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COMPLEXITY OF NULL DYNAMICAL SYSTEMS AND SAUER–SHELAH

LEMMAS

GUORONG GAO, JIE MA, MINGYUAN RONG, AND TUAN TRAN

Abstract. The topological entropy of a topological dynamical system, introduced in a foundational

paper by Adler, Konheim and McAndrew [Trans. Am. Math. Soc., 1965], is a nonnegative number

that measures the uncertainty or disorder of the system. Comparing with positive entropy systems,

zero entropy systems are much less understood. In order to distinguish between zero entropy systems,

Huang and Ye [Adv. Math., 2009] introduced the concept of maximal pattern entropy of a topological

dynamical system. At the heart of their analysis is a Sauer–Shelah type lemma. In the present paper, we

provide a shorter and more conceptual proof of a strengthening of this lemma, and discuss its surprising

connection between dynamical system, combinatorics and a recent breakthrough in communication

complexity. We also improve one of the main results of Huang and Ye on the maximal pattern entropy

of zero-dimensional systems, by proving a new Sauer–Shelah type lemma, which unifies and enhances

various extremal results on VC-dimension, Natarajan dimension and Steele dimension.

1. Introduction

Ergodic theory and topological dynamics are two sister branches of the theory of dynamical systems

whose origins can be traced back to Poincaré’s work on the three-body problem. The central object

of study in topological dynamics is a topological dynamical system (TDS) (X,T ), where X is a

nonempty compact metrisable space and T : X → X is a continuous map.

Ever since Kolmogorov [23] introduced entropy into ergodic theory 65 years ago, it has played a

very central role in the study of dynamical systems. The spectacular success of entropy in erdogic

theory led Adler, Konheim and McAndrew [1] to develop its topological counterpart in 1965. They

associated to any topological dynamical system (X,T ) a topological invariant htop(T ) ∈ R+ ∪ {∞},

called the topological entropy of (X,T ), which measures the uncertainty or disorder of the system.

This concept has revolutionised topological dynamics, and is especially important for applications to

classical mechanics and statistical physics (see, for example, the surveys [14, 20]).

Systems with positive topological entropy are random in certain sense, and systems with zero topo-

logical entropy are said to be deterministic even though they may exhibit complicated behaviours.

Comparing with positive entropy systems, deterministic systems are much less understood. In order

to distinguish between deterministic systems, Huang and Ye [16] introduced the concept of maximal

pattern entropy h∗top(T ) of a topological dynamical system (X,T ). It is known that both htop(T ) and

h∗top(T ) take value in {0, log 2, log 3, . . .}∪{∞}, and that htop(T ) > 0 implies h∗top(T ) = ∞ (see [1, 16]).

Hence maximal pattern entropy is especially useful for deterministic systems.1

We now proceed to give more details. Let (X,T ) be a TDS. Given two finite open covers U ,V (of

X), their joint is defined as U ∨ V := {A ∩B : A ∈ U , B ∈ V}. Clearly, U ∨ V is also an open cover of

size at most |U||V|, and at least 1. For a finite open cover U , let p∗X,U : N → N be the function given by

p∗X,U (n) = max
S⊂N∪{0}, |S|=n

N
(

∨

i∈S

T−iU
)

,

where N(V) denotes the minimum size of a subcover chosen from an open cover V. It is easy

to see that the sequence {log p∗X,U(n)}n∈N is sub-additive, and thus by Fekete’s lemma, the limit

lim
n→+∞

1
n log p∗X,U(n) exists. Denote this limit by h∗top(T,U). The maximal pattern entropy of (X,T )

1We note that there are other ways to distinguish deterministic systems (cf. [11, 5]).
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is then defined as

h∗top(T ) := sup
U

h∗top(T,U),

where the supremum is taken over all finite open covers.2

We say a topological dynamical system (X,T ) is null if h∗top(T ) = 0, that is, h∗top(T ) attains the

minimum possible value. From the definition of h∗top(T ), we find that (X,T ) is null if and only if

p∗X,U (n) grows sub-exponentially in n for each finite open cover U . For such systems, an intriguing

conjecture of Huang and Ye [16] further rules out the intermediate growth between polynomial and

exponential.

Conjecture 1.1 ([16]). If (X,T ) is a null TDS, then p∗X,U is of polynomial order for each finite open

cover U .

The conjecture was repeated in the survey on local entropy theory by Glasner and Ye [10]. It was

shown to be true for interval maps by Li [24], circle maps by Yang [30], and most interestingly for

zero-dimensional systems by Huang and Ye [16]. In this paper, we study the conjecture and discuss its

surprising connections between dynamical system, combinatorics, and theoretical computer science.

1.1. General systems. For general topological spaces, the following result, due to Huang and Ye [16,

a special case of Theorem 4.5], is the state of the art of Conjecture 1.1.

Theorem 1.2 ([16]). If (X,T ) is a null TDS, then for each finite open cover U there is a constant

c = c(U) such that p∗X,U (n) ≤ nc logn for every n ≥ 2.

For completeness, we provide a (simplified) proof of Theorem 1.2 in appendix. At the heart of Huang

and Ye’s argument is a Sauer–Shelah type lemma, namely Theorem 1.3 below. This combinatorial

lemma and its predecessors [29, 26, 27, 19, 21] play a major role in all aspects of local entropy theory

for topological dynamical systems. For a thorough discussion we refer the reader to the survey by

Glasner and Ye [10], and Chapter 12 of the book by Kerr and Li [22].

Before stating Theorem 1.3, we borrow some terminologies from [2, 16]. We write Y Z for the class

of all functions from a set Z to a set Y . For h ∈ Y Z and S ⊆ Z, the restriction h|S of h to S is the

map in Y S defined by i 7→ h(i). Given H ⊆ Y Z and S ⊆ Z, the restriction of H to S is

H|S = {h|S : h ∈ H}.

Given an integer r ≥ 2 and a nonempty set Z, we consider partial classes H ⊆ {1, . . . , r, ⋆}Z , where

each h ∈ H is a partial function; specifically if i ∈ Z is such that h(i) = ⋆ then h is undefined at i.

The (non-traditional) VC-dimension of H, denoted by VC(H), is the maximum size of a shattered

set S ⊆ Z, where S is shattered if H|S contains {1, . . . , r}S . A total class F ⊆ {1, . . . , r}Z is called a

net of H if for every h ∈ H there exists f ∈ F such that h(i) ∈ {1, . . . , r, ⋆} \ {f(i)} for all i ∈ Z. The

smallest possible size of a net of H is the covering number of H and is denoted C(H). We shall use
( n
≤d

)

to denote the sum
(n
0

)

+
(n
1

)

+ . . .+
(n
d

)

.

