(wiCuy — {ui,wi})| > 2. In the first case, {t2,u2,vs, w} is 4-cut in G separating
A from some neighbor of w, a contradiction; in the second case, {t3,v3, w3, w} is a 4-cut in G
separating A from some neighbor of w, a contradiction; and in the third case, {¢1,u1, w1, w}
is a 4-cut in G separating A from some neighbor of w, a contradiction. |

As consequences of Lemma 2.10, we derive the following two results about independent
paths.



Corollary 2.11 Let G be a connected graph, A C V(G) with |A| =5, and a € A such that
(G —a,A — a) is planar. Suppose G is (5, A)-connected and |V(G)| > 7, and G has no 5-
separation (G1,G2) with A C Gy and |V(G2)| > 7. Let w € N(a) such that w does not belong
to the outer walk of G —a. Then

(i) the vertices of G — a cofacial with w induce a cycle C' in G — a,

(1) G — a contains paths Pi, P>, P3 from w to A — {a} such that V(P; N P;) = {w} for
1<i<ji<3,and |V(P,NC)|=|V(P)NA=1for1<i<3.

Proof. Let D denote the outer walk of G — a which contains A — {a}. Then w ¢ D. Since G
is (5, A)-connected and by planarity of G — a, the vertices of G cofacial with w induce a cycle
in G — a, denoted by C. Applying Lemma 2.10, we obtain four paths P;, P», P3, P4 with one
of them, say Py, being wa. Now P;, P», P3 are the desired paths. |

The next consequence of Lemma 2.10 is more technical. We require that G —a be K -free
instead of G. This is because in certain applications of this corollary, the vertex a is the result
of identifying several vertices and therefore may be contained in some K .

Corollary 2.12 Let G be a connected graph, A C V(G) with |A| =5, and a € A such that
(G —a,(A —a)UN(a)) is planar and K; ¢ G — a. Suppose G is (5, A)-connected and
[V(G)| > 7, and assume that G has no 5-separation (G1,G2) with A C G1 and |V (G2)| > 7.
Then G — a is 2-connected. Moreover, either G is the graph obtained from the edge-disjoint
union of an 8-cycle x1xox3T4T5x6x7T8T1 and a 4-cycle roxsxgrsTe by adding a and the edges
ax;, i =2,4,6,8, with A = {a,x1,x3,5,27}, or there exists w € V(G) — A such that

(i) the vertices of G — a cofacial with w induce a cycle C' in G — a,

(i) there exist paths Py, Ps, P3, Py in G from w to A such that V(P;NP;) = {w} for1 <i<
<4, and |[V(BENC)| =|V(P)NAl=1forl1<i<4, and

(i1i)) CND =0, where D denotes the outer cycle of G — a, and either (a) a € U?zl P; or (b)
a € U?zl P; and we may write A — {a} = {a1,a2,a3,a4} such that a € P, and a; € P;
fori=2,3,4, and a1, a2,as,P1 N D,ay occur D in cyclic order.

Proof. Since G has no 5-separation (G1,G3) such that A C Gy and |V (G2)| > 7,
(1) A is independent in G and every vertex in A has degree at least 2 in G.

We claim that
(2) G — a is 2-connected.

Otherwise, we may write G—a = H1UHj such that |V (H;)| > 2 and |V (H;)NV (H2)| < 1. Then
|[V(H;)NA| < 2 for some i. Hence G has a separation (G, G2) such that Go—(V(G1)NV (G2)) =
G[(H; — H3—;) U{a}] and V(G1 N G2) = (V(H;) N A) UV (H; N Hy) U {a} (which has size at
most 4). Clearly, A C G;. Since A is independent in G and every vertex in A has degree at
least 2 in G, V(G;) — V(Gs—;) # 0 for i« = 1,2. This contradicts the assumption that G is
(5, A)-connected.

By (2), let D denote the outer cycle of G —a; so A —{a} C D.



(3) every edge in (G — a) — E(D) must join two neighbors of a vertex in A — {a}.

Let wv € E(G — a) — E(D). Then G — a has a 2-separation (Hj, Hs) such that V(H;) N
V(H2) = {u,v} and V(H;) — V(Hs_;) # 0 for i = 1,2. By symmetry, we may assume that
\V(Hy — {u,v})NA| <|V(Hs — {u,v}) N Al

First, suppose |V (H; — {u,v}) N A| = 2. Then, since A is independent and G is (5, A)-
connected, {a,u,v} U (V(H; —{u,v}) N A) is a 5-cut in G separating A from just one vertex,
say x, and x is adajcent to all of {a,u,v} U (V(H; — {u,v}) N A). Then it is easy to see that
K, C Hi, a contradiction.

Thus, |V (H; —{u,v})NA| < 1. Since G is (5, A)-connected, {a,u,v}U(V(Hy —{u,v})NA)
cannot be a cut in G separating A from some vertex; so |V (Hi)] = 3 and the vertex in
V(Hy) — {u,v} must belong to A.

Suppose V(G —a) = V(D). By (3) and because (G —a, A—{a}) is planar and G is (5, A)-
connected, we see that must be the graph obtained from the edge-disjoint union of an 8-cycle
T1Tox3x4T5Ter7rgx, and a 4-cycle xoxyxgrgrs by adding a and the edges az;, i = 2,4,6,8,
with A = {a,x1, 23,25, x7}.

So we may assume that V(G — a) # V(D). Furthermore,

(4) there exists w € V(G — a) — V(D) such that w is not cofacial with any vertex of D.

For, suppose every vertex of V(G — a) — V(D) is cofacial with some vertex of D. Then
G —a— V(D) is outerplanar. So there exists w € V(G — a) — V(D) such that w has degree at
most 2 in G —a — V(D).

Since G is (5, A)-connected and N(a) C V(D), w has at least three neighbors in D. Let
w1, ..., wk be the neighbors of w on D (so k > 3), and assume that they occur on D in this
clockwise order. Moreover, by planarity, we may choose w so that there is no vertex inside the
cycle wwi Dwiw. Since K; € G —a, |V (wiDwy)| > 4. So by (1), V(w1 Dwy — {w1,wr}) € A.

Suppose for some v € V(wiDwy — {w1,wr}) — A, v ¢ N(w). Then since G is (5, A)-
connected and by (3), there exist vvy,vvy € E(G — a) — E(D) such that {v,v;} = N(a;) for
a; € A (1 =1,2),and N(v) = {a,a1,as,v1,v2}. Assume v; € wyDvy. Now by (1), {a,v1,v2}U
(AN V(v2Dvy)) is a 5-cut of G separating A from at least two vertices, a contradiction.

So V(wyDwy — {w1,wg}) — A C N(w). Let v € V(wyDwg — {w1,wi}) — A. Since G is
(5, A)-connected, there exist vv; € E(G —a)— E(D). By (3), {v,v1} = N(a;) for some a; € A.
By (1), v' ¢ A; so v,v" € N(w). Now G[{a;,v,v',w}] = K, a contradiction.

Since G is (5, A)-connected and by planarity of G — a, we see that the vertices of G — a
cofacial with w induce a cycle in G — a, denoted by C. Then C N D = () by (4).

By applying Lemma 2.10, there exist paths Pi, P», P3, Py in G from w to A such that
V(IPENP) ={w}forl <i<j<4 and |[V(BNC)| = |V(P)NA =1forl<i<4 If
a ¢ Ule P;, we are done. So we may assume without loss of generality that a € P;.

Let A—{a} = {a1,a2,as,a4} such that a; € P, for i = 2, 3,4, let w; denote the neighbor of
win P; for i = 1,2, 3,4, and let ¢’ dneote the neighbor of a in P;. If there exists a permutaion
ijk of {2,3,4} such that ay,a;,a;,d’,ar occur D in cyclic order then (b) of (iii) holds. So we
may assume, without loss of generality, that ay,d’,as,as, aqs occur on D in clockwise order.
Since C N D = 0, ayDa’ U a’ Pyw; contains a path P| such that V(P{ N C) = {w;}. Now
P|, Py, P5, P, show that (iii) holds. |
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3 Planar chains

Throughout the rest of this paper, let G be a 5-connected nonplanar graph and x1, x2, y1, Y2, Y3 €
V(G) be distinct such that K := Glz1, 22,1, Y2, y3] = Ko 3 in which 21, 29 have degree 3. Let
H:=G—{y1,v2,y3}-

In this section we will show that G contains T'K5 or H contains a 3-planar chain C from
x1 to a9 such that H — C'is 2-connected. We need the concept of a bridge. Let K be a graph
and L C G. An L-bridge of K is a subgraph of K induced by the edges of a component of
K — L and all edges from that component to L.

First, we prove a very useful lemma that G contains T' K5 or no vertex other than x; and
x9 may be adjacent to two of {y1,y2,y3}.

Lemma 3.1 Suppose x3 € V(G) and |N(x3) N {y1,y2,y3}| > 2. Then G contains TKs.

Proof. Without loss of generality, we may assume that x3y;, z3y2 € E(G). Note the symmetry
among x1, T2, ¥y1,y2 and between x3 and ys.

If G—{z3, y3} contains four independent paths from some u € V(G—{x3,y3})—{z1, z2, 91,92}
to x1, T2, Y1, Yo, respectively, then these paths and K U yjz3ys form a T K5 in G with branch
vertices u, x1, T2, Y1, Y2. S0 we may assume that such paths do not exist. Then

(1) G has a 5-separation (Hy, Hy) such that {z3,y3} C V(H1) NV (H2), u € Hy — Hy, and
{z1, 22, 91,92} C Ha.

We choose (Hy, H2) in (1) so that Hy is minimal. Let S := V(HiNH2) —{z3,y3} = {s1, s2, s3}.
We may assume that

(2) S Z {x1,22,91,92}

For, suppose S C {z1,22,y1,y2}. By symmetry we may assume that 1 ¢ S. By Menger’s
theorem, Hy —{y1, y2,y3} contains two indpendent paths Py, P3 from x; to x2, x3, respectively.
If Hy — y3 contains disjoint paths from zo to x3 and from y; to yo then these paths and
(K —y3) Uyixsya U P, U P3 form a T K5 in G with branch vertices x1, 2, 23, y1,y2. So we may
assume that such disjoint paths do not exist. Then by Corollary 2.3, (H; — y3, 22, Y1, T3, Y2)
is planar. If |V(H;) — V(H2)| > 2 then, by Corollary 2.9, G contains T'K5. So we may
assume that |V (H;) — V(H2)| = 1. Thus, since G is (5, A)-connected, the unique vertex in
V(Hy) — V(H3) is adjacent to x2,y1,y2; so G contains K, and hence T'K5 by Theorem 1.1.

By (2) we may assume s1 ¢ {x1,x2,y1,y2}. We claim that

(3) Hy contains four paths S;, i = 0,1,2,3, from {x1,x2,y1,y2} to s;, respectively, where
so = s1, such that So NSy = {s1}, and S; NS; = whenever i # j and {i, j} # {0,1}.

Let HJ be obtained from Hs — {z3,y3} by duplicating s1, and use s to denote the duplicate
of s1. (Hence, sy and s; have the same neighborhood in H).) By the minimality of Hs and by
Menger’s theorem, HY contains four disjoint paths S; from {z1,z2,y1,y2} to s;, i = 0,1,2,3,
respectively. Note that Sp,Se,S3 are paths in Hy — {z3,y3}. By identifying so with s1, we
view Sy as a path in Hy — {z3,y3} from s;.

11



(4) We may assume that s; has a unique neighbor in Hj, and denote it by w.

If Hy — {x3,y3} contains independent paths P, P3 from $; to sg, s3, then Sy U S U (PyUSy) U
(P3US3) UK Uyixsys is a TK5 in G with branch vertices s1, 21, 22, y1,y2. So we may assume
that such paths do not exist. Then H; — {3, y3} has a cut vertex v separating s; from {s9, s3}.
Since G is 5-connected, the v-bridge of H; — {x3,y3} containing s; is induced by the edye sjv.
Hence (4) holds.

(5) We may assume that there exist by € Sy and by € S such that in Hy — {z3,y3},
{bo, b1, s2, s3} separates s; from {z1,x2,y1, 92}

To see this let H) be obtained from Hs — {z3,y3} by duplicating s; twice and identifying so
and s3 (also denote it by s2), and let s/, s} denote the duplicates of s;.

Suppose HY contains four disjoint paths from {s1, s, s/, sa} to {z1,x2,y1,y2}. Then Hy —
{x3,y3} has four independent paths to {x1,x2,y1,¥y2}, three from s; and one from s or ss,
say s2. Thus, these four paths, K Uyz3y2, and a path in Hy — {x3,ys, s3} from s; to sg form
a T K5 in G with branch vertices s1,x1,Z2,y1, Y2.

So we may assume that such four paths in H) do not exist. Then HJ has a separation
(R, R') such that |[V(R) NV (R')| < 3, {s1,$),5],s52} C R, and {z1,22,y1,y2} C R’. Choose
(R, R’) so that V(R) N V(R') is minimal. By minimality of V(R) NV (R') and since s1, s}, s
have the same neighborhood in HY, s1,s),s] ¢ V(R)NV(R'). By minimality of Ha, we must
have so = s3 € V(R)NV(R).

Thus, (Hy — {x3,y3}) — {s2,s3} has a cut T := V(RN R') — {s2 = s3} separating s; from
{z1,22,91,9y2}, and s1 ¢ T and |T'| < 2. Since s1 ¢ T and because of Sy and Sy, |T| = 2; so
letting T' = {bo, b1}, by € So, and by € S1 we complete the proof of (5).

Let R* denote the component of (Hy — {z2,23}) — {bo, b1, S2, 3} containing s;. Choose
{bo, b1} so that R* is minimal.

(6) We may assume that s2, s3 ¢ N(R*), and for any w € {z3,y3}, G[R*+{bo, b1 }w] contains
independent paths from s; to w, bg, b1, respectively.

First, assume that so or ss, say so, has a neighbor in R*. Then by the minimality of R*,
G[R* + {bo, b1, s2}] contains three independent paths from s; to by, b1, s2, respectively; and we
may assume that s1.5pbg and s1.51b1 are two of them. Now these three paths, Sy U S; U Sy U
S3 U K Uyjz3y, and a path in Hy — {s2, x3,y3} from s; to s3 form a T K5 in G with branch
vertices Ss1, X1, X2, Y1, Y2-

So we may assume that R* contains no neighbor of {sg,s3}. If R* = {s1} then by (4),
s1z3,51y3 € E(G); so (6) holds. Hence we may assume that |V(R*)| > 2. Thus, since G is
5-connected and by (4), R* has neighbors of both z3 and y3. By the minimality of R*, we see
that for any w € {x3,y3}, G[R* + {bg, b1, w}] contains independent paths from s; to w, by, by,
respectively. Again, we have (6).

Let Ry = G[R* + {bo, b1, x3,y3}]. Note that when R* # {s1} we have symmetry between
Ry and H;.

(7) We may assume that |V (Hy)| > 7.
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For, suppose |V(Hp)| = 6. Then u (see (4)) is adjacent to all of {si,s9,ss3,x3,y3}. If
s123,51y3 € E(G) then G[s1,u,x3,y3] = K, , so G contains T K5 by Theorem 1.1. Thus
we may assume s1z3 ¢ E(G) or s1ys ¢ E(G). This implies |V(R*)| > 2 (as s; has degree at
least 5 in G). If [V(R*)| > 3 then |V(R1)| > 7; so by the symmetry between R; and Hjp, we
may assume |V(Hp)| > 7. Thus, we may assume R* = {s;,v}. Clearly v is adjacent to all
of {bo,b1,s1,23,y3}. If s100 ¢ E(G) or s1b; ¢ E(G) then syx3,s1y3 € E(G) by (4), and so
G[{s1,v,x3,y3}] contains K, ; if s1bg, s1b1 € E(G) then Glbo, b1, s1,v] contains K, . Hence G
contains T'K5 by Theorem 1.1, completing the proof of (7).

We may assume by symmetry that Sg, S1, 592, S3 end at x1,y1, y2, T2, respectively. If H; —s3
contains no disjoint paths from 3 to y3 and from s; to sg then by Corollary 2.3, (H; —
s3, T3, S1,Y3, S3) is planar, and G contains T'K5 by (7) and Corollary 2.9. So we may assume
such disjoint paths exist in H; — s3. These disjoint paths, (K — zoys3) U y123y2 U by Spz1 U
b1S1y1 U Sy, and three independent paths in G[R* + x3] from s; to x3,bg, b1, respectively (by
(6)) form a T K5 in G with branch vertices si,x1, x3, y1, yo. |

The next result will allow us to modify an existing x1-z2 path in H.

Lemma 3.2 Let Q be an x1-xo path in H and let B(Q) be a 2-connected block in H — Q.
Then G has a TKs, or H has an induced x1-xo path Q' such that H — Q' is connected and
B(Q) C H— @', or H has an induced x1-xo path Q' such that H — Q' is connected and
{y1,y2,y3} € N(B(Q")) for some 2-connected block B(Q') of H — Q.

Proof. Suppose for any induced z1-z path Z in H with B(Q) C H — Z, H — Z has at least
two components. We choose Z so that

(1) B(Z) is minimum.

