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Decomposing C4-free graphs under degree constraints

Jie Ma∗ Tianchi Yang†

Abstract

A celebrated theorem of Stiebitz [12] asserts that any graph with minimum degree
at least s + t + 1 can be partitioned into two parts which induce two subgraphs
with minimum degree at least s and t, respectively. This resolved a conjecture of
Thomassen. In this paper, we prove that for s, t ≥ 2, if a graph G contains no cycle
of length four and has minimum degree at least s + t − 1, then G can be partitioned
into two parts which induce two subgraphs with minimum degree at least s and t,
respectively. This improves the result of Diwan in [5], where he proved the same
statement for graphs of girth at least five. Our proof also works for the case of variable
functions, in which the bounds are sharp as showing by some polarity graphs. As a
corollary, it follows that any graph containing no cycle of length four with minimum
degree at least k + 1 contains k vertex-disjoint cycles.

Keywords: feasible partition, degree constraints, Stiebitz’s Theorem, C4-free graphs

1 Introduction

All graphs G = (V,E) considered here are finite and simple. The degree of a vertex v in G
is expressed as dG(v), and for a subset A ⊆ V , we denote by dA(v) the number of vertices
in A that are adjacent to v in G. By a partition (A,B) of V , we mean that A,B are two
disjoint non-empty sets with A ∪B = V .

Many problems raised in graph theory concern graph decompositions under certain
constraints (for instance, graph coloring problems). Perhaps one of the earliest results
regrading graph decompositions under degree constraints is due to Lovász [10] in 1966,
who proved that any graph with maximum degree at most s+ t+1 has a partition (A,B)
such that the subgraphs induced on A and B have maximum degree at most s and t,
respectively. This was generalized by Borodin and Kostochka [4] to the case of variable
functions (the meaning of which will be clear from the contents later).

The counterpart of Lovász’ theorem, i.e., graph decompositions under minimum degree
constraints, also has received extensive research. Let f(s, t) be the least function such that
any graph with minimum degree at least f(s, t) has a partition (A,B) so that the subgraphs
induced on A and B have minimum degree at least s and t, respectively. The existence
of f(s, t) was proved by Thomassen [15] in 1983, and then this function was subsequently
improved by Häggkvist, Alon, and Hajnal [7] (see the discussion in [16]). It was also
conjectured by Thomassen [15, 16] that f(s, t) = s+ t+1, and complete graphs show that
this bound would be tight. Later, Stiebitz [12] resolved this conjecture completely. In fact
he proved the following stronger result, in the setting of variable functions. Let N denote
the set of non-negative integers.
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Theorem 1. (Stiebitz [12]) Let G be a graph and a, b : V (G) → N be two functions. If
dG(x) ≥ a(x) + b(x) + 1 for every vertex x ∈ V (G), then there is a partition (A,B) of
V (G) satisfying that dA(x) ≥ a(x) for every x ∈ A, and dB(x) ≥ b(x) for every x ∈ B.

Kaneko [8] proved that any triangle-free graph with minimum degree at least s + t
can already force a partition (A,B) as above. The minimum degree condition was further
sharpen by Diwan [5], when cycles of length four are also forbidden. To be precise, Diwan
proved that, assuming s, t ≥ 2, any graph of girth at least five with minimum degree at least
s+t−1 has a partition (A,B) such that the subgraphs induced on A and B have minimum
degree at least s and t, respectively. For related problems on graph decompositions with
degree constraints or other variances, we refer readers to [1, 2, 3, 6, 9, 11, 13].

In this paper the following result is proved.

Theorem 2. Let G be a graph containing no cycles of length four and a, b : V (G) → N≥2

be two functions, where N≥2 denotes the set of integers at least two. If

dG(x) ≥ a(x) + b(x)− 1

for every vertex x ∈ V (G), then there is a partition (A,B) of V (G) satisfying that dA(x) ≥
a(x) for every x ∈ A, and dB(x) ≥ b(x) for every x ∈ B.

This is tight in the following two perspectives. First, the ranges of the functions a, b
cannot be relaxed to the set of integers at least one by the following example: Take any
d-regular connected graph G and the constant functions a = 1 and b = d; then it is easy
to see that none of the partitions (A,B) could satisfy the properties. Second, one also
cannot lower the degree condition further by the following proposition.