Using the above language, one can restate the combinatorial lemma of Huang and Ye [16, Lemma

4.1] as follows.

Theorem 1.3 ([16]). Given r ≥ 2 and d ≥ 1, there exist positive constants Cr and Dr such that the

following holds for n ≥ max{dCr,Dr}. If H ⊆ {1, . . . , r, ⋆}[n] is a partial class with VC(H) ≤ d, then

C(H) ≤ r22m
( n

m

)2m
,

where m := log r+1
r

(

n
≤d

)

+ 1.

It is worth pointing out that the proof of Theorem 1.2 only requires the case r = 2 of Theorem 1.3.

However, the general case r ≥ 2 was essential for various applications to dynamics, such as [16, Theorem

4.5] (of which Theorem 1.2 is a special case). For some other applications, see [21, 16].

2This definition is independent of a choice of metric.
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In the present paper, we provide a shorter and more conceptual proof of Theorem 1.3. In fact, we

establish the following slightly stronger3 version of Theorem 1.3; its proof is given in Section 2.

Theorem 1.4. Let r ≥ 2 and n ≥ d ≥ 1. If H ⊆ {1, . . . , r, ⋆}[n] is a partial class with VC(H) ≤ d,

then

(1) C(H) ≤

(

n

≤ log r
r−1

( n
≤d

)

)

.

The case r = 2 of Theorem 1.4 is a result of Alon, Hanneke, Holzman and Moran [2, Theorem 12] in

their study of PAC learning theory. Our proof extends their ideas.

When r = 2 and d = 1, (1) gives C(H) ≤
( n
≤log(n+1)

)

≤ nlog(n+1). More generally, one can show

that the RHS of (1) is at most n(r−1)d log(n+1). Note also that for r = O(1) and d = o(n), we have

log r
r−1

(

n
≤d

)

= o(n) since
(

n
≤o(n)

)

= 2o(n), which implies C(H) ≤
(

n
≤o(n)

)

= 2o(n).

Another result of Alon, Hanneke, Holzman and Moran [2, Theorem 11] shows that (1) is nearly tight

when r = 2 and d = O(1). Interestingly, its proof hinges on a recent breakthrough in communication

complexity and its implications in graph theory by Balodis, Ben-David, Göös, Jain and Kothari [3].

Theorem 1.5 ([2]). There is a partial class H ⊆ {1, 2, ⋆}[n] with VC(H) ≤ 1 and C(H) ≥ n(logn)1−o(1)
.

To us, Theorem 1.5 strongly suggests that Conjecture 1.1 is not true in general. Since Theorem 1.5

was stated in a different language in [2], for the sake of completeness we include its proof in Section 2.2.

1.2. Zero-dimensional systems. We now revisit the zero-dimensional case of Conjecture 1.1 and link

it to a recently introduced concept in theoretical computer science. Let X be a topological space. A

refinement of an open cover U of X is a new open cover V of X such that every set in V is contained

in some set in U . We say X is zero-dimensional if every finite open cover of X has a clopen (closed

and open) refinement. Using the Karpovsky–Milman Theorem [19], which is a generalisation of the

Sauer–Shelah Lemma, Huang and Ye [16, Theorem 5.4] verified Conjecture 1.1 for such spaces X.

Theorem 1.6 ([16]). Let (X,T ) be a TDS and let U = {U1, . . . , Ur} be a clopen partition of X. Then

h∗top(T,U) = log ℓ for some ℓ ∈ {1, . . . , r}. Moreover, one of the following alternatives holds.

(a) If ℓ = r, then p∗X,U (n) = rn for all n ∈ N.

(b) If ℓ = r − 1, then there exists c > 0 such that ℓn ≤ p∗X,U (n) ≤ ncℓn for all n ≥ 2.

(c) If 2 ≤ ℓ ≤ r − 2, then there exists c > 0 such that ℓn ≤ p∗X,U (n) ≤ nc lognℓn for all n ≥ 2.

(d) If ℓ = 1, then there exists c > 0 such that p∗X,U (n) ≤ nc for all n ≥ 2.

Alternative (d) tells us that Conjecture 1.1 does hold when X is zero-dimensional. Indeed, let U be

any finite open cover of X. Then U has a clopen refinement V = {V1, . . . , Vr} which forms a partition

of X. Since V is a refinement of U , p∗X,U(n) ≤ p∗X,V(n) for all n. Moreover, as (X,T ) is a null TDS,

h∗top(T,U) = 0, and so it follows from Theorem 1.6 (d) that p∗X,V(n) ≤ nc for n ≥ 2. Therefore,

p∗X,U (n) ≤ nc for all n ≥ 2, as desired.

Huang and Ye [16] handled alternatives (b)–(d) separately. In the present paper, we improve the

multiplicative factor in (c) from quasipolynomial to polynomial in n, and provide a unified treatment

of (b)–(d) in the following.

Theorem 1.7. Let (X,T ) be a TDS and let U = {U1, . . . , Ur} be a clopen partition of X. Then

h∗top(T,U) = log ℓ for some ℓ ∈ {1, . . . , r}. Moreover, one of the following alternatives holds.

(a) If ℓ = r, then p∗X,U (n) = rn for all n ∈ N.

(b) If ℓ ≤ r − 1, then there exists c > 0 such that ℓn ≤ p∗X,U (n) ≤ ncℓn for all n ≥ 2.

The key step in proving Theorem 1.7 is to find a suitable geneneralisation of the classical VC-

dimension, and a corresponding Sauer–Shelah type lemma. As it turns out, one such generalisation

3For instance, Theorem 1.4 does not require n to be large with respect to r.
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is k-Natarajan dimension, which encompasses the Natarajan dimension [25], and the Steele dimension

[28]. Following Daniely, Schapira and Shahaf [8], we define the k-Natarajan dimension of a total

class H ⊆ Y Z , denoted by dimk(H), to be the maximum size of a subset S ⊆ Z for which H|S contains

a subclass of the form
∏

i∈S Yi, where Yi is a k-element subset of Y for each i ∈ S.4 This recent concept

has found applications in computer science and game theory [8], and in machine learning [7].

The corresponding generalisation of the Sauer–Shelah Lemma reads as follows.

Theorem 1.8. Let r ≥ k ≥ 2 and n ≥ d ≥ 1. For any total class H ⊆ {1, . . . , r}[n] with dimk(H) ≤ d,

|H| ≤ (k − 1)n−d
d

∑

i=0

(

n− i− 1

d− i

)(

r

k

)d−i

ri.