Let C denote a component of H — Z such that B(Q)NC = 0. Let uj,us € N(C)NV(Z)
such that u; Zus is maximal, and we may assume x1,u;, u2, T2 occur on Z in order.
Then

(2) N(CU (w1 Zuz — {u1,uz})) = {u1,u2,y1,y2, Y3}

For, otherwise, since G is 5-connected, u; Zus—{u1, ua} contains a neighbor of some component
of H — Z other than C. We now use Lemma 2.1 to find a path P in G[C + {u1,u2}] from wu;
to ug. Let By ... By denote the chain of blocks in G[C + {uy, u2}] from uy to ug, with u; € By
and uy € By. Let C' be obtained from G[C U u; Zuy] by contracting G[C' U uy Zug] — Ur_, B;
to a single vertex u. Then C’ + ujus is 3-connected. So by Lemma 2.1, C’ + ujus contains an
induced cycle T such that uyus € E(T), uw ¢ V(T) and C' —T is connected. Let P := T —ujus.
Then G[C U ujZug] — P is connected. Let Q' := u1 Zx1 U P UugsZxe. Then @' is an induced
x1-79 path in H. Since (u3Zug — {uy,us}) N P = () and u1 Zug — {u1,us} contains a neighbor
of some component of H — Z other than C, we have 8(Q’) < 3(X), contradicting (1).

We may assume that

(3) H — Z has just two components, namely C' and the component D containing B(Q), and
if wi,wy € N(D)NV(Z) such that N(D) NV (Z) C V(w1 Zws) then u; Zuy C w1 Zws
and {u1,ua} # {wi, wa}.
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Let D be an arbitrary component D of H — X with D # C.

First, suppose D N B(Q) = 0. If u1Zuy C wyZwy then by (2) we have N(D) NV (Z) =
{wi,wa} = {u1,u2} = N(C)NV(Z). In G[C + {u1,u2,y1,y2,y3}] we apply Menger’s theo-
rem to find five independent paths Py, P, Ps, Py, P5 from some x € V(C) to uy,us, y1, Y2, Y3,
respectively. In G[D + {y1,y2}] we find a path P between y; and y2. Now (P, UwuiZz1) U
(Po UugZxo) UPLUP,UPUK is a TKs in G with branch vertices z,x1,x2,y1,y2. Thus
we may assume that u; Zus € wiZwsy. Then by (2) and by symmetry we may assume that
Z1, w1, w2, U, U2, To occut on Z in this order. By (2), we may use Menger’s theorem to find
in G[C UuyZus + {y1,v2,y3}] independent paths Pj, Py, P3, Py, P5 from some z € V(C) to
w1, u2, Y1, Y2, ys, respectively. If G[D UwyZwse + {y1, y2}] contains disjoint paths Q1, Q2 from
Y1, w1 0 Y2, we, respectively, then (P Uui ZwaUQoUwi Zxy)U(PyUugZry)UPLUP,UQ1 UK
is a TK5 in GG with branch vertices z, x1, T2, y1,y2. So assume that Q1, Qs do not exist. Then
by (2) and by Corollary 2.3, (G[DUwi Zwa+ {y1,y2}], y1, w1, Y2, ws2) is planar. By Lemma 3.1,
[V(D)UV(uiZzg — {ui,u2})| > 2. So it follows from Corollary 2.9 that G contains T K.

Therefore, we may assume that H — Z has only two components, namely C and D, and
B C D. If {wi,ws} = {ui,us} then the argument in the first half of the above paragraph
shows that G contains T'K5. Now suppose uj Zuy Z w1 Zwsy. Then by (2), we may assume that
T1, W1, W, U1, us occur on Z in order. The argument in the second half of the above paragraph
shows that G contains T K5, completing the proof of (3).

By (2) and (3), we may assume 1, w1, u1, U2, Wy, 3 occur on Z in this order. Note by (2)
that {ui,u2,y1,y2,y3} is a cut in G separating C' U uj Zug from D. By (3) and by symmetry,
we may assume that u; # w;. We now apply Lemma 2.1 as in the proof of (2) to find an
induced wi-wy path P in G[D + {w;, wa}] such that G[D U w;Xw;y] — P is connected. Now
let Z’ be obtained from Z by replacing wi Zwy with P. Clearly Z’ is induced, and H — 7’ is
connected. If G[C' U (u3Zug — ug)] is 2-connected, then it is the desired B(Q'). So suppose
G[C U (u1 Zug — uz)] is not 2-connected. By Lemma 3.1, every vertex in uj Zu; — {u1,us} has
at east two nighbors in C. So G[C U (u; Zuy — ug)] has an endblock, say C’, disjoint from
u1 Xugy — ug. Let v be the cut vertex of G[C U (u3Zug — ug)] contained in C’. Since G is
5-connected, y1,y2,y3 € N(C'). By Lemma 3.1, C’ is 2-connected. So C’ is the desired B(Q').
|

The next lemma says that we can choose X so that the minimum degree of H — X is at
least 2. In particular, H — X has a 2-connected block.

Lemma 3.3 Let X ne an induced xi-xo path in H such that H — X is connected. Then
K, C G, or H contains an induced x1-x2 path X' such that H — X' is connected, contains all
2-connected blocks of H — X, and has minimum degree at least 2.

Proof. For an arbitrary induced z1-x2 path Z in H for which H — Z is connected and contains
all 2-connected blocks of H — X, let «1(Z) denote the number of vertices of H — Z with degree
at most 1 in H — Z, and let ao(Z) denote the number of vertices of H — Z with degree at
least 2 in H — Z. We choose such Z that «1(Z) is minimum and, subject to this, as(Z) is
maximum. If ay(Z) = 0, then X' := Z is the desired path. So assume «;(Z) > 1, and let u
be a vertex of degree at most 1 in H — Z.

Since G is 5-connected, Lemma 3.1 implies that u has at least three neighbors on Z. Let
ui,uz € N(u)NV(Z) with u; Zus maximal, and we may assume that x1,uq, uz, 2 occur on Z
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in order. Let X’ = 21 ZujuusZxs. Clearly, X’ is an induced path in G, and all 2-connected
blocks of H — Z (hence those of H — Z) are contained in H — X'.

By Lemma 3.1, each vertex of uj Zus — {uy,u2} has at least 1 neighbor in H — Z — u. If
|u1 Zug| = 3 then Glui Zus +u] = K, . So we may assume |uj Zug| > 4. Then a1(X') < aq(Z)
and ag(X') > ae(Z), a contradiction. 1

Recall that we wish to find an induced path X in H from z; to x5 such that H — X
2-connected, which will be the work of the next two sections. But first we show that we can
find a 3-planar chain C' in H from x1 to x2 such that H — C is 2-connected, and we also need
H — C to have neighbors of as many y; as possible. This leads to the following notation:

Y(X) := max{|N(B) N {y1,y2,y3}| : B is a 2-connected block of H — X'},

and let B(X) denote a 2-connected block of H — X with |N(B(X)) N {y1,y2,y3}| = v(X).

By Lemma 3.3, we see that there exists induced x1-z2 path X in H such that H — X has
2-connected blocks. So v(X) and B(X) are defined for such X. Throughout the rest of this
paper, we choose X and B(X) so that the following are satisfied in order listed:

(1) v(X) is maximum,
(2) Hyi : IN(yi) " V(B(X))| > 2}, 1 <14 < 3}| is maximum, and
(3) B(X) is maximal.

When understood, we will simply refer to B(X) as B.
One lemma we need before proceeding is that if a (B U X)-bridge of H is not an edge then
it has at least two attachments on X.

Lemma 3.4 We may assume that H contains no 2-cut separating B U X from some vertex.

Proof. Suppose that {u,v} is a 2-cut in H separating B U X from some vertex. Let D denote
a {u,v}-bridge containing neither B nor X. Since H — X is connected and B is a 2-connected
block of H, we may assume that H has disjoint paths P,, P, from v,u to x € V(X),b € V(B),
respectively, and internally disjoint from B U D U X and v ¢ B. Since G is 5-connected,
{y1.y2,y3} € N(D — {u,v}).

We claim that {y1, y2,y3} C N(B). If D—u is 2-connected then this follows from Lemma 3.2
and the choice of X (as D —u C H — X). So we may assume that D — u is not 2-connected,
and let C' denote an endblock of D — u. Since G is 5-connected, {y1,y2,y3} € N(C). By
Lemma 3.1, we may assume that C is 2-connected. Hence, since C' C H — X, it follows from
Lemma 3.2 and the choice of X that {y1,y2,y3} C N(B).

By Lemma 3.1 we may assume that no two of {y1,y2,y3} share a common neighbor.
Thus, since B is 2-connected, G[B + {y1, y2,y3}] has two disjoint paths Q1, Q2 with ends in
{b,y1,y2,y3}. Without loss of generality, we may assume that @); is between y; and y and
Q2 is between y3 and b.

If G[D+{y1, y2, y3}] —u contains disjoint paths Ry, Ry from y1, y2 to v, y3, respectively, then
Q1UQ2U(R1UP)URUX UK is a TK5 in G with branch vertices x1, x2,y1, y2, y3. So we may
assume that such Ry, R2 do not exist. Then by Corollar 2.3, (G[D+{y1, y2, Y3} —u, y1, Y2, v, y3)
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is planar. By Lemma 3.1 we may assume that |V (D) — {u,v}| > 3. Hence G contains T K5 by
Corollary 2.9. |

In [3], it is shown that 4-connected graphs contain non-separating planar chains between
any two specific vertices. We now use a similar argument to show that H — B is a 3-planar
chain. We proceed by proving three lemmas.

Lemma 3.5 Suppose H has two connected subgraphs C,D such that |V(C N B)| < 1 and
V(DN B) <1, V(CNX) = {u,v} and V(DN X) = {u,v} or V(DN X) = V(uXv),
{u, v} UV (CNB) is cut in H separating C from BUD U (X —uXwv), and {u,v} U (V(DNB)
is a cut in H separating D from BUC U (X —uXwv). Then G contains T K.

Proof. Without loss of generality assume that x1,u, v, 2 occur on X in order. Let
Sc:={u, v} UV(CNB)U(N(C —{u,v} = V(CNB))N{y1,y2,y3})

and
Sp == {u,v} UV(DNB)U(N(D — {u,v} — V(DN B)) N {y1,ya,y3}).

Since G is 5-connected, |S¢| > 5 and |Sp| > 5.

We claim that |[N(B) N {y1,y2,y3}| > 2. Let A denote an endblock of C' — {u,v} and let
a € V(A) such that if A =C — {u,v} and CNB # ) thena € CN B, if A=C — {u,v} and
CNB=101let a e V(A) be arbitrary, and if A # C — {u,v} then let a be the cut vertex of
C —{u, v} contained in A. Since G is 5-connected, we see that |[N(A—a)N{y1,y2,y3}| > 2. By
Lemma 3.1, A is 2-connected. Hence the claim follows from the choice of X and Lemma 3.2.

By Lemma 2.4, G[C + S| contains five independent paths Py, Py, P3, Py, P5 from some
vertex w € V(C) to Sc such that V(PN Pj) = {w} for 1 <i# j <5, V(P) NSc| =1 for
1 <i<5, P, ends at u, and P, ends at v. By symmetry, we may assume that y; € P3 and
Y2 € Py.

If y1,y2 € Sp then G[D + {y1,y2}] — {u,v} contains a path @ between y; and y,; and
(PiUuXz)U(PoUvXxe)UPsUPLUQUK is a TK5 in G with branch vertices w, x1, z2, y1, yo.
Similary, if y1,y2 € N(B) then G[B + {y1,y2}]| contains a path @ between y; and yo; again
(PiUuXz)U(PoUvXxe)UPsUPLUQUK is a TK5 in G with branch vertices w, x1, z2, y1, yo.

Thus we may assume that y; ¢ Sp and {y1,y2} € N(B). Hence y2,y3 € Sp and |V(D N
B)| =1. Let d € V(DN B). By Menger’s theorem, G[D U Sp] contains five independent paths
Q1,Q2,Q3,Q4, Qs from some x € V(D) to u,v,ya,ys,d, respectively. If yo,y3 € N(B) then
G[B + {y2,y3}] contains a path R between y, and y3; so (Q1 UuXz1) U (QaUvXx1)UQQ3U
Q1URUK is aTK5 in G with branch vertices x, 1, T2, yo,y3. Similarly, if ys,y3 € So then
G[C +{y2,y3}] — {u,v} has a path R between y2 and ys; again (Q1 UuXx;) U (Q2 UvXxi)U
Q3UQsURUK is a TKs in G with branch vertices x, x1, X2, y2, Y3.

Hence we may assume that {y2,y3} € N(B) and {y2,y3} € Sc. Therefore, y;,ys € N(B)
and y3 ¢ Sc. Thus G[B+{y1,y3}] contains a path Ri3 between y; and ys3, and G[C'+{y1, y2}]—
{u,v}—V(CNB) contains a path Rys between y; and yo. If G[D+{y2, y3}] —d contains disjoint
paths Ry, Ry from u, yo to v, ys3, respectively, then RioUR13U R U (1 XuU Ry UvXaxo) UK is
a TKj5 in G with branch vertices x1, x2, Y1, Y2, ¥3. S0 we may assume that Ry, Ry do not exist.
Then by Corollary 2.3, (G[D+{y2,y3}]—d, u, y2, v, ys) is planar. Since ys,y3 € N(D—{d,u,v}),
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we may assume by Lemma 3.1 that |V (D)—{d, u,v}| > 2. So G contains T'K5 by Corollary 2.9.
]

Let B denote the set of B-bridges of H — X. For each D € B, V(B) N V(D) consists of
exactly one vertex, denoted by rp. For any z,y € V(X), we denote x < y if v € V(X [z1,y]).
If z <y and z # y, then we write ¢ < y. By Lemma 3.4, we may assume that, for each D € B,
D —rp has at least two neighbors on X. Let [p and hp denote the the neighbors of D —rp on
X such that Ip < hp and [pXhp is maximal. For each vertex u of H — X, we define u* = rp
if u € V(D) for some D € B, and v* = u if x € V(B). We say that a member D of B is a nice
bridge if there exist u,v € Ng(IpXhp — {lp,hp)) such that u,v ¢ V(D —rp) UV (X) and
u* # v*.

Lemma 3.6 There is no nice B-bridge in H, or G contains T K.

Proof. Suppose D is a nice bridge in H. There exist u,v € Ny(ipXhp — {lp,hp}) such
that w,v ¢ V(D —rp) U V(X)) and u* # v*. We now use Lemma 2.1 to find a path P in
G[D + {ZD,hD}] —rp from lp to hp.

Let Bj ... By, denote the chain of blocks in G[D+{lp, hp}|—rp from Ip to hp, with lp € By
and hp € By. Let C' be obtained from G[D Up Xhp| by identifying G[D UlpZhp] — Ule B;
to a single vertex w. Then by Lemma 3.4, we may assume that C’ + ujus is 3-connected. So
by Lemma 2.1, C' + ujug contains an induced cycle T' such that ujus € E(T), u ¢ V(T) and
C’—T is connected. Let P := T —ujuy. Then G[DUIpXhp|— P has at most two components
each containing rp or I(pXhp — {lp,hp}.

Let Q' := 21XIp U PUhpXxs. Then @' is an induced z1-z2 path in H and H — X' is
connected. However, H — X’ has a block properly containing B(X), contradicting the choice
of X. |

We say that two B-bridges C and D in B overlap if E(lcXhe) N E(IpXhp) # 0. Define
an auxiliary graph G with V(G) = B such that C, D € B are adjacent in G if, and only if, C'
and D overlap. The following lemma is similar to results in [2,3]. The difference is that we
need Lemma 3.5 here instead of 4-connectedness in [2,3].

Lemma 3.7 Let D1D2D3 be a path in G. Then |{rp, : i =1,2,3}| <2 or G contains TK.
Moreover, if D1D2Ds is an induced path in G then rp, = rp, or G' contains T K.

Proof. First, suppose D1DsDs3 is an induced path in G. Then D; and D3 do not overlap.
Thus we may assume lp, < hp, < Ip, < hp,. Moreover, Ip, < hp, and lp, < hp,. Let
u € V(Dy)—{rp, } such that uhp, € E(G) and let v € V(D3) —{rp,} such that vip, € E(G).
Clearly, u,v € Ng(lp,Xhp, — {lp,, hp,}), u,v & (V(D2) —{rp,}) UV (X), and v* = rp, and
v* =rp,. So by Lemma 3.6, rp, = rp, or G contains T K.

Now assume that D; and D3 overlap. By symmetry, we may assume that Ip, Xhp, is
not properly contained in Ip,Xhp, for i = 2,3. Then for each i € {2,3}, either Ip,Xhp, =
lDthD1; or lDl- S lDthDl — {lDl,hpl}, or hDi S lDthDl — {leth}- Therefore, by
Lemma 3.5 and by relabeling Dy, Do, D3 (if necessary), we may assume that there exist z €
V(lDthDl — {lDlath}) N N(D2 — TDZ) and Yy € V(lDthpl — {lDl,th}) N N(Dg — TD3).
Let u be a neighbor of z in Dy — rp,, and v be a neighbor of y in D3 — rp,. Then v* = rp,
and v* = rp,. By Lemma 3.6, we may assume u* = v*; so |[{rp, : i =1,2,3}| < 2. |
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Lemma 3.8 Let G;, i = 1,...,k, denote the components of the graph G. Then |{rp : D €
V(G)}H <2 foralli=1,...,k, or G contains TKj.

