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Abstract

Fifty years ago Erdős asked to determine the minimum number of k-cliques in a graph on n

vertices with independence number less than l. He conjectured that this minimum is achieved by

the disjoint union of l− 1 complete graphs of size n
l−1 . This conjecture was disproved by Nikiforov

who showed that the balanced blow-up of a 5-cycle has fewer 4-cliques than the union of 2 complete

graphs of size n
2 .

In this paper we solve Erdős’ problem for (k, l) = (3, 4) and (k, l) = (4, 3). Using stability

arguments we also characterize the precise structure of extremal examples, confirming Erdős’

conjecture for (k, l) = (3, 4) and showing that a blow-up of a 5-cycle gives the minimum for

(k, l) = (4, 3).

1 Introduction

Let Kl denote a complete graph on l vertices and let Kl be its complement, i.e., an independent set

of size l. One of the central results in extremal combinatorics is Turán’s theorem [15], which asserts

that the maximum number of edges in a Kl-free graph on n vertices is attained by the Turán graph

Tn,l−1, a complete (l−1)-partite graph with nearly-equal parts. This theorem has since been extended

and generalized in many different ways. Since an edge can be thought of as a clique on 2 vertices,

a natural generalization is to ask for the maximum number of Kk in an n-vertex graph with no Kl.

Zykov [16] showed that this maximum was also attained by the Turán graph Tn,l−1.

For any integers k, l ≥ 2 and n, we define f(n, k, l) to be the minimum number of copies of Kk in

a Kl-free graph on n vertices. If one takes the complements of the graphs in Turán’s theorem, then

the theorem gives the minimum number of edges in an n-vertex Kl-free graph. Thus the question of

determining f(n, k, l) is precisely the Zykov-type generalization of this complementary version. Fifty

years ago Erdős [4] asked to determine f(n, k, l) and conjectured that the minimum is given by the

complement of the Turán graph, Tn,l−1, which is the disjoint union of l− 1 complete graphs of equal

size. When k = 2, this follows from Turán’s theorem.

Note that a graph is Kl-free precisely when its independence number is less than l. One can thus

also view this problem as a strengthening of Ramsey’s theorem, which states that any sufficiently
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large graph either has a clique of size k or an independent set of size l. The (k, l)-problem asks how

many cliques of size k a graph must have when its independence number is less than l.

Lorden [8] proved Erdős’ conjecture to be true for the (3, 3)-case by a simple double-counting

argument. However, no further progress was made in the next forty years, until Nikiforov [9] disproved

the conjecture in the case (4, 3) by showing the balanced blow-up of C5, which is K3-free, contains

fewer 4-cliques than the disjoint union of two cliques, Tn,2. In a blow-up of a graph, we replace

every vertex with a clique, and every edge with a complete bipartite graph. We say the blow-up is

balanced if the cliques are all of the same size. In a subsequent preprint [10], Nikiforov showed that

his construction is optimal under the additional assumption that the graph should be nearly-regular.

Moreover, by considering blow-ups of Ramsey graphs, Nikiforov showed that the conjecture could

only hold for finitely many (k, l) when k, l ≥ 3. In particular, he conjectured that equality held only

for the cases (3, 3) and (3, 4), the latter of which remained an open problem.

1.1 Our results

In this paper, we first sharpen Nikiforov’s result by showing that Erdős’ conjecture is always false

when k ≥ 4 and l ≥ 3, or when k = 3 and l ≥ 2074. We obtain these results through a combination

of explicit and random counterexamples.

We then solve the problem in the cases (k, l) = (4, 3) and (3, 4). Using the machinery of flag

algebras developed by Razborov [12], we are able to obtain the asymptotic values of f(n, 4, 3) and

f(n, 3, 4). By analyzing the corresponding semi-definite programming solutions, we are then able to

derive stability results for these cases, which in turn allow us to determine f(n, 4, 3) and f(n, 3, 4)

exactly for large n, and also to characterize the extremal graphs. In particular, we show that a

blow-up of C5 is indeed optimal for the (4, 3) problem, while Erdős’ conjecture holds for the (3, 4)

problem. Our results are summarized in the following theorems.

Theorem 1.1. f(n, 4, 3) = 3
25

(
n
4

)
+ O(n3), where the minimum is achieved by a blow-up of C5 with

five parts of roughly equal sizes. Moreover, the extremal structure is unique for sufficiently large n.

We determine the exact sizes of the parts of the blow-up by solving an integer optimization problem,

the precise results of which are given in Section 4.

Theorem 1.2. f(n, 3, 4) =
(bn/3c

3

)
+
(b(n+1)/3c

3

)
+
(b(n+2)/3c

3

)
∼ 1

9

(
n
3

)
, where for large n the minimum

is achieved by three disjoint cliques that are as equal as possible. Moreover, any extremal graph must

be spanned by three such cliques.

Note that in this case the extremal graph is not unique, as we may have partial matchings between

the cliques without introducing any extra triangles.

As we remark in our concluding section, solutions of corresponding SDP problems strongly sug-

gest that a disjoint union of cliques remains optimal for the (3, 5)- and (3, 6)-problems, contrary to

Nikiforov’s conjecture.
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1.2 Notation and organization

Given a graph G on vertices V (G), and a vertex v ∈ V (G), we denote by N(v) the set of neighbors of

v in G, and by N(v) the set of non-neighbors of v. The complement graph G shares the same vertices

as G, and has an edge {u, v} if and only if {u, v} is not an edge of G. We denote the independence

number of G by α(G). The complete graph on k vertices is denoted by Kk. In particular, a graph

G is Kl-free if and only if α(G) < l. Some other graphs we will use are the cycles Ck, and paths Pk
where in each case the subscript refers to the number of edges.

Given a fixed graph H, for any graph G we let tH(G) denoted the number of induced copies of H

in G. In the case H = Kk, we simplify the notation to tk(G). Using this notation, we can define

f(n, k, l) = min{tk(G) : |V (G)| = n, tl(G) = 0}.

The rest of the paper is organized as follows. In the next section, we construct counterexamples

to Erdős’ conjecture in the case k ≥ 4 and l ≥ 3 or k = 3 and l large. In Section 3, we provide an

informal introduction to our main tool, flag algebras. Sections 4 and 5 contain the proofs of our main

results for the (4, 3)- and (3, 4)-problems respectively. The final section contains some concluding

remarks and open problems.

Some technical details are given in the appendices: Appendix A provides some remarks regarding

implementation of flag algebras, and Appendix B contains the proof of the integer optimization result

for the (4, 3)-problem.

2 Counterexamples to Erdős’ conjecture

Nikiforov [9] showed that not only was Erdős’ conjecture not true in general, but that it held only

finitely often. He used bounds on the Ramsey numbers R(3, l) to show the existence of k0 and l0
such that whenever k > k0 or l > l0, blow-ups of Ramsey graphs did better than disjoint unions of

cliques Tn,l−1. In the following theorem, we use a combination of explicit and random constructions

to further improve this result.

Theorem 2.1. Tn,l−1 is not optimal for the (k, l)-problem when

(i) k ≥ 4 and l ≥ 3, or

(ii) k = 3 and l ≥ 2074.

2.1 The (k, l)-problem with k ≥ 4

Let us first consider the case l = 3. That is, we are looking to minimize the number of k-cliques in

a graph with independence number at most 2. For the (4, 3)-problem, Nikiforov [10] gave an explicit

counter-example to Erdős’s conjecture by showing that a blow-up of C5 contains fewer triangles than

the graph Tn,2, which consists of two disjoint cliques. In fact, it is easy to see that this construction

is better than Tn,2 for any k ≥ 4. Indeed, a disjoint union of two cliques contains, asymptotically,

2
(n

2
k

)
∼ 1

2k−1

(
n
k

)
k-cliques. On the other hand, the blow-up of C5 contains 5

(( 2n
5
k

)
−
(n

5
k

))
∼ 2k−1

5k−1

(
n
k

)
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k-cliques. For k ≥ 4, we have 2k−1
5k−1 <

1
2k−1 , and so Tn,2 is asymptotically not optimal for the (k, 3)-

problem.

For l ≥ 4, the graph Tn,l−1 consists of l − 1 disjoint cliques. However, as shown above, if we

replace two of these cliques with a blow-up of C5 on the same number of vertices, we will reduce the

number of k-cliques. Formally, this construction has a blow-up of C5 on five parts of size 2n
5(l−1) , and

l − 3 disjoint cliques of size n
l−1 , and contains fewer k-cliques than Tn,l−1. This shows that a disjoint

union of cliques is not optimal for the (k, l)-problem for any k ≥ 4 and l ≥ 3.

2.2 The (3, l)-problem

The situation is quite different when k = 3. As we will show later, the disjoint union of cliques is

optimal for the (3, 3)- and (3, 4)-problems. However, unlike the case k = 2, this construction ceases to

be optimal for large values of l. We consider the random graph G ∼ G(m, p) on m vertices, with every

edge appearing independently with probability p. For suitable parameters l,m, and p, we show that

with positive probability the balanced blow-up of G has no independent set of size l and has fewer

triangles than Tn,l−1. First we count the number of triangles in a balanced blow-up of an m-vertex

graph G to n vertices.

There are three ways to obtain a triangle in the blow-up. The vertices of the triangle can all come

from one part, in which case there are n
m vertices to choose from. As there are m vertices in G, there

are m
( n
m
3

)
∼ 1

m2

(
n
3

)
such triangles. Alternatively, the vertices of the triangle can come from an edge in

G, with two vertices from one part, and the third vertex from the other. There are two ways to split

the vertices, and e(G) edges, so the total number of such triangles is 2e(G)
( n
m
2

)( n
m
1

)
∼ 6e(G)

m3

(
n
3

)
. Finally,

the vertices of the triangle can come from a triangle in G, with one vertex from each of the three

parts. There are t3(G) triangles in G, and so the number of such triangles is t3(G)
(
n
m

)3 ∼ 6t3(G)
m3

(
n
3

)
.

Thus the total number of triangles in the blow-up of G is asymptotically
(

6(e(G)+t3(G))
m3 + 1

m2

) (
n
3

)
.

On the other hand, Tn,l−1 has (l − 1)
( n
l−1
3

)
∼ 1

(l−1)2

(
n
3

)
triangles. Thus to obtain a counter-

example to Erdős’s conjecture, we need to show that for some l,m and p, with positive probability

the random graph G ∼ G(m, p) has no independent set of size l and 6(e(G)+t3(G))
m3 + 1

m2 <
1

(l−1)2
, or

e(G) + t3(G) < m3

6(l−1)2
− m

6 . Let us call such a graph ‘suitable’.

Let B1 be the event that α(G) ≥ l, where α(G) is the independence number of G. For some

parameters s and t, let B2 be the event {e(G)−E[e(G)] ≥ s}, and B3 the event {t3(G)−E[t3(G)] ≥ t}.
If E[e(G) + t3(G)] + s + t ≤ m3

6(l−1)2
− m

6 , then
{
e(G) + t3(G) ≥ m3

6(l−1)2
− m

6

}
⊂ B2 ∪ B3. Then we

have

P(G not suitable) ≤ P(B1 ∪B2 ∪B3) ≤ P(B1) + P(B2 ∪B3).

We use a union bound for B1: there are
(
m
l

)
sets of l vertices, and the probability that a given

set has no edges is (1− p)(
l
2). Using the bound

(
n
r

)
≤
(
ne
r

)r
, we have

P(B1) ≤
(
m

l

)
(1− p)(

l
2) ≤

(
me(1− p)

l−1
2

l

)l
.

Note that the other two events are increasing; that is, they are preserved by the addition of edges.
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It then follows from Kleitman’s Lemma (see Chapter 6 in [1]) that P(B2 ∩B3) ≥ P(B2)P(B3), and so

P(B2∪B3) = P(B2)+P(B3)−P(B2∩B3) ≤ P(B2)+P(B3)−P(B2)P(B3) = P(B2)+P(B3) (1− P(B2)) .

Moreover, since the right-hand side is increasing in both P(B2) and P(B3), we can replace the proba-

bilities with upper bounds to obtain an upper bound on P(B2 ∪B3). To obtain these upper bounds,

we use the following second moment concentration inequality from [1]:

Proposition 2.2. Let X be a random variable with expectation E[X] = µ and variance σ2. Then for

all λ > 0,

P(X − µ ≥ λ) ≤ σ2

λ2 + σ2
.