Remarks.

(i) Theorem 1.8 gives |H| = Or,k,d(n
d(k − 1)n). This bound is asymptotically tight, as shown by

the total class consisting of all vectors in which at most d coordinates are greater than k − 1.

Moreover, the bound is sharp whenever r = k ≥ 2 (see (iii) and (v) below).

(ii) Weaker bounds were obtained by Daniely, Schapira and Shahaf [8, Theorem 1.5] and Charikar

and Pabbaraju [7, Theorem 7] using a different method.

(iii) Theorem 1.8 recovers the classic Sauer–Shelah Lemma [29, 26, 27], by taking r = k = 2 and

noting that
∑d

i=0

(n−i−1
d−i

)

2i =
∑d

i=0

(n
i

)

.

(iv) Specialising Theorem 1.8 to k = 2 yields an improved Natarajan theorem [25].

(v) For r = k, dimk(H) coincides with the Steele dimension [28] and Theorem 1.8 gives the same

bound as in [28].

We give the proof of Theorem 1.8 in Section 3.3. We then derive Theorem 1.7 from Theorem 1.8 in

Section 3.1. To the best of our knowledge, this is the first application of the k-Natarajan dimension to

topological dynamics. In Section 3.2 we use Theorem 1.7 to study the complexity of symbolic dynamics

(see Theorem 3.2). Finally, we close the paper with some concluding remarks in Section 4.

Notation. We use standard notation throughout. In particular, [n] denotes the set {1, 2, . . . , n}. Given

two nonnegative functions f and g of some underlying parameter n, we write f = O(g) to mean that

there are positive constants C and n0 such that f(n) ≤ Cg(n) for all n ≥ n0, and f = o(g) means that

limn→∞ f(n)/g(n) = 0. For the sake of clarity of presentation, we systematically omit floor and ceiling

signs. Unless stated otherwise, all logarithms are base 2.

Acknowledgement. J. M. was supported in part by the National Key R and D Program of China

2020YFA0713100, National Natural Science Foundation of China grants 12125106, Innovation Program

for Quantum Science and Technology 2021ZD0302902, and Anhui Initiative in Quantum Information

Technologies grant AHY150200. T. T. was supported by the Excellent Young Talents Program (Over-

seas) of the National Natural Science Foundation of China.

2. A Sauer–Shelah lemma for partial classes

In Section 2.1 we give a short proof of Theorem 1.4. We then show in Section 2.2 that the bound

given by Theorem 1.4 is essentially tight.

2.1. Proof of Theorem 1.4. In this section, we provide a proof of Theorem 1.4, extending ideas from

[2]. We need to show that any partial class with bounded VC-dimension admits a small net. We shall

construct the net via an algorithm. We first fix some notations and make some innocuous observations.

Let H ⊆ {1, . . . , r, ⋆}Z be a partial class. The shattering strength of H, denoted by s(H), is the

number of subsets S ⊆ Z that are shattered by H. By convention, the shattering strength of the empty

4This definition does not depend on a choice of Y .
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class is 0, and the empty set is shattered by all nonempty classes (and so the shattering strength of any

nonempty class is at least 1). It is easy to see that s(H) ≤
( |Z|
≤VC(H)

)

. For (i, j) ∈ Z × [r], we denote

Hi→j = {h ∈ H : h(i) = j} .

Define the VC-minority function MH : Z → [r] of H by letting MH(i) be the value j ∈ [r] which

minimises s(Hi→j), with an arbitrary tie-breaking rule. Observe that for any i ∈ Z,

(2) (r − 1) · s(H) ≥ s(Hi→1) + . . . + s(Hi→r).

In particular,

(3) s(Hi→j) ≤
r−1
r · s(H), where j = MH(i).

To see (2), for any subset S ⊆ Z with i /∈ S, we consider the contribution of the pair S, S ∪{i} to both

sides of the inequality. We note that every set S that is shattered by one of the classes Hi→1, . . . ,Hi→r

is also shattered by H, and if S is shattered by all of the Hi→j then both S and S ∪ {i} are shattered

by H.

We shall use the following algorithm to construct a small net of a given partial class.

The algorithm. Fix a partial class H ⊆ {1, . . . , r, ⋆}[n]. For any partial function h ∈ H, the algorithm

will output an index set An ⊆ [n] and a total function f ∈ {1, . . . , r}[n]. Set A0 = ∅ and H0 = H. For

i = 1, . . . , n, do the following:

(1) Compute the value of the VC-minority function of Hi−1 at i. Denote this value by j.

(2) If h(i) 6= j, then set f(i) = j, Ai = Ai−1 and Hi = Hi−1.

(3) If h(i) = j, then set f(i) = j + 1 (mod r), Ai = Ai−1 ∪ {i} and Hi = (Hi−1)i→j .

The outputs of the algorithm satisfy the following properties.

Lemma 2.1.

(a) h ∈ Hi for every 0 ≤ i ≤ n. In particular, s(Hi) ≥ 1 for every 0 ≤ i ≤ n.

(b) h(i) 6= f(i) for every i ∈ [n].

(c) f is determined by An.

(d) An is a subset of [n] of size at most log r
r−1

s(H).

Proof. Properties (a) and (b) are easy to verify. For the others, write An = {a1 < a2 < · · · < ak}

and let a0 = 0, ak+1 = n + 1. Given i ∈ [n], there must exist ℓ = ℓ(i) ∈ [k + 1] with aℓ−1 < i ≤ aℓ.

Denote by j = j(i) the value of the VC-minority function of Haℓ−1 at i. A simple induction on ℓ shows

that Ai = {a1, . . . , aℓ−1}, H
i = Haℓ−1 and f(i) = j when aℓ−1 < i < aℓ, while Ai = {a1, . . . , aℓ},

Hi = (Haℓ−1)i→j and f(i) = j +1 (mod r) when i = aℓ. From this we see that for every i ∈ [n], Ai,Hi

and f(i) are uniquely determined by An and i. This implies (c).

From (3) and the above discussion, we get s(Haℓ) ≤ r−1
r · s(Haℓ−1) for every 1 ≤ ℓ ≤ k. Together

with (a), this implies 1 ≤ s(Hak) ≤ ( r−1
r )k · s(Ha0) = ( r−1

r )k · s(H), which results in k ≤ log r
r−1

s(H),

as desired. �

From Lemma 2.1, we quickly deduce Theorem 1.4.