Proof. For suppose |[{rp : D € V(G;)}| > 3 for some 1 < i < k. Choose D1, D2, D3 € V(G;)
such that rp,,rp,, rp, are pairwise distinct and, subject to this, the connected subgraph of G;
containing {rp,,p,, D, }, denote by 7', has minimum number of edges.

Thus, 7 is a tree whose leaves must be contained in {Dy, D2, D3}. So we may assume that
Dy and D3 are two leaves of 7. Then by the minimality of 7, rp, # rp for j = 1,2 and for all
D € V(G;) — {D;}. Moreover, |T| > 4; otherwise, G contains T K5 by Lemma 3.7. Thus, D3
is not a leaf of 7; otherwise, 7 — D3 contradicts the minimality of 7. Therefore, 7 is actually
a path between D; and Ds. Hence, since |7| > 4 and |7 is minimum, 7 has a subpath of
length 2 with ends D; and D such that the path is induced in G and rp, # rp; so G contains
TKs5 by Lemma 3.7. ]

We are now ready to show that H — B is a 3-planar chain.
Lemma 3.9 H — B is a 3-planar chain from x1 to xo, or G contains T Ks.

Proof. Let G;,i =1,...,k, denote the components of the graph G. For each 1, UDev(gi) IpXhp
is a subpath of X; and let u; < v; denote the ends of this path. By Lemma 3.4, we may assume
u; < v; for all i. Let B; denote the subgraph of H — B that is the union of u; Xv; and D —rp
froall D € V(G;). Then B;N X;, i =1,...,k, are pairwise edge-disjoint, and no cut vertex of
B, separates w; from v;. By Lemma 3.8, |N(B; — {u;,v;}) N V(B)| < 2.

Suppose |V (B;)| > 3. Then B; is 2-connected. Since X is induced and H — X is connected,
|IN(B; —{u;,v;})NV(B)| > 1. If [IN(B; —{u;,v;})NV(B)| = 1 then by Lemma 3.5, B; —{u;, v;}
is connected. Now assume N (B; — {u;,v;}) N V(B) = {wy, w2}

We may assume that (G[B; + {w1,wa}] — wiwe, u;, w1, v;, ws) is 3-planar. For, otherwise,
it follows from Lemma 2.2 that B, := G[B; + {wi,w2}] contains disjoint paths P,Q from
u;, wy; to v;, ws, respectively. Let X’ be obtained from X by replacing u; Xv; by P. Then
B U Q is contained in a 2-connected block of H — X’. So by the choice of X, H — X’ is not
connected and hence, by Lemma 3.2, y1,y2,y3 € N(B). Let C denote a chain of blocks in
B! — @ from u; to v;. Since B; is 2-connected, B, — C' is connected. Let C’ be obtained from
B! 4 u;v; by contracting B, — C' to a single vertex u. Note that C” is 2-connected and C' — u
is 2-connected. Suppose C” is 3-connected. Then by Lemma 2.1, C’ contains an induced path
P’ from wu; to v; such that u ¢ P" and C' — P’ is connected. Let X” be obtained from X by
replacing u; Xv; by P’. Then H — X" is connected, and B U @ is contained in a 2-connected
block of H — X", contradicting the maxmimality of B. Thus, let {v,w} be a 2-cut of C’.
Since C' — u is 2-connected, u ¢ {v,w}. So {v,w} is a cut in B; + u;v;. Let A denote a
{v,w}-bridge of B; + u;v; (so that w;v; ¢ A). Since B; is 2-connected, B; contains disjoint
paths P,, P, from {u;,v;} to v, w, respectively. By choosing notation we may assume v; € P,
and u; € P,. Since G is 5-connected, y1,y2,y3 € N(A — {v,w}). So by Menger’s theorem,
G[A+{y1,y2}] contains four independent paths Py, Ps, P3, Py from some vertex x € A—{v,w}
from = to yi,y92,v,w, respectively. Let @ be a path in G[B + {y1,y2}] between y; and ysa.
Then PyUP, U (PsUP,Uv; Xxo)U(PyUP,Uu; Xx1)UQ is a TK5 in G with branch vertices
Z,T1,22,Y1,Y2-

We may assume that B; — {u;,v;} is connected. For suppose not, and let C7,Cy dneote
two components of B; — {u;,v;}. Since B; is 2-connected, {u;,v;} € N(Cj) for j = 1,2. So by
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the above claim we may assume that w; ¢ N(C2) and we ¢ N(C1). Now by Lemma 3.5, G
contains T K.
Therefore, H — B is a 3-planar chain. |

We adopt the following notation throughout the rest of this paper. Let D be a block in
H — B, and let up,vp € V(D N X) with upXvp maximal such that x1,up,vp, e occur on
X in order. If |N(D — {UD,UD}) N V(B)’ = 2, let N(D - {UD,UD}) N B(X) = {bD,CD},
and we say that D is a block (of H — B) of type I. If |[N(D — {up,vp}) N V(B)| = 1, let
N(D —{up,vp})NB(X) ={bp} and cp = bp, and call D a block (of H — B) of type II. Also,
let D" be obtained from G[D + {bp, cp}| by deleting edges from {bp,cp} to {up,vp}. Note
that D" — {bp,cp} = D which is 2-connected when |D| > 3.

4 Blocks of type I

The aim of this section is to show that if there is a block of type I in H — B, then G contains
TKs. So let D be a block of H — B of type I, and recall the notation for D', bp, cp,up,vp.
Also recall that D’ contains no edge from {bp,cp} to {up,vp}, bp,cp € B, and x1,up,vp, T2
occur on X in order.

We will be interested in the graph obtained from G[D’+{y1, y2,ys}] by identifying y1, y2, y3
as y. The idea is to apply Corollaries 2.11 and 2.12 to this graph; so we need it to be
(5,{bp,cp,up,vp,y})-connected. Thus, we need to know when D’ is not (4,{bp, cp,up,vp})-
connected.

Lemma 4.1 Suppose S is a minimal cut in D’ such that |S| < 3 and D' — S has a component
C' disjoint from {bp,cp,up,vp}. Then G contains TKs, or |S| = 3 and one of the following
holds:

(i) D — C contains a path P from up to vp such that S € V(P), or

(ii) SN {bp,cp,up,vp} = {vp}, and S — {vp} is a 2-cut in D' separating C + vp from
{bp,cp,up}, or

(i11)) S N{bp,cp,up,vp} = {up}, and S —{up} is a 2-cut in D' separating C + up from
{bp,cp,vp}.

Proof. Suppose D —C' contains no path from up to vp. Then let C1, Cy denote the components
of D — C containing up, vp, respectively. Since |S| < 3, [SNV(C1)| <1or SNV (Cy)| < 1.
Suppose [SNV(Cs)| < 1. Because D is 2-connected, we must have SNV (Cq) = {vp}, |S| = 3,
and bp,cp ¢ S. Note that bp,cp have no neighbors in C' and, in D', neither bp nor cp is
adjacent to vp. So S — {vp} is a 2-cut in D’ separating C' + vp from {bp,cp,up}, and (ii)
holds. Similarly, if |S N V(Cy)| < 1 then (iii) holds.

Thus we may assume that D — C contains a path P from up to vp. If S Z V(P), then (i)
holds. So we may assume that S C V(P) for any path P in D — C from up to vp.

Let s1,s89 € S with s1Psy maximal, and assume that up, s1, s2,vp occur on P in order.
Since (D', bp,up,cp,vp) is 3-planar, D’ is the union of two subgraphs Dy and Dy such that
DiNDy = P,bp € Dy and cp € Dy. Note that so = vp, or {s2,cp} is a 2-cut in Dy separating
vp from up; otherwise we can modify P inside D3 to avoid se. Similarly, sa = vp, or {bp, s2}
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is a 2-cut in D; separating vp from up. Since D is 2-connected, we must have so = vp. By
the same argument, we also have s; = up. Since S is minimal and C' is connected, C' C D1 or
C C Dy. However, as (D', bp,up, cp,vp) is 3-planar, {up,vp} must be a cut in D’ separating
bp from cp. Thus G contains T K5 by Lemma 3.5. |

The next result will allow us to assume that D" is (4, {bp, cp,up,vp})-connected.

Lemma 4.2 Suppose S is a minimal cut in D' and C is a component of D' — S such that
|S| <3 and V(C)N{bp,cp,up,vp} =0. Then G contains TKs.

Proof. Note that the minimality of S implies S C N(C'). We choose S and C' so that
(1) C is maximal.
Since D is 2-connected, |S — {bp,cp}| > 2 and there exist s,t € S — {bp, cp} such that
(2) D — (S — {s,t}) contains disjoint paths P, P” from s,t to up,vp, respectively.

By Lemma 4.1, we may assume that |S| = 3, and (i) or (ii) or (iii) of Lemma 4.1 holds.
Let S — {s,t} = {r}. Since G is 5-conected, |N(C) N{y1,y2,y3}| > 2. We may assume that

(3) |IN(B)N{y1,y2,y3}| > |N(C")N{y1,y2,ys}|, where C’ is any 2-connected endblock of C.
Moreover, [N(B) N {y1,y2, y3}| > 2.

First, suppose there is a path P in D — C from up to vp such that S € V(P), and let X’ be
obtained from X by replacing upXvp with P. Then C' C H — X’; so by Lemma 3.2 and the
choice of X, we have |[N(B)"{y1, y2,y3}| > |N(C")N{y1, y2,y3}| for any 2-connected block C” of
C. If C is 2-connected, then C" = C and hence |N(B) N {y1,y2,y3} > [N(C") N {y1,y2,y3}| > 2;
so (3) holds. Thus we may assume that C' is not 2-connetced. Let Cy,...,C} denote the
endblocks of C', where k > 2. Suppose |N(C;)NS| < 2 for some i. Then, since G is 5-connected,
IN(C;) N {y1,y2,y3}| > 2. Hence by Lemma 3.1, C; is 2-connected. So C; is contained in a
2-connected block of H — X', and (3) follows from the choice of X and Lemma 3.2. So we may
assume that |S| = 3 and S C N(C;) for i = 1,...,k. This implies that G[C + (S — V(P))]
is 2-connected, and hence is contained in a 2-connected block of H — X’. By the choice of X
and by Lemma 3.2, we have (3).

Now, suppose that there is no path in D — C from up to vp such that S € V(P). Then
by symmetry, we may further assume that S, C satisfy (ii) of Lemma 4.1. Then vp = t. Note
that bp,cp ¢ S, since D is 2-connected. Since G is 5-connected, |N(C) N {y1,y2,y3}| > 2. So
by Lemma 3.1, |V(C)| > 3.

We claim that vp = x2 and there is no path in H from zs to B internally disjoint from
BUX UC. For, otherwise, H — C contains a path X’ between 27 and x2 (which could use a
path in D — C from bp to up). So by Lemma 3.2 and the choice of X, |N(B)N{y1,y2,y3}| >
IN(C") N {y1,y2,y3}| for any 2-connected block C’" of C. Clearly, |N(B) N {y1,y2,y3}| > 2 if
IN(C") N {y1,y2,y3}| > 2 for some choice of C’. So assume |N(C") N {y1,y2,y3}| < 1 for any
choice of C’. Then C’ # C and S C N(C’) (since G is 5-connected); so G[C' + S| — vp is
2-connected and contained in H — X’. Tt follows from Lemma 3.2 and the choice of X that
IN(B) N {y1,y2,y3}] = 2.
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Note that S — {vp} is a 2-cut in D separating vp = zo from {bp,cp,up}. Let J dneote
the (S — {vp})-bridge of D containing vp = x2. Suppose J is not 2-connected, and let z be
a cut vertex of J. Since D is 2-connected, z must separate some r € S — {vp} from S — {r}.
By Lemma 3.4, the v-bridge of J containing r is induced by the edge rv. Let J’ be obtained
from J by deleting each vertex in S — {vp} that has degree 1 in J; then J’ is 2-connected. Let
T = {v1,v2} C V(J') be the cut of D separating T from {bp,cp,up}. Since G is 5-connected
and |C| > 3, we may assume y2,y3 € N(J' — {v1,v2,22}). So by Lemma 3.1, |V (J')| > 5.

Note that {v1,v2,y1,¥2,93} is a cut in G, and we can write G = G; U G5 such that
V(G1NGs) = {v1,v2,91,92,y3}, J' C G1, and B C Go. Since Gy — {v1,v2,91} is connected,
it contains three independen paths from some vertex u € V(G2) — V(G1) to x1,y2,ys, re-
spectively. Thus by Lemma 2.4, G2 has five independent paths Pi, P», P3, Py, Ps from u to
S = {v1,v2, 21, Y1, Y2, Y3} such that P,NP; = {u} for 1 <i# j <5, |V(P)NS'| =1,z € P,
Y2 € Po, and y3 € P3. We may assume that Py ends in {vy,v2}.

We may assume that y; € N(J' — {v1,v2,z2}). For, suppose not. Then {v1,vs, 22,93, y3}
is a 5-cut in G. Without loss of generality, assume vy € Py. If G[J' + {y2,y3}] — vo contains
disjoint paths Q1, Q2 from vy, y2 to x2, Y3, respectively, then Py U(P,UQ1)UP,UPsUQoUK is
a T Ky in G with branch vertices u, z1, T2, y2,y3. So we may assume such ()1, Q2 do not exist.
Then by Corollary 2.3, (G[J' + {y2,y3}] — va2,v1,y2,22,y3) is planar. So G contains T K5 by
Corollary 2.9.

We claim that for any v;, there exists {p, ¢} C {1, 2,3} such that G[J" + {yp, y4}] contains
disjoint paths from v;, y, to z2,y,, respectively. To prove this let J” be obtained from G[J' +
{y1,y2,y3}] by identifying y; and yo as y. If J” contains disjoint paths from v,y to xo,ys,
respecttively, then this claim holds for some p € {1,2} and ¢ = 3. Otherwise, by Lemma 2.2,
(J",v1,y,22,y3) is planar. Then since J' is 2-connected, we see that the claim holds for p = 1
and g = 2.

Now without loss of generality we may assume that G[J' 4 {y1, y2}] contains disjoint paths
R1, Ry from v1,ya to xa,ys, respectively. (The notation can be choosen this way so that we
can use the paths Py,..., P5 above.) If v; € Py for some k € {4,5}, then P, U (P, U R;) U
P,UPsU Ry UK is a TKs in G with branch vertices u,x1,Z2,y2,y3. S0 we may assume
vy ¢ Py U Ps. Hence we may further assume that vy € Py and y; € Ps. Now by the above
claim there exists {p,q} C {1,2,3} such that G[J" + {yp,y,}| contains disjoint paths R}, R}
from vg, yp to 2, Y4, respectively. Then PyU(PyUR))URUK and P,UPs (if {p, ¢} = {2, 3}),
or PbUPs (if {p,q} = {1,2}), or PsUDP; (if {p,q} = {1,3}) is a TK5 in G with branch vertices
u, 1,2, Y2, ys3. This completes the proof of (3).

(4) We may assume {y1,y2,y3} € N(C).

Suppose {y1,y2,y3} C N(C). Let " := S U {y1,y2,y3}

We may assume {y1,y2,y3} € N(B). For, suppose {y1,vy2,y3} € N(B). Since G[C +
{y1, s,t}] is connected, it contains three independent paths from some vertex u € C' to y1, s, ¢,
respectively. So Lemma 2.4 implies the existence of five independent paths Py, P», Ps, Py, Ps
in G[C + 5'] from w to S, such that V(P,NP;) = {u} for 1 <i # 5 <5, [V(P)NS| =1
for 1 <i <5, 91 € P, s € Ps,and t € P;. We may assume by symmetry (between ys and
y3) that P, ends at ys, and let @ denote a path in G[B + {y1,y2}] between y; and y2. Then
(PsUP' UupXax)U(PLUP"UvpXazo)UP,UPLUQUK is a TK5 in G with branch vertices
U, r1,22,Y1,Y2-
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If (i) of Lemma 4.1 holds, then let X’ be the path obtained from X by replacing upXvp
with P. We may assume that the paths P’ and P” are subpaths of P. Then G[C+r] C H—X'.
If G[C + r] is 2-connected then by Lemma 3.2 and the choice of X, {y1,y2,y3} C N(B), a
contradiction. So G[C + r| is not 2-connected. Let J be an endblock of G[C + r| and v be
the cutvertex of G[C + r] contained in J such that r ¢ J —v. If {y1,92,y3} € N(J —v)
then by Lemma 3.2 and the choice of X, we have {y1,y2,y3} C N(B), a contradiction. Hence
we may assume yi,y2 € N(J —wv) and y3 ¢ N(J —v); so s,t € N(J —v). By Menger’s
theorem, G[J + {s,t,y1,y2}] contains five independent paths Q1,Q2, @3, R4, Q5 from some
u € V(J —v) to y1, 9, s, t,v, respectively. Since y3 € N(C) we see that P; can be extened
through G[C — (J —v) +ys] to a path Qf ending at y3. If y1,y2 € N(B) then let Q be a path in
G[B+{y1,y2}] between y; and yo; now Q1 UQ2U(Q3UP' UupXx1)U(QsUP"UvpXz9) UQUK
is a TK5 in G with branch vertices u,z1,22,y1,y2. So we may assume that by (3) that
¥i,ys € N(B) for some i € {1,2}. Let Q' be a path in G[B+ {y;,y3}| between y; and y3. Then
QiUQsU(QsUP UupXz1)U(QsUP"UvpXae)UQ UK is a TK5 in G with branch vertices
U, T1, T2, Yi, Y3-

Therefore, we may assume by symmetry that (ii) of Lemma 4.1 holds. So t = vp. Without
loss of generality and by (3), assume yi,y2 € N(B). Note that G[C + {t,y1,y2}] contains
independent paths from some u € V(C) to yi,y2,t, respectively. So by Lemma 2.4, G[C +
{r,s,t,y1,y2,y3}] contains five independent paths Q1,Q2, Q3, Q4, Q5 from u to S’ such that
V(QiﬂQj) ={uffor 1 <i#j<5|V(Q)NS|=1forl1<i<5 1y €Q1, y2 € Qa,
and t € Q3. We may assume that Q4 ends at v € {r,s}. Since D is 2-connected, D — C
contains a path R from v to up. Let @ be a path in G[B + {y1, y2}] between y; and y,. Then
Q1UQ2U (QsUvpXxe) U (QeURUupXx)UQUK is a TKs in G with branch vertices
U, L1, T2, Y1, Y2-

By (4), let y1,y2 € N(C) and y3 ¢ N(C). Since G is 5-connected, C" := G[C + (S U
{y1,y2})] is (5,5 U {y1,y2})-connected. By Menger’s theorem, C’ contains five independent
paths Pi, P», P35, Py, Ps from some vertex z € C' to y1,yo, s, t, 7, respectively.

