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Gallai asked in 1984 if any k-critical graph on n vertices contains at least n distinct
(k−1)-critical subgraphs. The answer is trivial for k ≤ 3. Improving a result of Stiebitz
[10], Abbott and Zhou [1] proved in 1995 that for all k≥4, any k-critical graph contains
Ω(n1/(k−1)) distinct (k−1)-critical subgraphs. Since then no progress had been made until
very recently, Hare [4] resolved the case k= 4 by showing that any 4-critical graph on n
vertices contains at least (8n−29)/3 odd cycles.

In this paper, we mainly focus on 4-critical graphs and develop some novel tools for
counting cycles of specified parity. Our main result shows that any 4-critical graph on n
vertices contains Ω(n2) odd cycles, which is tight up to a constant factor by infinitely
many graphs. As a crucial step, we prove the same bound for 3-connected non-bipartite
graphs, which may be of independent interest. Using the tools, we also give a short solution
to Gallai’s problem when k= 4. Moreover, we improve the longstanding lower bound of
Abbott and Zhou to Ω(n1/(k−2)) for the general case k ≥ 5. We will also discuss some
related problems on k-critical graphs in the final section.

1. Introduction

In this paper, all graphs are simple (no loops or parallel edges), unless oth-
erwise specified. The chromatic number χ(G) of a graph G is the minimum
number of colors to be assigned to its vertices so that no adjacent vertices
receive the same color. A graph G is called k-critical if it has chromatic
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number k but every proper subgraph has chromatic number less than k.
Note that all 3-critical graphs are odd cycles.

In 1984, Gallai asked the following problem (see Problem 5.9 of [5] or the
discussion in [10]).

Problem 1.1 (Gallai). If G is a k-critical graph on n vertices, is it true
that G contains n distinct (k−1)-critical subgraphs?

This problem is trivial for k ≤ 3. From now on, we will assume k ≥ 4.
For convenience, for each s≥ 3 we denote by fs(G) the number of distinct
s-critical subgraphs in a graph G. For s = 3, we will simply write f(G)
instead. Let G be an n-vertex k-critical graph. Stiebitz [10] first proved that
fk−1(G)≥ log2n. This was improved by Abbott and Zhou [1] to

fk−1(G) ≥ ((k − 1)!n)
1

k−1

in 1995 and there has been no further improvement for general k. Very
recently, Hare [4] answered Gallai’s problem in the case k = 4 by showing
that every 4-critical graph on n vertices contains at least 8

3n−
29
3 odd cycles.

Our first result improves the general bound of Abbott and Zhou [1] for
every k≥4.

Theorem 1.2. For k ≥ 4, every k-critical graph G on n vertices satisfies(fk−1(G)
k−2

)
≥e(G). Thus

fk−1(G) ≥ ((k − 1)!n/2)
1

k−2 .

Proof. For each e∈E(G), G−e has a proper (k−1)-coloring, say with color
classes A1, . . . ,Ak−1, where A1 contains the ends of e. For each 2≤ i≤k−1, we
see that G−Ai has chromatic number k−1 and thus contains a (k−1)-critical
subgraph Ge

i . It is also clear that e∈E(Ge
i ). Let L(e)={Ge

2, . . . ,G
e
k−1}. Note

that each graph in L(e) is (k− 1)-critical and contains e. We claim that
for any f ∈E(G− e) there is at least one subgraph in L(e) not containing
f . To see this, we may assume f = uv with u ∈ Ai and v ∈ Aj for some
1≤ i < j ≤ k−1, implying that f /∈E(Ge

j). This claim shows that L(e) are

distinct for all edges e in G and so
(fk−1(G)

k−2
)
≥ e(G). Since any k-critical

graph has minimum degree at least k−1, we have e(G)≥(k−1)n/2 and this

further implies fk−1(G)≥((k−1)!n/2)
1

k−2 .

For the rest of the paper, we focus on the case of 4-critical graphs. Our
main result is a tight bound on the number of odd cycles in 4-critical graphs.
This in fact is proved in a stronger form, that reveals a relationship between
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the numbers of odd cycles and edges. To state it, we introduce a parameter
that will play an important role in the proofs: for any graph G, let

t(G) = |E(G)| − |V (G)|+ 1.

Note that if G is 2-connected, then any ear-decomposition of G (we postpone
its definition to Section 2) has exactly t(G) ears; also, for a 4-critical graphG,
since every vertex has degree at least 3, we have t(G)≥|E(G)|/3≥|V (G)|/2.

Theorem 1.3. If G is a 4-critical graph on n vertices and m edges, then
f(G)≥0.02t2(G). Thus

f(G) ≥ Ω(m2) ≥ Ω(n2).

We remark that this is tight up to a constant factor. To see this, by an
n-vertex d-wheel W (n,d) we denote the graph obtained from a cycle Cn−d
and a clique Kd by joining each vertex of Cn−d to each vertex of Kd. It is
odd if n−d is odd and even otherwise. For simplicity, we just call a 1-wheel
a wheel. Now we observe that the odd wheel W =W (n,1) is 4-critical and
has

(
n−1
2

)
+1 odd cycles; it also has O(|E(W )|2) and O(t2(W )) odd cycles.

The proof of Theorem 1.3 consists of two cases. Let G be a 4-critical
graph. The first case is that G contains some 2-cut {x,y}. By a structural
result (Lemma 2.1), G can be decomposed into two subgraphs F1,F2 which
are ‘close’ to being 4-critical. On the one hand, we can find relatively many
odd cycles in each of F1 and F2 by using induction; on the other hand,
using results we prove for counting paths between two given vertices (i.e.,
Lemmas 2.4 and 5.2), we can find many paths of specified parity between
x and y in F1 and in F2, which together give a good number of odd cycles
distinct from those above. This would give Ω(t2(G)) odd cycles when G
contains some 2-cut.

The other case in the proof of Theorem 1.3 is that G does not contain
2-cuts, that is, G is 3-connected (and 4-critical). As an intermediate step
and a result of independent interest, we prove the following similar bound
for graphs that are 3-connected and non-bipartite.

Theorem 1.4. If G is a 3-connected non-bipartite graph, then f(G) ≥
0.02t2(G).

We note that Theorem 1.4 is (slightly) stronger than what we need to
complete the proof of Theorem 1.3. For the proof of Theorem 1.4, the main
idea is to find an induced non-separating (defined in Section 2) odd cycle C
and to find many paths with end-vertices in V (C) that are internally disjoint
from C. A crucial observation is that each such path can be extended to an
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odd cycle by adding exactly one of the two subpaths in C between its end-
vertices. Along the way to obtaining these results, we develop some tools for
counting cycles with specified parity and passing through some fixed vertex
(such as Lemma 5.1). The key ingredient in proving these results (including
Lemmas 5.1 and 5.2) is a novel application of ear-decompositions, together
with the use of non-separating cycles. To facilitate this approach, we also
consider and establish analogous results in signed graphs, which may be of
independent interest.

We also would like to mention here that using the idea of induced non-
separating odd cycles, one can give a short proof to the case k=4 of Prob-
lem 1.1 (see Theorem 4.2 in Section 4).

The rest of the paper is organized as follows. In Section 2, we define
notation and collect basic lemmas for later use. We then prove some lemmas
for 3-connected non-bipartite signed graphs in Section 3. In Section 4, we
illustrate how to use the idea of non-separating odd cycles in a short proof of
the case k=4 of Problem 1.1. In Section 5, we prove two technical lemmas
as tools for counting cycles of each parity. In Section 6, we complete the
proof of Theorem 1.4 by detouring to signed graphs. In Section 7, we prove
Theorem 1.3. The final section contains some concluding remarks and related
problems. We do not attempt to optimize the constant factors in our results,
preferring rather to provide a simpler presentation.

2. Preliminaries

The following structural lemma on k-critical graphs was first proved by Dirac
[2,3], and a detailed proof can also be found in [9] (see its Lemma 3.2).

Lemma 2.1 ([2,3]). Let k≥ 4 be an integer, G be a k-critical graph and
{u,v} be a 2-cut of G. Then uv /∈E(G) and there are unique proper induced
subgraphs F1,F2 of G such that

(a) G=F1∪F2 and V (F1)∩V (F2)={u,v},
(b) u and v have no common neighbor in F2, and
(c) both F1+uv and F2/{u,v} are k-critical.1

Answering a long-standing conjecture of Ore from 1967 on the number
of edges in 4-critical graphs, Kostochka and Yancey [7] proved the following
tight result. Let e(G) be the number of edges in a graph G.