For the event B2, with X = e(G), we have X ∼ Bin
((
m
2

)
, p
)
, and so µ =

(
m
2

)
p and σ2 =(

m
2

)
p(1− p). This gives P(B2) ≤ (m2 )p(1−p)

s2+(m2 )p(1−p)
.

For the event B3, let X = t3(G). There are
(
m
3

)
possible triangles, each of which appears with

probability p3, and hence µ =
(
m
3

)
p3. To find the variance, we note that any fixed triangle T is

independent of all triangles except those that share at least two vertices with T . A quick calculation

gives σ2 =
(
m
3

)
p3
[
(1− p3) + 3(m− 3)p2(1− p)

]
. Thus P(B3) ≤ (m3 )p3[(1−p3)+3(m−3)p2(1−p)]

t2+(m3 )p3[(1−p3)+3(m−3)p2(1−p)] .

Thus if we can find l,m, p, s and t such that
(
m
2

)
p+

(
m
3

)
p3 + s+ t ≤ m3

6(l−1)2
− m

6 , and(
me(1−p)

l−1
2

l

)l
+

(m2 )p(1−p)
s2+(m2 )p(1−p)

+
(m3 )p3[(1−p3)+3(m−3)p2(1−p)]

t2+(m3 )p3[(1−p3)+3(m−3)p2(1−p)]

[
1− (m2 )p(1−p)

s2+(m2 )p(1−p)

]
< 1,

then we prove that there is a suitable graph, and therefore Tn,l−1 is not optimal for the (3, l)-problem.

A computer search determined that l = 2074, m = 164397, p = 0.0051707, s = 14000 and

t = 35000 are suitable values. Hence the graph with 2073 disjoint cliques is not optimal for the

(3, 2074)-problem. Moreover, if l > 2074, then in Tn,l−1 we can replace 2073 cliques by a graph with

fewer triangles. Hence Tn,l−1 is not optimal for the (3, l)-problem for any l ≥ 2074.

It would be interesting to find better constructions and to determine when Tn,l−1 stops being

optimal for the (3, l)-problem. Our flag algebra calculations suggest that it is still optimal for at least

the (3, 5)- and (3, 6)-problems.

3 Flag algebra calculus

In this section we provide a brief introduction to the technique of flag algebras. First introduced by

Razborov in [12], it has been applied with great success to a wide variety of problems in extremal

combinatorics (see, for example, [3, 5, 6, 11, 13, 14]).

We will begin with a general overview of the calculus, by introducing some key definitions and

providing some intuition behind the machinery. The second subsection will show how we express

extremal problems in the language of flag algebras. In Appendix A we discuss some practical consid-

erations regarding implementation of the method, to explain how we obtained our results in the later

sections.

5



It is neither our goal to be rigorous nor thorough, but rather to emphasize that the combinatorial

arguments behind the flag algebra calculus are as old as extremal combinatorics itself. Indeed, the

main tools available to us are double-counting and the Cauchy-Schwarz inequality. To highlight this

fact, we will use the (3, 3)-problem as a running example, and indeed, the proof we obtain through

flag algebras will be essentially the same as the original proof Lorden gave in 1962.

The flag algebra calculus is powerful because it provides a formalism through which the problem

of finding relations between subgraph densities can be reduced to a semi-definite programming (SDP)

problem. This in turn enables the use of computers to find solutions, with rigorous proofs, to problems

in extremal combinatorics. For a more complete survey of the technique, we refer you to the excellent

expositions in [7] and [11], while for a technical specification of flag algebras, we refer you to the

original paper of Razborov [12].

3.1 Basic definitions and notation

The flag algebra calculus is typically used to find the extremal density of some fixed subgraph J

amongst graphs that avoid some forbidden subgraph. For our example, the (3, 3)-problem, we wish

to minimize the density of triangles K3 in graphs that do not contain K3, the empty graph on 3

vertices. While our definitions will be general, all our examples will come from this setting.

We say that a graph is admissible if it contains no induced copies of the forbidden graph. A type

σ is an admissible labeled graph on vertices [k] for some non-negative integer k called the size of σ,

denoted by |σ|. In what follows, an isomorphism between graphs must preserve any labels that are

present.

Given a type σ, a σ-flag is an admissible graph F on a partially labeled vertex set, such that the

subgraph induced by the labeled vertices is isomorphic to σ. The underlying graph of the flag F is

the graph F with all labels removed. The size of a flag is the number of vertices. Note that when σ

is the trivial type of size 0 (denoted by σ = 0), a σ-flag is just an usual unlabeled admissible graph.

We shall write Fσl for the collection of all σ-flags of size l. Let Fσ =
⋃
l≥0Fσl . When the type σ is

trivial, we shall omit the superscript from our notation.

Let us now define two fundamental concepts in our calculus, namely those of flag densities in larger

flags and graphs. Let σ be a type of size k, let m ≥ 1 be an integer and let {Fi}mi=1 be a collection of

σ-flags of sizes li = |Fi| ≥ k. Given a σ-flag F of order at least l = k +
∑m

i=1(li − k), let T ⊆ V (F )

be the set of labeled vertices of F . Now select disjoint subsets Xi ⊆ V (F ) \ T of sizes |Xi| = li − k,

uniformly at random. This is possible because F has at least
∑

i(li − k) unlabeled vertices. Denote

by Ei the event that the σ-flag induced by T ∪ Xi is isomorphic to Fi, for i ∈ [m]. We define

pσ(F1, F2, . . . , Fm;F )
def
= P(∩mi=1Ei) to be the probability that all these events occur simultaneously.

If G is just an admissible graph of order at least l, and not a σ-flag, then there is no pre-labeled

set of vertices T that induces the type σ. Instead, we uniformly at random select a partial labeling

L : [k] → V (G). This random labeling turns G into a σ′-flag FL, where the type σ′ is the labeled

subgraph induced by the set of vertices L([k]). If σ′ = σ, we can then proceed as above, otherwise we

say the events Ei have probability 0. Finally, we average over all possible random labelings. Formally,
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let Y be the following random variable

Y
def
=

{
pσ(F1, F2, . . . , Fm;FL) if σ′ = σ

0 otherwise
.

Define dσ(F1, . . . , Fm;G)
def
= E(Y ) as the expected value of the random variable Y . The quantities

pσ(F1, F2, . . . , Fm;F ) and dσ(F1, F2, . . . , Fm;G) are called flag densities of {Fi}i∈[m] in F and in G,

respectively. Clearly these flag densities are the same whenever σ = 0, in which case we omit the

subscript from both notations.

To better illustrate these definitions, we give some examples. Let dot be the only type of size one.

Let ρ and ρ be the two dot-flags of size two, and let Zi, for 1 ≤ i ≤ 5, be the five admissible dot-flags

of size three (recall that we are forbidding K3). These flags are shown in Figure 1.

1

dot

1

ρ

1

ρ

1

Z1

1

Z2

1

Z3

1

Z4

1

Z5

Figure 1: Some examples of flags of type dot.

We now compute the flag densities of ρ and ρ in the flags Zi. For example, to compute pdot(ρ;Z1),

note that to induce a copy of ρ we must choose an unlabeled non-neighbor of 1. As only one of

the two unlabeled vertices in Z1 is a non-neighbor of 1, we conclude that pdot(ρ;Z1) = 1
2 . Similarly,

pdot(ρ;Z3) = 1, because to induce ρ we must select a neighbor of 1, and all the unlabeled vertices

in Z3 are neighbors of 1. The other flag densities are pdot(ρ;Z5) = pdot(ρ;Z2) = 1, pdot(ρ;Z1) =

pdot(ρ;Z4) = pdot(ρ;Z1) = pdot(ρ;Z4) = 1
2 , and pdot(ρ;Z2) = pdot(ρ;Z3) = pdot(ρ;Z5) = 0.

Figure 2: Graph W .

To see how to compute flag densities in an unlabeled graph, consider W , the graph on 5 vertices

depicted in Figure 2. It is easy to see that ddot(ρ;W ) and ddot(ρ;W ) are the edge and non-edge

densities of W respectively, and so ddot(ρ;W ) = 7
10 and ddot(ρ;W ) = 3

10 . The computation of

ddot(Zi;W ) is a little more involved. As an example, we explain how to compute ddot(Z3;W ). Note

that Z3 consists of two nonadjacent neighbors of the labeled vertex 1. Hence for every vertex v ∈
V (W ), let κv denote the number of nonadjacent pairs neighbors of v divided by the total number

of pairs of vertices in V (W ) \ {v}. ddot(Z3;W ) is then the average of κv over all vertices in W ,

7



which comes out to 1
6 . Computing the other flag densities gives ddot(Z1;W ) = 2

15 , ddot(Z2;W ) = 1
15 ,

ddot(Z4;W ) = 1
3 , and ddot(Z5,W ) = 3

10 .

We can also compute the joint flag densities of multiple flags. For instance, let us consider

ddot(ρ, ρ;W ). In this case, we first randomly choose a vertex v to be the labeled vertex. We must

then make an ordered choice of two vertices in V (W ) \ {v}, as we have two flags, each with one

unlabeled vertex. If both of these vertices are neighbors of v, then we have induced two copies of the

flag ρ (note that the adjacency of these two vertices is unimportant). Hence we obtain ddot(ρ, ρ;W )

by averaging over all vertices v the ratio of the number of ordered pairs of neighbors of v to the

number of ordered pairs of vertices in V (W ) \ {v}. In this case, we have ddot(ρ, ρ;W ) = 7
15 .

Suppose as before we have a type σ of size k, a σ-flag F of size l ≥ k, and an unlabeled graph G.

To compute dσ(F ;G), we averaged over all random partial labelings of G the probability of finding a

flag isomorphic to F . A simple double-counting argument shows that we can do the averaging before

the random labeling, which is the idea behind Razborov’s averaging operator, as defined in Section

2.2 of [12]. Let F |0 denote the unlabeled underlying graph of F . We can compute dσ(F ;G) by first

computing d(F |0;G), the probability that l randomly chosen vertices in G form an induced copy of

F |0 as a subgraph. Given this copy of F |0, we then randomly label k of the l vertices, and compute

the probability that these k vertices are label-isomorphic to σ. This amounts to multiplying d(F |0;G)

by a normalizing factor qσ(F ), that is, dσ(F ;G) = qσ(F )d(F |0;G) = qσ(F )p(F |0;G).

We can interpret the normalizing factor as qσ(F ) = dσ(F ;F |0). From our previous example, we

have qdot(ρ) = qdot(ρ) = qdot(Z5) = 1, qdot(Z3) = qdot(Z2) = 1
3 and qdot(Z4) = qdot(Z1) = 2

3 . Since

qdot(Z5) = 1, it follows that ddot(Z5;G) = d(K3;G) is the triangle density of G.

There are more relations involving dσ and pσ than the one mentioned previously. We will now

state, without proof, a basic fact about flag densities that can be proved easily by double counting.

Fact 3.1 (Chain rule). If σ is a type of size k, m ≥ 1 is an integer, and {Fi}mi=1 is a family of σ-flags

of sizes |Fi| = li, and l ≥ k +
∑m

i=1(li − k) is an integer parameter, then

1. For any σ-flag F of order at least l, we have

pσ(F1, . . . , Fm;F ) =
∑
F ′∈Fσl

pσ(F1, . . . , Fm;F ′)pσ(F ′;F ).

2. For any admissible graph G of order at least l, we have

dσ(F1, . . . , Fm;G) =
∑
H∈Fl

dσ(F1, . . . , Fm;H)d(H;G) =
∑
F∈Fσl

pσ(F1, . . . , Fm;F )dσ(F ;G).

If we apply the chain rule form = 1, we have the equation pσ(F ;F ′) =
∑

F ′′∈Fσl
pσ(F ;F ′′)pσ(F ′′;F ′).

For instance, this gives

pdot(ρ;F ) = pdot(ρ;Z1)pdot(Z1;F ) + pdot(ρ;Z2)pdot(Z2;F ) + pdot(ρ;Z3)pdot(Z3;F )+

pdot(ρ;Z4)pdot(Z4;F ) + pdot(ρ;Z5)pdot(Z5;F )

=
1

2
pdot(Z1;F ) + pdot(Z3;F ) +

1

2
pdot(Z4;F ) + pdot(Z5;F ).
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Similarly, we can expand pdot(ρ;F ) = 1
2pdot(Z1;F ) + pdot(Z2;F ) + 1

2pdot(Z4;F ).

