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Abstract

We prove a new lower bound on the Ramsey number r(ℓ, Cℓ) for any constant C > 1 and
sufficiently large ℓ, showing that there exists ε = ε(C) > 0 such that

r(ℓ, Cℓ) ≥
(
p
−1/2
C + ε

)ℓ
,

where pC ∈ (0, 1/2) is the unique solution to C = log pC

log(1−pC) . This provides the first exponential

improvement over the classical lower bound obtained by Erdős in 1947.

1 Introduction

The Ramsey number r(ℓ, k) denotes the smallest positive integer n such that every red-blue edge
coloring of the complete graph Kn on n vertices contains either a red clique Kℓ (a complete subgraph
on ℓ vertices with all edges red) or a blue clique Kk (a complete subgraph on k vertices with all edges
blue). In 1930, Ramsey [17] proved that r(ℓ, k) is finite for all ℓ, k ∈ N. Since then, understanding
the growth rate of r(ℓ, k) has been a central problem in combinatorics for nearly a century. The
asymptotic study of Ramsey numbers naturally splits into two regimes: the case where ℓ is fixed
and k → ∞ (see [1, 4, 5, 7, 13, 15, 16, 19–21] and references therein), and the case where both
ℓ, k → ∞. In this paper, we investigate the Ramsey number r(ℓ, k) in the latter regime, where both
parameters ℓ and k tend to infinity.

In 1935, Erdős and Szekeres [10] established the first non-trivial upper bound for Ramsey num-
bers, proving that r(ℓ, k) ≤

(
k+ℓ−2
ℓ−1

)
, and in particular that the diagonal Ramsey number satisfies

r(ℓ, ℓ) ≤ 4ℓ. This upper bound remained unchanged until the work of Rödl (unpublished) and of
Graham and Rödl [11] in the 1980s. Thomason [22] was the first to improve it by a polynomial
factor in ℓ when k and ℓ are of the same order. Conlon [8] achieved a landmark result by extend-
ing Thomason’s quasi-randomness method, yielding a superpolynomial improvement when k and
ℓ are comparable in size. This approach was later refined and optimized by Sah [18], who showed
that for any δ ∈ (0, 1/2), there exists cδ > 0 such that r(ℓ, k) ≤ e−cδ(log ℓ)

2(k+ℓ
ℓ

)
holds whenever

ℓ/k ∈ [δ, 1] and ℓ ≥ 1/cδ. A major breakthrough was achieved in 2023 by Campos, Griffiths, Morris
and Sahasrabudhe [6], who proved that

r(ℓ, k) ≤ e−ℓ/400+o(k)

(
k + ℓ

ℓ

)
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holds for all integers ℓ ≤ k, making the first exponential improvement over the Erdős-Szekeres bound.
In particular, this implies the existence of a constant ε > 0 such that r(ℓ, ℓ) ≤ (4−ε)ℓ. Building on a
reinterpretation of this method, Gupta, Ndiaye, Norin and Wei [14] improved both bounds, showing
that r(ℓ, k) ≤ e−ℓ/20+o(k)

(
k+ℓ
ℓ

)
holds for all integers ℓ ≤ k, and in particular r(ℓ, ℓ) ≤ 3.8ℓ+o(ℓ). More

recently, Balister, Bollobás, Campos, Griffiths, Hurley, Morris, Sahasrabudhe and Tiba [3] provided
a different proof of these bounds, along with other generalizations.

For the lower bound on the Ramsey number r(ℓ, k) in the regime where both ℓ and k tend to
infinity, our knowledge remains essentially limited to the classical result of Erdős [9] from 1947.
In this seminal work, Erdős introduced a probabilistic argument that laid the foundation for the
probabilistic method in combinatorics (see [2]). He established the first exponential lower bound on
r(ℓ, k) in the regime where k and ℓ are of comparable size; specifically, for any fixed C ≥ 1,

r(ℓ, Cℓ) = Ω
(
ℓ ·M ℓ

C

)
as ℓ → ∞, 1 (1)

where MC := p
−1/2
C and pC ∈ (0, 1/2] denotes the unique solution to C = log pC

log(1−pC) . Over the
78 years since Erdős’s proof, the only improvement has been a constant-factor refinement of the
original bound, due to Spencer [20] in 1975, via an application of the Lovász Local Lemma.

In this paper, we introduce a model called the random sphere graph and use it to obtain an
exponential improvement over the classical lower bound (1) for the Ramsey number r(ℓ, Cℓ), where
C > 1 is any fixed constant and ℓ → ∞. Our main result is stated below.

