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Contextuality is a hallmark feature of the quantum theory that captures its incompatibility with
any noncontextual hidden-variable model. The Greenberger–Horne–Zeilinger (GHZ)-type paradoxes
are proofs of contextuality that reveal this incompatibility with deterministic logical arguments.
However, the GHZ-type paradox whose events can be included in the fewest contexts and which
brings the strongest nonclassicality remains elusive. Here, we derive a GHZ-type paradox with a
context-cover number of three and show this number saturates the lower bound posed by quantum
theory. We demonstrate the paradox with a time-domain fiber optical platform and recover the
quantum prediction in a 37-dimensional setup based on high-speed modulation, convolution, and
homodyne detection of time-multiplexed pulsed coherent light. By proposing and studying a strong
form of contextuality in high-dimensional Hilbert space, our results pave the way for the exploration
of exotic quantum correlations with time-multiplexed optical systems.

Introduction
Measurement in quantum theory is the origin of

many nonclassical effects [1–3]. A measurement of a
physical property in the classical world reveals its pre-
existing value. Such an interpretation cannot hold true
in the quantum regime, not only because noncommut-
ing operators have no meaningful joint values [4], but
also due to the impossibility of specifying the preex-
isting value, even for a set of commuting operators,
without specifying the full set of observables jointly
measured. The latter effect, known as the Kochen–
Specker contextuality [5], captures some most defining
aspects of quantum correlations. It has a wide spec-
trum of applications like randomness expansion [6, 7],
dimension witnessing [8, 9] and self-testing [10, 11], and
can be considered as the origin of nonclassicality be-
hind Bell nonlocality [12, 13].
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Intriguingly, the failure of noncontextual hidden-
variable descriptions can manifest as a “perfect” form
of contextuality, namely, the Greenberger–Horne–
Zeilinger (GHZ)-type paradoxes [14, 15], where the
quantum system generates an outcome deterministi-
cally different from the noncontextual prediction. Such
paradoxes formulated as inequality-free logical argu-
ments serve as a conceptually clear and mathemat-
ically strong [16] alternative of noncontextuality in-
equalities for detecting contextuality. We argue that
these perfect contextuality are also a resource for
the acceleration and universality of quantum comput-
ing [17–22]. We refer our readers to the Supplementary
Material for a more in-depth discussion about the role
of contextuality in quantum computing.

The figure of merit of a GHZ-type paradox can be
defined in several ways. It has been proved that the
construction in [23] uses the fewest number of rays [24]
to show the paradox, and the number of contexts that
must be utilized to prove the logical argument (the
“number of context”) is at least four [25]. Here, we
focus on an alternative point: what is the minimal
number of contexts required to include, or “cover” all
the events in a GHZ-type paradox? Hereafter, we call
this quantity the “number of context-cover” to differ-
entiate from the number of context. Later, the word
choice will be made more reasonable. The number of
context-cover is a proper measure of the strength of a
GHZ-type paradox for two reasons: firstly, when trans-
formed into noncontextuality inequalities, a GHZ-type
paradox with a lower number of context-cover yields
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a larger ratio of violation. This violation also sustains
to the one of Kochen–Specker-type paradox [24], a fun-
damental resource for various applications [20, 26, 27].
Secondly, to observe a GHZ-type paradox, the number
of groups of fundamental event probabilities required
is also equal to the number of context-cover. There-
fore, the GHZ-type paradox with the lowest number
of context-cover is a strong resource of nonclassical-
ity that is expected to have potential applications in
quantum protocols. However, after more than 30 years
of GHZ’s seminal work [14], the exact lower bound of
this number is still undetermined.

Here, we take a step towards answering the above
question and observing this strong form of GHZ-type
paradox. Specifically, we have constructed and demon-
strated such a paradox with a number of context-
cover of only three. Inspired by the graph-theoretic
approach to quantum correlations [28], we have de-
veloped a method to systematically construct GHZ-
type paradoxes by searching for graphs whose graph-
theoretic constants satisfy a set of criteria. Based on
this method, we have explicitly constructed a three-
context GHZ-type paradox that can be realized with
a set of 37-dimensional measurements, and proved its
optimality in the sense that the number of contexts
to include all the events cannot be further reduced.
This way, the proposed GHZ-type paradox delineates
the boundary of correlations allowed by the quantum
theory.

To experimentally study the three-context GHZ-
type paradox, we have built a fiber-based photonic pro-
cessor capable of reproducing the probability of all the
high-dimensional measurements in the paradox with
the time-bin degree of freedom of photons. Our exper-
iment was based on high-speed electro-optical mod-
ulation, multiplication, and convolution on temporal
modes of pulsed coherent light, with which we im-
plemented a prepare-and-measure experiment through
a correspondence between single-photon and coherent
state interference [29] and extracted all the statistics
required in a test of contextuality [30]. A major con-
tribution from the experimental side is that we have
made the setup scalable by detecting the complete am-
plitude and phase information of the coherent light
via homodyne detection. This enabled us to substan-
tially expand the applicable Hilbert space dimension
and achieve the desired high-dimensionality.

Our results epitomized the potential of the
temporal-multiplexed optical system, which has
found applications in coherent Ising machine [31–
33], continuous-variable measurement-based quan-
tum computing [34–37], and (Gaussian) boson sam-
pling [38–40], in investigating exotic quantum correla-
tions. As any Kochen–Specker set utilizing n context-
cover implies the existence of a GHZ-type paradox with
n−1 context-cover [24], our finding also paves the way
to the search for a Kochen–Specker set whose events
can be included in only four context-cover. We also en-
visage that our findings could benefit the search for ex-
otic quantum correlations that are the building blocks
for quantum computing or even constitute a step to-
ward achieving stronger quantum advantage in shallow

circuits [21, 22].

Results

Graph-theoretic approach to GHZ-type paradox
The GHZ-type paradoxes are logical proofs and ex-

treme manifestations of contextuality. They refer to
scenarios where, given an assemblage of event prob-
abilities, the predictions by quantum theory and any
noncontextual model for another set of event proba-
bilities contradict each other in a deterministic way.
Formally, a GHZ-type paradox can be expressed using
the conditional probabilities as follows:∑m1

k=1 Pr(1|[1, k]) = 1,∑m2

k=1 Pr(1|[2, k]) = 1,

· · ·∑mn−1

k=1 Pr(1|[n− 1, k]) = 1,

∑mn

k=1 Pr(1|[n, k]) =
{ 0, NCHV,
1, Q.

(1)

where 1|[j, k], j, k ∈ N+ denotes an event where the
outcome of the k-th projective measurement in the j-th
context is 1, mj is the number of measurements in the
j-th context, and n is the total number of contexts used
in the paradox. The qualifiers Q and NCHV indicate
the probabilities shall be calculated via the quantum
theory and a noncontextual hidden-variable model, re-
spectively. We can also label all the events with a
single index: [j, k] =

∑j−1
i=1 mi + k. In layman’s terms,

a GHZ-type paradox indicates some events deemed im-
possible by noncontextual models are bound to happen
according to the quantum theory. In the Supplemen-
tary Material, we provide an explicit illustration using
the original GHZ paradox.

To study the mathematical structure of contextu-
ality, a common approach is the graph-theoretic ap-
proach to quantum correlations [28] which uses an ex-
clusivity graph to capture the impossibility of some
events taking place simultaneously. Concretely, the
vertices V (G) of the exclusivity graph G represent
the events of observing certain measurement outcomes,
and its edges E(G) connect pairs of exclusive events.
Once an exclusivity graph is given, the sum of event
probabilities in noncontextual and quantum theories
will be bounded by graph constants, namely, the inde-
pendence number and Lovász number [30, 41]:∑
i∈V

Pr(1|i)−
∑

(i,j)∈E

Pr(1, 1|i, j)
NCHV
⩽ α(G)

Q

⩽ ϑ(G).

(2)

Here, Pr(1, 1|i, j) is the probability of simultaneously
observing events i, j; this term compensates for the
deviation from exclusivity [42]. Graphs with a large
ratio ϑ/α thus have the merit of producing more signif-
icant inconsistency between noncontextual and quan-
tum theories. The advantage of the graph-theoretic
approach is that many properties of the underlying
quantum correlation can be revealed by the graph con-
stants, and the concrete setting for the quantum states



3

and measurements achieving these properties can then
be found efficiently via semidefinite programming.

To date, no direct method has, to the best of our
knowledge, been established for studying the GHZ-
type paradox via this approach. Here, we undertake
this task and elucidate the link between a GHZ-type
paradox and the clique number of its exclusivity graph,
or equivalently, the chromatic number of the graph
with the rays in the GHZ-type paradox being its or-
thogonal representation [43]. Formally, our finding can
be formulated as the following theorem.

Theorem 1 (informal). Necessary and sufficient con-
dition for a graph G to be the exclusivity graph of an
n-context GHZ-type paradox is

α(G) = n− 1, ϑ(G) = n, and χ(Ḡ) = n, (3)

where Ḡ is the graph complement of G and χ(Ḡ) is its
chromatic number.

Note that the notion of n-context throughout this
paper refers the number of context-cover instead of
the number of context; to complete the logical proof,
additional contexts may be counted. The proof of The-
orem 1 and the discussion regarding the above point
can be found in the Methods section. As the left-hand
side value of Eq. (2) in any no-signaling theory is upper
bounded by the exclusivity graph’s fractional packing
number α∗(G), and α∗(G) ⩽ χ(Ḡ) [44], a quantum cor-
relation associated with a GHZ-type paradox must also
be a fully contextual correlation [45] that lays on the
boundary of the no-signaling polytope, but the con-
verse is not necessarily true. Our results thus clearly
show the role of the GHZ-type paradox as a peculiar
class of the strongest quantum correlation allowed by
special relativity.