Proposition 3. There exist a graph G, which contains no cycle of length four, and two
functions a, b : V (G) → N≥2 such that dG(x) = a(x) + b(x)− 2 for every vertex x ∈ V (G)
and moreover, for any partition (A,B) of V (G), there is either a vertex x ∈ A with
dA(x) < a(x) or a vertex x ∈ B with dB(x) < b(x).

When choosing a, b as constants functions in Theorem 2, it strengthens Diwan’s result
to graphs containing no cycles of length four, instead of graphs with girth at least five.
We state this in a more general version, namely for k-partitions where k ≥ 2.

Corollary 4. Let s1, ..., sk ≥ 2 be integers. Any graph containing no cycles of length four
with minimum degree at least s1+ ...+sk− (k−1) can be partitioned into k parts such that
the subgraphs induced on the k parts have minimum degree at least s1, ..., sk, respectively.

This also can be used for finding vertex-disjoint cycles in graphs with high minimum
degree. It is known (see [14]) that if a graph has girth at least five and minimum degree
at least k+1, then it contains k vertex-disjoint cycles. By choosing s1, ..., sk to be two in
the above statement, we can obtain the following.

Corollary 5. Any graph containing no cycles of length four with minimum degree at least
k + 1 contains k vertex-disjoint cycles.

The rest of the paper is organized as follows. In Section 2, we introduce some notations
and show several propositions (including Proposition 3). In Section 3 we complete the
proof of Theorem 2.
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2 Notations and propositions

Let G be a graph and f : V (G) → N be a function. We say that G is f -degenerate if
for every subgraph H of G there is a vertex u such that dH(u) ≤ f(v). For a subset
A ⊆ V (G), we say that A is f -degenerate if G[A] is f -degenerate, and it is f -good if for
every vertex u ∈ A, dA(u) ≥ f(u). A vertex u is called an f -vertex in A if u ∈ A and
dA(u) = f(u). It is immediate from the definitions that

Proposition 6. A subset A of V (G) does not contain any f -good subset if and only if it
is (f − 1)-degenerate.

We point out that this fact will be repeatedly used in the coming proofs.
Let a, b : V (G) → N be two functions. We call a pair (A,B) of disjoint subsets of

V (G) as a feasible pair (with respect to a, b) if A is a-good and B is b-good. If in addition
(A,B) is a partition of V (G), then we also call it a feasible partition. The following nice
property was first proved in [12]. We give a proof for the completeness.

Proposition 7. ([12]) Assume that for any x ∈ V (G), dG(x) ≥ a(x) + b(x)− 1. If G has
a feasible pair, then G also has a feasible partition.

Proof. Choose a feasible pair (A,B) in G such that A ∪ B is maximal. We show that
(A,B) must be a partition. Suppose C = V (G)\(A ∪ B) is non-empty. Then any x ∈ C
satisfies that dA(x) ≤ a(x)−1, as otherwise (A∪{x}, B) is also feasible. This implies that
for any x ∈ C, dB∪C(x) ≥ b(x) and thus B ∪C is b-good, completing the proof.

We now prove Proposition 3.

Proof of Proposition 3. One such example is a triangle with constant functions a = b = 2.
We provide other examples by considering Erdős-Renyi polarity graphs. Let q be a prime
and V be a 3-dimensional vector space over Fq. The Erdős-Renyi polarity graph ERq is a
simple graph whose vertices are the 1-dimensional subspaces [~v] in V , where two vertices
[~v] and [~w] are adjacent if and only if the vectors ~v and ~w are orthogonal. It is well-known
that ERq contains no cycles of length four.

Let q = 3. Then the graph ER3 has q2 + q + 1 = 13 vertices as well as the following
properties. If we let S be the set of vertices of degree 3 in ER3, then S is an independent
set of size 4 and T := V (ER3)\S consists of all vertices of degree 4. Moreover, the
induced subgraph on T is connected and its edges can be partitioned into four edge-
disjoint triangles. Choose functions a, b such that a is the constant function three and
b(x) = 2 if x ∈ S and b(x) = 3 if x ∈ T . Then for every vertex x in ER3 it holds that
dER3

(x) = a(x) + b(x)− 2. It remains to show that there is no feasible partition in ER3.
Suppose for a contradiction that there exists a feasible partition (A,B). We claim that
the vertices of any triangle uvw in T must belong to the same part. Indeed, if u is in one
part and v,w are in another part, then u ∈ T has at most two neighbors in its own part,
contradicting that (A,B) is feasible with respect to the functions a, b. Since the induced
subgraph on T is connected, this implies that T is contained in one part, say A. Then
B is just a subset of S, which is an independent set, a contradiction. This completes the
proof that ER3 and the so-defined functions a, b serve as an example to this proposition.