Theorem 1.1. For any constant C > 1, there exist ε = ε(C) > 0 and ℓ0 = ℓ0(C) > 0 such that for
all sufficiently large integers ℓ ≥ ℓ0(C),

r(ℓ, Cℓ) ≥ (MC + ε)ℓ, (2)

where MC = p
−1/2
C and pC ∈ (0, 1/2) satisfies C = log pC

log(1−pC) .

Using this result, we can immediately obtain the following corollary, which gives an exponential
improvement on the Ramsey number r(ℓ, k) in the general regime where ℓ and k are of comparable
size. For any δ ∈ (0, 1/2), let cδ > 0 be such that

cδ = min
C∈[1/(1−δ),1/δ]

{
ε(C)

MC
,

1

ℓ0(C)

}
For all ℓ, k ∈ N, let Er(ℓ, k) denote the lower bound obtained by Erdős’s probabilistic argument [9].

Corollary 1.2. For any δ ∈ (0, 1/2), there exists cδ > 0 such that

r(ℓ, k) ≥ (1 + cδ)
ℓ · Er(ℓ, k)

whenever δ ≤ ℓ/k ≤ 1− δ and ℓ ≥ 1/cδ.

The rest of the paper is organized as follows. In Section 2, we introduce our random graph
model, related notations, and discuss several basic geometric properties of this model. In Section 3,
we prove Theorem 1.1 by reducing it to Theorem 3.1 and provide a sketch of Theorem 3.1’s proof.
Section 4 collects several auxiliary lemmas. In Section 5, we introduce the crucial concept of perfect
sequences for unit vectors. Section 6 provides preliminary estimates on perfect sequences, while
Section 7 shows that perfect sequences capture the essential behavior of our problem. Section 8
contains the core technical arguments, where we derive estimates on key quantities. Finally, in
Section 9, we assemble all these estimates to complete the proof of Theorem 3.1. Throughout, for
any constant C > 1, we define pC ∈ (0, 1/2) to be unique solution to C = log pC

log(1−pC) . We denote

[r] := {1, 2, . . . , r}, and unless otherwise specified, all logarithms are base e. For a vector x ∈ Rn,
we define its standard Euclidean norm by |x| =

√
⟨x,x⟩.

1A proof is given in Appendix A, establishing the optimality of this bound via Erdős’s first moment method.
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2 The Random Sphere Graph Gk,p(n)

In this section, we introduce a random graph model based on geometric measure, which serves as
the foundation for our Ramsey construction.

Throughout this paper, let Sk denote the k-dimensional unit sphere embedded in the (k + 1)-
dimensional Euclidean space Rk+1. Let Vol(·) denote the standard surface measure on Sk, and let
x be a point sampled uniformly at random from Sk. For any Borel set A ⊆ Sk, we define the
probability P(A) of A to the probability that x belongs to A, that is,

P(A) = P(x ∈ A) =
Vol(A)

Vol(Sk)
. (3)

Let e denote an arbitrary but fixed point on Sk. For any p ∈ (0, 12 ], define ck,p ≥ 0 as the unique
constant satisfying

P
(
⟨x, e⟩ ≤ −

ck,p√
k

)
= p, (4)

where ⟨x, e⟩ denotes the standard inner product between the vectors x and e.2

Definition 2.1 (Random Sphere Graphs). Let n, k ∈ N and p ∈ (0, 12 ]. The random sphere
graph Gk,p(n) is defined as a complete graph on n vertices x1,x2, . . . ,xn, equipped with a red-blue
coloring on its edges, constructed as follows: (see Figure 1 for an illustration)

• The vertices x1,x2, . . . ,xn are sampled independently and uniformly from Sk;

• Each edge xixj is colored red if ⟨xi,xj⟩ ≤ − ck,p√
k
, and blue otherwise.

Figure 1: The random sphere graph.

Remark. During the 2025 ICBS, we learned that a related random graph model defined in Eu-
clidean spaces, known as random geometric graphs, has been extensively studied in probability

2We often treat a point on Sk and a unit vector interchangeably without distinction.
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theory and theoretical computer science (see the monograph [12]). In this model, vertices are
placed randomly in a region according to a common probability density, and edges are typically
added between pairs of vertices that are close to each other. For example, a common variant on Sk

connects two points x,y ∈ Sk whenever ⟨x,y⟩ exceeds a fixed positive threshold. We emphasize,
however, that this is distinct from the random sphere graph defined above, as it includes neither the
graph of blue edges nor that of red edges. We hope this remark clarifies the relationship between
these two models, which differ in both their underlying concepts and research focus.