For the ease of notation, we can express these two identities using the syntax of flag algebras:

ρ =
1

2
Z1 + Z3 +

1

2
Z4 + Z5, (1)

ρ =
1

2
Z1 + Z2 +

1

2
Z4.

In this syntax, the equation
∑

i∈I αiFi = 0 means that for all sufficiently large σ-flags F , we have∑
i∈I αipσ(Fi;F ) = 0, where αi ∈ R for all i ∈ I. We call

∑
i∈I αiFi an eventually zero expression.

We use Aσ to denote the set of linear combinations of flags of type σ. It is convenient to define a

product of flags in the following way:

F1 · F2
def
=

∑
F∈Fσl

pσ(F1, F2;F )F, F1 ∈ Fσ, F2 ∈ Fσ, l ≥ |F1|+ |F2| − |σ|.

(Note that it does not matter what l we choose, as the difference will be an eventually zero expression.)

For example, instead of writing pdot(ρ, ρ;F ) = pdot(Z3;F ) + pdot(Z5;F ), we could simply write ρ2 =

ρ·ρ = Z3 +Z5. For the flags of our running example, involving K3-free graphs, the following equations

are also easily verifiable: ρ2 = Z3 + Z5, ρ2 = Z2, and ρ · ρ = 1
2Z4 + 1

2Z1. Combining these equations,

we arrive at the following equation, which we shall later require in Section 4:

4ρ2 · ρ2 = 4Z2 · (Z3 + Z5) = (Z4 + Z1)2. (2)

To further simplify the notation, we can extend the definitions of pσ and dσ to Aσ by making them

linear in each coordinate. For example, pσ(F1+2F2, 4F3;F4−F5) = 4pσ(F1, F3;F4)−4pσ(F1, F3;F5)+

8pσ(F2, F3;F4)− 8pσ(F2, F3;F5). The product notation simplifies these extended definitions, because

pσ(f1 ·f2; f) = pσ(f1, f2; f) and dσ(f1 ·f2; g) = dσ(f1, f2; g), for any f1, f2, f ∈ Aσ and for any g ∈ A0.

The last piece of notation we introduce is that of the averaging operator. Recall that for any

σ-flag F , we had the normalizing factors qσ(F ) such that dσ(F ;G) = qσ(F )p(F |0;G). In the syntax

of flag algebra, this averaging operation is denoted by [[F ]]σ
def
= qσF |0 . We can extend this linearly

to all elements of Aσ. For example

[[ρ]]dot = K2, [[Z5]]dot = K3, and [[Z4 + Z2]]dot =
2

3
P2 +

1

3
P2,

where P2 is a path of length two on three vertices, and P2 is its complement. This notation is useful,

because dσ(f ; g) = p([[f ]]σ; g) for any f ∈ Aσ and for any g ∈ A0, and hence we have a unified

notation for both types of flag densities.

3.2 Extremal problems in the flag algebra calculus

Recall that the typical problem is to minimize the density of some fixed graph J amongst all admissible

graphs G not containing a forbidden subgraph. We will show how flag algebras can be applied to

this problem to reduce it to a semi-definite programming (SDP) problem, which can then be solved

numerically.
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We may use the chain rule to obtain, for any t ≥ |J |, the equation d(J ;G) =
∑

H∈Ft d(J ;H)d(H;G).

Since
∑

H∈Ft d(H;G) = 1, we have

d(J ;G) ≥ min
H∈Ft

d(J ;H),

which is a bound that clearly does not depend on G.

This inequality is often very weak, since it only uses very local considerations about the subgraphs

H ∈ Ft, and does not take into account how the subgraphs fit together in the larger graph G; that is,

how they intersect. For instance, returning to our example of the (3, 3)-problem, where J = K3 and

t = 3, we obtain d(K3;G) ≥ minH∈F3 d(K3;H) = d(K3;P2) = 0, which is the most trivial bound.

However, by considering how the graphs in F3 must intersect in G, one might hope to find inequalities

of the form
∑

H∈Ft αHd(H;G) ≥ 0, such that when we combine them with the initial identity, we get

d(J ;G) ≥ d(J ;G)−
∑
H∈Ft

αHd(H;G) =
∑
H∈Ft

(d(J ;H)− αH)d(H;G) ≥ min
H∈Ft

{d(J ;H)− αH}.

Since αH can be negative for some graphs H, the hope is that this will improve the low coefficients

by transferring weight from high coefficients. In order to find such inequalities, we need another

property of the flag densities.

Fact 3.2. If σ is a type of size k, m ≥ 1 is an integer, {Fi}mi=1 is a family of σ-flags of sizes |Fi| = li,

and l ≥ k +
∑m

i=1(li − k) is an integer, then for any flag F of order n ≥ l, we have

pσ(F1, . . . , Fm;F ) =

[
m∏
i=1

pσ(Fi;F )

]
+O(1/n).

One can prove Fact 3.2 by noting that, if we drop the requirement that the sets Xi are disjoint

in the definition of pσ(F1, . . . , Fm;F ), the events Ei will become independent, and thus P(∩mi=1Ei) =∏m
i=1 P(Ei) =

∏m
i=1 pσ(Fi;F ). The error introduced is the probability that these sets Xi will intersect

in F , which is O(1/n). It is tempting to claim a similar product formula for the unlabeled flag

densities dσ, but we cannot do so. In the above equation, it is essential that all the σ-flags Fi share

the same labeled type σ, and hence we require F to be a σ-flag.

We are now ready to establish some inequalities. Let’s first fix a type σ of size k. If Q is any

positive semi-definite |Fσl | × |Fσl | matrix with rows and columns indexed by the same set Fσl , where

l ≥ k, define

Q{Fσl }
def
=

∑
F1,F2∈Fσl

QF1,F2F1 · F2 ∈ Aσ.

Since Q was chosen to be positive semi-definite, we have

pσ(Q{Fσl };F ) =
∑

F1,F2∈Fσl

QF1,F2pσ(F1;F )pσ(F2;F ) ≥ 0

for any σ-flags F of order at least t = 2l − k. When averaging, we do not necessarily have

p([[Q{Fσl }]]σ;G) ≥ 0 for an admissible graph G of order n ≥ t, but we do have the following in-
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equality:

[[Q]]σ(G)
def
= p([[Q{Fσl }]]σ;G) =

∑
F1,F2∈Fσl

QF1,F2dσ(F1, F2;G)

=
∑

F1,F2∈Fσl

QF1,F2

 ∑
F∈Fσn

pσ(F1, F2;F )dσ(F ;G)


=
∑
F∈Fσn

 ∑
F1,F2∈Fσl

QF1,F2pσ(F1, F2;F )

 dσ(F ;G)

=
∑
F∈Fσn

 ∑
F1,F2∈Fσl

QF1,F2pσ(F1;F )pσ(F2;F )

 dσ(F ;G) +O(1/n) ≥ on→∞(1).

Therefore, when n is large, we have that [[Q]]σ(G) is asymptotically non-negative. For each

admissible graph H of size exactly t, let αH = [[Q]]σ(H) =
∑

F1,F2∈Fσt
QF1,F2dσ(F1, F2;H). We then

have

[[Q]]σ(G) =
∑
H∈Ft

αHd(H;G) ≥ on→∞(1).

The expression in the middle of the above equation is called the expansion of [[Q]]σ(G) in graphs

of size t, with αH the coefficients of the expansion. For the sake of conciseness, we often omit the

parameter G and express this asymptotic inequality (combined with the expansion in size t) in the

syntax of flag algebras

[[Q]]σ
def
= [[Q{Fσl }]]σ =

[[ ∑
F1,F2∈Fσl

QF1,F2F1 · F2

]]
σ

=
∑
H∈Ft

αHH ≥ 0. (3)

(Note that all inequalities between flags stated in the language of flag algebras are asymptotic.)

For a concrete example, we return to the (3, 3)-problem. If we use the type σ = dot, flags of size

l = 2, expand in graphs of size t = 3, and consider

Q =

(
+3

4 −3
4

−3
4 +3

4

)
,

where the rows and columns are indexed by ρ and ρ (in that order), we obtain Q{Fdot2 } = 3
4(ρ−ρ)2 =

3
4(−Z1−Z4 +Z2 +Z3 +Z5). This expansion is obtained by substituting the expressions for ρ2, ρ2 and

ρ · ρ that are given above Equation 2. Averaging gives [[Q]]σ = 3
4 [[(ρ − ρ)2]]dot = 3

4K3 − 1
4P2 − 1

4P2.

Recall that K3 + P2 + P2 = 1, since we are only considering K3-free graphs. Therefore d(K3;G) ≥
minH∈F3 {d(K3;H)− [[Q]]σ(H)} = 1

4 , which is the correct bound for the (3, 3)-problem.

In general, if we have more than one inequality available, we can combine them together, provided

they are all expanded in the same size t. Suppose we have r inequalities given by the positive semi-

definite matrices Qi of the σi-flags of size li. Adding them together, we obtain

r∑
i=1

[[Qi]]σi =
∑
H∈Ft

αHH ≥ 0,
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where

αH =
r∑
i=1

 ∑
F1,F2∈F

σi
li

(Qi)F1,F2dσi(F1, F2;H)

 ,

and we want to maximize minH∈Ft {d(J ;H)− αH}.

Thus we have transformed the original problem of finding a maximum lower bound for d(J ;G)

into a linear system involving the variables (Qi)Fk,Fl . As we have the constraint that the matrices Qi
should be positive semi-definite, this is a semi-definite programming problem. To take the minimum

coefficient in the expansion, we introduce an artificial variable y, and require it to be bounded above

by all the coefficients. Hence we have the following SDP problem in the variables y and (Qi)F1,F2 :

Maximize y, subject to the constraints:

• sH = d(J ;H) −
∑r

i=1

(∑
F1,F2∈F

σi
li

(Qi)F1,F2dσi(F1, F2;H)

)
− y ≥ 0 for all H ∈ Ft. (The

variables sH are called surplus variables.)

• Qi is positive semi-definite for i ∈ [r]. (The matrices Qi are often called the block variables

of the SDP problem. We can assume without loss of generality that each Qi is symmetric, as

otherwise we could replace Qi by (Qi +QTi )/2.)

A computer can solve this SDP problem numerically, allowing for an efficient determination of the

inequalities required to prove the extremal problem. For some practical remarks on the implemen-

tation of flag algebras, please see Appendix A. We note at this point, as shall be seen in Section 4,

that the solution to the SDP problem need not only give the asymptotic bound, but can also provide

some structural information about the extremal graphs.

4 The (4, 3)-problem

In this section we will apply the flag algebra calculus to solve the (4, 3)-problem. Recall in the (4, 3)-

problem we are interested in finding the minimum number of 4-cliques in a graph with independence

number less than 3. We prove that any graph on n vertices with independence number at most 2

must contain at least 3
25

(
n
4

)
+ O(n3) 4-cliques. This bound is attained by a balanced blow-up of C5,

which Nikiforov conjectured to be optimal in [10].

The first subsection contains our flag algebra results, which leads to the asymptotic minimum

density of 4-cliques. In the second subsection we use the structural information from the flag algebras

to derive a stability result. This allows us to determine the value of f(n, 4, 3) exactly for large n, and

we show that a nearly-balanced blow-up of C5 is the unique extremal graph.

4.1 The asymptotic result

We begin by listing the admissible graphs of size 5, the types used in the proof, and the corresponding

flags. Note that the flags of size 3 and type dot in Figure 6 are those we used as examples in Section

3.1, Figure 1.
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G1 G2 G3 G4 G5 G6 G7

G8 G9 G10 G11 G12 G13 G14

Figure 3: Graphs of size 5 with independence number at most 2.

3

1

2

τ1

2

1 3

M1

2

1 3

M2

2

1 3

M3

2

1 3

M4

Figure 4: Type τ1 and its flags of size 4.

3

1

2

τ2

2

1 3

N1

2

1 3

N2

2

1 3

N3

2

1 3

N4

2

1 3

N5

2

1 3

N6

2

1 3

N7

2

1 3

N8

Figure 5: Type τ2 and its flags of size 4.

1

dot

1

Z1

1

Z2

1

Z3

1

Z4

1

Z5

Figure 6: Type dot and its flags of size 3.

For each of the types used in the proof, we express the corresponding positive semi-definite matrices

as a sum of squares. In the lemmas that follow, we give these sums of squares, their expansions into

the admissible graphs of size 5, and provide sketches of combinatorial proofs (note that the lemmas

were initially obtained by solving the corresponding SDP problem). We begin with the type τ1.
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Lemma 4.1.