Using similar arguments, one can show that ER2 (plus some proper functions a, b) is
also an example for this proposition.

In the coming proof, we sometime adopt the notations u ∼ v and u 6∼ v to express the
situation that the vertices u, v are adjacent or not, respectively.
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3 The proof of Theorem 2

Throughout this section, let G be a graph which contains no cycles of length four and
a, b : V (G) → N≥2 be two functions such that for any x ∈ V (G), dG(x) ≥ a(x) + b(x)− 1.
Suppose for a contradiction that G contains no feasible partitions. By Proposition 7, we
have the fact that

there is no feasible pairs in G. (1)

Our proof proceeds with a sequence of claims.

Claim 1. It suffices to assume that for any x ∈ V (G), dG(x) = a(x) + b(x)− 1.

Proof. Indeed we may increase a, b to get functions a′, b′ such that a′ ≥ a, b′ ≥ b and
dG(x) = a′(x) + b′(x) − 1 for all x ∈ V (G). Now suppose Theorem 2 holds under the
assumption of these inequalities. As a′ ≥ a and b′ ≥ b, any feasible partition of V (G) with
respect to a′, b′ is also a feasible partition with respect to a, b. This proves Claim 1.

Definition 1. A partition (A,B) of V (G) is an (a, b)-partition if A is (a− 1)-degenerate
and B is (b− 1)-degenerate.

Claim 2. There exist (a, b)-partitions in G.

Proof. Consider a minimal a-good subset A ⊆ V (G) (note that such subsets exist, as V (G)
is one). So |A| ≥ 2. Let B = V \A. Clearly B contains no b-good subsets, as otherwise
there exist feasible pairs, contradicting (1). So, by Proposition 6, B is (b− 1)-degenerate.
By the minimality of A, there exists a vertex x ∈ A with dA(x) = a(x). By Claim 1,
dB(x) = b(x)− 1 and thus B ∪ {x} is also (b− 1)-degenerate. On the other hand, A\{x}
is non-empty and (a− 1)-degenerate (again by the minimality of A). So (A\{x}, B ∪{x})
gives an (a, b)-partition.

For any partition (A,B) in G, we define a weight function as following:

w(A,B) := E(G[A]) + E(G[B]) +
∑

x∈A

b(x) +
∑

x∈B

a(x). (2)

Claim 3. For a partition (A,B), let u ∈ A, v ∈ B be two vertices such that dA(u) =
a(u)− α and dB(v) = b(v)− β. Let δ = 1 if u, v are adjacent and δ = 0 otherwise. Then

w(A\{u}, B ∪ {u})− w(A,B) = 2α− 1,

w(A ∪ {v}\{u}, B ∪ {u}\{v}) − w(A,B) = 2(α+ β − 1− δ).

Proof. This follows directly from the definition and Claim 1. We only show the second
identity. Its left hand side equals

−dA(u)− dB(v) − b(u)− a(v) + (dB(u)− δ) + (dA(v)− δ) + b(v) + a(u).

After simplifying, this gives 2(α + β − 1− δ).

Definition 2. Let P be the family consisting of all (a, b)-partitions (A,B), which attain
the maximum weight w(A,B) among all (a, b)-partitions in G. For any (A,B) ∈ P, define

A∗ = {x ∈ A | dA(x) ≤ a(x)− 1} and B∗ = {x ∈ B | dB(x) ≤ b(x)− 1}.

It is easy to see that both A∗ and B∗ are non-empty. So for any x ∈ B∗, we have
|A| ≥ dA(x) ≥ a(x) ≥ 2. Hence, we see that both A and B contain at least two vertices.