1 The graph F2/{u,v} is obtained from F2 by contracting u and v into a new vertex.
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Theorem 2.2 ([7]). If G is a 4-critical graph, then e(G)≥ 5
3 |V (G)|− 2

3 .

Given a subgraph F in a graph G, by G−F we denote the subgraph
obtained from G by deleting all vertices in F . We say a cycle C is non-
separating in G if G−C is connected. In 1980 Krusenstjerna-Hafstrøm and
Toft proved the following theorem (Theorems 4 and 5 in [8]).

Theorem 2.3 ([8]). Let G be a graph which is either 4-critical or 3-
connected and let F be a connected subgraph of G such that G−F contains
an odd cycle. Then G contains a non-separating induced odd cycle C such
that V (C)∩V (F )=∅.

A path with end-vertices x and y is called an (x,y)-path. Let G be a
given graph (not necessarily connected). A vertex v∈V (G) is called a cut-
vertex of G if G− v has more components than G. A block B of G is a
maximal connected subgraph of G such that there exists no cut-vertex of B.
So a block is either an isolated vertex, an edge or a 2-connected graph. For
a subgraph F in G, an F -ear in G is a path in G whose two end-vertices
lie in F but whose internal vertices do not. An ear-decomposition of G is a
nested sequence (G0,G1, . . . ,Gs) of subgraphs of G such that G0 is a cycle,
Gi+1 = Gi ∪Pi+1 where Pi+1 is a Gi-ear in G for 0 ≤ i < s, and Gs = G.
We also identify the ear-decomposition by the union P0∪P1∪. . .∪Ps, where
P0=G0.

Lemma 2.4. For any two distinct vertices x,y in a block B, there are at
least t(B)+1 distinct (x,y)-paths in B.

Proof. If B is an edge xy, then this holds trivially. So we may assume that
B is 2-connected. Let t := t(B) and C be any cycle containing x and y.
Using the standard ear decomposition of a 2-connected graph, there exist
t−1 paths P1,P2, . . . ,Pt−1 in B such that Bi :=C∪(∪ij=1Pj) is 2-connected
for each 0≤ i≤ t−1, where B0 =C and Bt−1 =B. For each 1≤ i≤ t−1, let
ai and bi be the end-vertices of Pi. As Bi−1 is 2-connected, there exist two
disjoint paths from {ai, bi} to {x,y} in Bi−1. This gives an (x,y)-path in Bi

containing the path Pi. Together with the two (x,y)-paths in C, we get at
least t+1 distinct (x,y)-paths in B.

Let B be the set of blocks in a graph G and C be the set of cut-vertices
of G. The block structure of G is the bipartite graph with bipartition (B,C),
where c∈C is adjacent to Bi∈B if and only if c∈V (Bi). Note that the block
structure of any connected graph is a tree. An end-block in G is a block
containing at most one cut-vertex of G.
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Proposition 2.5. Let G be a connected graph. Then t(G)=
∑

B∈B t(B).

Proof. This can be proved easily by induction on the number of blocks
using the block structure.

A signed graph is a graph G associated with a function p :E(G)→{0,1}.
For e∈E(G), we refer to p(e) as the parity of e. The parity of a path or a
cycle C in G is the parity of the sum of the parities of all edges in E(C), and
we say C is even if its parity is 0 and odd otherwise. A signed (multi-)graph
is bipartite if every cycle is even and non-bipartite otherwise. In this paper
we view every graph as a signed graph by assigning 1 to every edge. The
following property is an easy observation.

Proposition 2.6. A signed (multi-)graph (G,p) is bipartite if and only if
there exists a bipartition V (G) =A∪B such that each e ∈E(A,B) is odd
and each e∈E(G)\E(A,B) is even.

We also need a lemma proved by Kawarabayashi, Reed and Lee (see
Lemma 2.1 in [6]).

Lemma 2.7 ([6]). If s is a vertex in a 3-connected signed graph G such
that G−s is not bipartite, then there is a non-separating induced odd cycle
C in G with s /∈V (C).

Throughout the rest of this paper, a set of edges is called independent if
their sets of endpoints are pairwise disjoint. For any integer k≥1, we write
[k] to denote {1,2, . . . ,k}.

3. Lemmas on 3-connected non-bipartite signed graphs

Throughout this section, let G be a 3-connected non-bipartite signed graph.
By Lemma 2.7, there exists an induced odd cycle C in G such that G−C is
connected. Fix such a cycle C and let H=G−C, t= t(H) and m= |E(C,H)|.
Then it is straightforward to see that t(G)= t+m.

A pair of edges xa,yb∈E(C,H) with x,y∈V (C) and a,b∈V (H) is called
good if x 6= y. Given such a pair {xa,yb}, we call any (a,b)-path contained
in H a good path. It is easy to see that any good (a,b)-path in H can be
uniquely extended to an odd cycle in G by adding xa,yb and one of the two
(x,y)-paths in C. Such an odd cycle will be called basic in G for the good
pair {xa,yb}. We remark that the odd cycle C is not basic, and each basic
cycle corresponds to a unique even cycle.
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Lemma 3.1. If H is 2-connected, then there are at least (t+1)m distinct
basic cycles in G.

Proof. Clearly we have |C| ≥ 3 and |V (H)| ≥ 3. Since G is 3-connected,
there are 3 independent edges xiai∈E(C,H) with xi∈V (C) and ai∈V (H)
for all i ∈ [3]. By Lemma 2.4, for distinct i, j ∈ [3], we get at least t+ 1
distinct (ai,aj)-paths in H. This gives at least 3(t+1) distinct basic cycles
in G using exactly two of {x1a1,x2a2,x3a3}. For any yb ∈ E(C,H) other
than {xiai}, there is at least one edge (say x1a1) in {xiai} independent of
yb. Using Lemma 2.4, similarly one can find at least t+1 distinct basic cycles
using yb and x1a1. Together we see at least 3(t+1)+(m−3)(t+1)=(t+1)m
distinct basic cycles in G.

Let B be the set of blocks in H and C be the set of cut-vertices in H.
For a,b∈ V (H), by Pa,b we denote the shortest path Bj1c1Bj2c2 · · ·c`−1Bj`
in the block structure (B,C) of H satisfying that a∈V (Bj1) and b∈V (Bj`),
where Bi∈B and cj∈C.

Lemma 3.2. Let a,b ∈ V (H) be two distinct vertices. Then there are at

least
∏

B∈Pa,b∩B(t(B)+1)≥
(∑

B∈Pa,b∩B t(B)
)

+1 distinct (a,b)-paths in H.

Proof. Let B1c1B2c2 · · ·c`−1B` be the path Pa,b, where a∈V (B1) and b∈
V (B`). Let c0 = a and c` = b. By Lemma 2.4, there are at least t(Bi) + 1
distinct (ci−1, ci)-paths in Bi for each 1≤ i≤`, implying this lemma.

In the rest of this section, we assume that H is connected but not 2-
connected. For each end-block Bi in H, we define the unique cut-vertex of
H in Bi to be ci. We now define a good pair of edges {ei,fi} in E(C,Bi−ci),
called staple edges of the end-block Bi, as follows. If Bi is an edge say aici,
as ai has at least two neighbors xi,yi ∈ V (C), let ei = xiai and fi = yiai.
Otherwise Bi is 2-connected with |V (Bi)| ≥ 3. There are 3 disjoint paths
from Bi to C in G (as G is 3-connected) at most one of which uses the
cut-vertex ci, so the other two paths must be two independent edges say
ei=xiai and fi=yibi in E(C,Bi−ci).

Lemma 3.3. Let k be the number of end-blocks in H. If k≥2, then there
are at least (m−k)(t+k)+dk2e basic cycles in G.

Proof. Let B1,B2, . . . ,Bk be all end-blocks in H. Let uv be a non-staple
edge in E(C,H) with v ∈ V (H). For each Bi, at least one of ei,fi has an
end-vertex in V (C)−u; let ei=xiai be such an edge with ai∈V (Bi)−ci and
thus {uv,xiai} is a good pair. Since the block structure of H is a tree, the
union of the k paths Pv,ai over i∈ [k] contains all blocks in B. By Lemma 3.2
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and Proposition 2.5, the number of distinct (v,ai)-paths, summed over all
i ∈ [k], is at least (

∑
B∈B t(B)) + k = t+ k. This gives t+ k basic cycles in

G using uv and exactly one staple edge. Since there are m−2k non-staple
edges in E(C,H), we have at least (m−2k)(t+k) distinct basic cycles in G
using exactly one staple edge.