Proof of Theorem 1.4. Let H ⊆ {1, . . . , r, ⋆}[n] be a partial class with VC(H) ≤ d. Run the algorithm

for each h ∈ H, and let F be the total class consisting of all outputs f . By property (b) in Lemma 2.1,

F is a net of H. Finally, from properties (c) and (d) in Lemma 2.1, we find

|F| ≤

(

n

≤ log r
r−1

s(H)

)

≤

(

n

≤ log r
r−1

(

n
≤d

)

)

,

where the second inequality holds since s(H) ≤
(

n
≤VC(H)

)

≤
(

n
≤d

)

. This completes our proof. �

2.2. Proof of Theorem 1.5. In this section we present a proof of Theorem 1.5, due to Alon, Hanneke,

Holzman and Moran [2]. The proof exploits a recent breakthrough in communication complexity
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and graph theory, namely Theorem 2.2 below, which provides a near-optimal solution to the Alon–

Saks–Seymour problem in graph theory (for background on this problem, see the survey by Bousquet,

Lagoutte and Thomassé [6]). Let G = (V,E) be a simple graph. Recall that the chromatic number of

G, denoted by χ(G), is the minimum k for which there exists a labelling c : V → [k] such that every

edge {u, v} ∈ E satisfies c(u) 6= c(v). The biclique partition number of G, denoted bp(G), is the

minimum number of bicliques (i.e. complete bipartite graphs) needed to partition the edges of G. The

following result follows from a recent line of breakthroughs by Göös [12]; Göös, Lovett, Meka, Watson

and Zuckerman [13]; Balodis, Ben-David, Göös, Jain and Kothari [3]:

Theorem 2.2 ([3]). For every positive integer n there exists a graph G with bp(G) = n and

χ(G) ≥ n(logn)1−o(1)
,

where the term o(1) tends to zero as n goes to infinity.

The following result allows us to use the graph G promised by Theorem 2.2 to construct a partial

class H with small VC-dimension and large covering number.

Lemma 2.3. For every graph G with bp(G) = n, there exists a partial class H ⊆ {1, 2, ⋆}[n] with

VC(H) ≤ 1 and C(H) ≥ χ(G).

We remark that our proof also gives that |H| = |V (G)|. Before proving Lemma 2.3, let us deduce

Theorem 1.5 from it.

Proof of Theorem 1.5 assuming Lemma 2.3. Let G be the graph given by Theorem 2.2. Then we have

bp(G) = n and χ(G) ≥ n(logn)1−o(1)
. By Lemma 2.3, there is a partial class H ⊆ {1, 2, ⋆}[n] with

VC(H) ≤ 1 and C(H) ≥ χ(G) ≥ n(logn)1−o(1)
, proving Theorem 1.5. �

To complete the proof of Theorem 1.5, it remains to prove Lemma 2.3, the task we now pursue.

Proof of Lemma 2.3. Suppose we have a partition of E(G) as disjoint union of B(Li, Ri) for i ∈ [n],

where B(Li, Ri) denotes the edge set of the complete bipartite graph with parts Li and Ri. For each

v ∈ V (G), let hv be a partial function in {1, 2, ⋆}[n] given by

hv(i) =















1 if v ∈ Li

2 if v ∈ Ri

⋆ otherwise.

Set H = {hv : v ∈ V (G)}. We have to show that the partial class H ⊆ {1, 2, ⋆}[n] satisfies VC(H) ≤ 1

and C(H) ≥ χ(G).

Suppose for the contrary that VC(H) ≥ 2. Then there must exist two distinct coordinates i, j ∈

[n] such that {i, j} is shattered by H. In particular, we can find two vertices u, v ∈ V (G) with

(hu(i), hu(j)) = (1, 1) and (hv(i), hv(j)) = (2, 2). From the definitions of hu and hv, we get u ∈ Li ∩Lj

and v ∈ Ri ∩ Rj . Hence {u, v} is covered by both B(Li, Ri) and B(Lj , Rj), which contradicts the

assumption that ∪n
i=1B(Li, Ri) is an edge partition of G.

It remains to show that C(H) ≥ χ(G). Indeed, from the definition of C(H), there exists a total class

C ⊆ {1, 2}[n] that satisfies

(i) |C| = C(H);

(ii) for each vertex v ∈ V there is a total function cv ∈ C such that hv(i) 6= cv(i) for all i ∈ [n].

Assign to each vertex v ∈ V the colour cv ∈ C. We claim that this is a proper colouring, and so

C(H) = |C| ≥ χ(G), as desired. Indeed, let {u, v} be any edge in G. Since ∪n
i=1B(Li, Ri) is an edge

partition of G, {u, v} ∈ B(Li, Ri) for some i ∈ [n]. Let u ∈ Li and v ∈ Ri. By the definitions of hu and

hv, we thus obtain hu(i) = 1 and hv(i) = 2. It then follows from (ii) that cu(i) = 2 and cv(i) = 1. We

conclude that u and v are assigned different colours, completing our proof. �
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3. k-Natarajan dimension and its applications

As mentioned earlier, in this section we study the complexity function p∗X,U (n) when U is a clopen

partition of X. We derive the main result of this section, namely Theorem 1.7, from Theorem 1.8. The

proof of Theorem 1.8 itself is deferred to Section 3.3. In Section 3.2, we use Theorem 1.7 to study the

complexity of symbolic dynamics, improving another result of Huang and Ye [16].

We begin with an auxiliary lemma that is used to prove the statements given later in the subsections.

Lemma 3.1. Let (X,T ) be a TDS and let U = {U1, . . . , Ur} be a clopen partition of X. Then, for any

subset S ⊆ N ∪ {0},

N
(

∨

i∈S

T−iU
)

= #
{

f ∈ [r]S :
⋂

i∈S

T−iUf(i) 6= ∅
}

.

Proof. Since U is a partition of X, the sets in the open cover
∨

i∈S T−iU are pairwise disjoint. Hence

the minimum size of a subcover of
∨

i∈S T−iU is exactly the number of nonempty sets in
∨

i∈S T−iU .

Moreover, every set in
∨

i∈S T−iU is of the form
⋂

i∈S T−iUf(i) for some function f ∈ {1, . . . , r}S .

Therefore, N
(
∨

i∈S T−iU
)

= #
{

f ∈ [r]S :
⋂

i∈S T−iUf(i) 6= ∅
}

. �

3.1. An application in topological dynamical systems. Given a total class H ⊆ {1, . . . , r}Z and

a positive integer k, we say a subset S ⊆ Z is k-Natarajan shattered by H if H|S contains a subclass

of the form
∏

i∈S Yi, where Yi is a k-element subset of {1, . . . , r} for each i ∈ S. Then, dimk(H) equals

the maximum size of a k-Natarajan shattered set.