Claim 4. For any (A,B) ∈ P, every vertex in A∗ is adjacent to every vertex in B∗.
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Proof. Suppose that there exist non-adjacent vertices u ∈ A∗ and v ∈ B∗. Let dA(u) =
a(u)− α and dB(v) = b(v)− β. So α, β ≥ 1.

First consider u ∈ A. We have |A| ≥ 2, so A\{u} is non-empty. By Claim 3,
w(A\{u}, B ∪ {u}) − w(A,B) = 2α − 1 ≥ 1, thus (A\{u}, B ∪ {u}) cannot be an (a, b)-
partition. Since A\{u} is (a− 1)-degenerate, this implies that B ∪ {u} cannot be (b− 1)-
degenerate. Therefore there exists a b-good subset B′ ⊆ B∪{u}. As u, v are not adjacent,
dB∪{u}(v) = dB(v) ≤ b(v) − 1, so B′ ⊆ B ∪ {u}\{v}.

By considering v ∈ B, similarly we can find an a-good subset A′ ⊆ A∪{v}\{u}. Then,
(A′, B′) forms a feasible pair, a contradiction to (1). The proof of Claim 4 is completed.

Claim 5. For any (A,B) ∈ P, either A∗ or B∗ consists of exactly one vertex. Moreover,
every vertex in V (G)\A∗ is adjacent to at most one vertex in B∗ and every vertex in
V (G)\B∗ is adjacent to at most one vertex in A∗.

Proof. Otherwise there is some C4 by Claim 4 (note that both A∗, B∗ are non-empty).

Claim 6. For any (A,B) ∈ P, u ∈ A∗ and v ∈ B∗, we have dA(u) = a(u) − 1, dB(v) =
b(v) − 1 and (A ∪ {v}\{u}, B ∪ {u}\{v}) ∈ P.

Proof. Let dA(u) = a(u)− α and dB(v) = b(v)− β, where α, β ≥ 1.
We first show that (A ∪ {v}\{u}, B ∪ {u}\{v}) is an (a, b)-partition. Suppose not.

Without loss of generality, we may assume that there exists a b-good subset B′ ⊆ B ∪
{u}\{v}. Then we must have u ∈ B′. If A∪{v} is (a−1)-degenerate, then (A∪{v}, B\{v})
is an (a, b)-partition and by Claim 3, w(A ∪ {v}, B\{v}) − w(A,B) = 2β − 1 ≥ 1, a
contradiction. Therefore there exists an a-good subset A′ ⊆ A ∪ {v}. If u /∈ A′, then
(A′, B′) is a feasible pair, a contradiction. So u ∈ A′. Then the only possibility is that
dA(u) = a(u) − 1. This also shows dB(u) = b(u) and thus dB∪{u}\{v}(u) = b(u) − 1,
contradicting with u ∈ B′. So indeed (A ∪ {v}\{u}, B ∪ {u}\{v}) is an (a, b)-partition.

By Claim 3 again, w(A ∪ {v}\{u}, B ∪ {u}\{v}) − w(A,B) = 2(α + β − 2) ≥ 0. By
the maximality of w(A,B), α = β = 1. So (A ∪ {v}\{u}, B ∪ {u}\{v}) ∈ P.

Claim 7. For any (A,B) ∈ P, |A\A∗| ≥ 2 and |B\B∗| ≥ 2.

Proof. By Claims 5 and 6, we may assume B∗ = {v} and dB(v) = b(v) − 1 ≥ 1. Choose
any v1 ∈ B\B∗. Since dB(v1) ≥ b(v1) ≥ 2, there exists a neighbor of v1 in B\B∗. So
|B\B∗| ≥ 2. Similarly, if |A∗| = 1, then we also have |A\A∗| ≥ 2. Assume |A∗| ≥ 2.

If there exists some vertex u1 ∈ A\A∗, then dA(u1) ≥ a(u1) ≥ 2. By Claim 5, u1 has
at most one neighbor in A∗ and thus at least one neighbor in A\A∗, therefore |A\A∗| ≥ 2.

So we may assume A = A∗ = {u1, ..., uℓ}. By Claim 6, dA(ui) = a(ui) − 1 ≥ 1.
This, together with Claim 5, shows that in fact any ui has exact one neighbour in A and
a(ui) = 2. Since all vertices in A are adjacent to v, we see that A ∪ {v} induces a union
of triangles which pairwise intersect at v. As dA(v) = a(v), A ∪ {v} is a-good. For any
x ∈ B\{v}, there is at most one neighbor of x in A ∪ {v}, as otherwise there is a C4. So
dB\{v}(x) ≥ a(x)+b(x)−2 ≥ b(x). We then find a feasible partition (A∪{v}, B\{v}).