We then consider basic cycles with two staple edges. For end-blocks
Bi,Bj , we can always pair the four staple edges ei,fi,ej ,fj into two good
pairs A` for `∈ [2] with |A`∩{ei,fi}|= 1. Thus each of the 2k staple edges
(say e1) appears in k good pairs {e1,gj} for j∈ [k], where gj is a staple edge
of Bj . Similarly as above, each staple edge is contained in at least t+k basic
cycles using two staple edges. By double-counting, this gives at least k(t+k)
basic cycles using two staple edges.

Now consider the staple edges ei,fi of each Bi. As G is 3-connected,
there exists g ∈ E(C,H) independent of ei,fi. Thus {g,ei} and {g,fi} are
both good pairs. Note that such an edge g may be a staple edge or not,
and we have only considered one good pair for g in the above counting. By
double-counting (as g can be a staple edge), we can get

⌈
k
2

⌉
more good pairs,

which lead to
⌈
k
2

⌉
more distinct basic cycles in G. This lemma follows by

adding up all basic cycles above.

As we point out earlier that each basic cycle also corresponds to a unique
even cycle, Lemmas 3.1 and 3.3 give the same number of distinct even cycles
in G.

4. A short proof to Gallai’s problem when k=4

In this section, to illustrate the idea of non-separating odd cycles and as a
warm-up for the more complicated proofs to come, we give a short proof of
the case k=4 of Problem 1.1. The following result was first proved by Hare
(see Theorem 1.5∗ in [4]). Here we give a different proof for completeness.

Lemma 4.1. Every 3-connected non-bipartite graph G contains at least
2t(G)−2 distinct odd cycles.

Proof. Following the notation in Section 3, let C be an induced odd cycle in
G such that G−C is connected. Let H=G−C, t= t(H) and m= |E(C,H)|.
Then we have t(G)= t+m. If H is 2-connected, then t≥1 and m≥3. Since
(t+1)m−(2t(G)−2)=(t−1)(m−2)≥0, by Lemma 3.1, G contains at least
(t+ 1)m≥ 2t(G)−2 odd cycles. So assume H is not 2-connected. Let ` be
the number of end-blocks in H.
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If ` ≥ 2, then m ≥ 2` ≥ ` + 2 and thus (m − `)(t + `) + 2 =
((m−`−2)+2)((t+`−2)+2)+2≥2(m−`−2)+2(t+`−2)+6=2t(G)−2. By
Lemma 3.3 (plus the cycle C), G contains at least (m−`)(t+`)+2≥2t(G)−2
odd cycles. It remains to consider `=1, that is, H is an isolated vertex or an
edge. If H is a vertex, then every two edges in E(C,H) form a good pair. If H
is an edge ab, then any non-good pair in E(C,H) must be {ax,bx} for some
x∈V (C), which also defines a triangle abx. Hence in either case, it holds that
t=0, t(G)=m and any pair in E(C,H) contributes a distinct odd cycle in G.
Adding the cycle C, there are at least

(
m
2

)
+1= 1

2 t(G)(t(G)−1)+1≥2t(G)−2
odd cycles in G, where the inequality holds as t(G)≥|V (G)|/2+1≥2. This
completes the proof.

Now we are ready to prove the following theorem using the idea of non-
separating odd cycles.

Theorem 4.2. If G is a 4-critical graph on n vertices, then f(G) ≥
2t(G)−2 = 2e(G)−2n. In particular, f(G)≥n, where the unique 4-critical
graph achieving the equality is K4 when n=4.

Proof. Let G be a 4-critical graph on n vertices. We prove f(G)≥2t(G)−2
by induction on n. It is clear that if n= 4, then G=K4 has exactly 4 odd
cycles. So we may assume that this holds for all 4-critical graphs with at
most n−1 vertices.

Clearly, G is 2-connected and non-bipartite. If G is 3-connected, then
Lemma 4.1 implies f(G)≥ 2t(G)− 2. So we may assume that there exists
a 2-cut {u,v} in G. By Lemma 2.1, uv /∈ E(G) and there exist induced
subgraphs G1 and G2 of G such that G=G1∪G2, V (G1)∩V (G2) ={u,v},
and H1 := G1 + uv and H2 := G2/{u,v} are 4-critical. Also u,v have no
common neighbor in G2, so e(H2) = e(G2), from which we can derive that
t(H1)+ t(H2)= t(G)+1.

We claim that both G1 and G2 contain two (u,v)-paths of different par-
ities. Since H1 is 4-critical and thus 2-connected, there exist an odd cycle
C not containing u and two disjoint paths from {u,v} to C in H1 (also in
G1). Then we can easily get two (u,v)-paths of different parities in G1. Simi-
larly, H2 has an odd cycle D avoiding the new vertex contracted from {u,v}.
There are two disjoint paths from {u,v} to D in the 2-connected G. Clearly,
these paths are also contained in G2. Thus, we can get two (u,v)-paths of
different parities in G2.

Suppose that the numbers of (u,v)-paths of even length in G1,G2 are
α,γ, and the numbers of (u,v)-paths of odd length in G1,G2 are β,θ, re-
spectively. By induction f(Hi) ≥ 2t(Hi)− 2 for each i ∈ {1,2}. Then G1

has f(H1)− α odd cycles and G2 has f(H2)− θ odd cycles. In total, G
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has at least (f(H1) − α) + (f(H2) − θ) + αθ + βγ odd cycles. We know
α,β,γ,θ ≥ 1. So αθ + βγ − α − θ ≥ (α − 1)(θ − 1) + βγ − 1 ≥ 0. Thus
f(G)≥f(H1)+f(H2)≥(2t(H2)−2)+(2t(H2)−2)=2t(G)−2.

By Theorem 2.2, we have f(G)≥ 2t(G)−2 = 2e(G)−2n≥ 4
3(n−1)≥ n,

with equality if and only if n= 4 and G=K4. This completes the proof of
Theorem 4.2.

5. Counting cycles with parity via ear-decompositions

In this section we prove two lemmas for counting cycles of specified parities
passing through a given vertex or a given edge in 3-connected non-bipartite
(signed) graphs. The key idea is to choose some ear-decomposition with
particular properties, based on a given non-separating induced odd cycle.
For a path P with x,y∈V (P ), we denote by xPy the subpath of P between
x and y.

Lemma 5.1. Let G be a 3-connected non-bipartite signed graph, x be a
vertex in G, and D be a non-separating induced odd cycle in G such that
x /∈V (D). Let Ri for i∈ [3] be three disjoint paths from x to zi∈V (D) with
xyi∈E(Ri).

Suppose there exists an edge-coloring g assigning colors to every edge
incident to x such that g(xyi) for i∈ [3] are distinct.2 Then G contains at
least t(G) cycles of each parity passing through x such that the two edges
incident to x in every such cycle have different colors assigned by g.

Gi−1

z2

D

x
z3

z1

y3

y1

y2

ui vi

Pi

w′
w

L1 L2

Gi−1

z2

D

x = w
z3

z1

y3

y1

y2

ui vi

Pi

w′

L1 L2

Figure 1. A key step in the proof of Lemma 5.1

2 The coloring g does not need to be proper, and it does not have any bound on the
number of allowed colors.
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Proof. Let t = t(G). We claim that there is an ear-decomposition
P1∪P2∪. . .∪Pt of G such that P1=D,P2=R1∪R2,P3=R3 and for each i≥3,
at least one of the ends of Pi is not in D and thus D is non-separating in
Gi :=∪ij=1Pj . To see this, suppose we already get desired ears {Pj}1≤j≤i−1
for some 4 ≤ i ≤ t; since D is induced and non-separating in G, one can
always find a new ear Pi (a single edge or not) internally disjoint from Gi−1
with one end not in D.3 For i≥4, let the ends of Pi be ui,vi with vi /∈V (D).
Since D is non-separating in Gi−1, there is a path L in Gi−1−D from vi
to some vertex w ∈ V (R1∪R2∪R3)−V (D). As Gi−1 is 2-connected, there
are two disjoint paths L1,L2 in Gi−1 from {vi,ui} to D∪R1∪R2∪R3. By
concatenating with the path L and renaming if necessary4, we may assume
that L1,L2 are from {vi,ui} to {w,w′}⊆D∪R1∪R2∪R3, where w /∈V (D).
Now we see that for each i≥4, there exists a path Qi :=Pi∪L1∪L2 in Gi with
ends w,w′ containing the ear Pi and internally disjoint from D∪R1∪R2∪R3,
where the ends w,w′ are in D∪R1∪R2∪R3 and at most one of them is in
D; see Figure 1 for an illustration.