∆1 =

[[
(M2 +M4 −M1 −M3)2

]]
τ1

=
1

30
· (2G2 + 3G3 −G5 −G8 − 4G9 − 2G10 − 5G11) ≥ 0.

Sketch of proof. Let G = (V,E) be a graph on n vertices. Define τ1(G) = {(x, y, z) ∈ V (G)3 :

{x, y}, {x, z} ∈ E(G) and {y, z} 6∈ E(G)}. Every triple (x, y, z) ∈ τ1(G) induces a copy of of the type

τ1 in G, where vertex x is labelled “1”, vertex y is labelled “2” and vertex z is labelled “3”. Fix some

p = (x, y, z) ∈ τ1(G). Note that M2 and M4 are flags where the unlabeled vertex is adjacent to 2 but

not 3, while M1 and M3 are flags with the unlabeled vertex adjacent to 3 but not 2. Hence we define

dp(v)
def
=


1, if {v, y} ∈ E(G) but {v, z} 6∈ E(G),

−1, if {v, z} ∈ E(G) but {v, y} 6∈ E(G),

0, otherwise,

for each v ∈ V (G) \ {x, y, z}. If we denote by F the flag induced by the labelled vertices {x, y, z}
together with the unlabelled vertex v, we have

dp(v) =


1, if F = M2 or F = M4,

−1, if F = M1 or F = M3,

0, otherwise.

Thus the combinatorial interpretation of the lemma is

∆1(G) =
1

3!
(
n
3

) ·
 ∑
p=(x,y,z)∈τ1(G)

1

2
(
n−3

2

)
 ∑
v,w 6∈{x,y,z}

v 6=w

dp(v)dp(w)




=
1

120
(
n
5

) ∑
p=(x,y,z)∈τ1(G)

∑
v,w/∈{x,y,z}

v 6=w

dp(v)dp(w) ≥ on→∞(1).

The proof that this summation is asymptotically non-negative is very simple, since

∑
v,w 6∈{x,y,z}

v 6=w

dp(v)dp(w) =

 ∑
v 6∈{x,y,z}

dp(v)

2

−
∑

v 6∈{x,y,z}

dp(v)2,

and

1

120
(
n
5

) ·
 ∑
p=(x,y,z)∈τ1(G)

 ∑
v 6∈{x,y,z}

dp(v)2

 = O(1/n).

It remains to expand the products of the flags into admissible graphs of size 5, and thus show that

∆1 = 1
30 · (2G2 + 3G3 −G5 −G8 − 4G9 − 2G10 − 5G11). For the sake of conciseness, we omit the full

details of this calculation. We show how to compute the coefficient of G10, that is, ∆1(G10); the other

coefficients follow similarly.
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In this case, the set {x, y, z, v, w} spans a copy of G10.

y
x

z

−4

z
x

y

−4

yx

z

0

zx

y

0

y

x z

0

z

x y

0

Figure 7: Possible configurations of p inside G10 and corresponding contributions to ∆1(G10).

We have the following cases:

1. Vertex x is one of the vertices of degree 3. There are two choices of x satisfying this condition.

We have the following subcases:

(a) Vertex y is the vertex of degree 2 of the triangle containing x and z is only neighbor of x

which is not adjacent to y. This configuration corresponds to the first graph in Figure 7.

As one of the unlabeled vertices is adjacent to y and not z, and the other is adjacent to

z and not y, both assignments of v and w, we have dp(v)dp(w) = −1. As there are two

choices for the pair (v, w) and two choices for x, the total contribution for this configuration

is −4.

(b) The same configuration as above, but with the roles of y and z swapped. This configuration

corresponds to the second graph in Figure 7 and its contribution is −4.

(c) Vertex y is the other vertex of degree 3 and z is the only neighbor of x which is not adjacent

to y. This configuration corresponds to the third graph in Figure 7. For any possible choice

of v and w, we have dp(v) · dp(w) = 0, hence the total contribution is 0.

(d) The same configuration as above, but with the roles of y and z swapped. This configuration

corresponds to the fourth graph in Figure 7 and its contribution is 0.

2. Vertex x is one of the vertices of degree 2 not in the triangle. Again we have two choices of x

satisfying this condition. We also have the following subcases:

(a) Vertex y is the only neighbor of x of degree 3 and z is the other neighbor. This configuration

corresponds to the fifth graph in Figure 7. For any possible choice of v and w, we have

dp(v) · dp(w) = 0, hence the total contribution for this configuration is 0.

(b) The same configuration as above, but with the roles of y and z swapped. This configuration

corresponds to the last graph in Figure 7 and its contribution is 0.

When we sum the contributions we get −8, and hence the coefficient of G10 is ∆1(G10) = − 8
120 = − 1

15 .

2

We now consider the type τ2.
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Lemma 4.2.

∆2 =

[[
(−3N1 − 3N2 − 3N3 − 3N4 + 2N5 + 2N6 + 2N7 + 2N8)2

]]
τ2

=
1

10
· (−24G1 − 12G2 − 24G3 − 8G5 + 28G6 + 9G7 + 9G8+

18G9 + 9G10 − 12G12 + 16G13 + 40G14) ≥ 0.

Sketch of proof. Let G = (V,E) be a graph on n vertices. Define τ2(G) = {(x, y, z) ∈ V (G)3 :

{x, y}, {x, z}, {y, z} ∈ E(G)}. Every triple (x, y, z) ∈ τ2(G) induces a copy of of the type τ2 in G,

where vertex x is labelled “1”, vertex y is labelled “2” and vertex z is labelled “3”. Fix p = (x, y, z) ∈
τ2(G). Note that the flags Ni for 1 ≤ i ≤ 4 are those where the unlabeled vertex has at most one

neighbour in the triangle τ2, while in the flags Ni for 5 ≤ i ≤ 8, the unlabeled vertex has at least two

neighbours in τ2. This motivates the definition

dp(v)
def
=

{
−3, if v is connected to at most one vertex in {x, y, z},

2, otherwise,

for each v ∈ V (G) \ {x, y, z}. The combinatorial interpretation of the lemma is

∆2(G) =
1

5!
(
n
5

)
 ∑
p=(x,y,z)∈τ2(G)

 ∑
v,w 6∈{x,y,z}

v 6=w

dp(v)dp(w)


 ≥ on→∞(1).

As in Lemma 4.1, this is easily seen to be asymptotically positive. We omit the computation of

∆2(Gi) for i = 1, 2, . . . , 14, which can be performed as in the proof of the previous lemma. 2

Finally we consider the dot type. Note that in this case the positive semi-definite matrix takes

the form of a sum of three squares.

Lemma 4.3.

∆3 =

[[
(Z1 − 2Z2)2 +

1

16
· (6Z2 − 7Z3 + 8Z4 − 6Z5)2 +

11

80
· (2Z2 + 3Z3 − 2Z5)2

]]
dot

=
1

150
(204G1 − 118G2 + 54G3 + 60G4 − 17G5 + 42G6 − 144G7 − 94G8+

2G9 − 64G10 + 160G11 − 258G12 − 281G13 + 420G14) ≥ 0.

Proof. We omit the proof, noting that the calculations involved are very similar to those in the

previous lemmas. 2

We are now in a position to combine the lemmas to obtain a bound on the minimum density of

4-cliques in admissible graphs. In what follows, K4 represents the clique on four vertices, while C4

denotes a cycle on four vertices.
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Theorem 4.4.

K4 − 2∆1 −
2

25
∆2 −

1

5
∆3 =

3

25
+

1

30
G5 +

2

75
G10 +

24

75
G12 +

19

150
G13

=
3

25
+

1

30
G5 +

2

15
C4 +

4

15
G12 +

1

10
G13.

Proof. We first expand the graphs K4 and C4 into admissible graphs of size 5. A straightforward

calculation gives K4 = 1
5(G1 +G3 +G4 + 2G6 + 5G14), and C4 = 1

5(G10 + 2G12 +G13). Note that the

density of graphs on k vertices is measured with respect to
(
n
k

)
, and so the normalization factor of 1

5

appears when expanding graphs on four vertices to graphs on five vertices. Now we use Lemmas 4.1,

4.2 and 4.3 to expand ∆1, ∆2 and ∆3 into the graphs Gi. Noting that
∑

iGi = 1, we can replace
3
25

∑
iGi with 3

25 , which results in the above theorem. 2

We conclude this section by using the above theorem to deduce some structural information about

extremal graphs. Recall that t4(G) denotes the number of 4-cliques in G, while for any graph H,

tH(G) counts the number of induced copies of H in G.

Corollary 4.5. Suppose G is a graph on n vertices with t4(G) =
(

3
25 + o(1)

) (
n
4

)
. Then

(i) tG5(G) = o(n5),

(ii) tC4(G) = o(n4), and

(iii) all but o(n) vertices of G have degree (3
5 + o(1))n.

Proof. Applying Theorem 4.4 to G, we have

d(K4;G)−2∆1(G)− 2

25
∆2(G)−1

5
∆3(G) =

3

25
+

1

30
d(G5;G)+

2

15
d(C4;G)+

4

15
d(G12;G)+

1

10
d(G13;G).

In particular, using the asymptotic non-negativity of ∆i(G), we have

d(K4;G) ≥ 3

25
+

1

30
d(G5;G) +

2

15
d(C4;G) +

1

5
∆3(G) + o(1).

Thus if d(K4;G) = 3
25 + o(1), we must have d(G5;G) = d(C4;G) = ∆3(G) = o(1). This immediately

gives tG5(G) = o(n5) and tC4(G) = o(n4), and so it remains to justify (iii). We have

∆3(G) =

[[
(Z1 − 2Z2)2 +

1

16
(6Z2 − 7Z3 + 8Z4 − 6Z5)2 +

11

80
(2Z2 + 3Z3 − 2Z5)2

]]
dot

= o(1).

For every vertex v, let Fv be the dot-flag obtained from G by labeling the vertex v with 1. By

definition of the averaging operator, ∆3(G) is the average over vertices v of the corresponding flag

densities in Fv. The expression is a sum of squares, and thus will be asymptotically non-negative.

Since the average is o(1), the expression must be o(1) for all but o(n) vertices. In particular, for these

vertices we have

pdot(Z1;Fv)− 2pdot(Z2;Fv) = o(1),

6pdot(Z2;Fv)− 7pdot(Z3;Fv) + 8pdot(Z4;Fv)− 6pdot(Z5;Fv) = o(1), and

2pdot(Z2;Fv) + 3pdot(Z3;Fv)− 2pdot(Z5;Fv) = o(1).
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Since the sum of the flag densities must be 1, we also have

pdot(Z1;Fv) + pdot(Z2;Fv) + pdot(Z3;Fv) + pdot(Z4;Fv) + pdot(Z5;Fv) = 1.

Finally, recall from Equation (2) in Section 3 that 4Z2 · (Z3 +Z5)− (Z4 +Z1)2 = 0. Applying this

to Fv, we have

4pdot(Z2;Fv) (pdot(Z3;Fv) + pdot(Z5;Fv))− (pdot(Z4;Fv) + pdot(Z1;Fv))
2 = o(1).

This gives us a system of five equations in the five variables pdot(Zi;Fv). The first four equations

form a linear system of full rank, which we can use to express all the variables in terms of pdot(Z5;Fv).

Substituting these terms into the fifth equation gives a quadratic equation in pdot(Z5;Fv), which results

in two solutions, namely (pdot(Zi;Fv))
5
i=1 =

(
8
25 ,

4
25 ,

2
25 ,

4
25 ,

7
25

)
+ o(1) or

(
1
2 ,

1
4 , 0, 0,

1
4

)
+ o(1).

We now show that the second solution implies a large number of 4-cliques. Indeed, suppose

v ∈ V was a vertex with (pdot(Zi;Fv))
5
i=1 =

(
1
2 ,

1
4 , 0, 0,

1
4

)
+ o(1). Recall from Equation (1) in Section

3 we have ρ = 1
2Z1 + Z3 + 1

2Z4 + Z5, where ρ is the dot-flag of size 2 corresponding to an edge.

Applying this to the flag Fv, we deduce that the degree of v is
(

1
2 ·

1
2 + 1

4 + o(1)
)
n = 1

2n + o(n).

Thus there are 1
2n + o(n) vertices v is not adjacent to, and since G is K3-free, these vertices must

form a clique. This clique contains
( 1

2
n+o(n)

4

)
∼ 1

16

(
n
4

)
4-cliques. Consider now the neighborhood

of v. Since pdot(Z3;Fv) = o(1), it follows that the neighborhood is missing at most o(n2) edges.