It is evident that each edge of Gk,p(n) is colored red with probability p and blue with probability
1 − p. However, due to intrinsic geometric constraints, the events for coloring edges may not be
independent. This marks an essential difference from the Erdős–Rényi random graph model. In
the remainder of this section, we formalize the notation underlying this new random model and
highlight several elementary geometric properties that motivate our analysis later.

2.1 Notation

Let k, r ∈ N and fix p ∈ (0, 12 ]. Let x[r] := (x1,x2, . . . ,xr) be a sequence of points on Sk. The
graph Gp(x[r]) defines the complete graph with vertex set {x1,x2, . . . ,xr}, whose edges are colored
red or blue according to the same rule used in the definition of Gk,p(n). We refer to Gp(x[r]) as
the induced subgraph on x[r]. Define the space (Sk)r = {(x1, . . . ,xr) : xi ∈ Sk for all 1 ≤ i ≤ r}.
A random r-tuple (x1, . . . ,xr) in (Sk)r defines a tuple where each xi is sampled independently and
uniformly from Sk. For any Borel set A ⊆ (Sk)r, we define P(A) as the probability that a random
r-tuple belongs to A. When r = 1, this coincides with the normalized surface measure as in (3).

The following probabilities that a random r-tuple forms a monochromatic clique will play a
central role in our analysis.

Definition 2.2. Let k, r ∈ N and fix p ∈ (0, 12 ]. Let x[r] = (x1,x2, . . . ,xr) be a random r-tuple in
(Sk)r. We define Pred,r as the probability that the induced subgraph Gp(x[r]) forms a red clique,
and P blue,r as the probability that Gp(x[r]) forms a blue clique.

We also define neighborhoods and their associated probability measures for points and r-tuples.

Definition 2.3. Let x1, . . . ,xr,y ∈ Sk be given. Define x[r] = (x1,x2, . . . ,xr).

(1). The red-neighborhood N(y) and the blue-neighborhood N(y) of y are defined as (see Figure 1)

N(y) :=

{
z ∈ Sk : ⟨y, z⟩ ≤ −

ck,p√
k

}
and N(y) :=

{
z ∈ Sk : ⟨y, z⟩ > −

ck,p√
k

}
,

and their probability measures are given by

P (y) := P(N(y)) and P (y) := P(N(y)).

(2). The red-neighborhood N(x[r]) and the blue-neighborhood N(x[r]) of x[r] are defined as (see
Figure 2)

N(x[r]) := N(x1) ∩ · · · ∩N(xr) and N(x[r]) := N(x1) ∩ · · · ∩N(xr),

and their probability measures are given by

P (x1, . . . ,xr) = P (x[r]) := P(N(x[r])) = P(N(x1) ∩ · · · ∩N(xr)),

P (x1, . . . ,xr) = P (x[r]) := P(N(x[r])) = P(N(x1) ∩ · · · ∩N(xr)).
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Loosely speaking, the average probability Pred,r (from Definition 2.2) can be approximated by
a product of probabilities P (x[s]) for 1 ≤ s ≤ r (from Definition 2.3); See equations (8) and (9) for
the precise expression. A similar relation holds for P blue,r, with the corresponding terms P (x[s]).

Figure 2: The red-neighborhood N(x[r]) and the blue-neighborhood N(x[r]) for r = 2.

Figure 3: Orthogonal projection of neighborhoods N(x[2]) and N(x[2]) onto span(x1,x2)

Many of our proofs rely on estimates involving orthogonal projections of vectors. Below, we
summarize the definition of orthogonal projection used throughout this paper.

Definition 2.4. Let Y ⊆ Rk+1 be a linear subspace. The mapping πY : Rk+1 → Y assigns to each
y ∈ Rk+1 its orthogonal projection onto Y . For given vectors x1, . . . ,xr ∈ Rk+1, we write π[r] for
the special mapping πY where Y = span(x1, . . . ,xr), that is,

π[r](y) := πspan(x1,...,xr)(y).
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We often denote the projected image by ỹ := π[r](y) if there is no ambiguity.

We refer the reader to Figure 3, which illustrates the orthogonal projection of the neighborhoods
of x[2] = (x1,x2) from Figure 2 onto the subspace spanned by x1 and x2.