We observe that it will suffice to extend Qi to a path Q′i in Gi with both
ends in D passing through x such that its two edges incident to x have
different colors assigned by g. Indeed, if true, then since D is odd, by adding
one of the two paths between two ends of Q′i in D to Q′i, we can get a desired
cycle of each parity for every 4≤ i≤ t. Since Pi⊆Q′i⊆Gi, this provides t−3
distinct such cycles. Also D∪R1∪R2∪R3 contains three desired cycles of
each parity, so the lemma follows.

Finally, we show how to extendQi toQ′i inGi. This can be verified by con-
sidering all possible locations of the ends w,w′ of Qi in D∪R1∪R2∪R3. Note
that at most one of w,w′ is in D. In case that w,w′∈V (D∪R1∪R2∪R3)−x, we
omit the straightforward details. So it remains to consider when x∈{w,w′}
(say x=w). Let xy∈E(Qi) and by symmetry, w′ /∈V (R1∪R2). There exists
some j ∈ [2] such that g(xyj) 6= g(xy). If w′ ∈V (D), then Q′i can be chosen
as Qi∪Rj ; otherwise w′∈V (R3), then Q′i can be chosen as z3R3w

′∪Qi∪Rj .
This completes the proof.

Lemma 5.2. Let x,y be two distinct vertices in a 3-connected graph G
such that both G−x and G−y are non-bipartite. Then G contains at least

3 To do this, start at an edge e incident to, but outside, Gi−1 with an endpoint not in
D, and then follow a cycle in G through e and some edge in Gi−1 until it reaches Gi−1.

4 By this, we mean the following process. Let s be the vertex in V (L)∩V (L1∪L2) such
that the subpath wLs is as short as possible. If s=vi∈V (Lj) for j∈ [2], then we rename
Lj to be L. Otherwise, s∈V (L−vi)∩V (L`) for `∈ [2]. Let r ∈ {vi,ui} be an end of L`.
Now we rename L` to be wLs∪sL`r. Note that the new L1,L2 are still disjoint.
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t(G)−1 distinct (x,y)-paths of each parity (not including the possible edge
xy).

Proof. Let H be obtained from G by adding the edge xy (if it does not
exist) and let t= t(H). Then H also satisfies the hypothesis of the lemma
with t(G)≤ t≤ t(G)+1.

First we consider that H − {x,y} is bipartite. By Theorem 2.3 (or
Lemma 2.7), we see that there exists a non-separating induced odd cycle
D in H with x /∈V (D). Since H−{x,y} is bipartite, such D must contain
y. There exist two disjoint paths P1,P2 from x to D in H − y, internally
disjoint from D. Let H ′ be obtained from H by deleting all edges incident
to y except the two edges (say yu,yv) in D. So H ′ is 2-connected and D is
non-separating in H ′. Similarly to the proof of Lemma 5.1, we can find an
ear-decomposition F1 ∪ . . .∪Fm in H ′ such that F1 =D, F2 = P1 ∪P2 and
for each i≥3, at least one end of the path Fi is not in D, where m= t(H ′).
So for i≥ 3, D is non-separating in Hi :=∪ij=1Fj . By similar analysis as in
Lemma 5.1, there exists a path Qi in Hi containing the ear Fi from x to
some vertex in D−y, which can be extended to an (x,y)-path of each parity
in Hi containing Fi for each i ≥ 3. Adding two such paths in F1 ∪F2, we
get m desired (x,y)-paths in H ′. Also by Theorem 2.3, there exists a non-
separating induced odd cycle D′ in H with x∈V (D′) and y /∈V (D′). Note
that there are at least t(G)−m− 1 edges yz in E(H)−E(H ′) where z is
allowed to range over all possible vertices in H except u, v, and x. We claim
that for each such edge yz, there exists a path in H from y to some vertex
in D′−x which uses yz. This is clear if z∈V (D′); for z /∈V (D′), since H is
3-connected, there exists a path in H−{x,y} from z to D′−x, from which
the claim holds. Using this claim, it is easy to find at least t(G)−m−1 many
(x,y)-paths in G of each parity, which are also distinct from the above m
paths. This finishes the proof when H−{x,y} is bipartite.

D
x

y

P1

P2

P4

P3

D
x

y

P1

P2
′

P4
′

P3

R

Figure 2. A key step in the proof of Lemma 5.2
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Now we may assume that H −{x,y} contains an odd cycle. By Theo-
rem 2.3 there exists a non-separating induced odd cycle D in H such that
H−D contains xy. We claim that there are four paths P1,P2,P3,P4 in H
from {x,y} to D such that (see Figure 2)

(a) x is an end of P1,P2 and y is an end of P3,P4,
(b) any Pi,Pj are internally disjoint, except possibly when {i, j}= {2,4},

and
(c) if P2 and P4 intersect, then P2 = P ′2 ∪R and P4 = P ′4 ∪R such that

P ′2,P
′
4,R are internally disjoint paths and x,y /∈V (R).

To prove this, since H is 3-connected, we begin by choosing three internally
disjoint paths P1,P2,R in H from x,x,y to a,b,c∈V (D), respectively. There
are also two disjoint paths P3,P4 in H−x from y to D∪P1∪P2−x, which are
internally disjoint from D∪P1∪P2. By concatenating P3,P4 with the path
R and renaming if necessary5, we may assume that P3 is from y to c∈V (D)
and by symmetry (between P1 and P2), P4 is from y to D∪P2. Thus, there
do exist paths P1,P2,P3,P4 satisfying conditions (a-c), as desired.

Next we build an ear-decomposition F1∪ . . .∪Ft of H such that F1 =D,
F2 = P1 ∪P2, F3 = P3 ∪P4 (in case P2 and P4 intersect, let F3 = P3 ∪P ′4),
F4 =xy, and for each i≥5, at least one end of the path Fi is not in D and
x,y cannot be the two ends of Fi. The construction is similar to that in the
previous lemma (following the facts that D is induced and non-separating
in H and {x,y} is not a 2-cut of H), and we omit the details here. Let
Hi :=∪ij=1Fj and A be the vertex set of F1∪ . . .∪F4.

For fixed i≥ 5, let the ends of Fi be u,v with v /∈ V (D). Since Hi−1 is
2-connected, D is non-separating in Hi−1 and {x,y} is not a 2-cut in Hi−1,
there exist two disjoint paths L1,L2 in Hi−1 from {u,v} to {w1,w2} ⊆ A
and internally disjoint from A such that w1 /∈ V (D) and {w1,w2} 6= {x,y}.
So Qi = Fi ∪ L1 ∪ L2 is a (w1,w2)-path in Hi containing the ear Fi. By
considering all possible locations of w1,w2 in A, it can be verified that there
exist two disjoint paths Xi,Yi in Hi from {x,y} to V (D) such that one of
Xi and Yi contains Qi. Since D is odd, this provides an (x,y)-path of each
parity in Hi containing Fi for every 5≤ i≤ t. So we get t−4 desired paths.
Also observing that F1∪F2∪F3 contains at least three (x,y)-paths of each
parity (not including the edge xy), we see that G has at least t−1≥ t(G)−1
desired (x,y)-paths. This completes the proof.

We remark that in Lemma 5.2 if xy is an edge, then G contains at least
t(G)−1 distinct cycles of each parity passing through xy.

5 Let s be the vertex in V (R)∩V (P3∪P4) such that cRs is as short as possible. Similar
to the previous footnote (regarding the location of s), we can rename P3,P4 accordingly.
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6. Proof of Theorem 1.4

We first prove a lemma as follows. Let ∆(G) denote the maximum degree
of a (signed) graph G.

Lemma 6.1. Let T be a positive integer and G be a 3-connected non-
bipartite signed graph such that t(G) ≥ 0.8T , f(G) < 0.02T 2 and ∆(G) ≤
0.2T +1. Let C be any non-separating induced odd cycle in G and let H=
G−C. Then e(C,H)≤ 0.2T and t(H)≥ 0.6T . Moreover, it is not possible
for a vertex of degree 0.2T +1 to be contained in a non-separating induced
odd cycle in G.

Proof. Let t= t(H) and m=e(C,H). So t(G)= t+m≥0.8T .
First we show f(G) ≥ mt/2. This holds trivially when |V (H)| ∈ {1,2}

(as we have t= 0). So |V (H)|≥ 3. If H is 2-connected, then by Lemma 3.1
we get f(G)≥ (t+ 1)m≥mt/2. So we may assume that H has k ≥ 2 end-
blocks. Then Lemma 3.3 shows that f(G) ≥ (m− k)(t+ k) ≥mt/2, where
the last inequality holds because m≥2k and thus m−k≥m/2. This proves
f(G)≥mt/2.