Hence the number of 4-cliques in the neighborhood of v is
( 1

2
n+o(n)

4

)
− o(n4) ∼ 1

16

(
n
4

)
. Thus we have

t4(G) ≥
(

1
8 + o(1)

) (
n
4

)
, which contradicts our assumption that t4(G) =

(
3
25 + o(1)

) (
n
4

)
.

Hence for almost all vertices v, we have (pdot(Zi;Fv))
5
i=1 =

(
8
25 ,

4
25 ,

2
25 ,

4
25 ,

7
25

)
+ o(1). Applying

Equation (1), we deduce that the degree of v is
(

1
2 ·

8
25 + 2

25 + 1
2 ·

4
25 + 7

25 + o(1)
)
n =

(
3
5n+ o(1)

)
n,

as claimed.

2

4.2 The stability analysis

We will now use the results of the preceding section to show that, for sufficiently large n, a blow-up

of C5 is the unique extremal graph for the (4, 3)-problem. Recall that in a blow-up, we replace every

vertex with a clique, and every edge with a complete bipartite graph. Hence a blow-up of C5 consists

of five disjoint sets of vertices Vi, with Vi ∪ Vi+1 a clique for all 1 ≤ i ≤ 5, and no edges between Vi
and Vi+2 for all 1 ≤ i ≤ 5 (throughout this section, indices will be taken modulo 5).

Suppose G is a K3-free graph on n vertices with the minimal number of 4-cliques. Our proof

consists of three steps. We first use the results of Corollary 4.5 to deduce that G is close to being

a blow-up of C5 (note that this holds not only for an extremal graph, but for any family of graphs

that is asymptotically optimal). In the second step we use the minimality of G to show that G must

in fact be a blow-up of C5 with asymptotically equal parts. Finally, we solve an integer optimization

problem to determine the size of the parts of G exactly.

Recall that from Corollary 4.5, we have that if n is sufficiently large, and G is an extremal graph

on n vertices, then t4(G) = 3
25

(
n
4

)
+ o(n4), tC4(G) = o(n4), tG5(G) = o(n5), and all but o(n) vertices

of G have degree 3
5n+o(n). From this we shall deduce that G is almost a blow-up of C5. To this end,
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we introduce some definitions. Given subsets A,B ⊂ V (G), we say A is an almost clique if all but

o(n2) pairs in A are adjacent, and we say (A,B) is almost complete (almost empty) if all but o(n2)

pairs in A×B are adjacent (nonadjacent). Finally, we define a triple {a, b, c} ∈ V (G) to be typical if:

(i) {a, b} /∈ E(G), c ∈ N(a) ∩N(b), d(a), d(b), d(c) = 3
5n+ o(n),

(ii) {a, b} is contained in o(n2) copies of C4,

(iii) {a, b, c} is contained in o(n) copies of C4, and

(iv) {a, b, c} is contained in o(n2) copies of G5.

Note that G[{a, b, c}] is an induced path of length 2. As all but o(n) vertices are of degree 3
5n+o(n),

it is easy to see that there are Ω(n3) induced paths of length 2 in G. As Corollary 4.5 asserts that

tC4(G) = o(n4) and tG5(G) = o(n5), it follows that almost all induced paths of length 2 are typical.

We will now use the neighborhoods of {a, b, c} to define the parts corresponding to the blow-up of

C5. In particular, we define

V1 = N(a) ∩N(b), V2 = {a} ∪
(
N(a) ∩N(b) ∩N(c)

)
, V3 = N(a) ∩N(b) ∩N(c),

V4 = N(a) ∩N(b) ∩N(c), and V5 = {b} ∪
(
N(a) ∩N(b) ∩N(c)

)
.

We now make some preliminary observations about the sets Vi. Clearly, by definition, the sets are

disjoint. Moreover, since α(G) ≤ 2, and {a, b} /∈ E(G), we must have N(a) ∪N(b) = V (G) \ {a, b},
and so ∪iVi = V (G). Similarly, for any vertex v ∈ V (G), N(v) must induce a clique, as any non-edge

in N(v) forms an independent set of size three with v. Thus V2 ∪V3, V3 ∪V4, and V4 ∪V5 are (actual)

cliques. Finally, note that if u, v ∈ V1 are such that {u, v} /∈ E(G), then the set {a, b, u, v} induces a

copy of C4. Since {a, b, c} was chosen to be a typical triple, properties (ii) and (iii) imply that V1 is

an almost clique, and c is adjacent to all but o(n) vertices in V1.

We can also obtain some relations regarding the sizes of these parts. By property (i) of typical

triples, we have d(a), d(b), d(c) = 3
5n + o(n). Since N(a) ∪ N(b) = V (G) \ {a, b}, we have |V1| =

|N(a)∩N(b)| = |N(a)|+ |N(b)|− |N(a)∪N(b)| = 1
5n+o(n). Moreover, as N(a)∪{a} = V1∪V2∪V3,

N(b) ∪ {b} = V1 ∪ V4 ∪ V5, N(c) \ V1 = V3 ∪ V4, and c has o(n) non-neighbors in V1, we deduce

|V2|+ |V3| =
2

5
n+ o(n), |V3|+ |V4| =

2

5
n+ o(n), and |V4|+ |V5| =

2

5
n+ o(n),

which also imply |V2|+ |V5| = 2
5n+ o(n).

We are beginning to uncover the approximate C5-blow-up structure of G. Recall that we have

shown that V2 ∪ V3, V3 ∪ V4 and V4 ∪ V5 are cliques, while V1 is an almost clique. We will establish

the relations between the remaining parts by showing:

• (Vi, Vi+2) is almost empty for any 1 ≤ i ≤ 5, and

• (V1, V2) and (V1, V5) are almost complete.
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We start by showing that (V1, V3) is almost empty. For any u ∈ V1∩N(c) and v ∈ V3, if {u, v} ∈ E(G),

then the set {a, b, c, u, v} induces a copy of G5. As {a, b, c} is a typical triple, property (iv) implies

that there are at most o(n2) copies of G5 containing {a, b, c}, and so there are at most o(n2) edges

between V1 ∩N(c) and V3. Since c is adjacent to all but o(n) vertices in V1, this shows that (V1, V3)

is almost empty. By the symmetry between a and b (and hence V3 and V4), it follows that (V1, V4) is

also almost empty.

Now consider the vertices in V1. By Corollary 4.5, all but o(n) of these vertices have degree
3
5n + o(n). Since (V1, V3 ∪ V4) is almost empty, it follows that all but o(n) vertices in V1 have o(n)

edges to V3 ∪ V4. Hence, since |V1|+ |V2|+ |V5| = 3
5n+ o(n), it follows that V1 is almost complete to

V1 ∪ V2 ∪ V5. In particular, (V1, V2) and (V1, V5) are almost complete.

Next consider the vertices in V2. We have established that (V2, V1 ∪ V2 ∪ V3) is almost complete.

Once again, using the restriction on the degrees, and the fact that |V1| + |V2| + |V3| = 3
5n + o(n),

we deduce that (V2, V4) and (V2, V5) are almost empty. Symmetry implies (V5, V2) and (V5, V3) are

almost empty as well, as claimed.

At this point we have determined the global structure of G, in which each part Vi corresponds

approximately to the blow-up of a vertex in C5. We now wish to show that G is an exact blow-up of

C5, with parts of size 1
5n+ o(n).

In order to do so, we shall require greater control over the adjacency of individual vertices, and

not just the parts Vi. With this in mind, for each 1 ≤ i ≤ 5, we define a vertex v ∈ Vi to be bad if

v has Ω(n) non-neighbors in Vi−1 ∪ Vi ∪ Vi+1 or Ω(n) neighbors in Vi+2 ∪ Vi+3. Since for each i we

have that Vi ∪ Vi+1 is an almost clique and (Vi, Vi+2) is almost empty, it follows that there are o(n)

bad vertices. We clean up the partition of V (G) by removing bad vertices from each Vi and placing

them in a set U . This results in a partition V (G) = V1 ∪ . . . ∪ V5 ∪ U satisfying:

(1) for any 1 ≤ i ≤ 5 and vertex v ∈ Vi, v is adjacent to all but o(n) vertices in Vi−1 ∪ Vi ∪ Vi+1,

and v is not adjacent to all but o(n) vertices in Vi+2 ∪ Vi+3, and

(2) V2 ∪ V3, V3 ∪ V4, V4 ∪ V5 are cliques, and

(3) |V1| = 1
5n+ o(n), |V2 ∪ V3|, |V3 ∪ V4|, |V4 ∪ V5| = 2

5n+ o(n), and |U | = o(n).

The following proposition asserts that in an asymptotically optimal graph, the above conditions

imply that the almost cliques are, in fact, true cliques, and that the parts are asymptotically equal.

This will in turn allow us to completely determine the structure of extremal graphs.

Proposition 4.6. If V1, V2, . . . , V5 satisfy (1), (2) and (3), then for any 1 ≤ i ≤ 5, Vi ∪ Vi+1 is a

clique, and |Vi| = 1
5n+ o(n).

Proof. We already know from (2) that many of the pairs of neighboring parts are cliques. It remains

to show that V1 ∪ V2 and V5 ∪ V1 are both cliques. We first show that V1 is a clique. Suppose

for contradiction that there are nonadjacent vertices u, v ∈ V1. Since α(G) ≤ 2, we must have

V3 ∪V4 ⊂ N(u)∪N(v). By (3) we have |V3 ∪V4| = 2
5n+ o(n), and so either u or v must have at least

1
5n+ o(n) neighbors in V3 ∪ V4. However, this contradicts (1). Thus V1 is a clique.
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We now claim that if (V1, V2) is not complete, we must have |V4| = o(n). Indeed, suppose u ∈ V1

and v ∈ V2 are not adjacent. Since α(G) ≤ 2, we must have V4 ⊂ N(u) ∪N(v). By (1), both u and

v have o(n) neighbors in V4, which implies |V4| = o(n). By symmetry, if (V1, V5) is not complete, we

must have |V3| = o(n).

Suppose now that one of these sets, say V4, is of size o(n). Using (3), we must have |V3| = |V5| =
2
5n + o(n), and |V2| = o(n). Since |V3| 6= o(n), it follows that (V1, V5) is complete. Thus G has two

large disjoint cliques: V3 of size 2
5n+ o(n), and V1 ∪ V5 of size 3

5n+ o(n). This gives

t4(G) ≥
(2

5n+ o(n)

4

)
+

(3
5n+ o(n)

4

)
∼ 97

625

(
n

4

)
+ o(n4) >

3

25

(
n

4

)
,

contradicting the asymptotic optimality of G. Hence (V1, V2) and (V1, V5) must be complete, which

implies that V1 ∪ V2 and V1 ∪ V5 are cliques.

Finally, we show that all parts have size 1
5n+o(n). Recall we already have |V1| = 1

5n+o(n). Since

|V3|+ |V4| = 2
5n+ o(n), we may by symmetry assume |V3| ≥ 1

5n+ o(n). Corollary 4.5 implies there is

some vertex of V3 whose degree is 3
5n+ o(n). By (1), this implies |V2|+ |V3|+ |V4| = 3

5n+ o(n). As

|V3|+ |V4| = 2
5n+ o(n), this implies |V2| = 1

5n+ o(n). Combined with the equations in (3), this gives

|Vi| = 1
5n+ o(n) for all 2 ≤ i ≤ 5. 2

We now turn our attention to the set U of bad vertices. In particular, we will show that in an

extremal graph, each u ∈ U can be reintroduced into some part Vi in a way that is consistent with (1)

and Proposition 4.6. Since |U | = o(n), we can repeat this process without affecting (1) or Proposition

4.6, and thus we can eliminate the set U .

Proposition 4.7. For every u ∈ U , there is some i = i(u) such that Vi−1 ∪ Vi ∪ Vi+1 ⊂ N(u), and u

has o(n) neighbors in Vi+2 ∪ Vi+3.

Proof. Fix u ∈ U . We begin with a simple claim. For any 1 ≤ j ≤ 5, if there is some v ∈ Vj such that

u is not adjacent to v, then u is adjacent to all but o(n) vertices in Vj+2 ∪Vj+3. Indeed, as α(G) ≤ 2,

we must have Vj+2 ∪Vj+3 ⊂ N(u)∪N(v). However, v is adjacent to o(n) vertices in Vj+2 ∪Vj+3, and

so the claim follows.