Definition 3. For any (A,B) ∈ P, we define

A⋄ = {u ∈ A\A∗ | dA\A∗(u) ≤ a(u)− 1} and B⋄ = {v ∈ B\B∗ | dB\B∗(v) ≤ a(v) − 1}.

Claim 8. For any (A,B) ∈ P, the subsets A⋄ and B⋄ are non-empty. And any u ∈ A⋄

has exactly one neighbor in A∗ and dA(u) = a(u); similarly, any v ∈ B⋄ has exactly one
neighbor in B∗ and dB(v) = b(v).
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Proof. Claim 7 shows that A\A∗ and B\B∗ induce two non-empty subgraphs, which are
(a − 1)-degenerate and (b − 1)-degenerate, respectively. So A⋄ and B⋄ are non-empty.
It suffices to consider u ∈ A⋄. By Claim 5, u has at most one neighbor in A∗ and thus
dA(u) ≤ a(u). But u /∈ A∗, which means dA(u) ≥ a(u). This shows that dA(u) = a(u)
and u has exactly one neighbor in A∗.

Claim 9. For any (A,B) ∈ P, there exists one of the following five configurations in A
(see Figure 1):

(A1) two a-vertices u1, u2 in A are adjacent to the same vertex u ∈ A∗,

(A2) two a-vertices u1, u2 in A are adjacent to u, u′ ∈ A∗, respectively,

(A3) there exist two a-vertices u1, u2 in A and a vertex u ∈ A∗ such that u1 ∼ u2, u1 ∼ u
and u2 6∼ u,

(A4) there exist an a-vertex u1 in A, an (a+ 1)-vertex u2 in A and a vertex u ∈ A∗ such
that u1, u2, u form a triangle, and

(A5) there exist an a-vertex u1 in A, an (a+1)-vertex u2 in A and two vertices u, u′ ∈ A∗

such that u1 ∼ u2, u1 ∼ u and u2 ∼ u′.

A
∗

A\A∗

u

u1 u2

(A1)

A
∗

A\A∗

u u′

u1 u2

(A2)

A∗

A\A∗

u

u2 u1

(A3)

A∗

A\A∗

u

u2 u1

(A4)

A∗

A\A∗

u′ u

u2 u1

(A5)

Figure 1: The five configurations in A

And the analog also holds for B (call the five configurations as (B1)-(B5), respectively).

Proof. If A⋄ has at least two vertices (say u1, u2), then by Claim 8, each of u1, u2 has
exactly one neighbor in A∗. This leads to the configuration (A1) or (A2).

If A⋄ has exactly one vertex (say u1), then by Claim 7, A\(A∗ ∪ {u1}) is non-empty
and also (a− 1)-degenerate. Then u1 has a neighbour u2 ∈ A\(A∗ ∪ {u1}) satisfying that
dA\A∗(u2) = a(u2). This leads to three possible configurations: (A3) when u2 has no
neighbour in A∗, (A4) when u1, u2 have the same neighbour in A∗, and (A5) when u1, u2
have different neighbours in A∗. This proves Claim 9.
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Definition 4. For any (A,B) ∈ P, a path u1 ∼ u ∼ v ∼ v1 is called a special path, if
u ∈ A∗, v ∈ B∗, u1 is an a-vertex in A, and v1 is a b-vertex in B.

Claim 10. For any special path u1 ∼ u ∼ v ∼ v1, either u1v ∈ E(G) or v1u ∈ E(G).

Proof. Suppose that u1v, v1u /∈ E(G). Let (A′, B′) be the new partition obtained from
(A,B) by exchanging u and v. By Claim 6, (A′, B′) ∈ P. Also u1 becomes an (a − 1)-
vertex in A′ and v1 becomes a (b−1)-vertex in B′. Then by Claim 4, we have u1v1 ∈ E(G).
So u1, u, v, v1 form a cycle of length four, a contradiction.