A three-context GHZ-type paradox
Because the graphs of exclusivity in GHZ-type para-

doxes have a fixed ϑ − α = 1, a GHZ-type para-
dox whose events can be covered by fewer contexts is
associated with a larger quantum–classical ratio and
stronger nonclassicality. However, the minimum of
this number is not known: as we will prove in the
Methods section, it must be greater than two, but
all the known examples of GHZ-type paradox have
the number of context-cover of at least four, leaving
the three-context case unexplored. Although noncon-
textuality inequality [46] and logical proofs of contex-
tuality [47] using three context-cover have been stud-
ied in experiments [48, 49], the corresponding exclu-
sivity graph—a pentagon (cf. Fig. 1(a))—has only a
ϑ − α =

√
5 − 2 < 1. As such, the quantum violation

is less than 1 and the logical proof does not constitute
a GHZ-type paradox. Further, a GHZ-type paradox
can also be constructed from a Kochen–Specker set
by selecting one ray as the input state and removing
all its orthogonal rays, but all known Kochen–Specker
sets employ at least five contexts [50]. The exclusivity
graph in the smallest case (cf. Fig. 1(b)) is exactly the
same as that in the original GHZ paradox. The exis-
tence of a four-context Kochen–Specker set is thus a
long-standing open question.

All the above observations make the search for a
three-context GHZ-type paradox an interesting task.
Towards this objective, our next contribution is to
identify an exclusivity graph hosting such a para-
dox. According to 1, the desired exclusivity graph
G has some fixed graph-theoretic constants, including
an independence number of α(G) = 2 and a Lovász
number of ϑ(G) = 3; moreover, its graph comple-
ment should have a chromatic number of χ(Ḡ) = 3,
that is, Ḡ is triangle-free and three-colorable. We
have identified the graph complement of the Perkel
graph [51] as shown in Fig. 1(c) as a candidate for the
exclusivity graph. The approach we use is to search
across the graphs with known graph constants, and
we do not know if a graph with fewer vertices exists
that can satisfy the same conditions, due to the dif-
ficulty of traversing the exponentially many possible
graphs. Nevertheless, we also prove in the Methods
section that these requirements cannot be satisfied by
a strongly regular graph [52] which is highly symmet-
ric and widely used in previous proofs of contextual-
ity [14, 23], thus posing further limitations to the exis-
tence of other examples.

Once the candidate exclusivity graph is determined,
we can calculate the explicit form of the measurement
events by representing them with a set of rays; each
ray corresponds to the nondegenerate eigenstate of a
projector. These rays form an orthogonal representa-
tion of the Perkel graph. The procedure for obtain-
ing the orthogonal representation is to first determine
the Gram matrix of the rays by semidefinite program-
ming known as Lovász optimization [41], and then solve
the individual rays by Cholesky decomposition and
Gaussian elimination. The procedure will be exten-

A C

B

Fig. 1. Graphs of exclusivity. The vertices with the
same color belong to the same context. (a) A pentagon is
the simplest graph which shows nonclassicality when con-
sidered as an exclusivity graph. Measurements with such
an exclusivity structure exhibit a three-context Hardy-type
paradox, but the quantum success probability is less than 1.
(b) The graph complement of the Shrikhande graph is the
underlying exclusivity structure of the original GHZ para-
dox with four contexts. In both (a) and (b) the connected
vertices represent mutually exclusive events. (c) The Perkel
graph is the orthogonal representation of the rays in the
three-context GHZ-type paradox. Note that the exclusiv-
ity graph here is complementary to the Perkel graph. Black
(gray) lines connect the (non-)exclusive events.
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sively discussed in the Supplementary Material. We
realized the semidefinite programming using a Python
package cvxopt and the Cholesky decomposition us-
ing Mathematica 11.2. Assuming perfect exclusivity
as dictated by the exclusivity graph so the second term
of Eq. (2) vanishes, the three-context GHZ-type para-
dox can be expressed as:

p1 :=
∑19
k=1 Pr(1|k) = 1,

p2 :=
∑38
k=20 Pr(1|k) = 1,

p3 :=
∑57
k=39 Pr(1|k) =

{ 0, NCHV,
1, Q.

(4)

The explicit definition of the individual rays, as well
as the Gram matrix, will be given in the Methods sec-
tion. The Gram matrix we found has a rank of 37,
which is also the Hilbert space dimension in which the
corresponding set of rays can be embedded. As will be
further discussed in the Supplementary Material, we
do not know if a lower-dimensional realization of the
Gram matrix exists, as the set of rank-limited matri-
ces is non-convex and we could not efficiently run the
optimization.

Towards a time-multiplexed optical test
Our proposed three-context GHZ-type paradox

would be worth an experimental test, both because
it uses the least possible number of orthonormal ba-
sis and that a noncontextuality inequality with a high
quantum–classical ratio of 3/2 can be checked via its
comprised measurements. According to Eq. (4), to ob-
serve such a paradox, it is sufficient to measure the
projection probability of the initial state on various
measurement basis, and additionally to confirm the
orthogonality of measurements corresponding to mu-
tually exclusive events. The procedure is akin to Ca-
bello’s simplified method for testing contextuality us-
ing prepare-and-measure experiments [30] with graph-
theoretic approach-based inequalities: as shown in
Fig. 2(a) and (b), it has the merit of requiring no se-
quential, non-demolition measurements.

However, the requirement of high-dimensional mea-
surements poses a substantial challenge for experi-
mentally observing the three-context GHZ-type para-
dox. While such measurements would in principle be
amenable in a multi-qubit system available in differ-
ent platforms [53–55], due to the complicated form of
the projectors, they will require many entangling op-
erations and suffer from decreased accuracy. Notic-
ing this point, we chose to use the photons as a
natural courier for encoding high-dimensional quan-
tum information. Our endeavor made use of the ob-
servation that a strong coherent light can provide a
faithful phase reference—often called a “local oscil-
lator” in the context of continuous-variable quantum
optics, allowing the extraction of a photonic object’s
full complex amplitude information. With this infor-
mation, we were able to devise a strategy to decom-
pose a high-dimensional measurement into relatively
lower-dimensional subspaces, thus greatly enhancing
the scalability of the platform and facilitating the ex-
periment. Despite the highly desirable scalability, our

current setup is not fully compatible with a noncontex-
tual theory description; therefore, we could not claim
the experiment to be a test of contextuality in a strict
sense. However, this can be fixed by changing the last
measurement stage back to photodetection, as we will
discuss close to the end of the paper.

We utilized the time-bin degree of freedom of light
to encode the analogous time-bin qudit and implement
the prepare-and-measure experiment. The choice of
degree of freedom is due to that it can best accommo-
date the requirement of a local oscillator. Concretely,
we used the following encoding method to map a d-
dimensional quantum state onto a series of pulsed co-
herent states:

|a⟩ = (a1 a2 · · · ad)†

↔ {|α1,∆t⟩ , |α2, 2∆t⟩ , · · · , |αd, d∆t⟩}. (5)

The encoded states contain two entries: The first entry,
αk = α̃ak denotes the displacement of the individual
coherent states and α̃ is a constant determined by the
intensity of the input coherent state. The second entry
specifies the time that it is generated. The encoding is
possible with coherent states because when subjected
to an interferometer network transformation, the prob-
ability distribution of a single photon at the output
ports is the same as the intensity distribution if the
single photon is replaced by a coherent state [29]. In
our experiment, this coherent state train was created
by casting intensity modulation on a pulsed laser.

To measure the encoded state on a specific basis,
hereafter denoted as |O⟩, we sent the pulse train into a
fiber ring that has a round-trip time of ∆t, so a pulsed
coherent state would meet and interfere with another
emitted at a later time after it circumnavigated the
ring. The output modes from the ring thus acquired
a component from every earlier pulse. Effectively, it
can be expressed as a discrete convolution of the in-
put state a ∗ c0 with the kernel of convolution being
c0 = {c1, c2, . . . , ck, . . .}, where ck denote the complex
amplitude ejection ratio of a pulse upon its k-th en-
counter of the output coupler. Focusing on the output
pulse at time d∆t, we found that it will have an am-
plitude of

∑d
k=1 a(d+1−k)ck which is equivalent to the

inner product, ⟨O0|a⟩, where O0 = {cd, cd−1, . . . , c1}
represents the first d-terms of the entry-reversed con-
volution kernel. Further, the basis of the projective
measurement |O⟩ can be adjusted from |O0⟩ by driv-
ing the intensity modulator before the pulses enter the
fiber ring. The probability of a qudit measurement can
thus be efficiently evaluated by looking at the strength
of the output pulse at a specific time.

In practice, a fiber ring is inevitably accompanied
by ejection into unwanted time-bins, insertion losses,
and chromatic dispersion, so the ejection ratio quickly
decreases for a large number of loops. As such, the
kernel of convolution only has a limited number of
meaningful nonzero terms, hampering the capability
of measuring high-dimensional states. To overcome
this limitation we notice the input state and measure-
ment basis can be written into a direct-sum expansion:
a =

⊕b
k=1 ak, O =

⊕b
k=1 Ok, where b is the total num-

ber of partitions, such that Dim(ak) = Dim(Ok) and
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Fig. 2. Experimental design. (a) A contextuality test re-
quires a set of prepare-and-measure probabilities, obtained
from either single-photon or coherent-state interference.
The challenge is the required Hilbert-space dimension can
exceed the size that a photonic processor can handle. (b)
The high-dimensional inner product can be decomposed
into subspaces and evaluated separately. (c) Extraction of
the inner product with a local oscillator (LO). In the first b
rounds of the experiment, the inner products in subspaces
were measured. In the last round, a ray was reconstructed
from previous measurement results, and its projection on a
unit basis recovered the result of the high-dimensional in-
terference. (d) Sketch of the experimental setup. An inten-
sity modulator prepared various input states. A fiber ring
implemented optical convolution. The output mode at a
specific time corresponded to the post-measurement state,
whose amplitude was subsequently extracted via homodyne
detection. IM intensity modulator, PM phase modulator.