Now suppose there is no i such that Vi−1 ∪ Vi ∪ Vi+1 ⊂ N(u). This implies there is an i such that

u is not adjacent to some vertices in both Vi−3 and Vi−1. Applying the previous claim, it follows that

u is adjacent to all but o(n) vertices in Vi−1 ∪ Vi ∪ Vi+1 ∪ Vi+2.

In this case, remove all edges between u and Vi+2, and add any missing edges between u and

Vi−1 ∪ Vi ∪ Vi+1 ∪ U . It is easy to see that we still have α(G) ≤ 2. As u had 1
5n+ o(n) neighbors in

Vi+2, which is a clique, we have removed at least
( 1

5
n+o(n)

3

)
= Ω(n3) 4-cliques. On the other hand, we

have only added o(n) edges, and so created o(n3) new 4-cliques. Thus we have reduced the number

of 4-cliques, which contradicts the extremality of G.

Thus there must be some i = i(u) such that Vi−1 ∪ Vi ∪ Vi+1 ⊂ N(u). It remains to show that u

has o(n) neighbors in Vi+2∪Vi+3. Suppose for contradiction that u has Ω(n) neighbors in Vi+2∪Vi+3.

As Vi+2 ∪ Vi+3 is a clique, these neighbors form Ω(n3) 4-cliques with u. Instead, we could remove

all edges between u and Vi+2 ∪ Vi+3. To prevent the formation of an independent set of size 3, we
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add all edges between u and U . This introduces o(n) new edges, and thus o(n3) new 4-cliques, while

maintaining α(G) ≤ 2. Thus the number of 4-cliques is reduced, again contradicting the minimality

of G. This completes the proof.

2

Given any u ∈ U , we can apply Proposition 4.7 to add u to Vi(u). Repeat this process until U

is empty. In this case we have a partition V (G) = V1 ∪ . . . ∪ V5 such that for every 1 ≤ i ≤ 5,

|Vi| = 1
5n+ o(n) and Vi ∪ Vi+1 is a clique.

In order to conclude that G is a blow-up of C5, it remains to show that there are no edges

between Vi−1 and Vi+1 for any i. Suppose to the contrary there is an edge between some v ∈ Vi−1

and w ∈ Vi+1. Note that when n is large, we must have |Vi| = 1
5n + o(n) ≥ 2. For any x, y ∈ Vi,

{v, w, x, y} is a 4-clique. Thus removing the edge {v, w} reduces the number of 4-cliques without

increasing the independence number. Hence in an extremal graph, there are no edges between Vi−1

and Vi+1 for any i, and thus G is indeed a blow-up of C5 with parts of size 1
5n+ o(n).

We now seek to determine the sizes of the sets Vi exactly. Noting that Vi ∪ Vi+1 is a clique for

each i, it is easily verified that

t4(G) =
5∑
i=1

(
|Vi ∪ Vi+1|

4

)
−

5∑
i=1

(
|Vi|
4

)
.

Define yi = |V2i−1 ∪ V2i| for all 1 ≤ i ≤ 5. In
∑
yi, each vertex is counted twice, so we have∑

yi = 2n. Moreover, as |Vi| = 1
5n + o(n), we have yi = 2

5n + o(n). Finally, as n − yi − yi+1 =

n− |V2i−1| − |V2i| − |V2i+1| − |V2i+2| = |V2i−2|, we can rewrite the above expression as

t4(G) =

5∑
i=1

(
yi
4

)
−

5∑
i=1

(
n− yi − yi+1

5

)
.

Thus to find the extremal graph, we must minimize the above expression over integer values of yi
subject to the conditions given earlier. The solution is given by Lemma 4.8, which we prove in

Appendix B.

Lemma 4.8. Let ε > 0 be sufficiently small, and n sufficiently large. Consider the function

g(y1, y2, y3, y4, y5) =
5∑
i=1

(
yi
5

)
−

5∑
i=1

(
n− yi − yi+1

4

)
.

Subject to the constraints that the yi be integers satisfying
∑5

i=1 yi = 2n and
∣∣yi − 2

5n
∣∣ < εn, g is

uniquely (up to cyclic permutation of the variables) minimized when the yi take values
⌊

2n
5

⌋
and

⌈
2n
5

⌉
in ascending order.

From Lemma 4.8, we see the minimum occurs when yi =
⌈

2n+i−1
5

⌉
for 1 ≤ i ≤ 5. Solving for |Vi|,

we have that the unique extremal graph on n vertices is the blow-up of C5 to n vertices such that:

• when n = 5k, |Vi| = k for all i,
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• when n = 5k + 1, |V1| = |V2| = k, |V3| = |V5| = k + 1, and |V4| = k − 1,

• when n = 5k + 2, |V1| = |V2| = |V4| = k, and |V3| = |V5| = k + 1,

• when n = 5k + 3, |V1| = |V2| = |V4| = k + 1, and |V3| = |V5| = k, and

• when n = 5k + 4, |V1| = |V2| = k + 1, |V3| = |V5| = k, and |V4| = k + 2.

5 The (3, 4)-problem

In this section we solve the (3, 4)-problem, and prove that Erdős’ conjecture holds for this case.

Recall that this entails showing that amongst all graphs of independence number less than four, Tn,3,

a disjoint union of three nearly-equal cliques, minimizes the number of triangles.

In the first subsection we list our flag algebra results, which give the asymptotic minimum number

of triangles to be 1
9

(
n
3

)
. In the second subsection we use the structural information obtained to

determine the value of f(n, 3, 4) exactly. We also analyze the structure of extremal graphs, and show

they must contain Tn,3.

5.1 Getting the asymptotic result and densities

We begin by presenting the 29 admissible - that is, K4-free - graphs of size 5, followed by the three

types and associated flags used in the proof.

G1 G2 G3 G4 G5 G6 G7 G8

G9 G10 G11 G12 G13 G14 G15 G16

G17 G18 G19 G20 G21 G22 G23 G24

G25 G26 G27 G28 G29

Figure 8: Graphs of size 5 with independence number at most 3.
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1

2

τ1

2

1 3

M1

2

1 3

M2

2

1 3

M3

2

1 3

M4

Figure 9: Type τ1 and its flags of size 4.

3

1

2

τ2

2

1 3

N1

2

1 3

N2

2

1 3

N3

2

1 3

N4

2

1 3

N5

2

1 3

N6

2

1 3

N7

2

1 3

N8

Figure 10: Type τ2 and its flags of size 4.

1

dot

1

ρ

1

Z1

1

Z2

1

Z3

1

Z4

1

Z5

Figure 11: Type dot and its flags.

In the subsequent lemmas, for each type used in the proof, we express the corresponding positive

semi-definite matrices as squares of flags, and give their expansions into graphs of size 5. The coeffi-

cients were obtained through the use of a computer program, but can easily be verified by hand, just

as in the previous section.

Lemma 5.1. For the type τ1, we have

∆1 = [[(M1 −M2)2]]τ1

=
1

30

(
G2 −G3 − 4G6

)
,

∆2 = [[(3M1 − 3M2 − 10M3 + 10M4)2]]τ1

=
1

30

(
9G2 − 9G3 − 36G6 − 60G9 + 160G11 + 100G13 + 60G15 − 60G16 − 100G25 − 500G26

)
.

Lemma 5.2. For the type τ2, we have

∆3 =[[(−3N1 −N2 + 3N3 + 3N4)2]]τ2

=
1

30

(
− 18G2 + 9G8 + 3G9 − 11G10 + 3G12 + 27G14 − 18G16 + 9G20 + 36G24

)
,
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∆4 =[[(−20N1 − 20N2 + 11N3 + 11N4 + 9N5 + 9N6)2]]τ1

=
1

30

(
− 440G2 − 360G3 + 400G8 + 121G9 − 480G10 − 360G11 − 319G12 + 198G13 + 363G14

− 279G15 − 242G16 + 121G20 + 279G23 + 484G24 + 198G25 + 405G26

)
,

∆5 =[[(−19N1 − 15N2 + 15N3 + 15N4 + 4N5 + 4N6 + 15N7)2]]τ1

=
1

30

(
− 570G2 − 152G3 − 570G4 + 361G8 + 181G9 − 675G10 − 120G11 − 735G12 + 240G13

+ 675G14 − 136G15 − 450G16 − 1350G18 + 900G19 + 795G20 + 675G21 + 136G23 + 900G24

+ 120G25 + 80G26 + 450G28

)
,

∆6 =[[(−6N1 − 14N2 − 2N3 − 2N4 + 8N5 + 8N6 − 5N7 + 10N8)2]]τ1

=
1

30

(
+ 24G2 − 96G3 + 60G4 − 240G6 + 36G8 − 76G9 + 308G10 − 264G11 + 160G12 − 112G13

+ 12G14 − 32G15 − 8G16 − 540G17 + 420G18 + 40G19 − 56G20 + 75G21 + 32G23 + 16G24

+ 88G25 + 320G26 − 80G27 − 150G28

)
.

Lemma 5.3. For the type dot, we have

∆7 =[[(−2Z1 + Z2)2]]dot

=
1

15

(
6G1 + 2G2 + 2G3 − 8G5 + 4G6 − 10G8 − 4G9 − 2G11 −G15 +G16 + 6G22 + 2G23

+G25 + 5G26

)
,

∆8 =[[(−2Z1 − Z2 + 4Z3)2]]dot

=
1

15

(
− 42G1 − 2G2 + 10G3 + 24G4 + 24G5 + 36G6 + 48G7 − 2G8 − 4G9 + 2G11 − 4G13

−G15 − 7G16 − 18G22 − 6G23 +G25 + 5G26

)
,

∆9 =[[(7Z1 − 4Z2 + Z3 + 3Z4)2]]dot

=
1

15

(
138G1 + 61G2 + 43G3 − 39G4 − 141G5 − 45G6 + 3G7 − 146G8 − 19G9 + 42G10

− 52G11 + 21G12 − 22G13 + 9G14 − 25G15 + 65G16 + 54G17 + 54G18 + 18G19 − 6G20

+ 72G22 − 21G23 − 96G24 + 19G25 + 125G26 + 18G27

)
,

∆10 =[[(8Z1 − 2Z2 − 9Z3 + 10Z5)2]]dot

=
1

15

(
− 168G1 + 103G2 + 85G3 + 170G4 + 153G5 + 226G6 + 3G7 − 16G8 + 4G9 + 160G10

− 16G11 + 120G12 − 132G13 − 120G14 + 16G15 + 80G16 + 240G18 + 70G19 − 120G20

+ 600G21 − 138G22 − 136G23 − 260G24 − 86G25 + 20G26 + 200G28 + 1500G29

)
,
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∆11 =

[[(
ρ− 1

3

)2
]]

dot

=
1

90

(
G1 +G2 − 2G3 + 4G4 − 2G5 − 2G6 + 10G7 − 5G8 − 2G9 + 4G10 − 2G11 + 7G12

+ 4G13 + 13G14 − 5G15 +G16 +G17 + 13G18 + 19G19 + 10G20 + 28G21 − 5G22 − 2G23

+ 4G24 +G25 − 5G26 + 7G27 + 16G28 + 40G29

)
.

We can now combine these lemmas to obtain an asymptotic lower bound on the density of triangles,

K3, in any K4-free graph.

Theorem 5.4. We have

K3 −
11∑
i=1

ci∆i ≥
1

9

29∑
j=1

Gj =
1

9
,

where

c = (ci)
11
i=1 =

1

25 · 3 · 1009

(
263984, 4720, 4432,

412192

371
,
72789

112
,
4655105

3392
, 1185, 8437, 3440, 856, 1128

)
.

Proof. We begin by expanding K3 into graphs of size 5. A straightforward calculation gives

K3 =
1

10

(
G1 +G2 + 2G4 + 4G7 +G10 + 2G12 + 2G13 + 4G14 +G16 + 3G18 + 5G19

+ 3G20 + 7G21 +G22 +G23 + 2G24 +G25 + 2G27 + 4G28 + 10G29

)
.

We now use the lemmas to expand the squares ∆i into the graphs Gj . After summing the coefficients

in the linear combination, it can easily be verified that they are all at least 1
9 . Since the densities

must sum to 1, we have
∑29

j=1Gj = 1, which gives the final equality. 2

Corollary 5.5. Any n-vertex graph G with α(G) ≤ 3 satisfies

t3(G)(
n
3

) − 47

4036n

∑
v

(
d(v)

n− 1
− 1

3

)2

≥ 1

9
− on→∞(1).