Let C = x1x2 · · ·x`x1 and dj = |NH(xj)|. For any two edges
xiai,xjaj ∈ E(C,H) with xi 6= xj , one can find an (ai,aj)-path in H.
Since C is odd, together with one of the two (xi,xj)-paths in C, this
provides an odd cycle6 in G. Thus f(G) ≥

∑
i<j didj . If m > 0.6T ,

since ∆(G) ≤ 0.2T + 1 it is easy to divide V (C) into two sets X,Y
such that

∑
xi∈X di ≥ 0.2T and

∑
xj∈Y dj ≥ 0.2T . Then by the above,

f(G) ≥ (
∑

xi∈X di)(
∑

xj∈Y dj) ≥ 0.02T 2, a contradiction. So we have

m ≤ 0.6T , implying t = t(G)−m ≥ 0.2T . Since 0.02T 2 > f(G) ≥ mt/2, it

follows that m≤ 0.04T 2

0.2T ≤ 0.2T and thus t= t(G)−m≥ 0.6T . Now suppose
there exists some vertex u of degree 0.2T+1. By the condition, one may as-
sume that u is contained in the above non-separating induced odd cycle C.
So d(u)=e({u},H)+2≤e(C,H)=m≤0.2T , a contradiction. This completes
the proof.

The next result is the core of the proof of Theorem 1.4.

Theorem 6.2. Let G be a 3-connected non-bipartite signed graph with
maximum degree at most 0.2t(G). Then f(G)≥0.02t2(G).

Proof. Throughout this proof, let T = t(G) and GT be the family of all 3-
connected non-bipartite signed graphs with maximum degree at most 0.2T .
So G∈GT . We aim to show f(G)≥0.02T 2.

6 Recall that such an odd cycle is called basic in Section 3.
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In the remainder of the proof, we assume that f(G) < 0.02T 2. Un-
der this assumption, our plan is to construct a sequence of signed graphs
G0,G1, . . . ,Gq with the following properties:

(i) Gi∈GT for each i≥0, where G0=G, and
(ii) for each i≥1, f(Gi−1)−f(Gi)≥ 1

2T ·(Ti−1−Ti) and 1≤Ti−1−Ti≤0.4T ,
where Ti= t(Gi).

To do this, we will apply an iterative algorithm as follows: Suppose that
for some integer s ≥ 0, we have constructed signed graphs G0,G1, . . . ,Gs

which satisfy (i) and (ii). If Gs satisfies either Ts < 0.8T , or Ts ≥ 0.8T
and f(Gs)≥ 0.02T 2

i , then we terminate this algorithm. Otherwise, we will
construct a new signed graph Gs+1 which satisfies (i) and (ii). This algorithm
will eventually terminate as by (ii), t(Gi) is strictly decreasing as i increases.

Before defining these Gi’s, let us show how this desired sequence contra-
dicts our assumption f(G)<0.02T 2 and thus finishes the proof of Theorem
6.2. If this process terminates at Gq when Tq ≥ 0.8T and f(Gq)≥ 0.02T 2

q ,
then by (ii) we have

f(G) = f(Gq) +

q∑
i=1

(f(Gi−1)− f(Gi)) ≥ 0.02T 2
q +

1

2
T · (T − Tq) ≥ 0.02T 2.

Otherwise it terminates when Tq<0.8T , then by (ii) we can also get f(G)≥
1
2T ·(T −Tq)≥0.02T 2.

Now suppose for some s ≥ 0, we have defined Gi for every i such that
0≤ i≤s, as required. We may assume

(1) Ts ≥ 0.8T and f(Gs) < 0.02T 2
s .

In the rest of the proof, as we demonstrate, it suffices to define Gs+1 satisfy-
ing (i) and (ii). In steps to construct Gs+1, we will define several intermediate
signed (multi-)graphs M` for 0≤`≤3.7

First we construct M0 from Gs as following. Since Gs∈GT , by Lemma 2.7
there exists a non-separating induced odd cycle C in Gs. If |E(C,Gs−C)|≥
4, we simply define M0 = Gs. Now consider |E(C,Gs−C)| = 3. As Gs is
3-connected and C is induced, we see that C is a triangle say xyzx and
E(C,Gs−C) consists of three independent edges say xa,yb,zc. Now let M0

7 For a multi-graph M , its underlying graph is a simple graph obtained from M by
deleting certain edges so that only one edge of each adjacent pair of vertices remains. A
signed multi-graph M might have multiple underlying graphs; if so, these differ in the
signs on certain edges (which were parallel in M). We say M is k-connected (or bipartite)
if and only if its underlying graph is so. For a signed multi-graph M , let f(M) be the
number of all distinct odd cycles (of length at least three) in M .
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be obtained from Gs by deleting the vertex z, adding two new edges xc,yc,
and assigning the parities of xzc,yzc of Gs to xc,yc, respectively. In this
case we will also rename C by xycx in M0.

Claim 1. M0 is a 3-connected non-bipartite signed graph with maximum
degree at most 0.2T+1 and there exists a non-separating induced odd cycle
C in M0 such that |EM0(C,M0−C)| ≥ 4, t(M0) = Ts and f(Gs)≥ f(M0).
Moreover, the only possible vertex of degree 0.2T +1 belongs to C.

Proof. This is clear when M0=Gs. By the definition of M0, we may assume
that there exists an odd cycle xyzx in Gs and E∗=E(xyz,Gs−xyz) consists
of three independent edges xa,yb,zc. By (1), Gs 6=K4. If Gs−xyz is not 2-
connected, then Gs−xyz either is an edge or has at least two end-blocks; in
either case, it implies at least four edges in E∗, a contradiction. So Gs−xyz
is 2-connected. Now we see that the cycle C = xycx is a non-separating
induced odd cycle in M0 with |E(C,M0−C)|≥4 (where the oddness follows
by the parities of xc,yc). It is also easy to see that M0 is 3-connected and
non-bipartite with maximum degree at most 0.2T+1 and t(M0)= t(Gs)=Ts,
where the only vertex possibly having degree 0.2T+1 is the vertex c∈V (C).

So it remains to show f(Gs) ≥ f(M0). We prove this by showing an
injection from odd cycles in M0 to odd cycles in Gs. Let D be any odd cycle
in M0. If D contains none of xc,yc, then clearly D is also an odd cycle in
Gs. If D only contains one of xc,yc (say xc), then replacing xc with xzc in
D gives an odd cycle in Gs. Lastly D contains both xc,yc. Since the parity
of xcy is the same as the parity of xzy, replacing xcy with xzy in D gives
an odd cycle in Gs. This proves the claim.

Adapting notation from Section 3, let H = M0−C, t = t(H) and m =
|EM0(C,H)|. By (1) and Claim 1, we have m≥4, t(M0)=Ts≥0.8T , f(M0)≤
f(Gs) < 0.02T 2

s ≤ 0.02T 2, and ∆(M0) ≤ 0.2T + 1, where the only possible
vertex of degree 0.2T + 1 in M0 belongs to C. Using Lemma 6.1, we can
derive the following.

Claim 2. m ≤ 0.2T , t ≥ 0.6T and ∆(M0) ≤ 0.2T . In particular, we have
M0∈GT .

Let B be the set of all blocks in H and ti= t(Bi) for each Bi∈B. Let T be
a fixed spanning tree in H. So the restriction of T to any block of H is also
a tree. For a,b∈V (H), the unique subpath aT b is called the (a,b)-skeleton,
while any other (a,b)-path in H is called a non-skeleton.

Claim 3. There exists a unique 2-connected block B1 in H with t1= t(B1)>
T/2 and t− t1<0.1T .
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Proof. This is clear if H is 2-connected by Claim 2. So assume H is not
2-connected. For any Bi,Bj ∈ B, there exists a path P in the block struc-
ture of H between two end-blocks, say D1,D2 in H and passing through
D1,Bi,Bj ,D2 in order (it is possible that D1 = Bi and/or D2 = Bj). Let
the unique cut-vertex of H contained in D` be c` for ` ∈ [2], and let the
two cut-vertices of H incident to Bi (respectively, to Bj) in P be αi,βi
(respectively, αj ,βj). Since M0 is 3-connected, one can easily find two inde-
pendent edges x`y`∈E(C,H) with x`∈V (C) and y`∈V (D`)−c` for `∈ [2].
By Lemma 2.4, for each `∈ {i, j} there exist t` non-skeleton (α`,β`)-paths
in B`. Using these non-skeletons, plus the (y1,αi)-, (βi,αj)- and (βj ,y2)-
skeletons, one can find titj distinct (y1,y2)-paths in H, each of which yields
a basic cycle. So f(G)≥f(Gs)≥f(M0)≥

∑
Bi,Bj∈B titj . By Proposition 2.5,

t=
∑

Bi∈B ti ≥ 0.6T . Let t1 be the maximum of the ti’s. If t1 < 0.2T , then
{ti} can be divided into two sets each of which has sum at least 0.2T ,
implying that f(G) ≥ 0.04T 2. So t1 ≥ 0.2T . If t− t1 ≥ 0.1T , then again
f(G) ≥ t1(t− t1) ≥ 0.02T 2. This shows t1 > t− 0.1T ≥ 0.5T , proving the
claim.