If y1,y2 € N(B), then G[B + {y1,y2}| contains a path A from y; to y2. So by (2),
PUP,U(PsUP UupXx1)U(PyUP"UvpXaxe)UAUK is a TK5 in G with branch vertices
T1,22,Y1, Y2, 2.

Hence we may assume that y; ¢ N(B). Hence by (3), y2,y3 € N(B). Let @ denote a path
in G[B + {y2,ys}] between y, and ys.

(5) We may assyme y3 ¢ N(D — {up,vp}).

Suppose y3 € N(D — {up,vp}). First, assume that G[D — C + y3| contains disjoint paths
Q1,Q2,Q3 from S to up,vp,ys, respectively. Since we will not use P’, P” in this subscase,
we have symmetry among r,s and t. So we may assume that s € ;1 and t € (2. Then
PuU (P5 U Qg) U (P3 U@ U uDXml) U <P4 UQo U UDXxQ) UQUK is a TK5 in G with branch
vertices x1, X2, Y2, Y3, 2.

So we may assume that G[D — C + ys3] has a minimal cut T, |T'| < 2, separating S from
{up,vp,y3}. So T is a cut in D separating C' + S from {up,vp}. Since D is 2-connected,
ys ¢ T and |T| = 2. Let D; denote the T-bridge of D containing C' (so Dy — T is connected),
and let Dy denote the minimal union of T-bridges of D containing {up,vp} (so D consists
of at most two T-bridges of D).
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If neither bp nor cp has a neighbor in D; — T, then T is a cut of D’ separating D from
{bp,cp,up,vp}; so T U{yy,y2} is a cut in G, a contradiction. Hence, we may assume that
bp has a neighbor in D; —T.

If ¢p has no neighbor in Dy — T then T U {bp} is a minimal cut of D’ separating D; from
{bp,cp,up,vp}; so TU{bp}, D1 contradict the choices of S,C in (1). Hence we may assume
that cp also has a neighbor in Dy — T

Then G[Dy — T + {bp, cp}] contains a path from bp to ¢p. Since (D', bp,up,cp,vp) is
3-planar, it contains no disjoint paths from bp to ¢p and from up to vp. Hence, up and
vp belong to different components of Dy, and this contradicts the 2-connectedness of D and
completes the proof of (5).

Observing the symmetry between bp and cp, we may assume that ys has a neighbor
yh € B —bp. Let y5 be a neighbor of y3 in B.

(6) We may assume that D’ — ¢p has disjoint paths Rj, Ry, Rs from up,vp,bp to s,t,r,
respectively.

Note that we will not be using P’ and P”, so we have symmetry among vertices in S. So
if (6) fails then there is a minimal cut T in D’ — ¢p, with |T'| < 2, separating C' U S from
{bp,up,vp}. Then T or T'U{cp} contradicts the choice of S in (1).

(7) We may assume N(y3) C upXz1 UvpXze U {ys}.

Since y3 has no neighbor in D — {up,vp}, G — {y1,y2} has a path R from y3 to a vertex
ys € (B —yh) U (upXxy — 1) U (vpXxe — 22) and internally disjoint from D' U B U X. If
y4 € B — yh, then G[B U R + {y2,y3}] has independent paths Q1, Q2 from y3 to bp and ya,
respectively; so PQU(P5UR3UQ1)U(P3UR1 UUDX$1)U(P4UR2UUDX$2)UQ2 UK isaTKs
in G with branch vertices x1, x2, y2,y3, 2. Thus we may assume that y4 ¢ B —y} for any choice
of R. Soys € X, R=vysys (as H — X is connected), and N(y3) C upXz1 UvpXze U{ys}.

(8) We may further assume that H — B has a 2-connected block F' such that y3 € N(F),
ys € {bp,cr}, and z1,up,vp, up,vp, x2 occur on X in order.

By (7) and by symmetry, we may assume that ys3 has a neighbor y4 € upXx; —x;. If y3 €
N (up) then we find independent paths Li, Ls in G[D+ys] from up to ya, vp, respectively; now
upXx1U(LoUvpXae)ULUupysUQUK is a TKj5 in G with branch vertices up, 21, 2, y2, y3-
Thus we may assume that y3 has a neighbor y4§ € V(upXx1 — {up,z1}).

Since X is induced, H — D has a path R from y5 to B internally disjoint from B U X.

We claim that R must end at y and we may choose R to be a path of length at least 2.
First, we may assume that C’ — y; has disjoint paths L, Ly from s,r to t, ys, respectively; for
otherwise, (C' — y1,7,$,y2,t) is not planar by Corollary 2.3, and hence G contains T K5 by
Corollary 2.9. If G[BUR'+{y2, y3}] has disjoint paths M, M from y4, y3 to y2, bp, respectively,
then My Uyg’y;gUyg’X:clU(yg’XuDURlULl URQUUDXl'Q)U(MQURgULQ)UK isaTKj5 in G with
branch vertices 1, z2, Y2, y3,y4. If GIBUR'+{ys2,y3}] has disjoint paths Ny, Ny from y5, y3 to
bp, y2, respectively, then (N1UR3ULg)Uy4ysUys X a1 U(y4 XupUR UL URyUvp X ae) UNUK
is a TK5 in G with branch vertices 1, 2,92, ¥3,y5. So we may assume that M, My do not
exist, and N, Ny do not exist. Therefore, R must end at y5. Moreover, we may choose R to
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be a path of length at least 2; as otherwise there are two edges from y4 to B, and M;, My or
N1, Ny would exist.

Note that R — y5 is contained in a 2-connected block F of H — B, and let bp, cp, up,vp be
defined as before; so y5 € {bp,cr}. Then z1,up,vp,up,vp,xs occur on X in order.

By (7) and (8), let w denote a neighbor of y3 € N(F) in upXvp — {up,z1}. We may
assume that

(9) w ¢ {ur,vr}.

Suppose w € {up,vr} for any choice of w. Then y3 ¢ N(F —{up,vr}). Hence we may assume
that y1,y2 € N(F — {up,vr}), which follows from 5-connectedness of G when bp = cp, or
from the planarity of (F',bp,up,cp,vr) when bp # cp (as otherwise G contains T'K5 by
Corollary 2.9).

Let S" := {bp,cp,up,vp,y1,y2}. Since G[F + y1] is connected, it contains three indepen-
dent paths from some vertex u € F—{up,vp} to up,vp,y1, respectively. Since G[F'+{y1, y2}]
is (5,.5")-connected, it follows from Lemma 2.4 that G[F’ 4 {y1, y2}] contains five independent
paths Wiy, Wy, W3, Wy, W5 from w to S’ such that V(W; N W;) = {u} for 1 < i # j < 5,
VW) NnS|=1for1<i<5 up € Wi, vp € Wy, and y; € W3. Without loss of generality,
we may assume that Wy ends in {bp,cr}. Thus Wy can be extended through G[B + ys] to a
path W) ending at ys.

If C"—r contains disjoint paths L1, Ls from 41, s to yo, t, respectively, then W3 UW,;U (W7 U
upXx)U(WoUvpXupUR1ULyURyUvpXag)ULi UK is a TKs in G with branch vertices
u,T1,T2,Y1,Y2. Thus we may assume that Lq, Ly do not exist in C' — r. By Corollary 2.3,
(C" —r,y1,8,y2,t) is planar; so G contains T K5 by Corollary 2.9.

By (9), we may assume that w € F — {up,vp}. Let S’ := {bp,cp,up,vp} U (N(F —
{up,vr}) N {y1,92}). It is clear that G[F' + S’] is (4,5’)-connected. Also note that F' has
independent paths from w to up,vp, as it is 2-connected. So by Lemma 2.4, G[F' + 5’
contains four independent paths Wi, Wa, W3, Wy from w to S’ such that V(W; N W;) = {u}
for 1 <i#j <4, |[VW;)NS|=1forl<i<4, up € Wy and vp € Wy. Without loss of
generality, we may assume that bp = y4 and cp ¢ Ws.

If W3 ends at yg, then wys UWs U (W UupXz) U (WoUvpXz) UQUK isa TKs in G
with branch vertices w, x1, x2,y2,y3. (Recall that @ is given before (5).)

Now assume that W3 ends at y;. If C' — yo has disjoint paths Lq, Ly from r,s to yi,t,
respectively, then let @' denote a path in G[B + y3] between bp and ys; so wys U W3 U (W U
upXx1)U(WoUvpXupUR1ULsURyUvpX2o)U(Q'UR3UL )UK is a TKj in G with branch
vertices w, x1, T2, Y1,y3. S0 we may assume that L1, Ly do not exist. Then by Corollary 2.3,
(C" — ya,7,8,91,t) is planar; so G contains T K5 by Corollary 2.9.

We may thus assume that W3 ends at by = y5. Recall that y5 # bp. In G[B + y2] we
find independent paths Q1, Q2 from br to bp, ya, respectively. Then yzys UWsUysw U (z1y2 U
QQ) Uxiys U (aleuF U Wl) U (xlyl U Pl) U (P5 UR3U Ql) U (Pg URiUupXvpU WQ) U (P4 U
Ry UvpXxoUmays) is a TK5 in G with branch vertices w, z1, ys3, yg, Z. |

Let D* be obtained from G[D’ + {y1,y2,y3}| by identifying y1,y2, y3 to a single vertex y,
and let A* := {y,bp,cp,up,vp}. Recall that D’ does not contain edges from {bp,cp} to

{up,vp}, and note that
(D* —y,bp,up,cp,vp) is planar.
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So we may assume
IN(D — {up,vp}) N {y1, 92, y3}| > 2;

as otherwise, G contains TK5 by Corollary 2.9. By Lemma 3.1, |D| > 4; so |D*| > 7. By
Lemma 4.2, we may assume that

D* is (5, A*)-connected.

Let C' denote the facial walk of D* — y containing A* — {y} and assume that it is the outer
walk of D* —y. Then C is a cycle, or bp (or ¢p) has degree 1 in C' and C' —bp (or C —c¢p) is
a cycle, or bp, cp both have degree 1 in C and C' — {bp,cp} is a cycle.

We now show that there exist paths in D* as shown in Corollaries 2.11 and 2.12.

Lemma 4.3 G contains TKs, or there exist a vertex w € D* — A* and a cycle Cy, in D* —y
such that Cy, consists of all vertices of D* —y cofacial with w, and one of the following holds:

(1) w is a neighbor of y and D* — y has three independent paths Py, Py, P3 from w to
{bp,cp,up,vp} such that V(P; N Pj) = {w} for 1 <i < j <3, and |V(P,NCy)| =
[V(P)NA* =1 fori=1,2,3.

(2) y has no neighbor in D* — C, C N Cy = 0, and D* — y has four independent paths
P1, Py, P3, Py from w to A* such that V(P;NPj) = {w} for1 <i<j <4, |V(PNCy)| =
V(P) N A*| =1 for 1 < i < 4, and either (a) y ¢ Ui, P;, or (b) y € Ui, P; and
we can write A* — {y} = {a1,a9,a3,a4} such that a € Py, a; € P; for i = 2,3,4,
ai,as, a3, P NC, ayq occur on C in cyclic order.

Proof. If D* has a 5-separation (F1, Fy) such that {y,bp,cp,up,vp} C Fy and |Fy| > 7, we
choose (F1, F») so that F» is minimal and let A := V(F}) N V(Fy); otherwise let Fy = D*
and A := {y,bp,cp,up,vp}. By the minimality of F», A is independent in Fy and Fy — y is
2-connected. We may assume y € A; for, otherwise, since (Fy, A) is planar, G' contains T K
by Lemma 2.6.

By Menger’s theorem, there are four disjoint paths in F} —y from A — {y} to A* — {y},
which allows us to extend the paths we will find in F5 to the desired paths in D*. Let C’
denote the the outer cycle of Fo — y, which contains A — y. We may assume D* — y contains
no K, as otherwise G contains K , and hence G contains T K5 by Theorem 1.1.

If y has a neighbor inside C’, say w, then (1) follows from Corollary 2.11 (after appropriate
extension of the paths to A*). Hence we may assume that C’ contains all neighbors of y in
F,. If F; is not the exceptional graph in Corollary 2.12, then (2) follows from Corollary 2.12
(after appropriate extensions of the paths to A*).

So we may assume that F is the exceptional graph. Let A = {¥/,,v/,v'} and tuvwt be
the cycle in Iy — A such that C' = Vtv'udvu/wb’, and let Q1,Q2, @3, Q4 be disjoint paths in
Fy —y from V', ,u',v" to bp, cp,up,vp, respectively.

Since G is 5-connected and by Lemma 3.1, each of {¢,u, v, w} has exactly one neighbor in
{y1,y2,y3}. Since G contains no K, , we may assume by symmetry that y3 € N(u) N N(w)
and that either yo € N(t) N N(v) or y; € N(v) and y2 € N(t).

Suppose ya € N(t) N N(v). Then by Lemma 3.1, y; ¢ N({t,u,v,w}). Note that G’ :=
G —{t,u,v,w, y2,ys} contains two paths Ry, R from V' to {¢/, v ,v'} such that Ry N Ry = {b'};
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for otherwise, G’ has a cut T, |T| < 1, separating &’ from {c/,u/,v'}, and so {V/,y2,y3} UT
would be a cut in G, contradicting 5-connectedness of G. Clearly, Ry, Ro can be extended,
using «'v or dv and v'u or du, to give independent paths R}, R, in G — {t,u, v, w, y2,y3} from
b’ to u,v, respectively. Now b't Ubw U R} U R, U tuvwt U tysv U uysw is a TKs in G with
branch vertices V', ¢, u, v, w.

Thus we may assume that y; € N(v) and y2 € N(t). Note the triangle b'twb’ is contained
in a block of H — (21 Xup U Q3 Uu'vuv’ U Qs UupXxs) and has two neighbors in {y1,y2, y3}.
So by Lemma 3.2 and by the choice of X, |[N(B) N {y1,y2,y3}| > 2. If y1,y2 € N(B) then let
Q@ be a path in G[B + {y1,y2}] between y; and y2; now (twu' U Q3 UupXx1) U (tv' U Qyq U
vpXx2) U (tuvyy) Uty U Q U K is a TKy in G with branch vertices t,x1,x2,y1,y2. So by
symmetry we may assume that yo,y3 € N(B). Let R denote a path in G[B+ {y2, y3}] between
yo and y3. Then (tuvu' UQsUupXxi)U (v UQqUuvpXaxe) Utwys Uty URUK is a TKj in
G with branch vertices t, x1, z2, y2, y3. |

Lemma 4.4 Suppose D* contains w,Cy,, Pi, Pa, Py which satisfy (1) of Lemma 4.3. Then G
contains T K.

Proof. Without loss of generality, we may assume that y;w € E(G). Let L =C, U P, U P, U
P3; Uyjw. We may assume that

(1) We may assume that {bp,cp} C L, and vp € L (by symmetry).

If {up,vp} C L, then (1) holds by letting vp € L using symmetry between up and vp. So
assume {up,vp} C L. By symmetry, we may assume bp € L.

We may assume that 1 = up and x9 — vp. Otherwise, we may assume by symmetry that
1 # up. Then H has a path Q from z; to bp and internally disjoint from X U D’. Now
LUQUzxiyy Uz Xup U (z1y222 U9 Xvp) is a TKs in G.

If |V (22Cyx1)| = 2 then z122 € E(G); so Glx1,z2,y1,Y2] = K, and G contains T K5 by
Theorem 1.1. So we may assume that |V (x2Cyz1)| > 3.

Suppose w has no neighbor in 29Cyx1 —{z1, z2}. Since D* is (5, A*)-connected, {1, x2,cp}
cannot be a cut in D separating {bp,cp,z1,z2} from some vertex. Therefore, xoCy,z1 =
xzocpxi. As D is of type I, cpw € E(G). Now G[{cp,w,z1,22}] = K, , and G contains T K5
by Theorem 1.1.