Proof of Theorem 1.7 assuming Theorem 1.8. Let U = {U1, . . . , Ur} be a clopen partition of X. For

each n ∈ N, let Vn be a set of n nonnegative integers such that N
(
∨

i∈Vn
T−iU

)

= p∗X,U (n). Define

Hn =
{

h ∈ [r]Vn :
⋂

i∈Vn

T−iUh(i) 6= ∅
}

.

Then, by Lemma 3.1, N
(
∨

i∈Vn
T−iU

)

= |Hn|, resulting in

p∗X,U (n) = |Hn|.

Let ℓ be the maximum integer such that lim supn→∞ dimℓ(Hn) = ∞. Then we have ℓ ∈ {1, . . . , r}.

We consider the upper bound on p∗X,U (n) first. If ℓ = r, then clearly p∗X,U (n) ≤ |U|n = rn = ℓn.

Now suppose ℓ ≤ r − 1, then we have dimℓ+1(Hn) = O(1). Since Hn ⊆ {1, . . . , r}Vn , |Vn| = n and

dimℓ+1(Hn) = O(1), we derive from Theorem 1.8 that |Hn| ≤ nO(1)ℓn, and so

p∗X,U (n) = |Hn| ≤ nO(1)ℓn when ℓ ≤ r − 1.

We proceed to lower bound p∗X,U (n). Because lim supn→∞ dimℓ(Hn) = ∞, there exist a sequence

{n(k)}k∈N of positive integers and a sequence {Wk}k∈N of sets satisfying

(i) Wk is ℓ-Natarajan shattered by Hn(k).

(ii) Wk is a subset of Vn(k) of size k;

For every k ∈ N, we have

p∗X,U(k)
(ii)

≥ N
(

∨

i∈Wk

T−iU
)

= #
{

f ∈ [r]Wk :
⋂

i∈Wk

T−iUf(i) 6= ∅
}

≥ |Hn(k)

∣

∣

Wk
|
(i)

≥ ℓ|Wk|
(ii)
= ℓk,

where the first equality follows from Lemma 3.1, and in the second inequality we used the definition of

Hn(k). We therefore get p∗X,U (n) = ℓn when ℓ = r and

ℓn ≤ p∗X,U (n) ≤ nO(1)ℓn when ℓ ≤ r − 1.

From this we find h∗top(T,U) = lim supn→+∞
1
n log p∗X,U (n) = log ℓ, where ℓ ∈ {1, . . . , r}. This completes

our proof. �
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3.2. An application in symbolic dynamics. Given an integer r ≥ 2, we consider the product set

Ωr = {1, . . . , r}N. Topology on {1, . . . , r} is discrete, and Ωr is endowed with the product topology.

Since {1, . . . , r} is compact and metrisable, so is the product space Ωr. Concretely, one can equip Ωr

with the metric d((xn)n∈N, (yn)n∈N) =
∑

n≥1 2
−n1xn 6=yn . Let T : Ωr → Ωr be the shift T (xn)n∈N :=

(xn+1)n∈N. A subshift is a closed T -invariant subset of Ωr.

Consider a subshift X ⊆ Ωr. We see that (X,T ) is a TDS. For 1 ≤ i ≤ r, Ui denotes the clopen set

X ∩ {x ∈ Ωr : x1 = i}. Then U0 := {U1, . . . , Ur} is a clopen partition of X. Hence we can define

p∗X(n) := p∗X,U0
(n) for n ∈ N, and h∗(X) := h∗top(T,U0).

As a direct application of Theorem 1.7, we get the following result.

Theorem 3.2. For any subshift (X,T ) on r letters, one has h∗(X) = log ℓ for some ℓ ∈ {1, . . . , r}.

Moreover, one of the following alternatives holds.

(a) If ℓ = r, then p∗X(n) = rn for all n ∈ N.

(b) If ℓ ≤ r − 1, then there exists a constant c > 0 such that ℓn ≤ p∗X(n) ≤ ncℓn for all n ≥ 2.

We remark that for ℓ ≤ r − 1, a much weaker bound of the form p∗X(n) ≤ nO(logn)ℓn was obtained

by Huang and Ye [16, Theorem 5.5].

For the rest of this section, we give a more explicit expression for p∗X(n). Huang and Ye [16] claimed,

without a proof, that

(4) p∗X(n) = p∗X,U0
(n) = max

0≤s1<...<sn
# {x1+s1 . . . x1+sn : x ∈ X} .

For the reader’s convenience, we provide a proof of this simple fact. Let s1 < . . . < sn be any sequence

of n nonnegative integers. Since U0 is a clopen partition of X, it follows from Lemma 3.1 that

N
(

∨

i∈[n]

T−siU
)

= #
{

f ∈ [r][n] :
⋂

i∈[n]

T−siUf(i) 6= ∅
}

= #
{

f ∈ [r][n] : there is x ∈ X with x ∈
⋂

i∈[n]

T−siUf(i)

}

= #
{

f ∈ [r][n] : there is x ∈ X with T six ∈ Uf(i) for every 1 ≤ i ≤ n
}

= #
{

f ∈ [r][n] : there is x ∈ X with x1+s1 = f(1), . . . , x1+sn = f(n)
}

= # {x1+s1 . . . x1+sn : x ∈ X} .

Taking the maximum over all sequences s1 < . . . < sn yields (4).

In a special case when X is the closure of the orbit of a word a ∈ Ωr under the shift map T , one

can further simplify (4). Indeed, for every x ∈ X = {a, Ta, T 2a, . . .} and for every n0 ∈ N, there

exists y ∈ {a, Ta, T 2a, . . .} such that d(x, y) < 2−n0 . Suppose y = Tm−1a for some m ∈ N. Then the

condition d(x, y) < 2−n0 forces xi = yi = am+i for all i ≤ n0. Together with (4), this implies

p∗X(n) = max
0≤s1<...<sn

# {am+s1 . . . am+sn : m ∈ N} .

The right-hand side of the equation is also called the maximal pattern complexity of a. Actually,

this concept was introduced by Kamae and Zamboni [17, 18], and was the inspiration behind the work

of Huang and Ye [16] on the maximal pattern entropy.