Now let us fix a partition (A,B) ∈ P. So by Claim 9, there exist two configurations,
say (Ai) in A and (Bj) in B. In what follows, we will finish the proof by showing that
any combination of (Ai) and (Bj) for all 1 ≤ i, j ≤ 5 will derive some contradiction (either
finding a cycle of length four or contradicting the above claims).

Take the vertex u ∈ A∗ and the a-vertex u1 in A from Claim 9; and call the analogous
vertices of u, u1 in B as v, v1, respectively. Note that in any situation, we have that
u ∈ A∗, v ∈ B∗, u1 is an a-vertex in A and v1 is a b-vertex in B. Therefore, u1 ∼ u ∼ v ∼ v1
is a special path for (A,B) ∈ P. By Claim 10, we have either u1v ∈ E(G) or v1u ∈ E(G).
Without loss of generality,

we assume that u1v ∈ E(G) and v1u /∈ E(G). (3)

If the configuration (A4) or (A5) occurs, then (3) will force a C4, a contradiction. There-
fore, there are only 3 configurations left (under the assumption (3)), namely (A1), (A2)
or (A3). We distinguish among these three cases.

Case 1: Configuration (A1) occurs.

We see that u2 ∼ u ∼ v ∼ v1 is a special path. By Claim 10, either u2v ∈ E(G) or
uv1 ∈ E(G). If u2v ∈ E(G), then u1, u2, u, v form a C4 and if uv1 ∈ E(G), then u1, v1, u, v
form a C4. This shows that under the assumption (3), (A1) does not occurs.

Case 2: Configuration (A2) occurs.

In this case, we will show that either there exists a C4 or this can be reduced to the
configuration (A3). Note that we have |A∗| ≥ 2. So B∗ = {v}. So only the configurations
(B1), (B3), and (B4) can occur in B.

First suppose that (B3) occurs.1 Then there is another b-vertex v2 (other than v1) in
B such that v2 ∼ v1 and v2 6∼ v. Let (A′, B′) be the partition obtained from (A,B) by
exchanging u and v1. We may easily infer that uv1, uv2, u1v1, u1v2 /∈ E(G) (as otherwise
there is a C4). So u1, v1 are (a−1)-vertices in A′, v, v2 are (b−1)-vertices in B′, and u is a
b-vertex in B′. We claim that (A′, B′) ∈ P. We first observe that A′ is (a−1)-degenerate;
otherwise, as A contains no a-good subsets, there must exist an a-good subset in A′ which
contains v1, but v1 is an (a − 1)-vertex in A′, a contradiction. If there exists a b-good
subset B′′ ⊆ B′, then similarly u ∈ B′′ and so dB′′(u) = dB′(u) = b(u), which shows that
all neighbors of u in B′ should also belong to B′′. But the neighbor v of u is a (b−1)-vertex
in B′, a contradiction. So B′ is (b− 1)-degenerate and thus (A′, B′) is an (a, b)-partition.
By Claim 3, we also have w(A′, B′)− w(A,B) = 0. This proves that (A′, B′) ∈ P. Then
by Claim 4, u1, v1, v, v2 give a C4. This shows that (B3) does not occur.

Now we consider when (B1) or (B4) occurs. We claim that all vertices in A⋄ are
adjacent to v. Consider any vertex w ∈ A⋄\{u1} and assume wv /∈ E(G). By Claim 8, w
is an a-vertex in A and adjacent to exactly one vertex in A∗ (say w′). If w′ = u, then the

1In this paragraph we will only use the vertices u1, u ∈ A, so this shows that under the assumption (3),
(B3) does not occur no matter which configuration is in A.
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configuration (A1) occurs. So we have w′ 6= u. Then the special path w ∼ w′ ∼ v ∼ v1
forces either wv ∈ E(G) or w′v1 ∈ E(G). So w′v1 ∈ E(G). In (B4), w′, v, v1, v2 will
form a C4. Now let us consider (B1), where v2 is a b-vertex in B and v2v ∈ E(G). Then
w ∼ w′ ∼ v ∼ v2 is also a special path. As wv /∈ E(G), we must have w′v2 ∈ E(G), which
again gives a C4 (with vertices w′, v, v1, v2). This proves the claim.