Next, we define M1 to be obtained from the signed subgraph M0[B1∪C]
by adding a new edge xb for every xa∈EM0(C,H−B1) with x∈V (C), where
b∈V (B1) is the unique cut-vertex separating a and B1 in H. Moreover, for
every such new edge xb, we let Pxb := xa∪aT b and let the parity of xb be
the parity of Pxb. We point out that M1 is a multi-graph.

Claim 4. M1 is a 3-connected non-bipartite signed multi-graph such that
t(M0)− t(M1)= t− t1 and f(M0)−f(M1)≥ t1(t− t1).

Proof. Since M0 is 3-connected, it is easy to verify that M1 is 3-connected.
By the definition of M1, we have |EM1(B1,C)|= |EM0(H,C)|=m, which,
together with Proposition 2.5, implies that t(M0)− t(M1) = t− t1. We now
show that there exists an injection from odd cycles in M1 to odd cycles in
M0. Consider any odd cycle D in M1. If D does not contain any new edge in
M1, then obviously it is an odd cycle in M0. Suppose D contains new edges
in M1. For a new edge xb which is not incident to any other new edges in D,
then we can replace xb by the path Pxb. If there exists a pair of new edges
xb,yb in D with x,y∈V (C) and b∈V (B1), then we can replace xby by the
symmetric difference of the paths Pxb and Pyb, which is an (x,y)-path in M0

internally disjoint from V (D) and has the same parity as xby in M1. In this
way, using the skeletons in H we obtain a unique odd cycle in M0 from D.
This gives the injection φ from odd cycles in M1 to odd cycles in M0.

Next we show that there are at least t1(t− t1) odd cycles in M0 which
are distinct from the image of φ. Indeed, for any block Bi ∈ B with i 6= 1,
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the proof of Claim 3 provides at least t1ti odd cycles in M0 which use non-
skeleton paths in B1,Bi and skeleton paths in other blocks. Summing over
all such blocks Bi, we prove that f(M0)− f(M1)≥ t1(t− t1). This finishes
the proof of Claim 4.

Let M2 be obtained from M1 by contracting the cycle C into a new
vertex x∗ and keeping all resulting multi-edges. Given a partition V (C) =
X∪Y , let MX,Y be obtained from M1 by contracting X,Y into vertices x,y,
respectively, adding one edge xy with parity 1 and keeping all other resulting
multi-edges. Since C is induced, it is easy to see that t(M2) = t(MX,Y ) =
t(M1)−1.

Claim 5. M2 is 3-connected, and there exist some X,Y with X∪Y =V (C)
such that MX,Y is 3-connected.

Proof. Suppose that M2 has a 2-cut {u,v}. Since M1 is 3-connected, the
only possibility is x∗∈{u,v}, but this contradicts the 2-connectivity of B1.
So M2 is 3-connected.

Next we show that MX,Y is 3-connected if both x and y have at least
two distinct neighbors in B1. Suppose there is a 2-cut {u,v} in such MX,Y .
Similarly the only possibility (by symmetry) is that u ∈ V (B1) and v = x.
Since B1−u is connected, it implies that y has no neighbor in B1−u. That
is, all neighbors of y belong to {u,x}, a contradiction.

It suffices to show that there exist some X,Y with X ∪Y = V (C) such
that in MX,Y both x and y have at least two distinct neighbors in B1. If
H is not 2-connected, then as in the explanation after Lemma 3.2, one can
define two staple edges for each end-block of H in M0 (possibly including
B1) and thus H has at least four such edges. Using these four edges and
by the definition of M1, it is easy to find such a partition X ∪Y of V (C).
Thus H is 2-connected. So B1 = H and M1 = M0. By Claim 1, we have
|EM1(C,B1)| ≥ 4. In this case, again it is easy to find a desired partition
V (C)=X∪Y . This proves Claim 5.

Let M3 be a signed multi-graph as follows. If M2 is non-bipartite, then
let M3 = M2; otherwise let M3 be some 3-connected MX,Y guaranteed by
Claim 5. By the definition we see that M3 is 3-connected with t(M3) =
t(M1)− 1. Next we show that M3 is also non-bipartite. It is enough to
consider when M3 = MX,Y . In this case, M2 is bipartite, so any cycle in
M2 passing through x∗ is even. This also implies that any (x,y)-path in
M3 = MX,Y (except the edge xy) is even. Since the parity of xy in M3 is
one, we see that indeed M3 is non-bipartite.
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Finally, we defineGs+1 to be an underlying signed graph ofM3 (that is, to
form Gs+1 from M3, we keep only one edge of each adjacent pair of vertices)
that contains at least one odd cycle. Such a non-bipartite underlying graph
exists precisely because M3 is non-bipartite. Let α= t(M3)−t(Gs+1), which is
the number of edges deleted in this process. Clearly, each of the deleted edges
corresponds to an edge in EM1(C,B1). Since |EGs+1(B1,V (Gs+1)\B1)| ≥ 3
and by Claim 2, we have α+3≤|EM1(C,B1)|=m≤0.2T .

Claim 6. Gs+1 is a 3-connected non-bipartite signed graph such that
t(M1)− t(Gs+1)=α+1 and f(M1)−f(Gs+1)≥ t1(α+1).

Proof. By definition, it is clear thatGs+1 is a 3-connected and non-bipartite
signed graph such that t(M1)− t(Gs+1) = α+ 1 and t(Gs+1) ≥ t(B1) = t1
(since B1 does not contain any parallel edges). So it suffices to show that
f(M1)−f(Gs+1)≥ t1(α+1). Let F be the family of odd cycles in M1.

In the rest of this proof, for an edge e∈E(Gs+1) we say that the corre-
sponding edge in M1 is the preimage of e. The preimage of a subgraph G′

of Gs+1 is the subgraph of M1 consisting of all preimages of the edges in
G′. Let u,v∈V (C) and P be an (u,v)-path in M1 that is internally disjoint
from C. Then there is a unique way to form an odd cycle in F , by adding
one of the two (u,v)-paths in C to P ; such an odd cycle is denoted by DP .
For such a cycle DP , we say its feature is 0 if the path P is even and 1
otherwise.

To show f(M1)−f(Gs+1)≥ t1(α+1), we first give an injection φ from the
family of all odd cycles in Gs+1 to F . Let Q be any odd cycle in Gs+1. In
the case M3=M2, if x∗ /∈V (Q), then Q is also an odd cycle in M1; otherwise
x∗∈V (Q), then the two edges in Q incident to x∗ have the same end in C
or different ones (say u,v). In the former case, Q also corresponds to an odd
cycle in M1 (we will view them as one cycle); in the latter case, we let P be
the preimage of Q which is an odd path in M1, and define φ(Q) =DP ∈F .
Now consider the case M3 =MX,Y . Since M2 is bipartite, all (x,y)-paths in
MX,Y (except the edge xy) are even and any odd cycle Q in Gs+1 must use
x and y. In fact such Q must use xy (as otherwise one of the two (x,y)-paths
in Q is odd, a contradiction). Then we let P ′ be the preimage of Q−xy and
define φ(Q) =DP ′ ∈F . This defines the injection φ, whose image Im(φ) is
a subset of F with |Im(φ)| = f(Gs+1). We point that for any D ∈ Im(φ),
either D is an odd cycle in Gs+1, or D=DP for some path P in M1 which
is the preimage of some subgraph (a path or cycle) in Gs+1. In the latter
case, we also see that if M3 =M2, then the feature of D is always 1, and if
M3=MX,Y , then P is always a preimage of some (x,y)-path in Gs+1.