Therefore, we may assume that w has a neighbor w’ € x9Cyyx1 — {x1,22}. If D contains a
path @ from w’ to c¢p and internally disjoint from C,,, then replacing the path in L from w to
up with @ + {w, ww'} we get (1). So we may assume that such @ does not exist. Then since
(D* — y,bp,up,cp,vp) is planar, there exist u € V(w'Cypx; —w') and v € V(22Cpw’ — w')
such that {u,v,w} is a cut in D separating {bp,cp,z1, 22} from w’, contradicting the fact
that D* is (5, A*)-connected.

(2) z1 ¢ Cy.

For if 21 € Cy, then LU x1y1 U (21y222 U 29X vp) and a path in B between bp and ¢p form a
TKs5 in G with branch vertices w, z1 and P; N Cy, i = 1,2, 3.

(3) We may assume that D —up and D —vp are 2-connected, and D' — {up,vp} is a chain
of blocks from bp to cp.
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First, suppose D — up is not 2-connected. Then let C be an endblock of D — up and v be
the cut vertex of D — up contained in C such that vp ¢ C — v. Since D is 2-connected,
up € N(C —v) and up € N(D — up — C). In particular, D — (C' — v) contains a path from
up to vp. Thus, since (D', bp,up,cp,vp) is planar, bp ¢ N(C —v) or ¢cp ¢ N(C —v), say
the former. Then {cp,up,v} is a cut in D’ separating C' from {bp, cp,up,vp}, contradicting
the assumption that D* is (5, A*)-connected.

Thus we may assume that D — up is 2-connected. Similarly, we may also assume that
D — vp is 2-connected.

By the definition of planar chain, D—{up,vp} is connected. So D'—{up,vp} is connected.
Now suppose D' —{up,vp} is not a chain of blocks from bp to ¢cp. Then let C' be an endblock
of D'—{up,vp} and v be the cut vertex of D —{up,vp} such that D' —{up,vp}—(C —v) has
a path between bp and cp. Then {up,vp,v} is a cut in D’ separating C from {bp, cp,up,vp},
contradicting the assumption that D* is (5, A*)-connected.

(4) We may assume up = z1, and H contains no path from z; to B internally disjoint from
BUD UX.

Suppose (4) fails. Note that if up # x; then H contains a path from z; to B internally disjoint
from BU D' U X. So let R be an arbitrary path in H from z; to # € V(B) and internally
disjoint from B U D' UvpXzs.

Suppose z may be choosen so that there exists some y; € N(B — x). Then G[B U R + y;]
contains disjoint paths @1, Q2 from {bp,cp} to x1,y;, respectively. Recall 1 ¢ C,, from (2).
If i = 1 then (y121 U Q1) U Q2 U (y12 UxeXvp) U L is a TKs in G. So assume i # 1. Then
Q1 U (a:lyi U Qz) Uziyp U (x1y5_¢m2 U JZQXUD) ULisaTKsin G.

Therefore, we may assume that = is unique and y; ¢ N(B — z) for all i = 1,2,3. So by
Lemma 3.1, |N(B) N {y1,y2,y3}| < 1. If H has a path from z2Xvp to B internally disjoint
from BU D’ U X, then H has a path from x1 to x5 disjoint from D — vp; so by Lemma 3.2
and the choice of X, |[N(B) N {y1,y2,y3}| > |N(D —vp) N{y1,y2,y3}| > 2, a contradiction.

Thus we may assume that H has no path from zoXwvp to B internally disjoint from
BUD' UX; so x9 =vp. Since {bp, cp,up,x} cannot be a cut in G, we see that |B| = 3 and
x ¢ {bp,cp}. Since x has at least three neighbors outside B, G—D’ contains independent paths
Q1,Q2 from x to x1,y;, respectively, for some i € {1,2,3}. If i = 1 then (Q1 U z1y222) U Q2 U
(B—bpcp)ULisaTKs in G5 and if i # 1 then (Q1Uz1y2)U(Q2Uy;x2Uxe Xvp)U(B—bpep)UL
isaTKsin G.

(5) We may assume that y; ¢ N(B — {bp,cp}) and |[N(y1) N B| < 1.

First, suppose |N(y1) N B| > 2. Then G[B + y;| has two independent paths @1, Q2 from y; to
bp, cp, respectively. So Q1 U Q2 U (y122 UxeXvp)U Lis a TK5 in G.

Now let y € N(y1) N V(B — {bp,cp}). Since G is 5-connected, zoXvp + {y2,y3} has a
neighbor in B —{bp,cp}. If GIBUxoXvp + {y2,y3}] has three independent paths Q1,Q2, Q3
from y to bp,cp,xaXvp + {y2,y3}, respectively, then we may assume @3 ends at vp; now
Q1UQ2UQ3Uyy; ULisaTKsin G. So we may assume that such @1, Q2, @3 do not exist.
Then there is a 2-cut S in G[BUz2Xvp + {y2,ys}| separating y from bp, cp, zaXvp + {y2,ys3}.
Since B is 2-connected S C B. But then by (4), SU{y1} is a 3-cut in G, a contradiction.
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Let S := {bp,cp,y2,ys} UV (22Xvp). Then by (4) and (5), G' := G —y1 — (D —vp) is
(5,5)-connected, and G' — {y2,y3} contains a path from B to v € V(29Xvp) and internally
disjoint from X. We choose v so that vXvp is minimal. Note that G’ —{y2, y3} — (22 Xvp —v)
has independent paths from some u € V(B) — {bp,cp} to bp,cp,v, respectively. So by
Lemma 2.4, G — {x1,11} — D" contains five independent paths Q1,Q2,Q3, Q4, Q5 from u
to bp,cp,v, 21, 22, respectively, where z1,29 € S — {v} such that [V (Q;)NS|] =1 for 1 <
i < 5. If v # x9 then Q4 can be extended through G[(z2Xv — v) + {y1,92,y3}] to a path
Q) ending at y1; so Q1 U Q2U (Q3 UvXvp)UQ, UL is aTKs in G. So assume v = z3.
Then by the minimality of vXwvp, we see that z1 € {y2,y3}, sat z1 = y2. Now by (2),
(Q1UQ2U(Q3sUvXvp)U (QaUyex1y1) UL is a TKs in G. |

Lemma 4.5 Suppose D* contains w,Cly, Py, P, Ps, Py satisfying (2) of Lemma 4.3. Then G
contains T K.

Proof. Let L =Cyp, UPLUP,UP3sUPy. If y ¢ L then L, upXx; Uziy122 Ux2Xvp and a
path in B between bp and c¢p form a T K5 in G. So we may assume that y € P;. Since D* is
(5, A*)-connected, D" is (4,{bp,cp,up,vp})-connected. Recall that (D* — y,bp,up,cp,vp)
is planar. Let C' denote the outerwalk of D* — y; note that C is a cycle, or C'— bp is a cycle
and bp is of degree 1 in C, or C' — ¢p is a cycle and ¢p is of degree 1 in C, or C' — {bp,cp}
is a cycle and both bp and cp have degree 1 in C. Without loss of generality we may assume
that bp,up,cp,vp occur on C' in couterclockwise order.
Recall that C,, N C = @. We have two cases: up,vp € L, or bp,cp € L.

Case 1. up,vp € L

By symmetry, we may assume that up € P», bp € P3, and vp € P,. Without loss of
generality we may view P; as a path in G with y; € P;. Further, we may assume by symmetry
that ¢p,up,bp, Pr N C,vp occur on C in clockwise order.

We may assume that zo = vp, H has no path from z9 to B internally disjoint from
BUDUX, and N({y2,y3}) € DU X. For, otherwise, G — y; has a path @ from vp to bp
disjoint from (D —vp)Uup Xz, and LUQ U (y121 Uz1Xup) is a TK5 in G.

Then up # x1; as otherwise {bp,cp,x1,y1} would be a 4-cut in G. Hence H contains a
path X from z; to some 2} € V(B) and internally disjoint from X U BU D’.

We may also assume N(y;) € BUD U {z1,x2}. Otherwise, G — {y2,y3} contain a path P
from y; to up Xz, — 21 and internally disjoint from BU X U D’. Now P U X; UBUupXz
contains disjoint paths from z1,y1 to bp,up, respectively, which, together with L U z1y2x2,
forms a TK5 in G.

Suppose ¥2, y3 have neighbors u, v, respectively, in up Xx1 — x1. Without loss of generality
let x1,u,v,up occur on X in order. Since H — X is connected and |N(u) N {y1,y2,y3}| <1
(by Lemma 3.1), u has a neighbor in B or there is a path in H from u to B internally disjoint
from X U B. Thus H contains a path @ from u to bp internally disjoint from X U D’. Now
LU (zayouU Q) U (y1z1y3v UvXup) is a TKs in G.

So we may assume that N(y3) C D' U {1, x2}.

We may assume that yo has a neighbor in upXx; — {z1,up}, say u, and choose u so that
uX ) is minimal. For, otherwise, {bp,cp,up,z1,y1} is a cut in G separating BUup Xz from
D’. Let G; denote the {bp,cp,up,x1,y; }-bridge of G containing B UupXxzy. If G1 — ¢p
contains disjoint paths @1, Q2 from bp,up to x1,y1, respectively, then L U (Q1 U z1y222) U Q2
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is a TK5 in G. Hence we may assume that such paths do not exist. Then by Corollary 2.3,
(G1 — cp,bp,up,z1,y1) is planar. It follows from Corollary 2.9 that G contains T' K.

We may assume that y; has a neighbor in B — {bp,cp}. For, if y; has no neighbor in
B — {bp,cp}, then {bp,cp,up,x1,y2} is a cut in G separating B U upXx; from D’. Let
G1 denote the {bp,cp,up,x1,y2}-bridge of G containing B U upXzi. If G; — ¢p contains
disjoint paths Q1,Q2 from bp,up to ya,x1, respectively, then L U (Q1 U yax2) U (Q2 U x1y1)
is a TK5 in G. Hence we may assume that such paths do not exist. Then by Corollary 2.3,
(G1 —cp,bp,up,y2, 1) is planar. So by Corollary 2.9, G contains T' K.

We may further assume that D is the only block of H — B that is 2-connected. For,
suppose F' is another block of H — B that is 2-connected. Since N(y1) € BU D U {x1,z2}
and N(y3) € D' U{x1,22}, bp # cp and {bp,cp,up,vp,y2} is a cut of G separating F' from
BUD. Now G[F' +ys] is (5, {br, cp,up,vp, y2})-connected, and (F’,bp, up,cp,vp) is planar.
Hence G contains T'K5 by Corollary 2.9.

In particular, this and Lemma 3.4 allow us to assume that all (B U X)-bridges of H not
contained in D’ are induced by edges between B and upXx.

Subcase 1.1. N(y2) — {u,x1,22} € vpCep.

In G[B + {u,y1}] we find two independent paths Q1, Q2 from u to y1, cp, respectively.

Suppose y2 has a neighbor in D’ — vpCcp. Note that, because of Pi, y; has a neighbor
on bpCvp — {bp,vp}. So by planarity and since D’ is (4, {bp, cp, up,vp})-connected, G[D +
{y1,y2}]—vpCpecp contains a path Q from y; to y2. Now Q1U(Q2UvpCep)JuX x1Uuys UQUK
is a TK5 in G with branch vertices w, x1, x2, Y1, Yo-

Now assume that yo has a neighbor v in upXx; — 21 and v # u. Then v € upXu —
uw by the minimality of uXx;. Again, by planarity and since D is 2-connected and D’ is
(4,{bp, cp,up,vp})-connected, G[D + {y1,y2}] — bp — vpCpcp contains a path Q' from y,
to up. Now Q1 U (Q2 UvpCep) UuXz; Uuys U (Q UupXvUwvys) UK is a TKs in G with
branch vertices u, x1, x2, Y1, yo.

Subcase 1.2. N(y2) — {u,z1,22} CvpCep.

Let v be the neighbor of y; in P; and let v be the neighbor of ys in vpCcp with vaCcp
maximal (so |V (vpCuv2)| > 3).

Since D' is (4,{bp,cp,up,vp})-connectced, D' has no 2-cut {s1, s2} separating vp from
{bp,cp,up}, with s; € bpCvy and sy € v2Ccp. Thus by planarity D’ contains three disjoint
paths Q1,Q2, Q3 from vi,ve,vp to bp,cp,up, respectively. If G[B + {y1,u}| has disjoint
paths Ry, Re from y1,u to ¢p,bp, respectively, then uXxz; U (uXup UQ3) Uuys U (ReUQ1 U
v1y1) U (R1 U Q2 Uwoys) UK is a TK5 in G with branch vertices w, z1, 2, y1,y2. So we may
assume Rj, Ro do not exist. Then by Lemma 2.2, (G[B + {y1,u}],y1,u,cp,bp) is 3-planar.
Hence G[B + {y1,u}] contains disjoint paths L1, Ly from y1,bp to u,cp, respectively. Then
uXx1 U (UX’LLD U Qg) Uuys ULy U (ywl UQRiULyUQoU Ugyg) UK is a TK5 in G with branch
vertices u, x1, T2, Y1, Y2

Case 2. {bp,cp} C L.

By symmetry, we may assume that cp € P», vp € P3, and ¢p € Py. Again, we view P; as
a path in G, with y; € P;. Further, we may assume by symmetry that up,bp,vp, Pr N C,bp
occur on C in counterclockwise order.

Since Cy, N C' = 0, we can modify L to L’ by extending Py to up (possibly bp € L'), and
modify L to L” by extending P, to up (possibly ¢p € L").
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We may assume that H contains no path from xeXvp to B — {bp,cp} and internally
disjoint from B U D U X. For, otherwise, H contains a path @ from vp to bp disjoint from
(D —vp)Uz1Xup + cp. Now QU (y121 U1 Xup)UL" is a TK5 in G.

Therefore, S := {bp, cp,up,y1,y2,y3} is a cut in G separating BUup Xz from DUvp X .
Let K denote the minimal union of S-bridges of G containing B U up Xz, and let K’ be
obtained from K by identifying y» and y3 as y and identifying up and cp as u.

We may assume that (K’ y1,y, u,bp) is 3-planar. For, otherwise, it follows from Lemma 2.2
that K’ contains disjoint paths from yq,y to u,bp, respectively. Hence, K contains disjoint
paths Ry, Ry from yq,y; (for some i € {2,3}) to z € {up,cp},bp, respectively, with V(Rg) N
{up,cp} ={z}. If z=wup then Ry U (R Uy;za Uz Xvp)UL" is a TK5 in G; and if z = ¢p
then Ry U (Ry Uy;xa UxeXvp)U Lisa TKsin G.

Let K" be obtained from K by identifying y2 and y3 as y. Suppose K” — bp contains
disjoint paths from y,,y to ¢p,up, respectively. Then K — bp contains disjoint paths Ri, Ro
from y1,y; (for some i € {2,3}) to ¢p,up, respectively. Then Ry U (Re U y;x2 UxoXvp) U L
isa TK5 in G.

Thus we may assume that K" — bp does not contain disjoint paths from 1,y to cp,up,
respectively. So by Lemma 2.2, (K" — bp,y1,y,cp,up) is 3-planar. Note that B — ¢p is
connected and disjoint from upXxz, U z1y;. So the 3-planarity of (K’ y1,y,u,bp) implies
that K” — ¢p has a cut vertex ¢ separating {y1,y} from {bp,up}. Since B is 2-connected,
{bp,cp,c,up} is a 4-cut in G, a contradiction. |

We can now summarize the results in this section as the following

Lemma 4.6 If some block of H — B is of type I then G contains T K.

5 Blocks of type II

In this section we show, with the help of Lemma 4.6, that if H — B has a block of type II then
G contains TK5. Let D be a block of H — B of type II, and recall the notation D', bp,up,vp.
Let D" := D — {up,vp} which is connected. Since G is 5-connected and D is of type II,
IN(D") N {y1,y2,y3}| > 2. An important step is to show that |[N(B) N {y1,y2,y3}| > 2.

Lemma 5.1 If H— B has a block of type II then G contains TKs or |[N(B)N{y1,y2,y3} > 2.

Proof. First, we may assume K, < G, as otherwsie G contains T'K5 by Theorem 1.1. Since
G is 5-connected, |[N(D") N {y1,y2,y3}| > 2.

(1) We may assume that D" or G[D” + bp]| is 2-connected.

Since G is 5-connected, |[N(D") N {y1,y2,y3} > 2. So |D”| > 2 by Lemma 3.1. In fact,
|D"| > 3 as D is 2-connetced and K, ¢ G. Let C1, ..., C} denote the endblocks of D”.

We may assume k > 2, as otherwise D" is 2-connected and (1) holds. Let v; € V(C;) such
that v; is a cut vertex of D”.

Suppose there is some endblock of D", say Cj, such that up,vp € N(Ck — vg). Let X’
be obtained from X by replacing upXvp with a path in G[Cy + {up,vp}] — vk between
up and vp. If [N(C;) N{y1,y2,y3} > 2 for some 1 < i < k — 1, then by Lemma 3.1, C;
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is 2-connected; so by the choices of X, we have |[N(B) N {y1,y2,y3}| > 2. Thus we may
assume that for 1 < i < k —1, [N(C;) N {y1,y2,y3}| < 1. Then, since G is 5-connected,
{bp,up,vp} C N(C; —v;) for 1 < i < k — 1. This shows that H — B — C} has a path
X" from x1 to zo (by replacing upXvp with a path in G[(C7 — v1) + {up,vp}| from up to
vp). Lemma 3.2 and the choice of X imply that |[N(B) N {y1,y2,y3}| > |N(Ck) N {y1,y2, Y3}
Hence, we may assume |N(Ck) N {y1,y2,y3}| < 1, which in turn forces bp € N(C —vi) as G
is 5-connected. Thus, G[D" + bp] is 2-connected.