∑b
k=1 Dim(ak) = Dim(a). Then, the inner product

can be expressed as:

⟨O|a⟩ =
∑b
k=1 ⟨Ok|ak⟩ . (6)

The decomposition thus offered a possibility to divide-
and-conquer the high-dimensional interference. The
challenge in using such a decomposition is that the
summation is taken for complex amplitudes instead
of photodetection probabilities, and monitoring the
power output for each of the right-hand side terms
does not provide sufficient information for reconstruct-
ing the projection probabilities.

We employ homodyne detection to resolve this fi-
nal challenge and provide the setup scalability: by in-
terfering the optical mode with the local oscillator on

a balanced beam splitter, the intensity difference be-
tween the two output ports will be proportional to the
mode’s in-phase amplitude with the local oscillator.
Since the projectors in the three-context GHZ-type
paradox (Eq. (4)) comprise only real numbers, the in-
phase amplitude can already capture all information of
the input coherent states after convolution, and thus
the complex amplitude was recovered by experimen-
tally observable quantities.

Overall, our experimental design is outlined in
Fig. 2(c); a concrete example of encoding the pulse se-
quence for a prepare-and-measure experiment is pro-
vided in the Supplementary Material. Firstly, we ex-
pressed the state |a⟩ as the decomposed form: a =⊕b

k=1 ak. For each sub-normalized state ak we em-
ployed the optical convolution with the kernel Ok
and homodyne detection to register the amplitude on
the desired partial measurement basis. Measurement
of all the b groups of inner products yielded a se-
quence of b elements—all the right-hand-side terms in
Eq. (6). To extract the initial high-dimensional inner
product, we encoded these b elements as a new ray:
|ã⟩ = {⟨Ok|ak⟩}bk=1. By setting the kernel to be ⟨Õ| =
{1, 1, . . . , 1}T, the initial inner product ⟨O|a⟩ = ⟨Õ|ã⟩
can be measured via another round of optical convolu-
tion. Finally, the measurement probabilities in Eq. (4)
was calculated as the absolute square of the homodyne
results normalized against a set of orthonormal basis.

Experimental implementation
We realized the prepare-and-measure experiment in

a fiber-based, electro-optic modulated photonic pro-
cessor as shown in Fig. 2(d); the full experimental
setup is extensively described in the Methods section.
We have developed a MATLAB 2020b script to control
an arbitrary function generator and a digital oscillo-
scope to run a fully automated experiment.

A correct and stable phase at different parts of our
setup is a crucial requirement for implementing the de-
sired convolution and homodyne detection. To this ob-
jective, we used a photodetector at the second output
port of the convolution ring’s injection fiber coupler
and the DC monitor output of the homodyne detec-
tor to extract the phase information, and adopted a
lock–measure scheme to alternate the setup between
a phase locking operation and the pulse measurement.
The details about the individual locks can be found
in the Methods section. The scheme ran on a 10 kHz
cycle: in the first 98.5 µs of the cycle (lock period),
the intensity modulator was set at maximal transmis-
sion, and the servo (TEM Messtechnik LaseLock) im-
plemented active phase stabilization. In the last 1.5 µs
(measure period), the electro-optic modulators deliv-
ered the modulations to prepare the actual input state
and implement the change of the measurement basis.
The resulted output intensity from the setup was much
weaker than in the lock period; however, due to the
low-pass filter in the servo and the limited frequency-
response range, the piezo controlling the phases of the
setup could not respond to the sudden change of the
input. This way, the phases would remain almost con-
stant during the measure period.
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Fig. 3. Data acquisition. (a) An exemplary control signal and recorded oscilloscope trace centered at the measure
period. The control signal consists of an intensity notch for synchronization, a π/2-pulse at the local oscillator for phase
calibration, and the intensity modulations encoding the preparation and convolution basis. The gray background indicates
the lock period and the colored bands highlight the points where operations are performed or data is being taken. (b)
The deduced phase error of the convolution fiber ring and the local oscillator. The red-colored data points had at least
one phase error greater than π/24 and were excluded from the final calculation.

We registered the homodyne outcome with an os-
cilloscope. An exemplary waveform together with the
curves of modulation voltages is depicted in Fig. 3(a).
When the last pulse for encoding the input state ex-
ited the fiber ring, the homodyne result was recorded,
and the outcome would be proportional to one term of
the desired inner product (right-hand side of Eq. (6)).
To verify the locking phase, we added a π/2 phase on
the local oscillator before the pulses for measurement
basis selection, and observed the response from the
homodyne detector. As detailed in the Methods sec-
tion, both the convolution and the homodyne phases
can be extracted from two checkpoint voltages in the
waveform. The result of phase calibration is shown
in Fig. 3(b). The standard deviations of the convo-
lution phase and the local oscillator phase error were
measured to be 2.74◦ and 3.94◦. Additionally, we dis-
carded all data points with at least one phase error
greater than 7.5◦ to avoid undesired noise.

With the precise electro-optic modulation and
phase-locking, the obtained measurement probabilities
closely resembled that would be in an ideal quantum
prepare-and-measure experiment. The ideality can
be best witnessed in that whenever the state rays of
preparation and measurements were orthogonal, the
homodyne detection amplitude would almost vanish.
We confirmed the above witness by implementing the
prepare-and-measure procedure corresponding to the
|E(G)| = 1425 pairs of exclusive rays and projectors
in the orthogonal representation of the Perkel graph.
Note that the procedures were not implemented if at
least one of the prepared or measured rays equaled
the computational basis; in which case the probability
would only depend on the extinction ratio of inten-
sity modulation and not on interference. The results
for the remaining events (cf. Fig. 4(a)) demonstrated
an average detection probability for such a procedure
of only 1.74(11)%. Henceforth, the error bars cor-
responding to 1σ standard deviations were obtained
from bootstrapping. The high orthogonality ensured

the statistics from our prepare-and-measure procedure
conformed to the requirements of exclusivity, so the
prerequisite of exclusivity in the theory was indeed ful-
filled in this platform.

Next, we proceed to test the three-context GHZ-
type paradox by directly measuring the three sums of
probabilities in Eq. (4). Our experimental result gives:

p1 = 0.9939(15), p2 = 0.9980(2), p3 = 0.9983(2).
(7)

It was in excellent accord with quantum predictions
and displayed strong disagreement with the prediction
of the noncontextual theories.

Note that the orthogonality between exclusive
events is never perfect in a real experiment, so the
observation of a GHZ-type paradox should be taken
as a strong, but qualitative indication of contextuality.
To substantiate the observation, we further implement
a test of the noncontextuality inequality (Eq. (2)) as-
sociated with the same exclusivity graph. Violation of
such an inequality compensates for the deviation from
ideal exclusivity and can refute noncontextual models
with realistic experimental data [30]. The test is made
possible using the same data from the GHZ-type para-
dox which gives the first term of Eq. (2), together with
a verification of orthogonality between all projectors
supposed to be orthogonal to each other, which gives
the first term of Eq. (2). We describe the detailed pro-
cedure in the Methods section. We observe:∑

i∈V
Pr(1|i) =2.9902(4),

α(G) +
∑

(i,j)∈E

Pr(1, 1|i, j) = 2.651(4) (8)

which means that, after correcting for the imperfect ex-
clusivity and adding the correlation term to the ideal-
case classical bound, the experimental data still vi-
olated the upper bound of noncontextuality by 8.06
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Fig. 4. Experimental results. (a) Calculated values of
the second term in (2) for each pair of compatible projectors
that does not equal the computational basis. The colors
stand for the probabilities of ideally orthogonal measure-
ments not giving exclusive responses; for non-orthogonal
measurements rays the corresponding boxes are left as
white. (b) Experimental results for the three-context GHZ-
type paradox vs. the predictions of noncontextual models,
exclusivity-corrected noncontextual models and the quan-
tum theory. The three colored bands correspond to the
three sums of probabilities in Eq. (4), respectively.

standard deviations and thus rejecting such a descrip-
tion with almost absolute confidence.

Discussion
In conclusion, we have derived and observed a highly

exotic quantum correlation by exploring the poten-
tial of optical interferometry. Firstly, by developing
the graph-theoretical approach for the study of the
GHZ-type paradoxes, we have found a strong GHZ-
type contextuality whose constituent events can be in-
cluded in only three contexts—the least possible num-
ber of contexts in theory, but still reveal a deterministic
contradiction between classical and quantum descrip-
tions of the same underlying correlations. When trans-
lated into experimentally testable noncontextuality in-
equality, the argument also gives the largest quantum–
classical ratio among all GHZ-type paradoxes. In-
terestingly, the argument was found by examining
named graphs with known graph-theoretic constants,
instead of using the modern computer-assisted search
method [24, 42] or being derived from a Bell inequality
already with a large quantum violation [56]. In fact,
with a vertex clique cover number less than four, the
exclusivity graph here cannot host any Bell-type in-
equalities. Our result thus highlights the link between
the most exotic quantum correlations and graphs with
high degrees of symmetry and may shed light on the
search for other strong forms of quantum correlations.

Secondly, we have exploited a time-multiplexed opti-
cal setup to reproduce the full probability distribution

of the three-context GHZ-type paradox in an analo-
gous system. By virtue of the direct sum decomposi-
tion of a high-dimensional state into lower-dimensional
components and the detection of the full complex am-
plitude information using the homodyne detection, we
dramatically scaled up the dimensionality that the op-
tical interferometry can study and implemented a 37-
dimensional prepare-and-measure experiment with a
precision high enough to demonstrate contextuality.
Our result clearly showcased the power of combin-
ing the time-bin interferometry and homodyne detec-
tion, and it would not be hard to directly apply this
method in the study of synthetic dimensions of pho-
tons [57–59] to reveal the rich physics in phase space
and more complicated quantum dynamic features in
high-dimensional systems.