Now to finish this proof, it is enough to show |F\Im(φ)|≥ t1(α+1). First
we consider any edge e ∈ E(M3) \E(Gs+1), which corresponds to an edge
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uv in EM1(C,B1) with u∈ V (C). Since M1 is 3-connected, there exists an
edge u′v′ in E(M1) with u′ ∈ V (C)−u and v′ ∈ V (B1)− v. We can choose
u′v′ so that it corresponds to an edge in Gs+1. Since B1 is 2-connected,
by Lemma 2.4 there are at least t1 distinct (v,v′)-paths in B1. For each of
these paths, adding the edges uv,u′v′ and one of the two (u,u′)-paths in C
gives an odd cycle in M1. There are α such edges e, which provides at least
t1α distinct odd cycles in F . Clearly, these odd cycles (say DP ) are distinct
from Im(φ), because such a path P uses the edge uv and thus cannot be the
preimage of any subgraph in Gs+1.

It remains to show there are another t1 odd cycles in M1 that are distinct
from those above. We will prove this by considering the following three cases.

Suppose that the signed graph B1 is non-bipartite. In this case M3=M2.
By Lemma 2.7, there exists a non-separating induced odd cycle D in Gs+1

such that x∗ /∈ V (D). Since M1 is also 3-connected, there exist three dis-
joint paths from D to C in M1, which yields three internally disjoint paths
R1,R2,R3 from D to x∗ in Gs+1. To apply Lemma 5.1, we define an edge-
coloring g, which assigns every edge x∗y in Gs+1 the color xi∈V (C), where
xiy is the preimage of x∗y in M1. Clearly, the three edges of R1,R2,R3 in-
cident to x∗ have distinct colors assigned by this g. By Lemma 5.1 (with
G=Gs+1), Gs+1 contains at least t(Gs+1)≥ t1 even cycles passing through
x∗ such that the two edges incident to x∗ in every such cycle have different
colors assigned by g. The preimage of every such cycle is an even path P in
M1 with two different ends in C. So we can get at least t1 odd cycles DP in
M1. Note that every such DP has feature 0 (in the case of M3 =M2). This
shows that these odd cycles are distinct from the odd cycles in M1 found
above. So in this case f(M1)−f(Gs+1)≥ t1(α+1).

Now suppose that B1 is bipartite but M2 is non-bipartite. Again in this
case we have M3=M2. By Proposition 2.6, there exists a bipartition V (B1)=
I∪J such that each e∈E(I,J) is odd and each e∈E(B1)\E(I,J) is even.
Since M1 is 3-connected, there exist three independent edges say xiai in
EM1(C,B1) with xi ∈ V (C) for i ∈ [3], which correspond to three edges
x∗ai in Gs+1 for i∈ [3]. Then we can find two vertices say a1,a2 such that
either x∗a1,x∗a2 have the same parity and a1,a2 belong to the same part,
or x∗a1,x∗a2 have the opposite parity and a1,a2 belong to different parts.
Since B1 is 2-connected, by Lemma 2.4 there are t1 distinct (a1,a2)-paths in
B1. By our choice, these paths give at least t1 even cycles in Gs+1 passing
through x∗ (by adding x∗a1,x∗a2) and thus at least t1 odd cycles in M1

(by adding x1a1,x2a2 and the unique odd (x1,x2)-path of C), which always
have feature 0. Again, these odd cycles in M1 are distinct from those above.
Thus f(M1)−f(Gs+1)≥ t1(α+1) for this case.



COUNTING CRITICAL SUBGRAPHS IN k-CRITICAL GRAPHS 21

Lastly we consider the case that M2 is bipartite. Then M3 =MX,Y . As
M1 is 3-connected, there are three independent edges xiai in EM1(C,B1)
for i ∈ [3]. Now two of them are incident with one of x,y; say they are
xa1,xa2 ∈ E(Gs+1). By Lemma 2.4 there are at least t1 distinct (a1,a2)-
paths in B1. Since M2 is bipartite, adding xa1,xa2 to these paths result in
at least t1 even cycles in Gs+1 passing through x. On the other hand, adding
x1a1,x2a2 and the unique odd (x1,x2)-path in C will give at least t1 odd
cycles (say DP ) in M1, where P is a preimage of some cycle through x in
Gs+1 in the case M3 =MX,Y . Therefore, these odd cycles are distinct from
Im(φ) as well as the odd cycles formed from edges in E(M3)\E(Gs+1). This
completes the proof of Claim 6.

To conclude this proof, we now show that Gs+1 satisfies the properties (i)
and (ii). Let Ts+1 = t(Gs+1). Recall that we have Ts = t(M0) and f(Gs)≥
f(M0) from Claim 1, t(M0)− t(M1) = t− t1 and f(M0)−f(M1)≥ t1(t− t1)
from Claim 4, and t(M1)− t(Gs+1)=α+1 and f(M1)−f(Gs+1)≥ t1(α+1)
from Claim 6. Combining these together, we get

Ts − Ts+1 = t− t1 + α+ 1

f(Gs)− f(Gs+1) ≥ t1(t− t1 + α+ 1) = t1(Ts − Ts+1).and

By Claim 3, t1>
1
2T and 0≤ t− t1<0.1T . We also proved α+3≤m≤0.2T .

Thus it follows that 1≤Ts−Ts+1= t−t1+α+1≤0.4T and f(Gs)−f(Gs+1)≥
1
2T ·(Ts−Ts+1). This proves (ii).

To prove (i), it suffices to show that the maximum degree ∆(Gs+1) is at
most 0.2T . By Claim 2, m≤ 0.2T and ∆(M0)≤ 0.2T . So each of the new
vertices (either x∗, or x and y) has degree at most m ≤ 0.2T in Gs+1. In
the case M3 = M2, suppose there exists some u ∈ V (B1) with dGs+1(u) >
|NM0(u) ∩ (C ∪B1)|. Then u must be a cut-vertex in H and dGs+1(u) =
|NM0(u)∩ (C ∪B1)|+ 1≤ dM0(u)≤ 0.2T . This shows that ∆(Gs+1)≤ 0.2T
when M3 =M2. Now let us assume M3 =MX,Y . By the above arguments,
one can derive that ∆(Gs+1)≤0.2T+1 and if u∈V (Gs+1) has degree 0.2T+1
in Gs+1, then u∈V (B1) is adjacent to both x and y. Note that in this case
M2 is bipartite, so the parity of the path xuy is even. Since the parity of xy
is 1 and B1 is 2-connected, we see that u is contained in a non-separating
induced odd cycle C ′ = xuyx in Gs+1. By (1), we also have f(Gs+1) ≤
f(Gs) < 0.02T 2

s ≤ 0.02T 2. Suppose that t(Gs+1) = Ts+1 < 0.8T . Since now
we have f(Gj)−f(Gj+1)≥ 1

2T (Tj−Tj+1) for all 0≤ j≤ s, this implies that

f(G)≥ 1
2T (T−Ts+1)+f(Gs+1)≥ 1

2T (0.2T )≥0.02T 2, a contradiction. Hence
we may assume that t(Gs+1)≥0.8T . But this contradicts Lemma 6.1. So we
can conclude that ∆(Gs+1)≤0.2T and thus Gs+1 satisfies (i). This finishes
the proof of Theorem 6.2.
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Now we are ready to prove Theorem 1.4.

Theorem 1.4 (Restated). If G is a 3-connected non-bipartite graph, then
f(G)≥0.02t2(G).

Proof. Let G be a 3-connected non-bipartite graph. If ∆(G)≤0.2t(G), then
by Theorem 6.2, we have f(G)≥0.02t2(G). So we may assume that there is
a vertex x of degree d(x)≥ 0.2t(G) + 1. Suppose there exists an odd cycle
C in G−x. For any distinct a,b∈N(x), as G−x is 2-connected, there are
two disjoint paths from {a,b} to u,v∈V (C), which together with one of the
two (u,v)-paths in C give an odd (a,b)-path in G−x. Now adding edges ax
and bx to this path provides an odd cycle, say C(a,b) in G, which is distinct
over all other pairs of N(x). Also note that we have d(x)≥0.2t(G)+1. Thus

f(G)≥
(
d(x)
2

)
≥ 1

2(d(x)−1)2≥0.02t2(G).
Now we can assume that G−x is bipartite with parts A,B. Let T = t(G),

t = t(G−x), d1 = |N(x)∩A| and d2 = |N(x)∩B|. Since G is 3-connected
and non-bipartite, G[A ∪B] = G− x is 2-connected and we may assume
d1≥d2≥1. This implies that d1≥d(x)/2≥0.1T . By Lemma 2.4 there are at
least t+1 paths in G−x between any vertex in N(x)∩A and any vertex in
N(x)∩B, all of which have odd lengths. Thus f(G)≥d1d2(t+1)≥d1(d2+t).
Note that we have T + 1 = d1 + d2 + t and d1 ≥ 0.1T . If d2 + t ≥ d1, then
f(G)≥d1(d2+t)≥0.09T 2, as desired. So we may assume that d1≥d2+t. By
the same analysis, we may further assume that d2+ t≤0.1T and d1≥0.9T .