Hence we may assume that {up,vp} € N(C; —v;) for 1 < i < k. If bp € N(C; — v;)
for 1 < i < k then G[D” + bp] is 2-connected. So we may assume that for some i, bp ¢
N(C; — v;). Then y1,y2,y3 € N(C; — v;) as G is 5-connected. Note that X may be revised
so that X N C; = (). Hence by the choice of X and Lemma reflcomp, |N(B) N {y1,y2,y3}| >
IN(Ci —vi) N {y1, 92, y3}| = 3.

(2) D —wup and D — vp are 2-connected.

Now assume D — up is not 2-connected. Since D is 2-connected, D — up is connected. Let C'
be an endblock of D — up and let v be the cut vertex of D — up such that vp ¢ C' — v. Since
G is 5-connected, |N(C —v) N{y1,y2,y3}| > 2. So C is 2-connected by Lemma 3.1.

Since D" is connected, vp # v; so D — C contains a path P from up to vp. By replacing
upXvp with P we obtain from X a path X’ in H between x1 and x5 such that C'is contained in
a 2-connected block of H—X’. Hence by Lemma 3.2 and the choice of X, |[N(B)N{y1, y2,ys}| >

IN(C) N {y1,y2,y3}] > 2.

(3) We may assume up # x1, vp = x2, and H contains no path from zo to B internally
disjoint from BU X U D'.

If up = x; and vp = x5 then, since G is 5-connected, |N(B — bp) N {y1,y2,y3}| > 2. So we
may assume by symmetry that 1 # up. Then H has a path from z; to B internally disjoint
from BUD'UX.

Suppose H also has a path from x5 to B internally disjoint from BU D’ U X. Then H
contains a path X’ between 1 and z2 and disjoint from D — vp. So by (2) and Lemma 3.2
and by the choice of X, |[N(B) N {y1,y2,y3}| > |N(D —vp) N{y1,y2,y3}| > 2.

So we may assume z9 = vp and H contains no path from z9 to B internally disjoint from
BUXUD.

Since D" is connected, we have

(4) for any y;,y; € N(D"), G[D" +{x2,y:, y;}] contains three independent paths from some
vertex u € D" to x2,y;,y;, respectively.
By (3), there are at most two 2-connected blocks in H — B. So we have two cases.
Case 1. D is the unique 2-connected block in H — B.

Subcase 1.1. N(y;) € D' + {x1,x2} for some i € {1,2,3}, say i = 1.

Then S := {bp,up,z1,y2,y3} is a cut in G. Let G1 := G — (D" + {x2,y1}.

Suppose y2,y3 € N(D"”). Then by (4), G[D" + {x2,y2,ys3}| has independent paths from
some u € V(D") to z2,y2,ys, respectively. So by Lemma 2.4 there exist four independent
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paths Py, Py, P3, Py in G[D' + {y2,ys}] from u to x2,y2,ys3,s € {bp,up}, respectively, such
that |[V(FP;) N{up,vp,x2,y2,ys}| < 1for 1 <i<4. Lett e {bp,up}— {s}. If Gi —1¢ has
disjoint paths Q1, Q2 from x1,y2 to s,ys, respectively, then Py U Pa UP3U (PyUQ1) UQ2 UK
is a TK5 in G with branch vertice u,x1,x2,¥y2,y3. So we may assume that such paths do
not exist. Then by Corollary 2.3, (G1 — t,z1,¥2, S,y3) is planar; and so G contains T K5 by
Corollary 2.9.

So we may assume that y3 ¢ N(D"). Then {bp,up,x2,y1,y2} is a cut in G separating D"
from BUupXxy.

We may assume that G[D’ + yo] contains disjoint paths Q1,Q2 from up,bp to xo,ys,
respectively; for, otherwise, it follows from Corollary 2.3 that (G[D' + y2|,up,bp,x2,y2) is
planar; and so G contains T K5 by Corollary 2.9. Similarly, we may assume that G[D’ + ys]
contains disjoint paths @}, Q) from up,bp to ya, 2, respectively.

Suppose |N(y3) N V(B)| > 2. We may assume y2 ¢ N(B), or else the assertion of the
lemma holds. Hence yo has a neighbor u € upXx; — {up,z1} (otherwise {z1,bp,up,ys}
would be a 4-cut in G). Now G[B + {u,y3}| contains independent paths R;, Rz from ys3 to
u, bp, respectively, and uys U Ry UuXz1 U (uXup UQ1) U (R UQ2) UK is a TKs in G with
branch vertices u, x1, 2, Y2, y3.

Thus we may assume that there exist distinct v,v" € N(y3) NV (upXx1 — 1), and assume
that z1,v,v",up occur on X in order. We may assume that y, ¢ N(B — bp); for otherwise
G[B + {y2,v}] has independent paths Ry, Ry from v to yg2,bp, respectively, and vys U Ry U
vXz1U(ReUQS) U (ysv' U Xup UQ))UK is a TKj5 in G with branch vertices v, z1, x2, y2, y3.
So y2 has a neighbor u € up Xz — {up,x1}.

Suppose u € 1 Xv—wv. Let R be a path in G[B+u] from u to bp. Then uy,U(uXvUvys)U
uXx U(RUQY) U (ysv" U XupUQR)) UK is a TK5 in G with branch vertices u, x1, 2, y2, 3.

Now assume u € vXv' — {v,v'}. Then in G[B + v] we find a path R from v to bp. So
vys U (vXuUuy) UvXz U(RUQS) U (ysv' Uv' Xup UQ)) UK is a TKs in G with branch
vertices v, T1, X2, Y2, Y3.

Therefore, we may assume u € v'Xup — {up,v'}. If G[B + {u,v,z1}] has disjoint paths
R1, Ry from x1,v to u, bp, respectively, then uys U(uXv' Uv'y3)URy U(uXupUQ1)U(ysvURaU
Q2)U K is a TK5 in G with branch vertices u, x1, 2, y2,y3. So we may assume R, Ry do not
exist. Then by Lemma 2.3, (G[B + {u, v, z1}],v,z1,bp, u) is 3-planar. Thus, G[B + {u, v, x1}]
contains disjoint paths L1, Lo from x1,v to bp, u, respectively. Hence X’ := Q4 U L; is a path
in H between x1 and o, and uXv U Ly is a cycle in H — X’ and contains neighbors of both
y1 and yo. It now follows from Lemma 3.2 and the choice of X that |N(B) N {y1,y2,y3}| > 2.

Subcase 1.2. N(y;) € D'+ {x1,2z2} for all i = 1,2, 3.

We may assume |N(B) N {y1,y2,y3}| < 1, as otherwise the assertion of the lemma holds.
So by symmetry let y;,y2 ¢ N(B); hence y1,y2 € N(z1Xup — {x1,up}). Further, if y3 €
N(z1Xup —{x1,up}) then we may assume that the neighbor of {y1,y2,y3} on 1 Xup closest
to up is a neighbor of y3, denoted by vs. Let v; € N(y;) N V(21 Xup — {z1,up}), i = 1,2.
We may assume that xy,vq,vs,up occur on X in order. Note that each v; has at least two
neighbors in B. Let X; denote a path in G[B + z1] from 1 to bp.

We may assume y3 € N(D"). For, suppose y3 ¢ N(D"). Then {bp,up,z2,y1,y2} is a
5-cut in G separating D’ from B UupXxi. In G[D' + {y1,y2}] we apply Menger’s theorem
to find five independent paths Py, Py, P3, Py, P5 from some vertex u € D" to 1,42, x2,bp, up,
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respectively. Now Py U Py U P3sU (PyU X1) U (y1v1 Uvi Xvg Uvaye) UK is a TK5 in G with
branch vertices u, x1, 2, Y1, Y2.

Next we show that we may also assume y1,y2 € N(D”). For suppose, by symmetry,
that y; ¢ N(D"”). Then yo,y3 € N(D") as G is 5-connected, and {bp,up,z2,y2,y3} is a
cut in G separating D' from B UupXzi. By Menger’s theorem, G[D' + {y2,ys}] has five
independent paths Pj, Py, P3, Py, Ps from some vertex u € D" to y,y3,22,bp,up. If vz is
defined then P, U P, U P3 U (P4 U Xl) U (yQUQ U voXvg U U3y3) UK is a TKs in G with
branch vertices u, 1, x2,y2,y3. So assume that vz is not defined. Thus y3 € N(B) (otherwise
{bp,up,z2,y2} would be a 4-cut in G), and G[B + {v2,y3}] contains a path R from vy to
ys. If G[D' + {y2,ys3}] — bp has disjoint paths Q1, Q2 from up,ys to z2,ys, respectively, then
Va2 URUve X 21U (ve XupUQ1)UQUK is a T Ky in G with branch vertices ve, 21, 22, y2, y3. S0
assume that Q1, Q2 do not exist. Then by Corollary 2.3, (G[D' + {y2,y3}] — bp, up, y2, T2, y3)
is planar; so G contains T'K5 by Corollary 2.9.

Hence, by (4), G[D" + {x2,y1,y2}] has three inpdependent paths from some vertex u €
D" to yy,x2,ys, respectively. Let S := {bp,up,z2,y1,y2,y3}. By Lemma 2.4, G[D" + S|
has five independent paths Py, P, P35, Py, Ps from u to S such that |V(P; N P;) = {u} for
1 <i#j <5 VF)NS| =1forl <i<5b5 y € P, yp € Po, and x9 € P3. We
may assume that P, ends in {bp,up}. We may further assume that P, ends at up; or else,
PUP,UPU (P4 U Xl) U (ylvl U v Xvy U Ugyg) UK is a TKs in G with branch vertices
Uy L1y L2, Y15 Y2-

We may also assume that vs is not defined. For, othewise, vs € upXv' — {up,v'} by the
definition of v3. Let X] be a path in G[B + {vs, x1}] from 21 to v3. Then P, UP,UP3U(PyU
upXvz U X])U (y1v1 Uvi Xvg Uwgye) U K is a TK5 in G with branch vertices u, z1, x2, y1, ya.

Soys € N(B—bp) since N(y3) € D'+{x1,z2}. Let D* be obtained from G[D'+{y1, y2,y3}|
by identifying up and bp as w.

Suppose D* — y3 contains disjoint paths @1, Q2 from y1,w to yo, x2, respectively. We view
Q2 as a path in G; so up € Q2 or bp € Q2. If bp € Q2 then let @ be a path in G[B + v1] from
vy to bp; now vy U (v1 Xve Uvgye) U Xap U(QUQ2)UQ UK is a TKs in G with branch
vertices vy, 1, T2, Y1, Y2. S0 we may assume up € Q2. Let R be a path in G[B + {va, z1}] from
vg to x1. Then voys U (ngvl leyl) URU (UQXUD U QQ) UQ1UK is a TKs in G with branch
vertices va, T1, T2, Y1, Y2.

Therefore, we may assume that such @1, Q2 do not exist in D* — y3. So by Lemma 2.2,
(D* — y3,y1,w, Y2, x2) is 3-planar. Since D is 2-connected, D* — {y1,y2,y3} is 2-connected.
Thus, D* — y; contains disjoint paths Rj, Re from ys, x5 to y3,w, respectively, or D* — yo
contains disjoint paths Rj, Re from y;,x2 to ys,w, respectively. We may assume the latter.
We view Ry as a path in G; so bp € Ry or up € Ry. Note that G[B + {v1,ys}] contains
independent paths L1, Lo from vy to ys3, bp, respectively. If bp € Ro, then vy U L1 Uv1 Xz U
(LaUR2)URy UK is a TKp in G with branch vertices vy, z1,22,y1,y3. So we may assume
up € Ro. Then viygy UL U Xa1 U (v Xup URy)UR UK is a TKj5 in G with branch vertices
U1, %1,22,Y1,Y3-

Case 2. H — B has a 2-connected block D; such that Dy # D.
Then by (3), up, = =1, and H — B has exactly two 2-connected blocks, D and Dy := D.
Let b; :== bp, for : = 1,2, and v; := vp, and ug := up,.

Subcase 2.1. y1,y2,y3 € N(DY) for i = 1,2.
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We may assume |N(B) N {y1,y2,y3}| < 1, or else we have the assertion of this lemma. So,
since G is 5-connected, b # by and there is an edge between v Xuy and B — {by, ba}.

We claim that there exist {4,j} C {1,2,3} such that G[D}] + {v;,y;}] contains disjoint
paths @1, Q2 from x1,y; to v1,y;, respectively. This is clear if there exist y; and y; both with
neighbors on v1 X1, for X is induced, D; is 2-connected, and D} —v; X1 is connected. Thus
we may assume (by pigeonhole principle) that there exist y; and y; both with neighbors in
D; — v Xxz;. So, since H — X is connected, G[D] + {vi,y;}] — viXz1 has a path between y;
and y;.

Without loss of generality, we may assume that {4, j} = {1,2}. By (4), G[Dj +{z2,v1,y2}]
has independent paths from some vertex u € DY to yi,ys2,z2, respectively. So G[Dj +
{y1, Y2, y3}] contains five independent paths Py, Ps, P3, Py, Ps from u to S := {bs, u2, 2,41, Y2, Y3}
such that V(PN Pj) ={u} for 1 <i#j <5 |[V(P)NS|=1for1<i<5,y1 € P,y € P,
and x9 € P3. We may assume that Py ends in {bo, us}.

If Py ends at ug then Py U P, U P3 U (PyUusXv; UQ1)UQeUK is a TKy with branch
vertices u, x1, T2, Y1, y2. S0 assume that Py ends at bs. Since there is an edge between vy Xuo
and B — {b1,b2} and because by # by, we see that G[B U v Xus| — by contains a path @ from
by to v;. Hence PLUP, UP3U(P,UQUQ)UQ2UK is a TKs in G with branch vertices
U, r1,22,Y1,Y2-

So by symmetry, we may assume that yi,y2 € N(DY), y3 ¢ N(DY), and y; € N(DY).

Subcase 2.2. y3 ¢ N(DY) and y, € N(DY).

Then by (4), G[DY + {x2,y1,y2}] has three independent paths from some u € D" to
Y1, Y2, T2, respectively. So by Lemma 2.4, G[D), 4 {y1,y2, y3}| contains five independent paths
Py, Py, P3, Py, Ps from u to S := {ba, u2, x2, Y1, Y2, y3} such that V(PN Pj) = {u} for 1 <i#
J<5 |[V(P)NnS|=1for 1 <i<5 y; €Py1, y2 € P, and x5 € P3. We may assume that Py
ends in {by, us}.

First, assume that Py ends at ug. If G[D] + {y1,y2}] — b1 has disjoint paths Q1, Q2 from
v1, Y2 to x1, Y1, respectively, then Py UPoUPsU (PyUua Xv1UQp)UQ2UK is a TKp in G with
branch vertices w, x1, x2,y1,y2. So assume that 1, Qs do not exist. Then by Corollary 2.3,
(G[D} + {y1,y2}] — b1,v1,y2,21,y1) is planar. So G contains T K5 by Corollary 2.9.

Now assume Pj ends at be. Let @ be a path in B from b to by. If G[D] +{y1,y2}] —v1 has
disjoint paths @1, Q2 from by, y2 to 1, y1, respectively, then PUP,UP3U(P,UQUQ1)UQ2UK
is a TKs5 in G with branch vertices u,x1,x2,¥y1,%2. So assume that Q1,2 do not exist.
Then by Corollary 2.3, (G[D} + {y1,y2}] — v1,b1,92, 21, ¥1) is planar. So G contains T'K5 by
Corollary 2.9.

Subcase 2.3. y3 ¢ N(DY), y2 ¢ N(DY), and yo € N(B U uaXwy).

In G[D1+{y1,y2}] we use Menger’s theorem to find five independent paths Q1, Q2, Q3, Q4, Q5
from some u € V(DY) to y1,y2, 1, b1, v1, respectively. Since yo € N(BUuaXv1), G[BUus X v+
y2| has disjoint paths Ry, Ry from s € {b1,v1},y2 to {ba,us}.

We may assume that G[D) +y;] contains disjoint paths Ly, L from b, us to x2, y1, respec-
tively; as otherwise by Corollary 2.3, (G[D) + y1], ba, u2, 2, y1) is planar, and so G contains
T K5 by Corollary 2.9. Similarly, we may assume that G[D)}+y;] contains disjoint paths L}, L},
from bo, uo to y1,x2, respectively.

Let s € Q; where i € {4,5}. If by € Ry, then Q1 UQ2UQ3U(Q; UR 1 UL1)U(RyULg) UK
is a T K5 in G with branch vertices u, x1, 2, y1,y2. So assume us € Ry. Then Q1 U Q2 U Q3 U
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(QiUR ULLY) U (R U L) UK is a TKy in G with branch vertices u, z1, 2, y1, yo.

Subcase 2.4. y3 ¢ N(DY), yo ¢ N(D4) and y2 ¢ N(B U uaXwy).

Let v € N(z1) N V(DY) and G’ := G[D}] 4 {y1,y2}]. By Menger’s theorem, G’ — x; has
four independent paths @1, Q2, @3, Q4 from v to y1,y2, b1, v1, respectively. We amy assume
that Q;, 1 <7 < 4, are induced in G’, and let L = U?:l Q;, where Q5 = vzq.