We see that all vertices in A∗∪A⋄ are adjacent to v and thus any vertex in A has at most
one neighbor in A∗ ∪A⋄ (otherwise, there is a C4). This implies that A\(A∗ ∪A⋄) 6= ∅, as
otherwise any vertex w ∈ A⋄ has dA∗∪A⋄(w) = dA(w) = a(w) ≥ 2, a contradiction. Thus,
there exists a vertex x ∈ A\(A∗ ∪ A⋄) with dA\(A∗∪A⋄)(x) ≤ a(x) − 1. But dA(x) ≥ a(x)
(as x /∈ A∗) and x has at most one neighbor in A∗ ∪ A⋄. This shows that x is an a-
vertex in A and has exactly one neighbor (say x′) in A∗ ∪ A⋄. Also as x /∈ A⋄, we have
dA\A∗(x) ≥ a(x), which shows that x′ ∈ A⋄. Let x′′ be the unique neighbor of x′ in A∗ (by
Claim 8). Now the three vertices x, x′, x′′ give the configuration (A3) in A. Note that we
also have x′v ∈ E(G) and v1x /∈ E(G) (i.e., the equivalent assumption as (3)). Therefore,
it suffices to consider the following case.

Case 3: Configuration (A3) occurs.

There are 5 configurations in B to consider.

A∗

A\A∗

B∗

B\B∗

u

u2 u1

v

v1 v2

(A3)+(B1)

A∗

A\A∗

B∗

B\B∗

u

u2 u1

v

v′

v1 v2

(A3)+(B2)

A∗

A\A∗

B∗

B\B∗

u

u2 u1

v

v1 v2

(A3)+(B4)

Figure 2: Case 3

Suppose (B1) occurs. So there exists a b-vertex v2 in B adjacent to v such that v2 6= v1.
Let (A1, B1) be obtained from (A,B) by exchanging u and v1. One can easily see that
u1v1, u2v1, u2u, v2u /∈ E(G) (as otherwise there is a C4). So v1, u1 are (a − 1)-vertices in
A1, u2 is an a-vertex in A1, v is a (b−1)-vertex in B1, and u is a b-vertex in B1. It is worth
noting that v2 may be a (b−1)-vertex or b-vertex in B1, depending on whether v1v2 ∈ E(G)
or not, respectively. We claim that (A1, B1) ∈ P. Indeed, A1 is (a − 1)-degenerate and
B1 is (b − 1)-degenerate (via the same argument as in the second paragraph of Case 2).
By Claim 3, w(A1, B1) = w(A,B), which shows (A1, B1) ∈ P. If v2 is a (b− 1)-vertex in
B1, then by Claim 4, u1, v1, v, v2 form a C4. Otherwise v2 is a b-vertex in B1. Then we
get a special path u2 ∼ u1 ∼ v ∼ v2, implying that u1v2 or u2v ∈ E(G). In either case,
there is a C4. This shows that (B1) cannot occur.

Suppose (B2) occurs. Then there exist a (b − 1)-vertex v′ and two b-vertices v1, v2
in B such that v′ 6= v and v1v, v2v

′ ∈ E(G). Let (A2, B2) be obtained from (A,B) by
exchanging u1 and v′. It is easy to see that u1v

′, u2v
′, vv′, v1v

′, v1u1, v2u1 /∈ E(G). So
u, u2 are (a − 1)-vertices in A2, v

′ is an a-vertex in A2, u1, v2 are (b − 1)-vertices in B2,
and v, v1 are b-vertices in B2. By Claim 3, we have w(A2, B2) = w(A,B). We also see
that B2 is (b − 1)-degenerate (as any b-good subset of B2 must contain u1 but u1 is a
(b− 1)-vertex in B2), and A2 is (a− 1)-degenerate (because any a-good subset of A2 must
contain v′ and all neighbors of v′ in A2, but u, as a neighbor of v′, is an (a− 1)-vertex in
A2, a contradiction). Therefore, (A2, B2) ∈ P. Then by Claim 4, u, u2, u1, v2 form a C4.
This shows that (B2) cannot occur.