So n−1≥d(x)≥d1≥0.9T . Let Bi be the set of vertices in B of degree i in
G−x for i≥2. Since G is 3-connected, we have d2≥|B2| and e(A,B)≥2|A|.
Also e(A,B)=

∑
i≥2 i|Bi|, so

2t ≥ 2(e(A,B)− |A| − |B|) ≥ e(A,B)− 2|B|
=
∑
i≥2

i|Bi| − 2
∑
i≥2
|Bi| =

∑
i≥3

(i− 2)|Bi|.

Thus using 2|A|≤e(A,B)=
∑

i≥2 i|Bi|, we get 2(|A|−|B|)≤
∑

i≥3(i−2)|Bi|≤
2t. Now we have

2d2 + 4t ≥ 2|B| = (|A|+ |B|)− (|A| − |B|) ≥ n− 1− t ≥ 0.9T − t,

which implies that 2d2 + 5t ≥ 0.9T , a contradiction to d2 + t ≤ 0.1T . This
proves Theorem 1.4.

7. Proof of Theorem 1.3

Theorem 1.3 (Restated). If G is a 4-critical graph on n vertices and m
edges, then f(G)≥0.02t2(G). Thus f(G)≥Ω(m2)≥Ω(n2).
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Proof. We prove this by induction on the number of vertices. The base
case G=K4 is clear. Let G be a 4-critical graph. If G is 3-connected, then
this follows by Theorem 1.4. So there exists some 2-cut {x,y} in G. By
Lemma 2.1, xy /∈ E(G) and there are unique proper induced subgraphs
G1,G2 of G such that G=G1∪G2 and V (G1)∩V (G2)={u,v}. We choose a
2-cut {x,y} such that G1 has the minimum order among all choices. By the
minimality we see that G1 +xy is 3-connected. By Lemma 2.1 again either
(1) H1 :=G1 +xy and H2 :=G2/{x,y} are 4-critical or (2) H1 :=G1/{x,y}
and H2 :=G2+xy are 4-critical. In either case, we have t(Hi)= t(Gi)+1 for
each i∈ [2] and t(G) + 1 = t(H1) + t(H2). By induction, f(Hi)≥ 0.02t2(Hi)
for each i∈ [2].

Suppose (1) occurs. Fix an (x,y)-path P1 in G1 of even length. Any odd
cycle in H2 becomes either an odd cycle or an odd (x,y)-path in G2. In
the latter case, concatenating with P1 gives an odd cycle in G. So we get
0.02t2(H2) distinct odd cycles in G from H2. Also fix an (x,y)-path P2 in
G2 of odd length (such a path exists by Theorem 2.3). By similar augments,
concatenating with P2 if needed, we get 0.02t2(H1) odd cycles in G from H1.
Next we combine (x,y)-paths inG1 andG2 (but not using P1,P2) to get more
odd cycles in G. Since G1+xy is 3-connected and 4-critical, by Lemma 5.2,
there are at least t(G1 +xy)−1 = t(G1) distinct (x,y)-paths (excluding the
edge xy) of each parity in G1+xy (thus in G1). By Lemma 2.4, since G2+xy
is 2-connected, there are at least t(G2+xy)= t(G2)+1 distinct (x,y)-paths
(excluding the edge xy) in G2. Thus for every such path (except P2) in
G2, there are at least t(G1)−1 distinct (x,y)-paths (excluding P1) in G1 of
opposite parity. This yields at least t(G2)(t(G1)−1) odd cycles in G, all of
which are distinct from the above ones derived from H1 and H2. For each

i∈ [2], since Hi is 4-critical, we have t(Gi)+1= t(Hi)≥ |V (Hi)|
2 +1≥3, which

implies that t(Gi)−1≥ t(Hi)−2≥ 1
3 t(Hi). Adding up all odd cycles we found,

we derive that

f(G) ≥ 0.02t2(H1) + 0.02t2(H2) + t(G2)(t(G1)− 1)

≥ 0.02t2(H1) + 0.02t2(H2) +
1

9
t(H1)t(H2)

≥ 0.02 · (t(H1) + t(H2))
2 ≥ 0.02t2(G),

where the last inequality holds because t(H1)+t(H2)= t(G)+1. Now suppose
(2) occurs. In this case H1 =G1/{x,y} is 4-critical. So both (G1 +xy)−x
and (G1 + xy)− y are non-bipartite. Recall that G1 + xy is 3-connected.
By Lemma 5.2, there are at least t(G1+xy)−1= t(G1) distinct (x,y)-paths
(excluding the edge xy) of each parity inG1+xy. By similar analysis as above,
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we also can derive that f(G)≥0.02t2(H1)+0.02t2(H2)+ t(G2)(t(G1)−1)≥
0.02t2(G). This completes the proof of Theorem 1.3.

8. Concluding remarks

In this paper we consider a problem of Gallai from 1984 which asks whether
for k≥ 4 the number of distinct (k−1)-critical subgraphs in any k-critical
graph is at least the order of the graph n. For general k, we improve a
longstanding lower bound on this number proved by Abbott and Zhou [1],
from 1995. In the case k = 4 – the main focus of this paper, we show this
number is at least Ω(n2), which is tight up to the constant factor by infinitely
many 4-critical graphs.

Besides the original problem of Gallai, there are many related interesting
problems one can ask. One may wonder if Theorem 1.4 can also be extended
to the setting of signed graphs. However, unlike Theorem 6.2, the following
example shows in negative.

Construction 8.1. Assume that (A,B) is a bipartition of an even cycle
C2n. Let H be obtained from this C2n by adding a vertex x and edges xu
for all u∈A∪B. Fix a vertex b∈B. Assign 0 to edges xu for all u∈B−{b}
and assign 1 to all edges in C2n and edges xu for all u∈A∪{b}.

It is not hard to see that H is a 3-connected non-bipartite signed graph,
every odd cycle in H passes through the edge xb and thus H contains at
most 2t(H) odd cycles. This also illustrates that it is necessary to bound
the maximum degree in Theorem 6.2.

In Theorem 1.3 we prove that minf3(G)=Θ(n2), where the minimum is
over all n-vertex 4-critical graphs G. This exceeds the original linear bound
proposed by Gallai in the case k=4. The following problem seems natural.

Problem 8.2. Determine the order of magnitude of minfk−1(G) over all
n-vertex k-critical graphs G for all k≥5.

It is of particular interest to consider the above minimum for all n-
vertex 3-connected k-critical graphs. We are not sure if the additional 3-
connectivity condition will change the magnitude of the minimum for k≥5,
which would also be interesting to know. In the case of k = 4, we know
the additional 3-connectivity condition does not change much, as there are
4-critical n-vertex graphs in both cases (3-connected or not) with O(n2)
distinct odd cycles.

Let k ≥ 4. We would like to emphasise that all results in this paper on
4-critical graphs can be easily extended to k-critical graphs. The reason is
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that the only structural property we used for 4-critical graphs is Lemma 2.1,
which also holds for all k-critical graphs. For instance, Theorem 1.3 can be
restated as: Any n-vertex k-critical graphs G has at least 0.02t2(G)≥Ω(n2)
distinct odd cycles. We believe a better bound on the number of odd cycles
should hold for k≥5.

Problem 8.3. Determine the order of magnitude of the minimum number
of distinct odd cycles over all n-vertex k-critical graphs for all k≥5.

By considering the odd (k−3)-wheels W (n,k−3), we see that this number
is O(n2(k−3)).

Lastly we point out that the lemmas in Sections 3 and 5 yield the same
number of distinct even cycles in those graphs. Hence, one can derive the
following for even cycles.

Theorem 8.4. Let G be a graph which is either 4-critical or 3-connected.
Then G contains at least Ω(t2(G)) distinct even cycles.

We sketch a proof, as follows. If such G is bipartite, then it holds easily
by a recursive use of Lemma 2.4 in any ear-decomposition of G. Otherwise,
G is either 3-connected and non-bipartite or else 4-critical. Now the proofs
are analogous to those of Theorems 1.4 and 1.3. This bound is also tight up
to a constant factor, as shown by (even and odd) wheels W (n,1), which are
3-connected too.

One can ask for the analog of Problem 8.3 for even cycles as well. For
more problems on k-critical graphs, we refer to Chapter 5 of the book [5] by
Jensen and Toft.
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