Note that |N(y2) NV (DY)| > 3. So G’ has an L-bridge, say J, containing an edge yau such
that u ¢ Q2 + x1. We now show that L,J may be choosen so that J has an attachment in
(Q1UQ3UQ4) —v. For, otherwise, all attachments of J are contained in Q2+ z1. Since G is 5-
connected, J has an attachment on (02, say z; and we choose z so that zQ9v is minimal. Again
since G is 5-connected, there is a path in G’ —z1 from y2Q22—{y2, 2} to (Q1UQ3UQ4) —v. Now
letting @, be obtained from Q2 by replacing y2Q2z with a path in J from ys to z internally
disjoint from Q2+ x1, we see that for Q1, Q%, Q3, Qu, the corresponding J, L satisfy the desired
properties.

Therefore, J contains a path Y from ys to y € V(Q1 U Q3 U Q4 — v) internally disjoint
from L. Let R be a path in B between b; and by. As in Subcase 2.3, we may assume that
G[D} + y1] contains disjoint paths Ly, Ly from be, us to z2,y1, respectively, as well as disjoint
paths L}, L), from bo, us to y1, x2, respectively.

If y € @1 — v then UIL‘lUQQU(QgURULl)U(Q4leXUQULz)U(YUleyl)UK is
a TK5 in G with branch vertices v, x1,22,y1,y2. If ¥ € Q3 — v then vy U Q1 U Q2 U (Qq U
v1Xug ULLY) U (Y UyQsby URU L)) UK is a TKs in G with branch vertices v, x1, 22, Y1, ya.
Soy € Q4 —v. Then vy UQy UQQU(Q3URUL1) U (YUyQ4v1 U'UlXUQULQ)UK isa TKs
in G with branch vertices v, x1, 2, Y1, y2. |

Lemma 5.2 If H — B has a 2-connected block then G contains T K.

Proof. By Lemma 4.6, we may assume that no 2-connected block of H is of type I. For any
2-connected block D of H — B, recall the notation D", D’,bp,up,vp. Since G is 5-connected,

IN(D") N {y1,y2,y3}| > 2.

Case 1. [IN(D") N {y1,y2,y3}| = 2 for any 2-connected block D of H — B.

Let D be a 2-connected block of H — B, Without loss of generality, let y1,y2 € N(D") and
ys ¢ N(D"). By Menger’s theorem, we find independent paths Py, P, Ps, Py, Ps in G[D' +
{y1,y2}] from some vertex u € D" to y1,y2,up,vp,bp, respectively.

If y1,y2 € N(B) then in G[B + {y1,y2}] we find a path @ from y; to y2, and P U P, U
(PsUupXz)U(PyUvpXay) UQU K is a TK5 in G with branch vertices u, z1, 22, y1, y2. So
we may assume that y; ¢ N(B); hence by Lemma 5.1 we may assume ys2,y3 € N(B).

Subcase 1.1. N(y1) € D + {x1,z2}.

Then G — {y2,y3} contains a path P from y; to some vertex u € (BUX) — (D' + {x1, z2})
internally disjoint from BUD'UX. If u € B then G[B U P + y5] has a path @) between y; and
y2, and Py U PoU (PsUupXxy) U (PyUvpXaze) UQU K is a TK5 in G with branch vertices
U, xr1,22,Y1,Y2-

So we may assume that u ¢ B for any choice of P. Hence, since H — X is connected, all
neighbors of y; outside D+{x1, z2} are on X; in particular, u € (upXz1—{up,z1})U(vpXzo—
{vp,x2}) and V(P) = {y1,u}. By symmetry we may assume that u € upXz; — {up,z1}.
Since X is induced and H — X is connected and by Lemma 3.1, H contains a path from u

35



to B and internally disjoint from B U X U D, which can be extended through G[B + y2] to
a path R from u to yo. If G[D' + {y1,y2}] — bp has disjoint paths Ry, Re from y1,up to
Y2, Up, resepctively, then uy; U RUuXz; U (uXup U Re UvpXze) UR UK is a TK5 in G
with branch vertices u, x1, T2, y1,72. Thus we may assume that such R;, Re do not exist. So
by Corollary 2.3, (G[D" + {y1,y2}] — bp,y1,up,y2,vp) is planar. Now G contains T K5 by
Corollary 2.9.

Subcase 1.2. N(y1) € D + {x1, 22}, and N(y2) C D' + {x1,22}.

Then N(y2) NV(B) = {bp}, and {bp,up,vp,x1,z2} is a cut in G separating B + y3 from
D'+ {y1,y2}. So x1 # up and zo # vp, as G is 5-connected. Therefore, H — D contains a
path X’ from 271 to z9. Note that D is 2-connected; so it is contained in a 2-connected block
of H— X'. Also note that y; and yo each have at least two neighbors in D. So it follows
from Lemma 3.2 and the choice of X that ys, y3 should each have at least two neighbors in B,
contradicting the assumption that N(y2) € D' + {z1,x2}.

Subcase 1.3. N(y1) € D + {x1,22}, and y2 € N(F”") for some 2-connected block F of
H - B.

Let v € N(y2) N V(F”). Without loss of generality, assume that x1,upr,vr,up,vp,x2
occur on X in order. Since N(y1) C D + {z1,22}, y1 ¢ N(F"); and since G is 5-connected,
ys € N(F"). Let Q be a path in G[B + y3] from y3 to bp. If G[F' + {y2,y3}] — bp contains
disjoint paths Q1, Q2 from up, y2 to vE, ys, respectively, then PoU(P;UQ)U(PsUup XvpUQ1U
upXx1)U(PyUvpXxo)UQoUK is a TKj5 in G with branch vertices u, 21, 2, y2, y3. So we may
assume that Q1, Q2 do not exist. Then by Corollary 2.3, G[F' + {y2,y3}] — br,ur, y2,vF, y3)
is planar. Hence G contains T K5 by Corollary 2.9.

Subcase 1.4. N(y1) € D+ {x1,22}, N(y2) € D' + {x1,22}, and y2 ¢ N(F") for any
2-connected block F' of H — B other than D.

Therefore, since G is 5-connected, D is the unique 2-connected block of H — B. So let
v € N(y2) such that v € (B—bp) U (X — (upXvp + {z1,22}). By symmetry, we may assume
that v € (B —bp) U (r1Xup — {x1,up}).

We may further assume that v € B — bp. For, otherwise, N(y2) NV (B) = {bp}. Hence by
Lemma 3.1, y3 € N(B — bp). Thus, G[B + {v, y3}] contains independent paths R;, Ry from
bp to ys3,v, respectively. Now y2bp U R U vys U (z1y2 U1 Xv U z1ys U Ry) U (P, U Ps U Py U
y1z1 U PsUupXw) is a TK5 in G with branch vertices bp, u, v, 21, Y.

We may assume that G[D’ + ys] contains disjoint paths Q1,Q2 from bp,vp to ya,up,
respectively; for otherwise by Corollary 2.3, (G[D’ + y2|,bp,vp, y2,up) is planar, and so G
contains T K5 by Corollary 2.9. Similarly, we may assume that G[D’ + ys| contains disjoint
paths @), Q) from bp,vp to up, ya, respectively, as well as disjoint paths QY, Q5 from bp,up
to vp, Yo, respectively.

Suppose y3 has at least two neighbors in B. Then G[B + {v,y3}] contains independent
paths Rj, Re from y3 to v,bp, respectively. Then P, U (P5 U Re) U (Ps UupXzy) U (Py U
vpXx2) U (R1 Uvye) UK is a TKj in G with branch vertices u, z1, x2, y2, y3.

Thus we may assume that y3 has only one neighbor in B. Therefore y3 must have at least
two neighbors in (up Xz, — x1) U (vpXxa — x2).

First, assume that y3 has two neighbors wq,wy € vp Xz — xo, with wy € o Xws. Since
v € B—0bp, G[B + {w1, y2}] has independent paths R, Ry from w; to bp, yo, respectively. So
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w1 Xxo U (R1 U Q/l U uDX:cl) U Re Uwiys U (yg’wg U weXvp U Q/Q) UK is a TKy in G with
branch vertices w1, x1, T2, Y2, y3.

Next assume that y3 has exactly one neighbor w; € vpXxo — 9. Then y3 also has a
neighbor wy € upXwxy — x1. Clearly, z1,29 € N(B); so G[B + {1,x2}] contains a path X’
between x; and xa. We claim that |N(y2) NV (B)| > 2; otherwise, we have a contradiction to
the choice of X and Lemma 3.2 because D is in a 2-connected block of H— X', y1,y2 € N(D"),
and |N(y1) N V(D)| > 3. Thus y, has a neighbor w € B such that 1 € N(B — w). Suppose
w1 = vp. In G[D + y3] we find independent paths R, R from w; to up, yo, respectively, and
let R be a path in G[B+{y2,y3}] from ys to y3. Now wyysURyUwi XaxoU(R1UupXz1)URUK
is a TK5 in G with branch vertices wi, 1, x2,y2,y3. So we may assume that w; # vp. In
G[D" + {y1,y2}] — {bp,up} we find a path @ from vp to y2 through y;, which exists because
D is 2-connected and N(y;) C D'+ {x1,22}. In G[BUupXx1 + {w,w;}] we find independent
paths Rj, Ry from wy to x1,w, respectively. Then Ry UwiXzo U (Ry Uwys) Uwi Xvp UQUK
is a T K5 in G with branch vertices w1, z1, T2, y1, Yo.

Thus we may assume that y3 has at least two neighbors in up Xx; — z1. In particular, let
w € N(ys) NV (upXai — {up,z1}). If G[B + {w, y2,y3}] contains disjoint paths Ry, Ry from
w,bp t0 Y2, ys, respectively, then wys U Ry UwXx1 U (wXup U Qe UvpXzo)U(Q1URy) UK
is a TK5 in G with branch vertices w,x1,x2,y2,y3. So assume that Rj, Ro do not exist.
Then G[B + {w, y2,ys}] contains disjoint paths R}, R} from w,ys to bp,ys, respectively. So
wys U (RUQ) UwXz U(wXupUQaUuvpXxe) URL,UK is a TK5 in G with branch vertices
W, T1,T2,Y2,Y3-

Case 2. There exists a 2-connected block D of H — B such that {y1,y2,y3} C N(D").

By Lemma 5.1, we may assume that y1,y2 € N(B).

We may further assume that G[H+ys3] contains no path from y3 to B internally disjoint from
BUXUD'. For, let P be such a path in H. Then, for any {7,7} C {1,2,3}, GIBUP+{y;, y;}]
contains a path @;; between y; and y;. Note that D contains independent paths from some
u € V(D") to up,vp, respectively. So by Lemma 2.4, G[D’+{y1, y2,ys}] has five independent
paths Py, Py, P53, Py, Ps from u to S := {bD,uD,vD,yl,yz,yg} such that V(P; N Pj) = {u} for
1<i#j<5 |V(P)NnS|=1forl1<i<5 up € P, and vp € P,. Without loss of generality,
we may assume that P ends at y; and Py ends at y;. Now (P UupXx1) U (P UvpXag) U
P;UP,UQ;j UK is a TK5 in G with branch vertices u, z1, x2, y;, y;.

In particular, N(y3) C DU X.

Subcase 2.1. D — up is not 2-connected or D — vp is not 2-connected.

By symmetry we may assume that D —up is not 2-connected. Let C denote an endblock of
D —up, and let v € V(C) be the cut vertex of D —up contained in C such that vp ¢ C—wv. By
Lemma 3.5 we may assume that vp # v. Since G is 5-connected, |N(C' —v) N{y1, y2, y3}| > 2;
hence by Lemma 3.1 C' is 2-connected.

Since D is 2-connected, D — C' has a path P from up to vp. So C is contained in a
2-connected block of H — (z1Xup U P UvpXxa). Hence, |[N(C — v) N {y1,v2,y3}| = 2,
for, otherwise, it follows from Lemma 3.2 and the choice of X that {yi,y2,y3} C N(B), a
contradiction. Hence bp € N(C —v).

Suppose y1,y2 € N(C—wv). Then since G is 5-connected, there are five inpdepentdent paths
Q1,Q2,Q3,Q4,Qs5 in G[C + {bp,up, y1,y2}] from some vertex u € C — v to up,v,y1,y2,bp,
respectively. Let @ denote a path in G[B + {y1, y2}| from y; to y2, and let R denote a path in
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D —up—(C —w) from v to vp. Then (Q1 UupXz1)U(Q2URUvpXa)URsUQ UQUK
is a T K5 in G with branch vertices w, x1, 2, Y1, Y2.

Thus, by symmetry, we may assume that ys,y3 € N(C —v). So y1 ¢ N(C). Let C" :=
(D —up) — (C —v).

We may assume that G[C” 4+ {up,y1}] has three independent paths from some vertex
u € C"—{v,uvp} to up,vp,yi, respectively. For, suppose not. Then v is a cut vertex of C’
separating vp from N(y;) NV (C’). Let C, denote the v-bridge of C’ containing vp, and let
Cy be a v-bridge of C’ such that y; € N(Cy — v). Let X’ be the path obtained from X by
replacing upXvp with a path in G[Cy + up] — v from up to vp. Then X' N(BUCUCy) = 0.
Suppose y3 € N(Cy —v). Then G[Cy + {y1,y3}] — v has a path Q1 berween y; and y3. Let Q2
be path in G[B+ {y1,y2}] between y; and y2, and Q3 be a path in G[C' + {y2,y3}] — v between
y2 and y3. Now Q1 U Q2 U Q3 U X' UK is a TK5 in G with branch vertices z1, 22, y1, Y2, ¥3.
Thus we may assume assume that y3 ¢ N(C, —v). Hence, since G is 5-connected, bp,y1,y2 €
N(Cy, —v). So by Menger’s theorem, G[Cy + {bp,up,y1, y2}| contains five independent paths
Q1,Q2,Q3,Q4,Qs from some vertex u € Cy — v to up,v,y1, Y2, bp, respectively. Note that
the path Q2 can be extended through C, to a path Q) ending at vp. Let @ be a path in
G[B + {y1,y2}] between y; and y2. Then (Q1 UupXz1) U (QUvpXaa)UQsUQsUQUK
is a T K5 in G with branch vertices w, x1, x2, Y1, Y2-

So by Lemma 2.4, G[C"+{bp, up, y1,y2,ys}| has five independent paths Q1, Q2, Q3, Q4, Q5
from v to S := {bp,up,vp,v,y1,y2,y3} such that V(Q; N Q;) = {u} for 1 < i # j <5,
V(Q)NS|=1for1 <i<5 up € Q1, vp € Q2, and y; € Q3. We may assume P, ends in
{v, 92,93}

If yo € Q4 then let @ be a path in G[B + {y1,y2}] between y; and yo; now Q3 U Qq U
(Q1UupXz) U (QaUuvpXas) UQ UK is a TK5 in G with branch vertices u, x1, z2, y1, yo.
If v; € Q4 then we extend Q4 through G[C + ys] to a path @) ending at ya; now Q3 U Q) U
(Q1UupXz1)U(QaUuvpXas) UQUK is a TK5 in G with branch vertices u, z1, 22, y1, y2. So
assume that y3 € Q4 ends at y3. Let @ be a path in G[BUC + {y1,y3}] — v between y; and
y3; then Q3 U Q41U (Q1UupXz1)U(QeUupXaxe) UQUK is a TK5 in G with branch vertices
U, T1,T2,Y1,Y3-

Subcase 2.2. D —up and D — vp are 2-connected.

First, assume up = z1 and vp = x3. Then since N(y3) € DU X, {bp,x1,x2,y1,y2} is
a cut in G separating B from D. In G[B + {z1,x2,y1,y2}] we use Menger’s theorem to find
five independent paths Pi, P, P, Py, P5 from some vertex u to x1,x2,y1,y2,bp, respectively.
In G[D" 4 {y1,y2}] we find a path @ between y; and yo. Now PLUP,UPs UP,UQUK is a
TKs5 in G with branch vertices u, x1, x2,y1, yo.

Thus we may assume that up # x1. We may further assume that vp = o, and H contains
no path from vp to B internally disjoint from B U D’ U X. For, otherwise, since up # x1, H
contains a path X’ from 1 to xs internally disjoint from DU X. Thus D — vp is contained in
a 2-connected block of H — X'. Since y1,y2,y3 € N(D"), it follows from Lemma 3.2 and the
choice of X that y1,y2,ys € N(B), a contradiction.

Suppose N(y3) € N(D). Then {bp,up,z1,y1,y2} is a cut in G separating B U upXx;
from D’. Let Gy denote the {bp,up,z1,y1,y2}-bridge of G containing B U upXzy. Since
D — up is 2-connected, G[D” + {vp,y1,y2}] has independent paths from some u € D" to
Y1,Y2, VD, respectively. So in G[D' + {y1,y2,y3}] we use Lemma 2.4 to find five independent

paths Q1,Q2,Q3,Q4, Q5 from u to S := {bp,up,vp,y1,y2,y3} such that V(Q; N Q;) = {u}

38



for 1 <i#j <5 |V(Q)NS|=1for1<i<5 y1 €Q1,y2 € Qa, and vp € Q3. We may
assume @4 ends in {bp,up}. If up € Q4 then let @ be a path in G[B + {y1,y2}] between
y1 and yo; now Q1 U Q2 U Q3 U (QeUupXx1)UQUK is a TK; in G with branch vertices
u, 1, T2, Y1, Y2. S0 we may assume bp € Q4. If G1 — up contains disjoint paths R, Ry from
x1,Y2 to bp,y1, respectively, then Q1 U Q2 U Q3 U (Q4 U R1) U Ry UK is a TKy in G with
branch vertices w,x1,T2,y1,%2. S0 we may assume that such Rj, Rs do not exist; then by
Corollary 2.3, (G1 — up, z1,¥y2,bp,y1) is planar. Hence G contains T K5 by Corollary 2.9.