Our experimental platform using the time-
multiplexing technique is also well-compatible with
quantum computing applications. The technique
was adopted in large-scale entanglement (i.e., cluster
state) generation [60] and Gaussian operations based
on measurement-based quantum computing [36];
moreover, non-Gaussian operations can also be imple-
mented with homodyne measurements together with
photodetection [61] to obtain universality. Another
relevant application would be the Gaussian boson
sampling [62] that is a leading approach to quantum
computational advantage [38]. When photons from
multiple output times are looked at, the convolution
ring setup is equivalent to the fully connected inter-
ferometer in Reference [39] and can gain universality
by adding another layer of ring [40, 63–65]. Compared
to the interferometer based on the spatial degree of
freedom, the platform here has the advantage of being
relatively easy to build, economically friendly, and
possessing better scalability.

A limitation of the current experiment is that the
setup does not include any kind of operation that pro-
duces discretized event outcomes. This causes us to
be unable to detect contextuality in the normal sense
by measuring the probability of individual events. We
could recover the probability distribution that violates
the noncontextuality inequality, but these probabili-
ties cannot be interpreted in the way that a discrete-
variable noncontextuality theory would require. In
fact, as the Wigner function of the system is nonnega-
tive, it can be taken as a continuous-variable hidden-
variable description and it is noncontextual. Also,
the current process of probability calculation involves
Eq. (6) which in turn requires quantum theory. How-
ever, we believe both of the points can be fixed by
using photodetection as the last stage of the measure-
ment. In Supplementary Material, we describe a setup
that would address all the above issues and promote
the experiment to a real contextuality test. It would
be a reasonable to target at realizing such a setup in a
succeeding work.

We believe this work has opened several avenues for
future research. From a fundamental perspective, the
existence of a three-context GHZ-type paradox leaves
open the possibility of finding a Kochen–Specker set
whose events can be covered by four contexts. It would
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be interesting to consider if such a set can already be
constructed as a state-independent version of the GHZ-
type paradox here, using some methods of expansion,
e.g., as in Reference [66]. Pertinent to this topic, we
also prove in the Methods section that if any four-
context Kochen–Specker set does exist then the four
contexts must be disjoint; hence, this Kochen–Specker
set would not accept a simple parity proof [23, 67]. Fi-
nally, an interesting endeavor would be to convert the
large amount of nonclassicality in the three-context
GHZ-paradox to a quantum advantage. Based on con-
textuality, quantum advantage in shallow circuits has
been composed [22]. We hope our findings can be used
to build even stronger quantum advantages in high-
dimensional systems.

Methods
Proofs of the propositions. Here we prove the nec-
essary and sufficient conditions for a graph to be the
exclusivity graph of a set of rays in a GHZ-type para-
dox (Theorem 1). This gives a corollary that the mini-
mum number of context-cover in a GHZ-type paradox
is three (Theorem 2). Then, we show that no strongly
regular graph can host a three-context GHZ-type para-
dox (Theorem 3), and that if a Kochen–Specker set
consists only four context-cover, then those contexts
are all disjoint (Theorem 4). Finally, in Fig. 5, we
give the explicit definition of the individual rays in the
three-context GHZ-type paradox and the correspond-
ing Gram matrix. We restate every proposition before
the proof to keep the results self-contained.

Theorem 1. A graph G is the exclusivity graph of an n-
context GHZ-type paradox iff. α(G) = n−1, ϑ(G) = n,
and χ(Ḡ) = n, where Ḡ is the graph complement of G.
α(G), ϑ(G), and χ(G) are G’s independence number,
Lovász number, and chromatic number, respectively.

Proof. Necessity—The first two equations can be jus-
tified by adding all the conditional probabilities in
Eq. (1) together, comparing the sum with Eq. (2) and
noticing that the second term vanishes for ideal exclu-
sivity. To prove the last equation, we observe that Ḡ
can be colored by assigning the same color to all ver-
tices that represent the events in the same context and
using a different color for each context. This explicit
construction guarantees χ(Ḡ) ⩽ n. But according to
Lovász’s sandwich theorem [68], χ(Ḡ) ⩾ ϑ(G) = n, so
it must be χ(Ḡ) = n.

Sufficiency—The classical bound can be trivially
proved using the original graph-theoretic approach to
contextuality [28]. To prove the quantum part that the
event probabilities can be disassembled into groups of
unit probabilities given the graph constants, we notice
that the Lovász number of a graph G is the optimum
of the objective function in the following semidefinite
program (“Lovász optimization”):

max
B

ϑ = tr(BJ) (9)

subject to B ≽ 0, tr(B) = 1,

Bij = 0,∀ (i, j) ∈ E(G),

where J is an N×N matrix with all of its entries being
1, (·) ≽ 0 means the matrix on the left-hand side of the

operator is positive semidefinite, and E(G) is the edge
set of G. Let the matrix B be the Gram matrix of the
set of rays rk, k ∈ [1, N ] and denote G′ as the exclusiv-
ity graph of |rk⟩ ⟨rk|. As the last constraint in Eq. (S4)
guarantees ⟨ri|rj⟩ = 0, ∀ (i, j) ∈ E(G), it must be
E(G) ⊆ E(G′) and thus E(Ḡ′) ⊆ E(Ḡ), therefore, a
χ(Ḡ)-coloring for Ḡ is also a proper coloring for Ḡ′. We
denote such a coloring as V (Ḡ) → [j, k], where j indi-
cates the color and k ∈ [1,mj ] is the index of the vertex
among those mj-vertices with the same color. Now,
the vertices with the same color in Ḡ must correspond
to mutually exclusive events in G′. Due to the exclu-
sivity principle [69], we have

∑mj

k=1 Pr(1|[j, k]) ⩽ 1,∀j,
but from the definition of the Lovász number we also
have

∑χ(Ḡ)
j=1

∑mj

k=1 Pr(1|[j, k]) = χ(Ḡ). Therefore, it
must be

∑mj

k=1 Pr(1|[j, k]) = 1 for all j. The GHZ-type
paradox in Eq. (1) is thus recovered.

Theorem 2. The lower bound of the number of context-
cover in a GHZ-type paradox is three. There exists no
GHZ-type paradox using one or two context-cover.

Proof. By Theorem 1, the underlying graph G of exclu-
sivity corresponding to an n-context GHZ-type contex-
tuality has an independence number of α(G) = n− 1.
An n = 1 paradox would require α(G) = 0 which
is a null graph: |V (G)| = 0, where the measurement
events are undefined. An n = 2 paradox would require
α(G) = 1 which is a complete graph, but a complete
graph also has a Lovász number of ϑ(G) = 1 = α(G),
and thus its corresponding noncontextuality inequality
cannot have any quantum violation.

Theorem 3. No strongly regular graph hosts a three-
context GHZ-type paradox.

Proof. We sketch the proof in this section and defer
the complete proof to the Supplementary Material. A
strongly regular graph with four parameters n, k, a and
c, denoted by SRG(n, k, a, c), is a n-vertex k-regular
graph such that every two adjacent vertices have a
common neighbors, and that every two non-adjacent
vertices have c common neighbors. By Theorem 1, we
only need to prove the nonexistence of a strongly reg-
ular graph G with a clique number of two and a chro-
matic number of three such that the Lovász number of
its complement graph is also three.

The proof is by exhaustion. As the exclusivity graph
for a three-context GHZ-type paradox is triangle-free,
we have a = 0. Starting from this observation, we
can study the spectrum of the adjacency matrix of
G, and find its only three nonzero eigenvalues are k
and

(
±
√
c2 + 4(k − c)− c

)
/2. Using the Hoffman–

Delsarte eigenvalue bound [70, 71], we link the eigen-
values to the known graph constants to have c ⩽
k ⩽ 2c + 3; the condition can be further narrowed
to k ∈ {c, 2c + 1} by looking at the multiplicities of
the eigenvalues. Finally, for both of the cases, we
show that the resulted graph cannot satisfy the desired
graph-constant constraints.
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Fig. 5. Numeric settings. (a) An orthogonal representation of the Perkel graph obtained from Lovász semidefinite
programming and Cholesky decomposition. (b) The Gram matrix of the orthogonal representation of the Perkel graph.
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Theorem 4. If there exists a Kochen–Specker set con-
sisting of only four complete contexts, then those con-
texts are all disjoint.

Proof. The proof is by contradiction. Let the four com-
plete contexts be {Ci}4i=1. Without loss of generality,
we can assume C1 ∩ C2 ̸= ∅ and v0 ∈ C1 ∩ C2. Ac-
cording to the relation between GHZ-type proof and
Kochen–Specker set [24], we can obtain the exclusivity
graph G of a GHZ-type proof by removing v0 and other
vertices connected to v0, especially all other vertices
in C1 and C2. Consequently, this exclusivity graph
G can be covered by two cliques, which implies that
ϑ(G) ≤ 2. Since it stands for a GHZ-type proof, α(G)
should be strictly less than ϑ(G), thus the only pos-
sibility is that α(G) = 1. This can only happen in
the case that the graph can be covered by one clique,
where ϑ(G) = α(G) = 1. This contradicts the assump-
tion that G is the exclusivity graph of a GHZ-type
proof.

Number of context and context-cover. In calcu-
lating the number of contexts in a GHZ-type paradox,
two definitions are possible. The number of context is
the number of all orthonormal basis that must be used
to derive the deterministic contradiction between the
noncontextual and quantum theory [25, 67]. Here, we
define the number of context-cover as the number of
contexts required to include all the elementary events
in a GHZ-type paradox. As we have discussed before,
the number of context-cover determines the quantum-
classical ratio.