3.3. A lemma on k-Natarajan dimension. In this section we provide a proof of Theorem 1.8, which

is inspired by [9]. Throughout the section, we view elements of product spaces as vectors. For a vector

x, we denote by xi the value of the i-th coordinate. For integers a and b, we employ the interval

notation

[a, b] := {x ∈ Z : a ≤ x ≤ b}.

The following lemma makes up the bulk of the proof of Theorem 1.8.
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Lemma 3.3. Given integers r and k with r ≥ k ≥ 2, let Ω denote the alphabet

{b1, b2, . . . , bk−1} ∪
{

cA : A ∈

(

[r]

k

)

}

of size k − 1 +
(r
k

)

. Then for every class H ⊆ [r][n], there exist n maps ϕ1, . . . , ϕn and n + 1 classes

H0 := H,H1, . . . ,Hn (see the diagram below) with the following properties.

(P1) For 0 ≤ i ≤ n, Hi is a subclass of Ω[i] × [r][i+1,n].

(P2) For 1 ≤ i ≤ n, ϕi : Hi−1 → Hi is a bijection that preserves all but the i-th coordinate.

(P3) Every element in Hn has at most dimk(H) coordinates in {cA : A ∈
([r]
k

)

}.

[r][n] Ω[1] × [r][2,n] Ω[2] × [r][3,n] · · · Ω[n]

H0 = H H1 H2 · · · Hn
ϕ1

⊆

ϕ2

⊆ ⊆

ϕn

⊆

Assuming Lemma 3.3, we now give a proof of Theorem 1.8.

Proof of Theorem 1.8 assuming Lemma 3.3. Consider a class H ⊆ [r][n] with dimk(H) ≤ d. Applying

Lemma 3.3 to H, we get Ω, ϕ1, . . . , ϕn,H1, . . . ,Hn. Set Ω′ = {b1, . . . , bk−1},Ω
′′ = {cA : A ∈

([r]
k

)

} and

ϕ = ϕn ◦ · · · ◦ ϕ1. By (P3), for every x ∈ H, ϕ(x) has at least n − d coordinates in Ω′. Hence H is

partitioned into d+ 1 subclasses G0, . . . ,Gd, where

Gi = {x ∈ H : ϕ(x)n−i ∈ Ω′ and ϕ(x)|[n−i] has exactly n− d coordinates in Ω′}.

Denote

Fi = {(ϕn−i ◦ · · · ◦ ϕ1)(x) : x ∈ Gi}.

From (P1) and (P2), we get Fi ⊆ Ω[n−i] × [r][n−i+1,n] and |Fi| = |Gi|. To bound the size of Fi, let y be

any vector of Fi. Then y = (ϕn−i ◦ · · · ◦ϕ1)(x) for some x ∈ Gi. By (P2), ϕ(x) = (ϕn ◦ · · · ◦ϕn−i+1)(y)

and y agree in the first n − i coordinates. On the other hand, as x ∈ Gi, we know that ϕ(x)n−i ∈ Ω′,

and that ϕ(x)|[n−i] has exactly n−d (respectively d− i) coordinates in Ω′ (respectively Ω′′). Therefore,

yn−i ∈ Ω′, and y|[n−i] has exactly n − d (respectively d− i) coordinates in Ω′ (respectively Ω′′). From

this, we obtain

|Fi|[n−i]| ≤

(

n− i− 1

n− d− 1

)

(k − 1)n−d

(

r

k

)d−i

= (k − 1)n−d

(

n− i− 1

d− i

)(

r

k

)d−i

.

Combining this with the trivial bound |Fi|[n−i+1,n]| ≤ ri yields

|Fi| ≤ |Fi|[n−i]| · |Fi|[n−i+1,n]| ≤ (k − 1)n−d

(

n− i− 1

d− i

)(

r

k

)d−i

· ri.

Therefore, we have

|H| =
d

∑

i=0

|Gi| =
d

∑

i=0

|Fi| ≤ (k − 1)n−d
d

∑

i=0

(

n− i− 1

d− i

)(

r

k

)d−i

ri,

finishing the proof. �

Construction. We recursively define ϕ1,H1, . . . , ϕn,Hn. Suppose we have defined

H0, ϕ1,H1, . . . , ϕi−1,Hi−1

for some 1 ≤ i ≤ n. We shall construct a map ϕi : Hi−1 → Ω[i] × [r][i+1,n] and let Hi = ϕi(Hi−1). For

x ∈ Hi−1, the i-th block of Hi−1 containing x is the class

∂(i)(x) = {y ∈ Hi−1 : x and y agree in all but possibly the i-th coordinate}.
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Note that x ∈ ∂(i)(x). Since y ∈ ∂(i)(x) if and only if ∂(i)(x) = ∂(i)(y), Hi−1 is decomposed into i-th

blocks. We thus only need to define ϕi on each i-th block. Given x = (x1, . . . , xn) ∈ Hi−1, order the

elements of ∂(i)(x) as

(x1, . . . , xi−1, s1, xi+1, . . . , xn), . . . , (x1, . . . , xi−1, st, xi+1, . . . , xn),with 1 ≤ s1 < . . . < st ≤ r.

For 1 ≤ j ≤ t, define ϕi(x1, . . . , xi−1, sj , xi+1, . . . , xn) to be the vector

• Except the i-th coordinate, the other coordinates of ϕi(x1, . . . , xi−1, sj , xi+1, . . . , xn) and x are

the same;

• The i-th coordinate of ϕi(x1, . . . , xi−1, sj , xi+1, . . . , xn) is bj if 1 ≤ j ≤ k − 1, and c{s1,...,sk−1,sj}

if j ≥ k.

As these vectors ϕi(x1, . . . , xi−1, sj , xi+1, . . . , xn) lie in Ω[i] × [r][i+1,n], Hi = ϕi(Hi−1) is a subclass of

Ω[i] × [r][i+1,n], thereby verifying (P1).

To verify the other properties, we first make some simple observations that follow readily from the

definition of ϕi.

Observation 3.4. The following hold for every i ∈ [n] and x ∈ Hi−1.

(a) ϕi(x) preserves all but the i-th coordinate of x.

(b) The restriction of ϕi to ∂(i)(x) is injective.

(c) Suppose x = (x1, . . . , xn) ∈ H and the i-th coordinate of ϕi(x) is cA for some A ∈
([r]
k

)

. Then

Hi−1 ⊇ ∂(i)(x) contains {x1} × · · · × {xi−1} ×A× {xi+1} × · · · × {xn}.