2.2 Geometric Dependencies in Gk,p(n)

The geometric structure of random sphere graphs Gk,p(n) gives rise to essential mathematical fea-
tures that differ fundamentally from those of classical random graph models, such as the Erdős–Rényi
model ER(n, p). Recall that ER(n, p) denotes a random red-blue coloring of the edges of the com-
plete graph Kn, where each edge is independently colored red with probability p and blue with
probability 1 − p. Analogous to Definition 2.2, we let PER

red,r denote the probability that any given

set of r vertices forms a red clique Kr in ER(n, p), and P
ER
blue,r the probability that they form a blue

clique Kr. Since edge colorings in ER(n, p) are independent, it follows that for any r ≥ 2,

PER
red,r = p(

r
2) and P

ER
blue,r = (1− p)(

r
2).

However, the situation changes entirely in Gk,p(n) for all r ≥ 3, assuming k is sufficiently large.
To illustrate this, consider the case r = 3. Recall from Definition 2.2 that Pred,3 denotes the
probability that a random triple (x1,x2,x3) in (Sk)3 forms a red triangle in Gk,p(n). Using the
notation from Definition 2.3, we can express this as

Pred,3 = P (x1x2 is red) · P(x3 ∈ N(x[2]) | x1x2 is red) = p · P (N(x[2]) | x1x2 is red) .

Suppose x1x2 is red. As shown in Figure 2, the red-neighborhood N(x[2]) is precisely the inter-
section of the two light-red spherical caps associated with N(x1) and N(x2). To build geometric
intuition, we consider the projection of N(x[2]) onto the plane span(x1,x2). In Figure 3, the
projection of N(x[2]) appears as the dark-red region A12, bounded by lines 1 and 2 representing
N(x1) and N(x2), respectively. If we rotate x2 so that it becomes orthogonal to x1, then line 2
becomes line 3, and the resulting region A13 (bounded by lines 1 and 3) has normalized surface
measure approximately p2. It is clear from Figure 3 that A12 is properly contained in A13, and
hence P (N(x[2])) < p2 holds whenever x1x2 is red. This implies that

Pred,3 = p · P (N(x[2]) | x1x2 is red) < p3.

Analogously, Figure 3 suggests that P blue,3 = (1 − p) · P(N(x[2]) | x1x2 is blue) > (1 − p)3.3 One
can naturally extend the above argument to conclude that for any r ≥ 3,

Pred,r < p(
r
2) and P blue,r > (1− p)(

r
2) (5)

hold in the random sphere graph Gk,p(n). These properties highlight geometric dependencies in
Gk,p(n), which set it apart from the Erdős–Rényi model, leaving room for potential improvements.

To prove the main result of this paper, we undertake a detailed analysis to accurately estimate
Pred,r and P blue,r. A sketch of the argument is given in the next section.

3We point out that it is not necessarily true that P
(
N(x[2])

)
> (1−p)2 for every blue edge x1x2, but this inequality

holds on average.
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3 Proof of Main Theorem: Reduction and Sketch

In this section, we reduce the validation of our main result, Theorem 1.1, to the following theorem
and then provide a sketch of its proof. We consider the Ramsey number r(ℓ, Cℓ) for any fixed
constant C > 1. Recall that pC denotes the unique real number in (0, 12) satisfying C = log pC

log(1−pC) .

Theorem 3.1. For any constant C > 1, there exists ε0 = ε0(C) > 0 such that the following holds.
Let D = D(C) and ℓ0 = ℓ0(C) be constants with ℓ0 ≫ D ≫ C.4 Then for every ℓ ≥ ℓ0 and

k = D2ℓ2, there exists p = p(C, ℓ) ∈ (pC ,
1
2) such that in the random sphere graph Gk,p(n),

Pred,ℓ ≤
(
pC − ε0

ℓ√
k

)(ℓ2)
and P blue,Cℓ ≤

(
1− pC − ε0

ℓ√
k

)(Cℓ
2 )

. (6)

3.1 Reduction to Theorem 3.1

We now show that Theorem 1.1 follows directly from Theorem 3.1.

Proof of Theorem 1.1, using Theorem 3.1. Fix any constant C > 1. Let D = D(C) and
ℓ0 = ℓ0(C) be constants, and let ℓ be any integer satisfying ℓ ≥ ℓ0 ≫ D ≫ C. Let k = D2ℓ2. Then
there exist ε0 = ε0(C) and p = p(C, ℓ) ∈ (pC ,

1
2) such that the conclusion of Theorem 3.1 holds. Let

ε =
MCε0
6D

and n = (MC + ε)ℓ, (7)

where MC = p
−1/2
C = (1− pC)

−C/2. Then the probability P ∗ that there exists a red clique Kℓ or a
blue clique KCℓ in the random sphere graph Gk,p(n) satisfies that