In the graph-theoretic approach, the number of con-
text and context-cover and are naturally linked to the
graph constants of the exclusivity graph, G, corre-
sponding to the events in a GHZ-type paradox. Note
that E(G) only includes the exclusivity relations that

are necessary for deriving the logical paradox and ex-
cludes the orthogonal relations that “accidentally” ap-
pear at finding the numeric solution of the exclusivity
graph. In Theorem 1, we have proved that the num-
ber of context-cover is the (vertex) chromatic number
of Ḡ or the vertex clique cover number of G, denoted
by vcc(G). In the same vein, the number of context
is the edge chromatic number of Ḡ or the edge clique
number of G, denoted by ecc(G). As for any graph
ecc(G) ⩾ vcc(G) holds, the number of context is at
least not less than the number of context-cover.

According to Vorob’ev’s theorem, a necessary con-
dition for the existence of a quantum realization pro-
ducing contextuality is that the graph of compatibil-
ity of the observables has cycles of length more than
3 [25, 72]. Therefore, the minimal number of proof-
context in a GHZ-type paradox is at least four, which is
saturated by e.g., GHZ and Mermin’s construction [15].
In our case, as the Perkel graph has an edge chromatic
number of seven, the proof of its corresponding GHZ-
type paradox must use at least seven contexts.

Experimental setup. The full experimental setup is
shown in Fig. 6. A frequency-locked pulsed fiber laser
with a repetition rate of 1/τ = 75.91 MHz, a cen-
tral wavelength of 1560 nm, and a spectral bandwidth
of 12 nm was adopted as the source of pulsed coher-
ent states. From the parameters of the laser, we esti-
mate the maximal displacement of the coherent state
as α̃ = 1.014 × 104, so the shot noise from the fluctu-
ation of photon numbers between individual pulses is
comparatively small.

The 37-dimensional state was encoded in six direct-
sum subspaces and implemented in different runs of the
experiment; each of the subspaces was in turn repre-
sented by up to seven pulsed coherent states. To imple-
ment both the preparation of the initial state and the
adjustment of the convolution basis, we utilized a com-
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Fig. 6. Detailed experimental setup. The blue lines de-
note optical fibers, and the red strokes indicate light prop-
agating in free-space sessions. Electronic connections are
denoted by gray lines. The beam-splitter ports marked
with the same color have higher transmissivity. Acronyms:
AFG arbitrary function generator, IM intensity modulator,
Osc. oscilloscope, PM phase modulator, PZT piezoelectric
fiber stretcher.

mercial lithium niobate intensity modulator (Thorlabs
LN81S-FC) with a power extinction ratio of 28 dB.
The intensity modulator only generated preparation
and measurement basis with real coefficients, but it
can be easily upgraded to realize complex coefficients
by employing an additional phase modulator. The in-
tensity modulator was driven by an arbitrary function
generator which has a rising and falling edge time mea-
sured as 7 ns. Due to the limited bandwidth of the
function generator, we could not address the individ-
ual pulses from the laser. Instead, we always modu-
lated three consecutive pulses and only measured the
amplitude of the middle one to avoid clashing with the
modulation edges; this resulted in an effective pulse
frequency of 1/∆t = 1/(3τ).

To construct the fiber ring for convolution, we uti-
lized two fiber beamsplitters with an amplitude split-
ting ratio of 90:10 and a free-space delay line. The
length of the entire delay line was carefully adjusted to
3τ to align the pulses at different times and maximize
the visibility of the interference. We manually cali-
brated the kernel of convolution instead of using the
round-trip loss of the fiber ring cavity (estimated to be
27%) as the pulses emitted from the ring after different
numbers of circulation would have different spectral
distribution and interference visibility with the local
oscillator. The homodyne detector used in our exper-
iment (Thorlabs PDB480C-AC) had a linear response
to power difference up to 5 µW as shown in Fig. 7, and
all experimental points fell well in the linear regime.

Phase stabilization. The experimental setup con-
tained two interference points that needed to be phase
stabilized. The first is the convolution ring which is a
fiber cavity and we adopted the Pound–Drever–Hall
technique [73] to stabilize its length. Concretely, A
3.2 kHz sine-wave modulation signal is sent from the
servo to a piezoelectric crystal attached to a mirror
in the free-space delay line. The voltage would dither
the convolution phase by ±3◦ maximum. As shown in
Fig. 2, we monitored the optical power at one port of
the input coupler of the convolution ring. Essentially,
this is the “reflection” from the fiber cavity and it will
be minimized when the convolution phase is an integer

Exp. Max.

0 2 4 6 8
0.0
0.5
1.0
1.5
2.0
2.5

1

10

102

103

104

Power di�erence / μW

  H
D

re
sp

on
se

/V

Events
registered

Fig. 7. Detector response curve. Data points: homo-
dyne detector (HD)’s voltage response to the power differ-
ence between two input ports. Curve: linear fit of those
data points with power differences below 5 µW; the 1 dB
gain compression point is at 6.63 µW. Histogram: distri-
bution of the power differences of the data points regis-
tered during the experiment; the maximal power difference
was 3.05 µW and all data points fell in the linear response
range.

multiply of 2π. By demodulating the monitor signal,
the servo would be able to find out the direction of the
phase drift, and then send a voltage to the piezo to
correct the drift and establish the phase lock.

The second phase lock is required to align the phase
of the local oscillator with the rest of the setup. With
our lock–measure cycle, this can be ensured by maxi-
mizing the power difference at the local oscillator dur-
ing the lock stage. To this purpose, a dither signal
would again be needed to reveal the direction of the
phase drift. We sent the 7.2 kHz sine-wave modulation
to a fiber stretcher (Optiphase PZ2) in the local oscil-
lator path. The choice of the frequency was to both
accommodate the intrinsic frequency response of the
fiber stretcher and avoid the high-order harmonic from
the upstream lock’s dithering. After demodulating and
low-pass filtering the signal from the monitor port of
the homodyne detector, the resulted error signal would
be proportional to the quadrature amplitude (i.e., out-
of-phase part to the local oscillator) of the setup, and
the servo can drive the fiber stretcher accordingly to
stabilize the phase of the local oscillator.

Phase error readout. As elaborated in the main
text, both the convolution and the homodyne phase
will remain almost constant during the entire measure
period; we denote them as φ and ϕ, respectively. To
extract the phase errors, we also need to know the
entire kernel of convolution {c1, c2, . . . , ck, . . .}. We
pre-calibrated up to 12 terms before the experiment
and found the effect of the other terms was sufficiently
small. During the locking stage, the readout value of
the homodyne detector can be expressed as:

h0 = α̃Re(e−iϕ
∑
k=1 cke

ikφ). (10)

The phase error readout procedure worked as fol-
lows. Firstly, from the state of the lock stage, we added
a π/2-phase to the local oscillator through the phase
modulator. When the modulated pulse arrived at the
homodyne detector (first green band in Fig. 3(a)), the
homodyne value became:

h1 = α̃Re(e−iϕ+π/2
∑
k=1 cke

ikφ). (11)
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Secondly, we kept the state of the phase modulator
and shut off the intensity modulator. This caused no
light to enter the fiber cavity and the existing pulses
started to leak out of the convolution ring. After three
round-trip time (second green band in Fig. 3(a)), the
homodyne value became:

h2 = α̃Re(e−iϕ+π/2
∑
k=4 cke

ikφ). (12)

Comparing the values of h0, h1, and h2 gives the de-
sired phase errors φ and ϕ.

Correcting for non-ideal exclusivity. To measure
the correlator terms in Eq. 2 and arrive at Eq. 8, we
notice that the term P (1, 1|i, j) as the probability of
the measurement outcome on the first projector i is
+1, and then the measurement outcome of the post-
measurement state, which is the +1-eigenstate of the
projector i, on the second projector j is again +1.
Experimentally, we prepare the +1-eigenstate of the
projector i, and measure it with the other projectors
that are supposed to be orthogonal to it. Define the
probability of finding the +1-eigenstate of the i-th pro-
jector on the +1-eigenstate of the j-th projector to be
P (1|j, i = 1), we have:

P (1, 1|i, j) = P (1|i)P (1|j, i = 1). (13)

By iterating the procedure over all the possible combi-
nations (i, j) ∈ E(G), we obtained all the probabilities
P (1|j, i = 1) as shown in Fig. 4(a). The probabilities
P (1|j, i = 1) have already been recorded in the obser-
vation of the GHZ-type paradox. From these proba-
bilities, we can calculate the desired correction due to
the non-ideal exclusivity.

Error analysis. We identify four main sources of the
experimental error. The first was the dither for the
phase lock. To lock at the top of an interference fringe
generally necessitates a dither signal and demodula-
tion, but the dither also disturbs the lock itself. In our
experiment, the inferred level of phase noise was very
close to the dither signal, and we could not further
weaken the dither and still have a stable lock. This
could be fixed by only sending the dither signal dur-
ing the lock stage and freezing the output of the servo;

such an operation, although cannot be incorporated
in our current setup, has native support in some soft-
ware [74] that implements versatile field-programmable
gate array-based phase locks.

The second was the imperfection of the intensity
modulator, which has both a limited extinction ratio
and a drift of zero-output voltage due to the heating
of the element. We strived to eliminate the drift by
sending the pulses used in the experiment for one hour
before data registration so the element was sufficiently
“thermalized” with the environment. This could be
further improved by cascading more intensity modula-
tors to increase the extinction ratio and introducing a
feedback control loop to auto-correct the zero-output
voltage.

The third was the imperfect interference visibility.
The laser used in the experiment was a femtosecond
pulsed laser and the pulses were very localized in space.
After the spectral filtering, we could only observe an
interference when the distance of the two pulses was
below 0.4 cm. This made the adjustment of the fiber
ring’s length challenging. Moreover, the chromatic dis-
persion in the fiber ring system causes the pulses trav-
eled different times inside the ring to have different
spectra. As such, even when a specific preparation and
measurement setting should result in perfect destruc-
tive interference, the output from the fiber ring could
not be eliminated and would be seen by the homodyne
detector. We consider this effect as the culprit for the
imperfect exclusivity in Fig. 4(a).