Proof of Lemma 3.3 (continuation). (P2) As Hi = ϕi(Hi−1), evidently ϕi is surjective. So what’s left

is to show that ϕi is injective. Suppose ϕi(x) = ϕi(y). By Observation 3.4 (a), ϕi preserves all but the

i-th coordinate, so x and y agree in all but possibly the i-th coordinate. Thus, x and y are two vectors

of ∂(i)(x) with ϕi(x) = ϕi(y). But by Observation 3.4 (b), the map ϕi restricted to ∂(i)(x) is injective,

so one must have x = y. This proves (P2).

(P3) Let d = dimk(H). Suppose for the contrary that there is a vector y ∈ Hn together with a

(d + 1)-element subset I ⊆ [n] such that for every i ∈ I, yi = cAi
for some Ai ∈

([r]
k

)

. By repeatedly

applying Observation 3.4 (a) and (c) in a reversed ordering with respect to the coordinates, we find

that H|I contains
∏

i∈I Ai, implying dimk(H) ≥ d+ 1, a contradiction. This finishes the proof. �

4. Concluding remarks

Let (X,T ) be a null topological dynamical system. In this paper we studied the maximal pattern

complexity of (X,T ) by making connections to extremal combinatorics and theoretical computer sci-

ence. A very interesting problem which remains widely open is to find the optimal upper bound for

the complexity function p∗X,U : N → N. Huang and Ye conjectured that p∗X,U is of polynomial order.

In light of Theorem 1.5, we believe that one cannot improve the bound p∗X,U (n) ≤ nO(logn), and in

particular, Huang and Ye’s conjecture does not hold.

Question 4.1. Does there exist a null topological dynamical system (X,T ) together with a finite open

cover U of X such that p∗X,U (n) ≥ nc logn for every n, for some fixed constant c > 0?

A positive answer to Question 4.1 would imply the existence of a sequence of graphs {Gn} with

bp(Gn) = n and χ(Gn) ≥ nc logn (see the proofs of Theorems 1.2 and 1.5). So a natural approach is to

build such (X,T ) from the infinite collection of graphs G provided by Theorem 2.2. One of the obstacles

we faced is that the proof of Theorem 2.2 provides little insight on the structure of the concluded graphs

G. In part, this is due to the fact that the graphs are obtained by a series of reductions, some of which

are unintuitive (see [12, 13, 3]).

In all known examples of null systems, the complexity function p∗X,U(n) grows linear with n. As a

first step towards Question 4.1, the following question asks whether it is possible to construct a null

system (X,T ) such that for some open cover U of X, the complexity function p∗X,U (n) grows faster

than linear.
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Question 4.2. Is there a null topological dynamical system (X,T ) together with a finite open cover U

of X such that p∗X,U(n) ≥ n1+c for every n, for some fixed constant c > 0?

Relevant to the question is a result due to Huang and Sudakov [15, Theorem 1.2] which asserts that

there exists an infinite collection of graphs G such that χ(G) ≥ bp(G)6/5+o(1) . In contrast to the proof

of Theorem 2.2, Huang and Sudakov’s construction is explicit.

Another intriguing question that deserves further investigation is the tightness of the bounds in

Theorems 1.3 and 1.4 for r ≥ 3. Theorem 1.5 tells us that these bounds are essentially tight for r = 2.

Some of the arguments in the proof of Theorem 1.5 do generalise to larger r. Let us recall some notions

from hypergraph theory. Let G = (V,E) be an r-graph. The r-partition number of G, denoted by

fr(G), is the minimum number of complete r-partite r-graphs needed to partition the edge set of G.

The chromatic number χ(G) of G is the minimum k for which there exists a colouring c : V → [k] such

that every edge e ∈ E contains two vertices u, v with c(u) 6= c(v). One can easily extend Lemma 2.3 to

r-graphs as follows.

Proposition 4.3. For every r-graph G with fr(G) = n, there exists a partial class H ⊆ {1, . . . , r, ⋆}[n]

with VC(H) ≤ 1 and C(H) ≥ χ(G).

What is missing is an analogue of Theorem 2.2 for r-graphs.

Question 4.4 (A hypergraph Alon–Saks–Seymour problem). Let r ≥ 3. For every n, is there an

r-graph G such that fr(G) = n and χ(G) ≥ ncr logn, where cr > 0 is a constant depending only on r?

Appendix A. Proof of Theorem 1.2

In this section we present Huang and Ye’s proof [16] of Theorem 1.2, with several simplifications.

Let (X,T ) be a TDS. For a finite open cover U of X, define L(U) = lim sup
n→+∞

log p∗X,U (n)

log2(n+1)
. Then one can

restate Theorem 1.2 as follows.

Theorem A.1. If (X,T ) is a null TDS, then for every finite open cover U

L(U) = O(1).

Throughout the section, Ac denotes the complement X \A of A.

Proof of Theorem A.1. Suppose for the contrary that L(U) = ∞. By Lemma A.3 below, there is an

open cover V = {V1, V2} of size 2 such that L(V) = ∞. Then, for each d ∈ N, there exists a finite set

S ⊂ N ∪ {0} with N
(
∨

i∈S T−iV
)

> (|S| + 1)4d log(|S|+1). For each x ∈ X, let hx be a partial function

in {1, 2, ⋆}S defined as

hx(i) =















1 if x ∈ T−i(V c
1 )

2 if x ∈ T−i(V c
2 )

⋆ otherwise.

Since {V1, V2} is a cover of X, V c
1 and V c

2 are disjoint, and hence hx is well-defined. Consider the partial

class H := {hx : x ∈ X}.

Claim A.2. C(H) = N
(
∨

i∈S T−iV
)

.

Proof. Let F ⊆ {1, 2}S be a total class. We can infer from the definitions of H and hx that

F is a net of H ⇐⇒ for each hx ∈ H there is f ∈ F such that hx(i) 6= f(i) for all i ∈ S

⇐⇒ for each x ∈ X there is f ∈ F such that x /∈ T−i(V c
f(i)) for all i ∈ S

⇐⇒ for each x ∈ X there is f ∈ F such that x ∈ T−iVf(i) for all i ∈ S

⇐⇒ for each x ∈ X there is f ∈ F such that x ∈
⋂

i∈S

T−iVf(i)

⇐⇒
{

⋂

i∈S

T−iVf(i) : f ∈ F
}

is a cover of X.
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Letting F be a net of minimum size of H, this yields the lower bound

C(H) = |F| ≥ |
{

⋂

i∈S

T−iVf(i) : f ∈ F
}

| ≥ N
(

∨

i∈S

T−iV
)

.