Proof. Since the ∆i are squares of flags, they are asymptotically non-negative. Hence discarding the

terms for ∆i, 1 ≤ i ≤ 10, maintains the inequality. This givesK3− 47
4036

[[(
ρ− 1

3

)2]]
dot
≥ 1

9−on→∞(1).

Interpreting these terms combinatorially gives the corollary. 2

5.2 The stability analysis

In order to derive a stability result for the (3, 4)-problem, we use the following well-known result of

Andrásfai, Erdős and Sós [2].

Theorem 5.6. (Andrásfai, Erdös, Sós) A Kr-free graph on n vertices that has minimum degree larger

than 3r−7
3r−4n must be (r − 1)-partite.
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Applying this to the complement of a graph with r = 4, we find that a graph G on n vertices

with α(G) ≤ 3 and maximum degree less than 3
8n must be spanned by three cliques. The following

stability result follows.

Proposition 5.7. Suppose 0 < ε < 1
30 . There exists n0 = n0(ε) such that any graph G on n ≥

n0 vertices with α(G) ≤ 3 and t3(G) <
(

1
9 + ε5

) (
n
3

)
contains an induced subgraph G′ ⊂ G on at

least
(
1− 100ε3

)
n vertices that is spanned by three cliques of size between

(
1
3 − 3ε

)
n and

(
1
3 + ε

)
n.

Moreover, every vertex in G′ sends at most 4εn edges outside its clique.

Proof. We have from Corollary 5.5 that for any graph G on n vertices with α(G) ≤ 3,

t3(G)(
n
3

) − 47

4036n

∑
v

(
d(v)

n− 1
− 1

3

)2

≥ 1

9
− on→∞(1).

In particular, if t3(G) <
(

1
9 + ε5

) (
n
3

)
, and n is large enough, then

∑
v

(
d(v)

n− 1
− 1

3

)2

< 100ε5n.

Let B =
{
v : d(v) ≥

(
1
3 + ε

)
n
}

. Then |B|ε2 <
∑

v

(
d(v)
n−1 −

1
3

)2
< 100ε5n, and so |B| < 100ε3n.

Let G′ be the induced subgraph on V (G) \ B. As claimed, G′ has n′ ≥ (1 − 100ε3)n vertices.

Moreover, since ε < 1
30 the maximum degree ∆(G′) is bounded by

∆(G′) <

(
1

3
+ ε

)
n ≤

1
3 + ε

1− 100ε3
n′ <

3

8
n′.

Hence we can apply Theorem 5.6 in its complementary form to deduce that G′ is spanned by three

cliques.

Since ∆(G′) <
(

1
3 + ε

)
n, we deduce that the largest clique in G′ has size at most

(
1
3 + ε

)
n. This

implies that the smallest clique has size at least
(
1− 100ε3

)
n − 2

(
1
3 + ε

)
n >

(
1
3 − 3ε

)
n (using the

bound ε < 1
30). This implies that every vertex in G′ can send at most

(
1
3 + ε

)
n −

(
1
3 − 3ε

)
n = 4εn

edges outside its own clique.

Finally, consider the vertices in B. If any vertex v ∈ B is adjacent to all vertices in one of the

cliques Ci, and does not have more than 4εn edges outside Ci, then we can add v to Ci without

affecting any of the previous bounds. Thus the only vertices left in B are either those adjacent to

one clique, but with too many neighbors outside the clique, or those with a non-neighbor in each of

the three cliques. 2

This stability result allows us to, for large values of n, deduce the exact value of the (3, 4)-problem,

and also to characterise all extremal graphs. Recall that we define f(n, k, l) to be the minimum of

tk(G) over all graphs G on n vertices with α(G) ≤ l − 1.

Theorem 5.8. There exists n0 such that for every n ≥ n0, f(n, 3, 4) =
(bn/3c

3

)
+
(b(n+1)/3c

3

)
+(b(n+2)/3c

3

)
. Moreover, if G is a graph on n ≥ n0 vertices with t3(G) = f(n, 3, 4), then G contains

Tn,3, a disjoint union of three nearly-equal cliques.
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Proof. First note that G = Tn,3 has α(G) ≤ 3 and so we have the upper bound f(n, 3, 4) ≤ t3(Tn,3) =(bn/3c
3

)
+
(b(n+1)/3c

3

)
+
(b(n+2)/3c

3

)
∼ 1

9

(
n
3

)
- note that this upper bound holds for all n.

To obtain a matching lower bound, we apply the stability result from Proposition 5.7. Take

ε = 1
100 , and let n ≥ n0(ε) be sufficiently large. Suppose G is an extremal graph on n ≥ n0 vertices.

In particular, we have t3(G) <
(

1
9 + ε5

) (
n
3

)
for n large enough. From the proof of the proposition,

we know that there is a set B of at most 100ε3n ‘bad’ vertices, and the remainder of the vertices

are in three cliques, with at most 4εn edges to the other cliques. Label the cliques in order of size,

say |C1| ≥ |C2| ≥ |C3|. We will show that an extremal graph cannot have any bad vertices, so G is

spanned by the three cliques. We begin with a simple observation.

Claim: Every vertex v ∈ V (G) is in at most
(|C3|+|B|

2

)
triangles.

Proof: Suppose some vertex v were in more triangles. Delete v, and add a new vertex v′ with

N(v′) = C3 ∪ B. This does not increase the independence number, and v′ is in at most
(|C3|+|B|

2

)
triangles. Hence we have decreased the number of triangles in G, which contradicts the minimality

of G. Note that
(|C3|+|B|

2

)
≤
(|C3|

2

)
+ |B|n ≤

(|C3|
2

)
+ 100ε3n2 =

(|C3|
2

)
+ ε2n2.

Now consider a potential bad vertex v ∈ B. There are two reasons v could be bad:

Case 1: v is adjacent to all vertices of one of the cliques Ci, but has more than 4εn neighbors in

the other cliques.

If v has more than 4εn neighbors in the other cliques, it must have at least 2εn neighbors in one

of them. Note that every pair of these neighbors creates a triangle with v. Thus v is in at least(|Ci|
2

)
+
(

2εn
2

)
>
(|C3|

2

)
+ ε2n2 triangles, which contradicts our earlier claim. Hence this case cannot

occur.

Case 2: v has a non-neighbor in each of the three cliques.

Let di = |Ci \N(v)| be the number of non-neighbors of v in the ith clique. Consider the cliques

in increasing order of these values, that is, suppose di1 ≤ di2 ≤ di3 . Let x be a non-neighbor of v in

Ci1 .

Case 2a: Every vertex y ∈ Ci2 is adjacent to one of {v, x}.
Since x has at most 4εn neighbors in Ci2 , it follows that di1 ≤ di2 ≤ 4εn. Counting only the

neighbors of v in the cliques Ci1 and Ci2 , we see that v is in at least
(|Ci1 |−4εn

2

)
+
(|Ci2 |−4εn

2

)
≥ 2
(|C3|−4εn

2

)
triangles. We have 2

(|C3|−4εn
2

)
≈ |C3|2 − 8ε|C3|n+ 16ε2n2. Since |C3| ≥

(
1
3 − 3ε

)
n and ε = 1

100 , this

is greater than
(|C3|

2

)
+ ε2n2 < 1

2 |C3|2 + ε2n2, which contradicts the earlier claim.

Case 2b: v and x have a common non-neighbor in Ci2 , say y.

In this case, as α(G) ≤ 3, every vertex in Ci3 must be adjacent to one of {v, x, y}. Since x and

y have at most 4εn neighbors in Ci3 , it follows that di1 ≤ di2 ≤ di3 ≤ 8εn. Thus v is in at least(|Ci1 |−8εn
2

)
+
(|Ci2 |−8εn

2

)
+
(|Ci3 |−8εn

2

)
≥ 3

(|C3|−8εn
2

)
≈ 3

2 |C3|2 − 24ε|C3|n + 96ε2n2 triangles. Again,

given our bounds on |C3| and ε, this is greater than
(|C3|

2

)
+ ε2n2, which gives a contradiction.

Thus we have shown that in an extremal graph, there are no bad vertices, and so the three cliques

span all n vertices and |B| = 0. Now note that any vertex in C1 is in
(|C1|−1

2

)
triangles from within

C1 alone. By the earlier claim, we must have
(|C1|−1

2

)
≤
(|C3|+|B|

2

)
=
(|C3|

2

)
, from which it follows that

|C1| − 1 ≤ |C3|. Thus |C3| ≤ |C2| ≤ |C1| ≤ |C3| + 1, which shows that the cliques must be nearly

equal in size.
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This implies that Tn,3 ⊂ G, and so it follows that for any graph G on n vertices with α(G) ≤ 3,

we must have t3(G) ≥ t3(Tn,3). Thus f(n, 3, 4) = t3(Tn,3). Moreover, if G is an extremal graph, then

since we have equality, there can be no triangles with vertices from different cliques. This means

that each vertex can have at most one neighbor in each of the two other cliques; in other words, the

bipartite graphs between cliques are (partial) matchings. These matchings must be such that there

is no triangle with one vertex from each clique. However, the extremal graph is not unique, as there

are many possibilities for the matchings.

2

6 Concluding Remarks

In this paper, we apply the techniques of flag algebras, combined with stability arguments, to solve

the Erdős problem for the cases (k, l) = (4, 3) and (3, 4). In particular, we show that Nikiforov’s

construction of a blow-up of C5 is optimal for the (4, 3)-problem, while Erdős’ conjecture still holds

for the (3, 4)-problem.

We have also run the SDP problem for larger cases, and our calculations suggests that Erdős’

conjecture remains valid for the (3, 5)- and (3, 6)-problems. Moreover, it would appear that a blow-

up of C5 is also optimal for the (5, 3)-problem. Since this paper is already quite long, we decided not

to process the SDP results to find rational solutions. However, after doing so it should be possible

to develop stability results similar to those above, and thus to determine the exact solution to these

problems.

Note that the extremal graphs we have found are all blow-ups of small graphs. In particular, the

graphs are Ramsey graphs. The construction of l−1 cliques is a blow-up of an independent set of size

l − 1, which is the R(2, l) Ramsey graph. On the other hand, C5 is the R(3, 3) Ramsey graph. One

may therefore ask if, for large n, the solution of the (k, l)-problem is always a blow-up of an R(s, t)

Ramsey graph, where s and t depend only on k and l. Solving this problem in general appears to be

quite difficult.

A simpler question, first asked by Nikiforov, is to determine the extremal graphs for the (k, l)-

problem as one parameter is fixed and the other grows. In particular, it remains to determine for

which values of l a disjoint union of l − 1 cliques remains optimal for the (3, l)-problem. In light of

the above results, one could also study for which values of k the blow-up of C5 is optimal for the

(k, 3)-problem. Proofs by flag algebras are infeasible for large values of k and l, as the search space

and running time grow exponentially in these parameters. It would be of great interest to develop

new techniques to attack this problem.
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A Implementation of flag algebras

In Section 3, we covered the basics of the theory behind flag algebras; here we discuss the actual

implementation of the method. In particular, we will discuss how to set up the SDP problem, and

then find a verifiable proof. The main steps are:

1. Identifying the types σi to use, and finding a suitable size t for the expansion of the positive

semi-definite matrices.

2. Finding a verifiable (e.g. rational) solution that leads to a proof.

3. (Optional) Writing the positive semi-definite matrix as a sum of squares.

We shall address each of these steps in turn.

Identifying types:

The process of identifying the necessary types σi and finding a suitable size t essentially comes

down to trial-and-error. Note that whatever choice of types and size we make will result in an SDP

problem as outlined above, which can then be solved to provide some bound for the extremal problem.

In order to determine whether or not this is the right bound, we need a conjecture on what the bound

should be - this typically comes from a construction. We then seek to keep improving the flag algebra

results until they match the conjectured bound.

To produce the flag algebra results, we start with the initial size t to be the size of the subgraph

J , the density of which we are trying to bound. Given t, we produce a list of all admissible graphs

G of size t. We then consider all possible types of size suitable for expansion into graphs of size t.

Recall that if we have a type of size k, and use flags of size l ≥ k + 1, then to compute a product of

two flags, we must expand into graphs of size at least 2l − k ≥ k + 2. This restricts the size of types

and flags we can use - our types can be of size at most t − 2, and given a type of size k, we choose

the largest possible size of flags l that satisfies 2l − k ≤ t.
For each of our types σi, with its associated list of flags Fσili , we compute the product of each pair

of flags, which gives the corresponding block in the SDP problem. This provides the formulation of

the SDP problem, which can then be solved numerically.