Finally, that we cannot fully exploit the 10-bit read-
out precision of the oscilloscope also limited the preci-
sion of the experiment. Due to the phase error read-
out scheme, the entire oscilloscope trace must not go
out of range during the lock period (otherwise h0 in
Eq. (10) cannot be measured). This prevented us from
selecting a smaller voltage scale and achieving better
readout resolution. In the future, it would be helpful
to put the phase error estimation subroutine to the
servo and use the full precision of the oscilloscope to
register the data.
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1. GHZ-type paradoxes for quantum computing

It is known that the Clifford (Gaussian) subtheory in discrete- (continuous-)variable quantum theory is ef-
ficiently simulable with a classical computer [75, 76] and cannot provide acceleration for quantum computing.
Starting from this observation, contextuality has been flagged as crucial for quantum computing through its link
to negativity [77, 78]. On the other hand, although it is also known that the simulation of contextual correlations
is hard (e.g., by requiring a quadratic cost of memory [79, 80]), how to derive practical acceleration from con-
textual relation is a more subtle topic. In this regard, the Greenberg–Horne–Zeilinger (GHZ)-type contextuality
is a noteworthy resource. Here, we discuss how the “perfect correlations” in the GHZ-type contextuality enable
the three different approaches to quantum computing; for an extended review of the role of contextuality (not
necessarily GHZ-type) in quantum computing we would point the readers to the Section VIA of Reference [25].

• GHZ-type contextuality signifies maximal magic.—Howard et al. [20] identified contextuality as the neces-
sary condition for a quantum state to be useful in the “magic state distillation” subroutine. which enables
universal quantum computation. In this paper, the constructed noncontextuality inequality also comes from
the graph-theoretic approach. Moreover, for an odd prime dimension p, the exclusivity graph Gp satisfies
α(Gp) = p3, ϑ(Gp) = χ(Gp) = p3 +1, where Ḡ means the graph complement of G. From the Theorem 1 in
the main text, we know that Gp is the exclusivity graph of a (p3+1)-context GHZ-type contextuality: when
a quantum state is the maximal resource state for magic state distillation, it will demonstrate a GHZ-type
contextuality using Howard et al.’s projector construction.

• GHZ-type contextuality promotes measurement-based quantum computation.—Using the sheaf-theoretic ap-
proach to contextuality, Abramsky et al. [19] found that when one uses an empirical model with a contextual
fraction of λ for an l2-measurement-based quantum computing task, the success probability of the task will
be upper bounded by λ. The contextual fraction of an empirical model is the infimum of the weight of the
contextual part when the model is decomposed into a noncontextual model and a contextual, no-signaling
model. For a no-signaling model, the sum of the event probabilities is upper bounded by the fractional
packing number α∗(G) of the exclusivity graph G corresponding to the set of events. In the case of GHZ-
type contextuality, the sum of the event probabilities is ϑ(G) = χ(Ḡ) and as, from graph theory, we know
that χ(Ḡ) ⩾ α∗(G), we are able to conclude that the empirical model in a GHZ-type contextuality has a
contextual fraction of 1. Therefore, the model will be an ideal resource for measurement-based quantum
computation. The application has been established in some small-scale cases. For example, a tripartite
GHZ-type correlation can enable the deterministic computation of an nand gate [17]. Such a correlation
can promote an oracle only able to implement parity check to a universal computer and is thus of practical
relevance.

• GHZ-type contextuality brings shallow-circuit quantum advantage.—The quantum advantage in shallow
circuits refers to a type of computational problem, that is solvable by a constant-depth quantum circuit
with high certainty, whereas any classical circuit solving the problem with the same certainty must have
a depth growing logarithmically with the input size. Such a quantum advantage does not rely on the
polynomial hierarchy in the computational complexity theory; it is known to exist [21] and can tolerate a
small amount of noise [22]. At the center of this kind of quantum advantage is the GHZ-type contextuality:

https://doi.org/10.1016/0012-365X(72)90024-6
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the quantum circuit can solve the problem due to its ability to generate “perfectly” contextual correlations.
The contextual correlation must be GHZ-type in order to guarantee the output is deterministic regardless
of the input size; a Bell-type correlation that only statistically outperforms a local hidden-variable model
will fail to do so. This way, the GHZ-type contextual correlation levitated the memory or communication
cost in the classical circuit which finally converted into the penalty in circuit depth. Also, the GHZ-type
contextuality is necessary to bring the error rate of the circuit below the fault-tolerance threshold and make
the quantum advantage robust.

All the above examples unravel a strong link between GHZ-type contextuality and quantum computing. Remark-
ably, at least two of these approaches (i.e., measurement-based quantum computing and quantum advantage in
shallow circuits) require a GHZ-type contextuality beyond a Bell-type correlation. In this regard, the Theorem 1
in the main text capable of identifying GHZ-type contextuality from the exclusivity graph of measurements paves
a step toward these applications. Also, the 37-dimensional GHZ-type contextuality has a large quantum–classical
ratio of 3/2 that exceeds all the known previous examples for a single quantum system (see, for example, Figure
S2 in the supplemental material of Reference [56] for a comparison). We envisage that a shallow quantum circuit
can be constructed based on the contextuality identified here to implement a deterministic calculation of a target
function, with a success probability impossible to achieve using any multi-valued classical circuit that has a fixed
depth, and thus converting the large quantum–classical ratio to a strong quantum advantage.

2. The original GHZ paradox in the probability form

Consider the following Pauli product measurements on a three-qubit system: M1 = σ
(1)
x σ

(2)
y σ

(3)
y , M2 =

σ
(1)
y σ

(2)
x σ

(3)
y , M3 = σ

(1)
y σ

(2)
y σ

(3)
x , and M4 = σ

(1)
x σ

(2)
x σ

(3)
x . If the system is initiated at a state so the measurement

outcome of M1,M2 and M3 are all +1, then a noncontextual theory will predict the measurement of M4 on
the system definitely returns +1, because the assumption of noncontextuality means the outcome of measuring
σ
(1)
x will not depend on whether it is measured with σ

(2)
x σ

(3)
x as in M0 or σ(2)

y σ
(3)
y as in M1; this is similar for

σ
(2)
x , σ

(3)
x . Taking into account the involutory of Pauli operators, the outcome of M0 in such theories will be the

product of M1,M2 and M3 that is +1. However, quantum theory is contextual: the only three-qubit state |ψ⟩
giving ⟨M1⟩ψ = ⟨M2⟩ψ = ⟨M3⟩ψ = +1 is the GHZ state |ψ⟩ = |GHZ⟩ = (|000⟩ − |111⟩)/

√
2, which satisfies

⟨M4⟩GHZ = −1.
Each of the four Pauli product measurements is composed of three local dichotomic measurements. If the

outcomes of M1 through M4 are specified as in the above GHZ paradox, then the local dichotomic measurements
corresponding to each Pauli product measurement will have four possible combinations. For example, M4 = −1

implies either σ(1)
x = σ

(2)
x = σ

(3)
x = −1, or that one and only one local measurement among σ(1)

x , σ
(2)
x and σ

(3)
x

evaluates to −1. Let Π
±(ν)
µ = (11 ± σνµ)/2, then the four elementary events can be expressed as:

1|[4, 1] : = 1 |Π−(1)
x ⊗Π−(2)

x ⊗Π−(3)
x ,

1|[4, 2] : = 1 |Π−(1)
x ⊗Π+(2)

x ⊗Π+(3)
x ,

1|[4, 3] : = 1 |Π+(1)
x ⊗Π−(2)

x ⊗Π+(3)
x ,

1|[4, 4] : = 1 |Π+(1)
x ⊗Π+(2)

x ⊗Π−(3)
x .

(S1)

In the same vein, we can define the elementary events 1|[j, k], j ∈ {1, 2, 3}, k ∈ [1, 4]. The exclusivity graph for
all these events, as discussed in the main text, is the graph complement of the Shrikhande graph, so the total
number of events that are allowed to happen according to any noncontextual model is no more than 3 for any
initial state. That is, given

∑4
k=1 Pr(1|[j, k]) = 1, j ∈ {1, 2, 3} it must be

4∑
k=1

Pr(1|[4, k]) NCHV
= 0. (S2)

However, according to the calculated quantum expectations, the total probabilities of all the four groups of events
will saturate the upper bound allowed by the principle of exclusivity, that is,

4∑
k=1

Pr(1|[j, k]) Q
= 1, j ∈ [1, 4]. (S3)

This completes the transformation of the original GHZ paradox into the probability form as in the Eq. (1) in the
main text.
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3. Quantum realization of the exclusivity graph

Here we discuss how to obtain a detailed numeric setting for a set of rays that demonstrates the GHZ-type
paradox from the exclusivity graph. LetG be the exclusivity graph of interest with |V (G)| = N , where V (G) is the
vertex set of G. The Gram matrix B here is an N ×N matrix associated with the orthogonal representation [43]
of the graph complement of G. Specifically, it can be calculated using semidefinite programming from the dual
form of the Lovász optimization:

max
B

tr(BJ) (S4)

subject to B ≽ 0 (positive semidefiniteness)
Bij = 0, ∀ (i, j) ∈ E(G) (orthogonality)
tr(B) = 1 (normalisation).

Here, J is an N × N matrix with all of its entries being 1, (·) ≽ 0 means the matrix on the left-hand side of
the operator is positive semidefinite, and E(G) is the edge set of G. The second constraint is due to that when
(i, j) ∈ E(G), the rank-1 projectors Πi = |vi⟩ ⟨vi| and Πj = |vj⟩ ⟨vj | corresponding to the vertices i and j are
exclusive: ΠiΠj = 0, so the rays |vi⟩ and |vj⟩ must be orthogonal, that is, Bij = ⟨vj |vi⟩ = 0. The maximum
of the objective function is precisely the Lovász number of the exclusivity graph, ϑ(G). By running the Lovász
optimization and calculating ϑ(G), the Gram matrix is automatically obtained. In our study, we used the Python
package cvxopt as the optimizer for the semidefinite programming. Since the optimizer is a black-box model we
can only get access to the final output matrix B. After several trials of optimization, we always get the same
Gram matrix in the Extended Data Figure 1, and the solution has Rank(B) = 37.