Thus, we may assume that there exists u € N(y3) N V(upXz1 — {up,z1}).

We claim that for any permutation ijk of {1,2,3} there are (not necessarily distinct)
vertices v1,v,v2 on X in order from x; to up or there exist a 2-connected block F' # D of
H—B and v € F” with v; = up and v = vp, and there are independent paths Py, Py, P, Py in
H +{yi,y;} from v to vy, v2,y;, y;, respectively, and internally disjoint from v Xz UwvaXaxo U
D U K. This is easy to verify when u ¢ F for any 2-connected block F' of H — B; as in
this case u has at least two neighbors in B and, since y1,y2 € N(B), we get the desired
paths by setting v = v1 = v2 = u. So we may assume that u € F for some 2-connected
block F'in H — B. By Lemma 3.1, we see that F' contains a path from w to bp internally
disjoint from X; so, because y1,y2 € N(B), the claim holds whenever 3 € {i,j} by taking
vy = va = v = u. Now suppose {i,j} = {1,2}. Let vy = ur and vy = vp. First, assume
y; € N(F") and y; ¢ N(F"). Then by Menger’s theorem we find five independent paths
Py, Py, P3, P;, P! in G[F + {y;,y3}] from some vertex v € F” to v1,v2,¥;, br,ys, respectively.
By extending Py through G[B+y;] to a path P; ending at y;, we find the desired paths. So we
may assume that y;,y; € N(F"). Note that G[F + y;] contains independent paths from some
vertex v to vy, va, ¥;, respectively (as F' is 2-connected). So by Lemma 2.4, G[F' 4+ {y1, y2, Y3 }]
contains five independent paths Py, P, P3, P;, P} from v to S := {bp,v1,v2,¥i,¥;,y3}, such
that V(PN P;) ={v}for 1 <i#j <5, |[V(P)NS|=1for1<i<5 v €P,vy€ Py, and
y; € P3. We may assume Py ends in {bp,y;}. If P ends at y; then let Py := Py; if Pj ends at
br then we extend P; through G[B + y;] to a path P, ending at y;. Now Pp, P, Ps, Py give
the desired paths.

Let D* be obtained from G[D + {y1, y2, y3}] by identifying y; and y2, and use y to denote
the new vertex.

Suppose D* contains disjoint paths Q1, Q2 from up,y to vp,ys, respectively. Then in G,
Q2 is a path from y; to ys for some i € {1,2}. Using the paths Py, Py, P3, P, for {i,j} = {i, 3},
we see that (P Uvi Xz) U (P,UveXupUQ1)UPsUPyUQeUK is aTKs in G with branch
vertices v, 1, X2, Yi, Y3.

Thus we may assume that such @1, Q2 do not exist. So by Lemma 2.3, (D*,up,y,vp, y3)
is 3-planar. Since D is 2-connected, we see that G[D + {y1, y2}] has disjoint paths R;, Ry from
up,y2 to vp,yi1, respectively. Therefore, using the paths P;, Pa, Ps, Py for {i,j} = {1,2}, we
see that (Pl U UlXiL'l) U (P2 UwveXup U Rl) UPsUPyURyUK is a TK5 in GG with branch
vertices v, 1, X2, Y1, Y2. |

6 H-B=X

By Lemmas 4.6 and 5.2, it suffices to deal with the case when H — B = X is simply an induced
path. First, we show that at least two of {y1,y2,y3} each have at least two neighbors in B.
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Lemma 6.1 Suppose H— B = X. Then |{y; : |[N(y;) NV(B)| > 2,i =1,2,3}| > 2.

Proof. Suppose on the contrary that [{y; : |[N(y;) "V (B)| > 2,i=1,2,3}| < 1. Then since G
is 5-connected and X is induced in G, there exist distinct vertices v,vy € X — {x1,z2} such
that each v; is a neighbor of some {y1,y2,y3} with at least two neighbors in X — {x1,z2}. We
choose v; and vy so that v1 Xwvs is maximal.

Without loss of generality, we may assume that x1,v1,vs, 22 occur on X in this order,
IN(y;) N V(B)| <1 fori=1,2, and v; € N(y1) and v2 € N({y1,y2}). Note that, since G is
5-connected and by Lemma 3.1, each v; has at least two neighbors in B.

First, assume that vy € N(y;). Without loss of generality, let we,us € N(y2) N V(X —
{z1,x2}) such that vy, wa, uz,ve occur on X in order. In G[B + {vi,x2}] there is a path P
from vy to x9. Thus v1 Xz U P Uwviy; U (v1 Xwe Uways) U (yous UusXve Uveyr ) UK is a TKj
in G with branch vertices vy, x1, 2, Y1, Y2.

Hence we may assume that vy € N(yz). For i = 1,2, let w; € N(y;) N V(1 Xvy —
{v1,v2}). Note that the only possible cut vertex in G[B + {v1,va,x1}| exists when x; has a
unique neighbor in B. Thus G[B + {v1, v2, x1}] has independent paths P, Q from vy to x1, v,
respectively. Then P U veXxo U voys U (Q U viyr) U (yqwy Uwi Xwe Uways) UK is a TK5 in
G with branch vertices vs, 1, T2, Y1, yo. |

We now reduce the problem to that case when N(y;) C V(B) U {x1,z2} for i =1,2,3. We
will make use of Lemma 2.5.

Lemma 6.2 G contains TKs, or N(y;) C V(B)U{x1, 22} fori=1,2,3.

Proof. By Lemma 6.1, we may assume that |[N(y;) N V(B)| > 2 fori=1,2.

Suppose there exists some i € {1, 2,3} such that y; € N(B) and y; € N(X —{z1,22}). Let
u € N(yi) N V(X — {x1,22}). Then there exists j € {1,2} — {i} such that G[B + {u,y;, y;}]
contains two independent paths Py and P, from y; to u, y; respectively. Now uy;UP{UXUP,UK
is a T'K5 in G with branch vertices u, 1, 2, y;, y;-

Thus, we may assume that N(y;) C V(B) U {z1,x2} for i = 1,2, and N(y3) C V(X) or
N(ys) C V(B) U {x1,z2}. We may further assume that N(y3) C V(X), or else the assertion
of the lemma holds. Let uj,us € N(y3) N V(X — {x1,x2}) such that u; € 1 Xug — {x1,us}.
Since G is 5-connected, x1 has a neighbor in B, say x. Note that G[B + {u1,u2,y1,y2}] is
2-connected. Let G* denote the graph obtained from G[B + {u1,u2,y1,y2}| by identifying y;
and y2, and let y denote the new vertex. Then G* is also 2-connected.

Suppose there exist disjoint paths P} and P in G* from uy, ug to y, z, respectively. Without
loss of generality, we may assume that P; is a path in G ending at y;. Then (P} U yj2z2) U
(PoUzzy) UX Uujys Uugys U (K —yp) is a T K5 with branch vertices ug, ug, z1, 22, y3.

Thus we may assume that such paths do not exist. Then by Lemma 2.3, (G*, u1,us,y, x)
is 3-planar. Note that R := G[B + {u2,y1, y2}] is 2-connected.

We now show that R has a cycle T' containing {u2, y1,y2}. For, otherwise, by Lemma 2.5,
R has 2-cuts S;, i = 1,2, 3, such that if D; (for i = 1,2) denotes the components of R — S;
containing y; and D3 denotes the component of R — S3 containing uo then Dq, Do, D3 are
pairwise disjoint. If some y; is a cut vertex of R[D; U S;] separating the vertices in .S; then,
since y; has at least three neighbors in D;, R — y; is not 2-connected, a contradiction. Thus,
for each i € {1,2}, R[D; U S;] — y; contains a path @); between the vertices in S;. So Q1 and
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Q2 can be used to form a cycle in R — {ug,y1,y2} which separates ug from {y1,y2}. But this
contradicts the fact that (G*,uy,us,y,x) is 3-planar.
Then TU X U K is a T K5 in G with branch vertices z1, xo, y1, Y2, us. |

We now show that G contains TK5. By Lemma 6.2, we may assume that N(y;) C V(B)U
{z1,29} for i = 1,2,3; so R := G[B + {y1,y2,y3}] is 2-connected and each y; has degree at
least 3 in R.

If R has a cycle C containing {y1,y2,¥y3}, then C U X U K is a T K5 in G with branch
vertices 1, T2, Y1, Y2, y3. S0 we may assume that such a cycle does not exist in R. Then by
Lemma 2.5, we have three cases to consider.

Case 1. There exists a 2-cut S in R and there exist three distinct components D1, Do, D3
of R — S such that y; € V(D;) for each i € {1,2,3}.

Let S = {a,b}. Since each y; has degree at least 3 in R, |D; —y;| > 1 for 1 < i < 3.
Since G is 5-connected, N(D; —y;) N V(X — {z1,z2}) # (). Moveover, since B is 2-connected,
G[D; + S] — y; is a chain of blocks from a to b; so let Q; C G[D; U S] be a path from a to b
containing y;.

We may assume ab ¢ E(G). For, suppose ab € E(G). Since X is induced, x; has at least
two neighbors in some D;, say ¢ = 3. Then G[D3 + S + z1] has independent paths L1, Ly from
x1 to a, b, respectively. Now Q1 U Q2 UabUyixoys U L1 U Lo Ux1y; Uxyye is a T K5 in G with
branch vertices a, b, x1, y1, Y.

Let A; be a path in G from a to some a; € N(D; —y;) "V (X —{z1, x2}) which is internally
disjoint from (B — D;) U X. We may assume |{a1,a2,a3}| > 2. For otherwise, a; = as = as.
Then by symmetry, we may assume that G[B + a;] has independent paths P; from a; to
qi € V(y1Q;b) and internally disjoint from @;. Now a1 Xz U a1 Xxo U (P Uq1Q1y1) U (Pa U
¢2Q2y2) U (11Q1a U aQay2) U K is a TK5 in G with branch vertices a1, x1, z2, y1, Y.

We may further assume that R — S has only three components and N(a) N V(X) = 0.
Otherwise, there exists a path A from a to some a’ € V(X) which is internally disjoint from
D1 U Dy U D3 U X. Without loss of generality, we may assume that o’ € x1Xa3 — az. Then
a@1y1 UaQoys U (lelbU bQQyQ) U (A3 U agX.%'Q) U (A U a’Xxl) UK is a TK5 in G with branch
vertices a, x1, X2, Y1, Y2-

Therefore, a has degree at least 5 in R. By Lemma 3.1, |[N(a) N {y1,y2,y3}| < 1. Hence,
since ab ¢ E(G), there exists some i € {1, 2,3} such that |[(N(a) NV (D;)) —y;| > 2, say i = 1.

We claim that G[D1UX +a]—y; has independent paths P;, P» from a to some ¢y, co € V(X)
internally disjoint from X. For, suppose P;, P, do not exist. Then G[D;UX +a]—y; has a cut
vertex c separating a from X. Hence, {a,b,c,y1} is a cut in G as [(N(a) NV (D1)) — 1| > 2,
a contradiction.

Now (P Uc1 Xz1) U (PoUcaXxo) UaQaoys UaQsys U (y2Q20 UbQsys) U K is a TKs in G
with branch vertices a, x1, 2, Y2, y3.

Case 2. There exist a vertex b of R, 2-cuts S1, 52,53 in R and components D; of R — S;
containing y;, for all i € {1,2,3}, such that S; N S2 N S3 = {b} and S; — {b} = {a;} where
a1, as,as are distinct.

For convenience, let R’ := R— (D1 UD2UD3). We choose S, Sa, S3 such that D1 UDyU D3
is maximal. Then R’ — b is connected.

As in Case 1, let Q; € G[D; U S;] be a path from a; to b which passes through y;, and
let A; be a path from a; to ¢; € N(D; — y;) N V(X — {z1,22}) and internally disjoint from
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(B — D;) U X. We may choose ¢; so that |{c1,c2,c3}| > 2; the proof is the same as in Case 1
(for showing |{a1,az2,as}| > 2) since R’ — b is connected.

Suppose there exists a vertex u € R’ — {a1, ag, as, b} such that R’ — b has two independent
paths from u to two distinct vertices of {a1,as,as}, say a; and as. Let S = {aj,a9,as3,b} U
(N(R') N V(X)). Note that G[R' + S] — b is (4,5 — {b})-connected and R’ — a3 contains
independent paths from w to a1, as, respectively. So by Lemma 2.4, there exist four independent
paths Py, P, P3, Py in G[R' 4+ S| — b from u to S — {b} such that |V(P; N P;) = {u} for
1<i#j<4, |[V(P)N(S—{b})|=1for1<i<4, a1 € P, and ay € P». We may assume
that P3 ends at some vertex v € V(X) and Py ends at some vertex w € V(X)U{as}. If w e X
then by symmetry we may assume v € z1Xw; now (Py Ua1Q1y1) U (Py U aaQayz) U (P3 U
vXz1)U(PrUwXze) U (y1Q10UbQ2y2) UK is a T K5 in G with branch vertices w, z1, x2, y1, y2-
So we may assume that w = as. If v # c¢3 then by symmetry we may assume v € z1Xcs;
now (Pl U alQlyl) U (P2 @] angyg) @] (Pg U ’L}Xl‘l) U (P4 UAsU CgXCL‘Q) U (lelb U ngyg) UK
is a TKy in G with branch vertices u,x1,x2,y1,y2. S0 we may assume that v = c¢3. Then
v # ¢ or v # co. By symmetry, we may assume that v # co, and v € x1Xca. Then
(PrUa1Q1y1) U (PyUazQ3y3) U (P3UvXx)U (P U A UcaXx) U (11Q10UbQ3Y3) is a TK
in G with branch vertices u, z1, T2, y1, ys3.

So we may assume that for any vertex u € R’ — {a1, az,as, b}, there exists a 2-cut S, =
{b,b,} in R’ separating u from {ai,az2,a3}. We choose u and S, so that the S,-bridge of R’
containing v is maximal. Then b, € {a1, a2, as}, say b, = a3, and R’ — {a1,as} is the unique
b,-bridge of R’ — b containing u. Since R — {y1,y2,y3} is 2-connected, R[{a1, a2, a3}] must be
connected.

We may assume that R[{a1,a2,a3}] is a triangle. Otherwise, for some permutation ijk
of {1,2,3}, we have a;a; ¢ E(G) and a;ay,ajar € E(G). Then {b,a;} is a 2-cut such that
Y1,Y2,ys belong to three different components of G — {b, a;} whose union properly contains
D1 U Dy U D3, contradicting the choice of S1, S, .53 to maximize D U Dy U Dsg.

Suppose for some i € {1,2}, N(a;) Z {a1,a2,a3,b} UV (D;). Then H has an edge a;v; with
v; € X. Since {a;,b,y;,v;} is not a cut in G, we see that A; may be choosen so that ¢; # v;.
Without loss of generality, we may assume that v; € x1X¢; — ¢;. Let {i,j} = {1,2}. Now
(AZ U CZ‘XCEQ) U (aivi U UZ'X:El) U (aiaj U anjyj) U (aiag U agngg) @] (ijjb U ngyg) UK is a
TKs in G with branch vertices a;, x1, T2, ¥;, 3

Thus we may assume that for all i € {1,2}, N(a;) C {a1,a2,a3,b} UV (D;). We may
further assume that there exists some i € {1,2} such that a;b ¢ E(G), say i = 1; otherwise,
G[{a1,a2,a3,b}] is a K, and so G contains T'K5 by Theorem 1.1.

Then |N(a1) NV (D1 —y1)| = |N(a1) — {a2,as3,y1}| > 2. So 5-connectedness of G implies
that there exist two independent paths Py, Py in G[(D1+a1)UX]—y; from a; to ¢1,c2 € V(X)
respectively, and internally disjoint from X. Without loss of generality, assume ¢; € 1 Xca.

Now (PyUci Xz1)U(PaUcoXx2) U (a1a3Uaz@Q3ys) U (araz UazQay2) U (y3Q30UbQay2) UK
is a T K5 in G with branch vertices as, x1, T2, 2, ys3.

Case 3. There exist pairwise disjoint 2-cuts S7, 52,53 in R and components D; of R — S;
containing y;, for all i € {1, 2, 3}, such that Dy, Dy, D3 are pairwise disjoint and R—D;UDsUDs
has exactly two components, each containing exactly one vertex from S;, for all i € {1,2,3}.

Let S; = {a;,t;} for all i € {1,2,3} such that {a1,a2,as} is contained in a component A of
R — (D1 U Dy U Ds3) and {t1,t2,t3} is contained in a component T' of R — (D1 U Dy U D3).
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Note that any T'K5 we found in Case 2 only uses b to connect y; and y», which can be done

in this case by using T'. So by treating T, A as b, R’ — b, respectively, in Case 2, the arguments

in Case 2 work for Case 3 as weel and produce a T K5 in G. |
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