If the numerical bound is less than the conjecture, then we do not have enough types to solve the

problem. Thus we increase the size t, which allows the use of larger types, and repeat the process. If

the numerical bound matches the conjecture, we then have enough types to solve the problem, and

can proceed to finding a verifiable proof.

At this stage, we have the block variable matrices Qi for the SDP problem. However, as they

were computed numerically, they are subject to rounding error, and thus we cannot be certain that

they are truly positive semi-definite matrices, nor that the bound for the extremal problem they

provide is exactly equal to the conjectured bound. To have a rigorous proof, it is necessary to find

solution matrices Qi whose entries are known exactly - they will ideally be rational. It can then be

independently verified that these matrices satisfy the conditions necessary to prove the desired result.

We now outline some of the steps that can be taken to find such a solution.
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Finding a verifiable solution:

Typically, the space of solutions will be a high-dimensional space, with many degrees of freedom

for the entries of the matrices Qi. To try to force the solution towards rational entries, we seek to

reduce the dimension of the search space. There are three methods we can apply: reducing the size of

the block variables, identifying natural eigenvectors, and changing the basis to introduce zero-entries.

Recall that for each type σi we have the associated block variable Qi. In identifying which types

to use, we added all possible types until we obtained the right bound. However, it is possible, and

even likely, that some of the types are unnecessary. Given a type σ, we remove it from the SDP

problem, and run the SDP solver again. If we still obtain the correct bound, then we know the type

σ was unnecessary. If instead this results in a worse bound, then we keep σ, and try removing a

different type. In this way we arrive at a minimal set of necessary types, thus reducing the number

of block variables in the SDP problem.

Given a set of minimal types, there is a further reduction possible. Every type σ has the natural

group Γσ of automorphisms of the underlying graph σ0. The group Γσ acts on the algebra Aσ by

relabeling the flags according to the automorphism. We can then decompose Aσ = Aσ+ ⊕ Aσ− into

a positive and negative part, where Aσ+ consists of all elements invariant under Γσ, while Aσ−
def
={

f ∈ Aσ :
∑

γ∈Γσ
γf = 0

}
. For example, given the type and flags of Figure 3, both labelings of the

vertices of σ give rise to automorphisms, and so Γσ is the symmetric group on two elements. One can

verify that F3 ∈ Aσ+, F1 + F2 ∈ Aσ+, and F1 − F2 ∈ Aσ−.

1 2

σ
1 2

F1

1 2

F2

1 2

F3

Figure 12: Decomposition into positive and negative parts.

This decomposition is useful because whenever we have f ∈ Aσ+ and g ∈ Aσ−, we have [[f ·g]]σ = 0.

Hence given the semi-definite matrix Q for the type σ, we can split it into its ‘invariant’ part Q+

and ‘anti-invariant’ part Q−. While this increases the number of block variables, they are now of

smaller size, and hence have fewer degrees of freedom, reducing the dimension of the search space.

Moreover, it may be that not all of these parts are necessary, so we can proceed as before to remove

any unnecessary block variables.

The second technique we use is that of identifying natural eigenvectors. For this, we require an

extremal construction that attains the conjectured bound; let Gn represent an extremal graph on n

vertices, and let {Gn}n∈N. Given a type σ, fix a position of σ in Gn. This turns Gn into a σ-flag Fn.

The family {Fn}n∈N represents a way to consistently label the type σ in Gn.

Recall that in the flag algebra calculations, we used the bound [[Q]]σ(Gn) ≥ on→∞(1). If Gn is

an extremal graph, then the bounds are tight, and so [[Q]]σ(Gn) = on→∞(1). Hence we must have

pσ(Q{Fσl };Fn) =
∑

F1,F2∈Fσl
QF1,F2pσ(F1;Fn)pσ(F2;Fn) + O(1/n) = on→∞(1). Taking the limit as

n → ∞, this implies that if we have a vector v defined by vF = limn→∞ pσ(F ;Fn) for F ∈ Fσl ,

then vF must be a zero-eigenvector of Q. Repeating this for different embeddings of the type σ in
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the extremal family of graphs {Gn} can give rise to several eigenvectors. This procedure is formally

defined using the apparatus of ensembles of random homomorphisms in Section 3.2 of [12].

Having fixed this eigenvectors, we can then reduce the size of the block variables. Note that if

we are able to remove all zero-eigenvectors this way, then we are left with positive definite matrices

as our block variables. This leaves a little room for error, so we can replace the entries with simple

rational entries and hope to still have a positive semi-definite matrix.

Our final method for reducing the dimension of the search space is to change the basis to introduce

zero entries. Ideally the new set of variables will be a rational linear combination of the previous set,

which will lead to a solution with rational entries. Moreover, we introduce zeros in such a way as to

split the block variables into smaller blocks. More formally, consider the general SDP problem of the

following form:

maximize tr(CX), subject to

• tr(AiX) = ai for i = 1, 2, . . . ,m

• X � 0 (that is, X is positive semi-definite)

where X and Ai are symmetric n× n matrices for i = 1, 2, . . . ,m.

Suppose we had a rational n × n matrix M such that all entries of the first row (and hence

column, by symmetry) of MXMT , except possibly the first, were zero. We can then change variables

to modify the SDP problem into an equivalent one, as below:

maximize tr(C̃Y ), subject to

• tr(ÃiY ) = ai for i = 1, 2, . . . ,m

• Y � 0

where C̃ = (M−1)TCM−1 and Ãi = (M−1)TAiM
−1 for i = 1, 2, . . . ,m.

The solutions of both problems are related by the equation Y = MXMT . We can now reduce

the dimension of the solution space by forcing all the non-principle entries of the first row/column of

C̃ and Ãi to be zero for i = 1, 2, . . . ,m. This is possible because we already have the existence of a

solution Y with Y1,j = Yj,1 = 0 for j = 2, 3, . . . , n, and hence this restricted solution space contains

a solution to the original problem. This operation splits the block variable Y into a one-dimensional

block and an (n− 1)-dimensional block. We can now iterate the procedure.

We find such a matrix M by inspecting the numerical solution to the original SDP problem, and

using a rational approximation to an eigenvector v for the first row. We then fill in the remaining

rows with independent vectors orthogonal to v. Note that if the solution is initially positive definite,

there is a little room for error, so we may hope to choose a simple rational approximation without

worsening the solution to the SDP problem.

Expressing the solution as a sum of squares:

If we are able to repeatedly iterate the change of basis procedure outlined above, then we will

eventually reach a problem whose solution is a diagonal matrix. This is advantageous for two reasons.
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First, the semi-definite programming problem reduces to a linear programming (LP) problem. This

can be solved by only taking rational linear combinations of the entries of the variables at every

step, and so the solution will be a rational combinations of the input to the LP problem. Hence the

solution can be specified exactly, resulting in a verifiable proof. Second, we can write the positive

semi-definite matrix as a sum of squares, which is easier to understand. This can lead to combinatorial

interpretations of the proof, as we demonstrated in Section 4.1. Thus while this step is not necessary

for solving problems with the machinery of flag algebras, it makes the resulting proofs much more

understandable.

B Integer optimization problem

In this appendix, we prove Lemma 4.8 from Section 4.2, in which we solve the integer optimization

problem required to determine the size of the parts in the blow-up of C5 that minimizes the number

of 4-cliques.

Lemma B.1. Let ε > 0 be sufficiently small, and n sufficiently large. Consider the function

g(y1, y2, y3, y4, y5) =

5∑
i=1

(
yi
5

)
−

5∑
i=1

(
n− yi − yi+1

4

)
.

Subject to the constraints that the yi be integers satisfying
∑5

i=1 yi = 2n and
∣∣yi − 2

5n
∣∣ < εn, g is

uniquely (up to cyclic permutation of the variables) minimized when the yi take values
⌊

2n
5

⌋
and

⌈
2n
5

⌉
in ascending order.

Proof. First we will show that if (y1, y2, y3, y4, y5) is optimal, the yi should be as equal as possible.

Suppose towards contradiction that this was not the case. Then there are i, j with yi − yj ≥ 2; let

i, j be such that this difference is maximal over all such pairs. There are two cases:

Case 1: i and j are consecutive.

Without loss of generality, suppose i = 2 and j = 3, so we have y2 − y3 ≥ 2, with this difference

being maximal. We will show that g(y1, y2 − 1, y3 + 1, y4, y5) < g(y1, y2, y3, y4, y5), which contradicts

our assumption of optimality. Indeed, we have

∆g = g(y1, y2 − 1, y3 + 1, y4, y5)− g(y1, y2, y3, y4, y5)

=

(
y2 − 1

4

)
+

(
y3 + 1

4

)
−
(
n− y1 − y2 + 1

4

)
+

(
n− y3 − y4 − 1

4

)
−
[(
y2

4

)
+

(
y3

4

)
−
(
n− y1 − y2

4

)
−
(
n− y3 − y4

4

)]
=

(
y3

3

)
−
(
y2 − 1

3

)
+

(
n− y3 − y4 − 1

3

)
−
(
n− y1 − y2

3

)
.

Now let s = y2−y3−1 ≥ 1, and let t = (n−y3−y4−1)−(n−y1−y2) = y1−y4+y2−y3−1 = y1−y4+s.

If t ≤ 0, then clearly the above expression is negative, which shows (y1, y2, y3, y4, y5) is not optimal.

Hence we must have t ≥ 1. In this case, we can rewrite the above as

∆g =

[(
t

3

)
+

(
t

2

)
(n− y1 − y2) + t

(
n− y1 − y2

2

)]
−
[(
s

3

)
+

(
s

2

)
y3 + s

(
y3

2

)]
.
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From our constraints on the variables yi, we have that y3 =
(

2
5 +O(ε)

)
n, n − y1 − y2 =(

1
5 +O(ε)

)
n, s ≤ 2εn and t ≤ 4εn. These bounds imply that the main terms are those linear

in s and t. We have

∆g =
1

50
[(1 +O(ε)) t− (4 +O(ε)) s]n2 +O((s2 + t2)n).

In particular, for large n, this can only be non-negative if t ≥ (4−O(ε)) s. However, we have

t = y1 − y4 + s, and by our assumption of maximality of y2 − y3, we have y1 − y4 ≤ y2 − y3 = s+ 1.

Hence t ≤ 2s+ 1, and we have a contradiction.

Case 2: i and j are not consecutive.

Without loss of generality, suppose i = 2 and j = 4, with y2−y4 ≥ 2 being the maximal difference.

Let

∆g = g(y1, y2 − 1, y3, y4 + 1, y5)− g(y1, y2, y3, y4, y5).

By similar calculations to those in Case 1, we have

∆g =

(
y4

3

)
−
(
y2 − 1

3

)
+

(
n− y5 − y4 − 1

3

)
+

(
n− y4 − y3 − 1

3

)
−
(
n− y2 − y3

3

)
−
(
n− y1 − y2

3

)
.

We define s = y2−y4−1, and t = (n−y5−y4−1)− (n−y1−y2) = y1−y5 +s. If t ≤ 0, then ∆g < 0,

which contradicts the optimality of (y1, y2, y3, y4, y5). Hence we may assume t ≥ 1, and rewrite ∆g

in terms of s and t as before. In this case we find

∆g =
1

50
[(1 +O(ε)) t− (3 +O(ε)) s]n2 +O((s2 + t2)n).

Hence for ∆g ≥ 0, we must have t ≥ (3−O(ε)) s. However, by maximality of y2 − y4, we have

t = y1 − y5 + s ≤ 2s + 1. The only way these equations can be satisfied is if s = 1 and y1 − y5 = 2.

But in this case y1 and y5 are two consecutive variables with a maximal difference, and so we reduce

to Case 1, which leads to a contradiction.

Hence we have shown that subject to the above conditions, g is only minimised when the variables

yi take values
⌊

2n
5

⌋
or
⌈

2n
5

⌉
. If n ≡ 0, 1, 4 (mod 5), there is only one way (up to cyclic rotation)

that these values can be distributed, so the minimum is uniquely determined. If n ≡ 2, 3 (mod 5),

then there are two possible distributions of the values. In each case, an easy calculation shows g is

minimised when the values are in decreasing order. This completes the proof of the lemma. 2

Note that we assume |yi − 2
5n| < εn only to simplify the proof. Even without this condition,

we can prove that for any n ≥ 12, the above result holds. However, as the flag algebra results are

asymptotic in nature, we can only determine the unique extremal graph for the (4, 3)-problem when

n is large.
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