To work out the set of rays r that give rise to the Gram matrix, we will need to write B as the product of a
real matrix and its transpose:

B = rrT. (S5)

The objective is akin to the Cholesky decomposition where the result is limited to be a lower triangle matrix.
However, the Cholesky decomposition only works for symmetric and positive-definite matrices and thus would not
work directly for the gram matrix here which is not full-rank. Therefore, we take the first 37 rows and columns
of B and denote it as B̃. We can check that B̃ is nondegenerate and thus the Cholesky decomposition can be
run on it. This way, we obtain the first 37 rays. Further, Each of the other 20 rays can be parameterized as a
37-dimensional vector. As the Gram matrix specified their inner product with the existing rays, it is possible to
write these relations as 20 sets of rank-37 linear equations. Due to that B̃ is full-rank, all these linear systems are
uniquely determined, and the last 20 rays can be obtained in a deterministic manner using Gaussian elimination.

For the Lovász optimization of the complementary of the Perkel graph, the solution of B is robust probably
because it has a symmetric form and preserves the symmetry of the graph. We cannot prove the optimality
of the solution found in terms of dimensionality, that is, we cannot exclude the possibility that an orthogonal
representation of the Perkel graph with a Gram matrix rank below 37 exists and saturates the Lovász number.
The primary difficulty is because a rank-constrained optimization is generally not convex and it is not possible to
find a solution with semidefinite programming [81]. We have run several trials of see-saw optimization and cannot
find a rank-36 matrix B saturating the upper bound of the target function and satisfying all the conditions in
(S4).

The best estimation of the lowest dimensional realization seems to come from the existence of the graph’s
orthogonal realization. The lowest dimension d∗(Ḡ) to allow the orthogonal representation of a graph Ḡ to exist
satisfies α(Ḡ) ⩽ d∗(Ḡ) ⩽ χ(Ḡ). In our case, setting Ḡ to be the Perkel graph, we have α(Ḡ) = 19, χ(Ḡ) = 29;
therefore, some improvement for the dimension seems to be allowed, but the resulted orthogonal representation
will still be of quite a high dimensionality. As such, it would not reduce the challenge for the experimental side
by a lot. Instead, it is convenient to use the symmetric Gram matrix as found in the semidefinite programming
and pursue an experimental observation of the high-dimensional GHZ-type contextuality.

4. Pulse encoding

In this subsection, we exemplify how a prepare-and-measure experiment is done in our experiment with a
pulse-sequence encoding. We would like to evaluate the projection probability | ⟨O|a⟩ |2 of the following ray:

a =

{
1√
19
,

1√
19
, . . . ,

1√
19︸ ︷︷ ︸

×19

, 0, 0, . . . , 0︸ ︷︷ ︸
×18

}
, (S6)
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on the measurement basis:

O = {−0.110, 0.170, 0.091, 0.257, 0.040, 0.019,−0.427,−0.131,−0.276, 0.387,

0.112,−0.252, 0.157, 0.233,−0.010,−0.023, 0.119,−0.147,−0.210, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.424,−0.140, 0.074, 0.028,−0.123}. (S7)

The basis here is not any of the 57 rays in the orthogonal representation of the Perkel graph, but it is orthogonal
to the rays #20 through #38. Thus, this projection probability is required to build the probability distribution
on an orthonormal basis. Also, the first seven terms of the intrinsic pulse amplitude ejection ratio from the fiber
ring, normalized against the first pulse, are:

c0 = {1., 0.783, 0.606, 0.465, 0.356, 0.272, 0.208}. (S8)

For convenience, we also denote O0 = {0.208, 0.272, 0.356, 0.465, 0.606, 0.783.1.} as the entry-reversed kernel of
convolution. In Table I, we summarize the meaning of various definitions used in this section.

To measure the detection probability with the subspace method, the first step is to write the ray and basis
into direct-sum decompositions:

a =

6⊕
k=1

ak, where a1 = a2 =

{
1√
19
,

1√
19
,

1√
19
,

1√
19
,

1√
19
,

1√
19
,

1√
19

}
, (S9)

a3 =

{
1√
19
,

1√
19
,

1√
19
,

1√
19
,

1√
19

}
,

a4 = a5 = a6 = {0, 0, 0, 0, 0, 0} .

and

O =

6⊕
k=1

Ok, where O1 = {−0.110, 0.170, 0.091, 0.257, 0.040, 0.019,−0.427}, (S10)

O2 = {−0.131,−0.276, 0.387, 0.112,−0.252, 0.157, 0.233},
O3 = {−0.010,−0.023, 0.119,−0.147,−0.210},
O4 = O5 = {0, 0, 0, 0, 0, 0},
O6 = {0, 0.424,−0.140, 0.074, 0.028,−0.123}.

This way, the inner product can be expressed as ⟨O|a⟩ =
∑b
k=1 ⟨Ok|ak⟩ as in the Eq. (7) in the main text.

The second step is to construct the correct modulation signal for the intensity modulator to measure the inner
products ⟨Ok|ak⟩. Throughout this part, we always make the intensity modulator work in a small transmission
range, so the amplitude after the intensity modulator has a linear response to the modulation voltage. The
modulation signal works by both creating the desired input state a and changing the natural convolution basis
O0 to the measurement basis Ok, k ∈ [1, 6]. To this purpose, the amplitude of the pulses in the k-th pulse sequence
generated by the intensity modulator should be proportional to Vk = ak ◦ Ok ◦ O◦−1

0 . Here, ◦ means Hadamard
(entry-wise) product and (·)◦−1 means Hadamard (entry-wise) inverse. In case the dimension of O0 does not
match that of ak and Ok, the excess entries of O0 are truncated. Additionally, to better utilize the linear range of
the intensity modulator, we also sort the entries of the basis Ok in an absolute-value descending order, hereafter
denoted as O↓

k, and use O↓
k to replace Ok in the experiment. The entries of the input states are also adjusted

accordingly.

Symbol Definition

a (O) Desired input state (measurement basis)
c0 The kernel of convolution, determined only by the fiber ring
O0 The kernel of convolution, but with the entry written in a reversed direction

ak (Ok) The k-th part of a (O) in the direct-sum expansion: a =
⊕b

k=1 ak, O =
⊕b

k=1 Ok, Dim(ak) = Dim(Ok)

O↓
k A list with the same elements as Ok but sorted in the absolute-value descending order

a↓
k A list with the same elements as ak but sorted according to that (a↓

k)m = (ak)n if (O↓
k)m = (Ok)n

V ↓
k (V ̸↓

k ) Modulation voltages for generating a pulse sequence with the amplitudes being
〈

O↓
k|a

↓
k

〉
(⟨Ok|ak⟩)

ã A ray reconstructed by measuring the amplitudes of all ⟨Ok|ak⟩’s: the theoretical value is ãk = ⟨Ok|ak⟩
Õ An all-one vector: Õ = {1, 1, . . . , 1}. Also, Dim(ã) = Dim(Õ) = b

Table I. Summary of various symbol definitions used in the section 4.
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We use the second direct-sum subspace as an example. According to the definition above, the modulation
voltage we applied on the intensity modulator, after sorting the entries, should be proportional to

V ↓
2 = a2 ◦ O↓

2 ◦ O◦−1
0 (S11)

=

{
1√
19
,

1√
19
,

1√
19
,

1√
19
,

1√
19
,

1√
19
,

1√
19

}
◦
{
0.112

0.208
,−0.131

0.272
,
0.157

0.356
,
0.233

0.465
,−0.252

0.606
,−0.276

0.783
,
0.387

1

}
= {0.540,−0.481, 0.441, 0.501,−0.417,−0.352, 0.387}/

√
19.

This corresponds to the waveform displayed in the Fig. 3 in the main text. For convenience, we also show it here
in the left subplot of Fig. S1. On the other hand, if we did not implement the sorting procedure, the modulation
voltage would become:

V ̸↓
2 = a2 ◦ O ̸↓

2 ◦ O◦−1
0 (S12)

=

{
1√
19
,

1√
19
,

1√
19
,

1√
19
,

1√
19
,

1√
19
,

1√
19

}
◦
{
−0.131

0.208
,−0.276

0.272
,
0.387

0.356
,
0.112

0.465
,−0.252

0.606
,
0.157

0.783
,
0.233

1

}
= {−0.629,−1.01, 1.09, 0.241,−0.417, 0.201, 0.233}/

√
19.

This waveform, corresponding to the right subplot of Fig. S1, would thus require larger modulation amplitudes
for some of the entries, and become more susceptible to the non-perfect linear response of the modulator.

The final step is we register the homodyne amplitude when the pulses from all the seven time-bins have entered
the ring, and use this for all the subspaces to create a new pulsed state. In our case, we measured these six
homodyne amplitudes to be: ã = {1.389, 4.389,−1.650, 0.756, 0.756, 5.66316}. The values are direct readouts
from the oscilloscope trace and no normalization is needed. By taking this as a new ray and convolving it with a
unit kernel Õ = {1, 1, 1, 1, 1, 1} using again the above-mentioned procedure, we obtained the final unnormalized
inner product ⟨Õ|ã⟩. Normalizing the square of the inner product across an orthonormal basis yields the detection
probabilities of different measurements.