For the upper bound, let W be a mimimum subcover of
∨

i∈S T−iV. Then W can be written as

W =
{
⋂

i∈S T−iVf(i) : f ∈ F
}

, where F ⊆ {1, 2}S is a total class with |F| = |W|. As W is a cover of

X, we find that F is a net of H. Thus C(H) ≤ |F| = |W| = N
(
∨

i∈S T−iV
)

. We are done. �

From Claim A.2 we obtain C(H) = N
(
∨

i∈S T−iV
)

≥ (|S|+1)4d log(|S|+1). Thus, by the remark after

Theorem 1.4, there exists a size-d subset W ⊆ S with H|W ⊇ {1, 2}W . Let x ∈ X be an element such

that hx|W lies in {1, 2}W . Suppose x is contained in
⋂

i∈W T−iVf(i) for some f ∈ {1, 2}W , then we must

have hx(i) 6= f(i) for all i ∈ W , and so f is uniquely determined by hx|W . Therefore, we have

N
(

∨

i∈W

T−iV
)

≥ |H|W ∩ {1, 2}W | = 2|W |.

Letting |W | = d → ∞ yields h∗top(T,V) ≥ 1 > 0, a contradiction. �

The rest of this section is devoted to establish the following lemma that was used in the proof

Theorem A.1.

Lemma A.3. Let (X,T ) be a TDS. Suppose that U is a finite open cover of X with L(U) = +∞. Then

there is an open cover V = {V1, V2} of size two with L(V) = +∞.

As in [16], we follow the arguments of Blanchard [4]. We shall make use of basic properties of the

function L.

Proposition A.4. Let (X,T ) be a TDS. Then the following properties hold.

(i) (Monotone) If V is a refinement of U , then L(U) ≤ L(V).

(ii) (Subadditive) If U ,V are open covers of X, then L(U ∨ V) ≤ L(U) + L(V).

Proof. For (i), consider any set S of nonnegative integers. Since V is a refinement of U ,
∨

i∈S T−iV is a

refinement of
∨

i∈S T−iU , and so N
(
∨

i∈S T−iU
)

≤ N
(
∨

i∈S T−iV
)

. It follows that p∗X,U (n) ≤ p∗X,V(n)

for every n ∈ N, which implies L(U) ≤ L(V).

For every n ∈ N we have

p∗X,U∨V(n) = max
S

N
(

∨

i∈S

T−i(U ∨ V)
)

= max
S

N
(

∨

i∈S

(T−iU ∨ T−iV)
)

≤ max
S

N
(

∨

i∈S

T−iU
)

·N
(

∨

i∈S

T−iV
)

≤ max
S

N
(

∨

i∈S

T−iU
)

·max
T

N
(

∨

i∈T

T−iV
)

= p∗X,U (n) · p
∗
X,V(n),

where the maximums are taken over all size-n subsets S, T ⊂ N ∪ {0}. Taking the logarithm and then

dividing by log2(n+ 1), we obtain L(U ∨ V) ≤ L(U) + L(V). �

Proof of Lemma A.3. Let U = {U1, . . . , Uk}. We first observe that U1 6= X. Suppose otherwise that

U1 = X, then for every subset S ⊆ N∪ {0} we have X ∈
∨

i∈S T−iU , and so the open cover
∨

i∈S T−iU

has a subcover of size 1, which implies L(U) = 0, a contradiction.

Given a subset A ⊆ X, we shall use diam(A) to denote the diameter of A. We now inductively

construct a sequence of closed sets (An)n≥0 with the following three properties

(P1) U c
1 = A0 ⊇ A1 · · · ;

(P2) diam(An) ≤ 2−n for every n ≥ 1;

(P3) L(Un) = +∞ for every n ≥ 0, where Un := {Ac
n, U2, . . . , Uk}.
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Clearly, A0 = U c
1 is a closed set that satisfies (P1)–(P3). Suppose that we have already constructed

An. Since An is a closed subset of the compact set X, An is also compact, and so we can cover An

by a finite number of closed balls B1, . . . , Bℓ of radius 2−n−2. For 1 ≤ i ≤ ℓ, let An+1,i = An ∩ Bi

and Un+1,i = {Ac
n+1,i, U2, . . . , Uk}. Since Un = {Ac

n, U2, . . . , Uk} is an open cover of X and Ac
n+1,i is an

open set containing Ac
n, we find that Un+1,i is also an open cover of X. The definition of An+1,i gives

Ac
n+1,i = (An ∩Bi)

c = Ac
n ∪Bc

i . Hence

ℓ
⋂

i=1

Ac
n+1,i =

ℓ
⋂

i=1

(

Ac
n ∪Bc

i

)

= Ac
n ∪

(

An ∩
ℓ
⋂

i=1

Bc
i

)

= Ac
n ∪ ∅ = Ac

n,

where the third identity holds since An is covered by B1, . . . , Bℓ. It follows that every set in
∨ℓ

i=1 Un+1,i

is contained in some set in Un = {Ac
n, U2, . . . , Uk}. In other words, the open cover

∨ℓ
i=1 Un+1,i is a

refinement of Un. Using Proposition A.4, we thus obtain

+∞ = L(Un) ≤ L
(

ℓ
∨

i=1

Un+1,i

)

≤
ℓ

∑

i=1

L(Un+1,i).

So L(Un+1,i) = +∞ for some i ∈ [ℓ]. Set An+1 = An+1,i. As An+1 = An ∩Bi, An+1 is a closed subset

of An of diameter diam(An+1) ≤ diam(Bi) ≤ 2 · 2−n−2 = 2−n−1. Therefore, An+1 has the desired

properties.

From (P3) and the observation at the beginning of the proof, we see that Ac
n 6= X, and so An 6= ∅.

This, together with (P1), (P3) and the compactness of X, yields
⋂

n≥0An = {x} for some x ∈ X.

Because x ∈ A0 = U c
1 and U = {U1, . . . , Uk} is a cover of X, there is ℓ ∈ {2, . . . , k} with x ∈ Uℓ.

Since Uℓ is open, there exists ε > 0 such that Uℓ contains an open ball B(x, ε) centered at x of radius

ε > 0. On the other hand, since
⋂

n≥0An = {x} and limn→∞ diam(An) = 0, one has An ⊆ B(x, ε) for

n sufficient large. For such an n, let V1 = Ac
n and V2 = Uℓ. Since V1 ∪ V2 ⊇ B(x, ε)c ∪ B(x, ε) = X,

V = {V1, V2} is a subcover of Un. Finally, we have

L(V) ≥ L(Un) = +∞.

This completes our proof. �
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