By the footnote of Case 2, we have seen that (B3) cannot occur.
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Suppose (B4) occurs. There is a (b + 1)-vertex v2 in B such that v2v, v2v1 ∈ E(G).
Let (A4, B4) be obtained from (A,B) by exchanging u and v and exchanging u1 and v1.
Since uv1, u1v1, u2u, u2v, u2v1, uv2, u1v2 /∈ E(G), we see that v, u2 are (a − 1)-vertices in
A4, v1 is an a-vertex in A4, u is a b-vertex in B4, and u1, v2 are (b− 1)-vertices in B4. By
applying Claim 3 twice, we have w(A4, B4) = w(A,B). We claim that (A4, B4) ∈ P. We
first show that A4 is (a − 1)-degenerate. Suppose not, then A4 has an a-good subset A′

which contains at least one of the new vertices v, v1. Since dA4
(v) = a(v)− 1, this implies

that v1 ∈ A′ and moreover all neighbors of v1 in A4 are in A′, but this is a contradiction
as v ∼ v1. Similarly, one can show that B4 is (b− 1)-degenerate. Thus (A4, B4) ∈ P. By
Claim 4, v, u2, u1, v2 form a C4. Therefore, (B4) cannot occur.

A∗

A\A∗

B∗

B\B∗

u

u2 u1

v

v′

v1 v2

(A,B)

A∗
5

A5\A
∗
5

B∗
5

B5\B
∗
5

u2

v

v1

u1

u

v′

v2

(A5, B5)

A
∗
5

A5\A
∗
5

B∗
5

B5\B
∗
5

v′′

v

v3 v1

u1

u

v′

v2

(A5, B5)

A
∗
6

A6\A
∗
6

B∗
6

B6\B
∗
6

v2

v

v′

v1 v3 v′′ u1

u

(A6, B6)

Figure 3: (A3)+(B5)

Finally we assume that (B5) occurs. Then there exist a (b − 1)-vertex v′, a b-
vertex v1, and a (b + 1)-vertex v2 in B such that v1 ∼ v2, v1 ∼ v and v2 ∼ v′. Let
(A5, B5) be obtained from (A,B) by exchanging u and v and exchanging u1 and v1. As
u2u, u2v, u2v1, v

′u1, v
′v, v′v1, v2u, v2u1, v2v /∈ E(G), we find that v, u2 is an (a − 1)-vertex

in A5, v1 is an a-vertex in A5, u1 is a (b − 1)-vertex in B5, and u, v′, v2 are b-vertices
in B5. And by Claim 3, w(A5, B5) = w(A,B). Similarly as before, one can show that
(A5, B5) ∈ P.

Let us observe that u1, u, v
′ give a configuration (B3) in B5. As uv ∈ E(G) (where v ∈

A∗
5), by the above proof of Case 3, (A1)-(A4) cannot occur in A5 (by the symmetry between

the functions a and b, here we may view B5, A5 as the new parts A,B, respectively). So
the configuration (A5) must occur in A5. Following the proof of Claim 7, we show that
the vertices v, v1 must be involved in this configuration. Indeed, if A⋄

5 has at least two
vertices, then (A1) or (A2) occurs, a contradiction. Thus A⋄ has exactly one vertex, that
is v1. Then v1 has a neighbour say v3 in A5\(A

∗
5 ∪ {v1}) such that dA5\A∗

5
(v3) = a(v3).

Since neither (A3) nor (A4) occur in A5, v3 must have a neighbour, say v′′, in A∗
5 which

is distinct from v. Note that v3 is an (a+ 1)-vertex in A5 (see Figure 3).
Let (A6, B6) be obtained from (A5, B5) by exchanging v2 and v′′. Since there is no
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C4 in G, we see that v2v
′′, v2u, v2u1, v2v, v

′′u, v′′v, v′′v′, v′′v1 /∈ E(G). So v′ is a (b − 1)-
vertex in B6, u, u1, v

′′ are b-vertices in B6, v, v2 are (a − 1)-vertices in A6, and v1 is an
(a + 1)-vertex in A6. Clearly A6 is (a − 1)-degenerate. If B6 contains a b-good subset
S, then v′′ ∈ S and thus u1, u, v

′ ∈ S, contradicting that v′ is a (b − 1)-vertex in B6. So
B6 is (b− 1)-degenerate. This, together with w(A6, B6) = w(A5, B5) (by Claim 3), shows
that (A6, B6) ∈ P. Then by Claim 4, v′v2 ∈ E(G) and thus v′, v, u1, u form a C4. This
contradiction completes the proof of Theorem 2.
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