5. Proposed improvement of the setup

As we mentioned in the main text, the current setup is unable to observe contextuality at the event-level by
producing individual events and measure their probability. It is thus not fully compatible with the requirements
of a noncontextual hidden-variable theory, However, we believe that it is possible to modify the setup to accom-
modate the requirements of the standard noncontextual model and, at the same time, manifest contextuality.
The key point is to introduce an operation in the measurement procedure that (1) produces event-level outcomes
and (2) induces negativity to the Wigner function. A photodetection process at the last stage of the measure-
ment (labeled as “Round b+1” in Fig. 2c in the main text) will satisfy both of the requirements and promote
the current experiment to a bona fide contextuality test. This extended schematic setup is shown in Fig. S2.

The setup in Fig. S2 contains three more stages compared to our setup. The first is that the encoding of the
high-dimensional state should happen on the different segments of a single pulse train. At the beginning of the
setup, a routing and delaying unit is added to enable the measurement from round 1 to round b in the main setup
to happen one by one in the same setup. The switch and routing between MHz-frequency pulses are possible with
commercial electro-optical modulators [38] and the fiber delay lines for separating different segments of pulses
will be of moderate length. Moreover, it appears that the relative phases between different delay lines does not
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Fig. S1. Explanation of waveforms. Left: The pulse encoding for evaluating the inner product ⟨O2|a2⟩. Right: The
effect of sorting the entries of O → O↓. This is how the pulse for the intensity modulator needs to be if the entries are not
sorted. Note the amplitude required to encode some of the entries exceeds the amplitude in the locking stage.
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Basis selection Convolution HomodyneRouting/delaying Feedforward PD

+
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Fig. S2. Proposed setup modification for combining different measurement stages, “discretizing” the measurement outcome,
producing Wigner negativity and making the experiment meet the prerequisites of the NCHV theory. Comparing with
the main setup, the modification is twofold: a delay and switch stage is added, and the last stage of measurement uses
feedforward and photodetection. SW switch, PD photodetector.

need to be locked: by adding a pilot wave in front of every segment, the phase between them can be individually
determined, which will greatly reduce the challenge due to the phase locking of long fibers.

The second point of change is that, after the homodyne detection, the outcomes would be sent to a field
programmable gate array (FPGA) for real-time processing, thus the b-rounds of homodyne measurement outcomes
would be stored inside the FPGA, and the FPGA would make another round of preparation process, but this
time with the quantum state encoded on a single photon. A photodetection process at the end of the setup would
then project the input state on a single basis. This way, the measurement stage starting from the “basis” selection
until the photodetection would constitute a mapping from a Hilbert space to an event-level outcome, and conform
to the requirements of a NCHV theory. Further, changing the power detection to photodetection will maintain
the probability, so we would expect to observe the same amount of contextuality with the modified setup. We
consider encoding the photonic qudit on the spatial mode degree of freedom using spatial light modulation as a
possible approach [56]. This kind of setup is also compatible with a FPGA-based control system [82, 83]. Finally,
the FPGA for doing the necessary calculation and implementing the feedforward operation itself was available
in the setting of coherent Ising machine [31, 32].

6. Full proof of the Theorem 3

In this subsection, we prove that there is no strongly regular graph with clique number 2 and chromatic number
3 such that the Lovász number of its complement graph is 3. By the Theorem 1 in the main text, it means no
strongly regular graph hosts a three-context GHZ-type paradox.

A strongly regular graph with four parameters n, k, a and c, denoted by SRG(n, k, a, c), is a n-vertex k-regular
graph such that every two adjacent vertices have a common neighbors, and that every two non-adjacent vertices
have c common neighbors. The theory of strongly regular graphs was introduced by Bose [52] in 1963 and was
then used in many different mathematical fields, such as partial geometry [52], group theory [84] and coding
theory [85].

Before proving the main lemma, let us list out some necessary symbols. For any graph G, we use A(G), α(G),
ω(G), χ(G) and ϑ(G) to denote its adjacent matrix, independence number, clique number, chromatic number and
Lovász number, respectively. Suppose that there exists a strongly regular graph G = SRG(n, k, a, c) satisfying
ω(G) = 2, χ(G) = 3 and ϑ(Ḡ) = 3. Note that as ω(G) = 2, we have a = 0.

We will first establish an inequality that c ⩽ k ⩽ 2c + 3. Let A = A(G). We will consider the entries of A2.
For any two vertices i and j, (A2)ij is the number of walks of length 2 which starts at i and ends at j. So for
adjacent vertices i and j, (A2)ij = 0 because i and j has no common neighbors. For non-adjacent vertices i and
j, (A2)ij = c because i and j has exactly c common neighbors. And for any vertex i, (A2)ii = k because G is a
k-regular graph. Therefore, we have A2 = c(J −A) + (k− c)I, where J is the n×n matrix with all entries equal
to 1 and I is the n× n identity matrix. This implies that A has exactly three different eigenvalues k, λ1, λ2 such
that λ1 and λ2 are the roots of λ2 + cλ− (k − c) = 0. Therefore

λ1 =
−c−

√
c2 + 4(k − c)

2
, and λ2 =

−c+
√
c2 + 4(k − c)

2
. (S13)

The famous Hoffman–Delsarte [70, 71] eigenvalue bound says that for n-vertex k-regular graph H, we have
α(H) ⩽ −τ

k−τ n, where τ is the smallest eigenvalue of A(H). Using this bound, we have

α(G) ⩽
−λ1
k − λ1

n. (S14)

Also, since α(G)χ(G) ⩾ n, we get another inequality

3 = χ(G) ⩾
k − λ1
−λ1

=
2k + c+

√
c2 + 4(k − c)

c+
√
c2 + 4(k − c)

. (S15)
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By solving this inequality, we have c + 2 −
√
c2 + 4 ⩽ k ⩽ c + 2 +

√
c2 + 4. Since k, c are non-negative integers

and c ⩽ k, we now have

c ⩽ k ⩽ 2c+ 3. (S16)

Next we show that in fact k only can be two possible integer values, namely k ∈ {c, 2c+1}, by considering the
multiplicities of λ1 and λ2. Let mi be the multiplicity of λi for i ∈ {1, 2}. Since the multiplicity of k is one, we
have m1 +m2 = n− 1; also by considering the trace of A, we get m1λ1 +m2λ2 + k = 0. Solving the above two
equations, we obtain that

m1 =
(n− 1)λ2 + k

λ2 − λ1
=
n− 1

2
+

−k2 + (2− c)k

2
√
c2 + 4(k − c)

. (S17)

As m1 is an integer, we conclude that
√
c2 + 4(k − c) must be an integer. Using c ⩽ k ⩽ 2c+ 3, we have

c ⩽
√
c2 + 4(k − c) ⩽

√
c2 + 4c+ 12 < c+ 4. (S18)

So
√
c2 + 4(k − c) ∈ {c, c+ 1, c+ 2, c+ 3}. An easy analysis shows that k ∈ {c, 2c+ 1}.

By considering the number of paths of length 2 with a fixed an endpoint in G, we have an equality (n−k−1)c =
k(k − 1). Therefore, n = 2c when k = c, and n = 6c+ 4 when k = 2c+ 1. That is, G is either SRG(2c, c, 0, c) or
SRG(6c + 4, 2c + 1, 0, c). In the former case, G =SRG(2c, c, 0, c) must be a complete bipartite graph such that
each part has exactly c vertices. Therefore χ(G) = 2, a contradiction. So from now on, we only need to consider
the later case G=SRG(6c+ 4, 2c+ 1, 0, c).

We first consider the cases when c ⩽ 2. If c = 0, then G is exactly a single edge, implying that χ(G) = 2,
a contradiction. If c = 1, then G =SRG(10, 3, 0, 1) is unique, i.e., the famous Peterson graph [86]. So we have
ϑ(Ḡ) = 5

2 [41] which is again a contradiction. If c = 2, then G =SRG(16, 5, 0, 2) is also unique, i.e., the famous
Clebsch graph [87]. In this case, we have χ(G) = 4, a contradiction.

It remains to show that G=SRG(6c+ 4, 2c+ 1, 0, c) does not exist for c ⩾ 3. Suppose such G exists. Take an
arbitrary vertex v in G. Let N(v) denote the set of neighbors of v, and V1 denote the non-neighbors of v. As
G has no triangles, N(v) is an independent set of size 2c + 1 and |V1| = 4c + 2. By the properties of strongly
regularity of G, any vertex w in N(v) has exactly 2c neighbors in V1, and any vertex u in V1 has exactly c
neighbors in N(v) and c+ 1 neighbors in V1.

Fix a vertex u in V1. Because c ⩾ 3, we can take three different neighbors w1, w2, w3 of u in N(v). Let Wi

denote the set of the neighbors of wi except v for all i ∈ {1, 2, 3}. Then Wi ⊆ V1 and Wi is an independent
set of size 2c for all i ∈ {1, 2, 3}. Moreover, if z is a neighbor of u in V1, z cannot be a neighbor of either
w1, w2 or w3. So we have N(u) ∩ V1 ⊆ V1 \ (W1 ∪W2 ∪W3). Since any two non-adjacent vertices in G have
exactly c common neighbors and v is a common neighbor of w1, w2 and w3, we have |W1 ∩W2| = c − 1 and
|W3 ∩ (W1 ∪W2)| ⩽ |W3 ∩W1|+ |W3 ∩W2| = 2c− 2. Therefore |W1 ∪W2| = 3c+ 1 and thus |W1 ∪W2 ∪W3| ⩾
(3c+ 1) + 2c− (2c− 2) = 3c+ 3. Finally, we can reach a contradiction by the following inequality:

c+ 1 = |N(u) ∩ V1| ⩽ |V1 \ (W1 ∪W2 ∪W3)|
⩽ (4c+ 2)− (3c+ 3) = c− 1.

(S19)

The proof is now complete.


	-12ptExploring the boundary of quantum correlations with a time-domain optical processor
	Abstract
	Contents
	GHZ-type paradoxes for quantum computing
	The original GHZ paradox in the probability form
	Quantum realization of the exclusivity graph
	Pulse encoding
	Proposed improvement of the setup
	Full proof of the Theorem 3