P ∗ ≤
(
n

ℓ

)
Pred,ℓ +

(
n

Cℓ

)
P blue,Cℓ

≤nℓ

2

(
pC − ε0

ℓ√
k

) ℓ(ℓ−1)
2

+
nCℓ

2

(
1− pC − ε0

ℓ√
k

)Cℓ(Cℓ−1)
2

≤nℓ

2

(
pC − ε0

2

ℓ√
k

) ℓ2

2

+
nCℓ

2

(
1− pC − ε0

2

ℓ√
k

)C2ℓ2

2

=
M ℓ2

C

2
·
(
1 +

ε

MC

)ℓ2

·
(
1− ε0

2pCD

) ℓ2

2

· p
ℓ2

2
C

+
MCℓ2

C

2
·
(
1 +

ε

MC

)Cℓ2

·
(
1− ε0

2(1− pC)D

)C2ℓ2

2

· (1− pC)
C2ℓ2

2

=
1

2

(
1 +

ε

MC

)ℓ2

·
(
1− ε0

2pCD

) ℓ2

2

+
1

2

(
1 +

ε

MC

)Cℓ2

·
(
1− ε0

2(1− pC)D

)C2ℓ2

2

≤1

2

(
1 +

ε

MC

)− ℓ2

2

+
1

2

(
1 +

ε

MC

)−C2ℓ2

2

< 1,

where the first inequality holds by the union bound, the second inequality follows from Theorem 3.1,
and the second last inequality holds because

3ε

MC
=

ε0
2D

≤ ε0
2(1− pC)D

≤ ε0
2pCD

,

4Throughout this paper, we use D ≫ C to mean that D is sufficiently large relative to C.
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which implies

1− ε0
2pCD

≤ 1− ε0
2(1− pC)D

≤ 1− 3
ε

MC
≤
(
1 +

ε

MC

)−3

.

Hence, there exists an instance of Gk,p(n) that contains neither a red Kℓ nor a blue KCℓ. This
shows that r(ℓ, Cℓ) > n = (MC + ε)ℓ, finishing the proof of Theorem 1.1.

3.2 Proof Sketch of Theorem 3.1

The proof of Theorem 3.1 essentially requires determining both Pred,ℓ and P blue,Cℓ, the probabilities
of forming monochromatic cliques in the random sphere graph Gk,p(n), up to second-order terms.

By symmetry, we focus on sketching the proof from the perspective of Pred,ℓ. Let x[ℓ] =
(x1, ...,xℓ) be a random ℓ-tuple in (Sk)ℓ. For every r ∈ [ℓ], we interpret Pred,r as the probabil-
ity of the event Ared,r that x[r] = (x1, ...,xr) induces a red clique Kr in Gk,p(n). Then Pred,ℓ admits
the following simple decomposition:

Pred,ℓ = κ1 · · ·κℓ−1, where κr =
Pred,r+1

Pred,r
for every 1 ≤ r ≤ ℓ− 1. (8)

Let Yr denote the event xr+1 ∈ N(x[r]), so Ared,r+1 = Yr ∧Ared,r.
5 We can rewrite κr as

κr =
Pred,r+1

Pred,r
=

P
(
Yr ∧Ared,r

)
P(Ared,r)

= P
(
Yr | Ared,r

)
= E

[
1Yr | Ared,r

]
= E

[
P (x[r]) | Ared,r

]
, (9)

where the last equation holds by the law of total expectation and the fact that Exr+1

[
1Yr

]
= P(Yr) =

P(N(x[r])) = P (x[r]). Similarly, we define

P blue,Cℓ = κ1 · · ·κCℓ−1, where κr =
P blue,r+1

P blue,r

for every 1 ≤ r ≤ Cℓ− 1. (10)

Choice of the dimension k. Before we proceed to estimate the clique probabilities, we first
discuss the choice of the dimension k, which plays a critical role in the analysis. While its feasible
value (i.e., k ≈ ℓ2) will become clear from the precise expressions for clique probabilities later on,
it is important to observe from the beginning that k needs to be appropriately scaled in terms of
ℓ. To motivate this, note that for two independent random vectors x,y ∈ Sk, their typical inner
product satisfies ∣∣⟨x,y⟩∣∣ = Θ

(
1√
k

)
. (11)

If k → ∞, then such vectors become nearly orthogonal, and the random sphere graph Gk,p(n)
approaches the Erdős–Rényi random graph ER(n, p), thereby losing the geometric structure essen-
tial to our analysis. Conversely, if k is small (say k ≪ ℓ2), dependencies between edges become
substantial, and the blue-clique probability P blue,Cℓ deviates significantly from its expected value.
To see this, observe that from (11) and the discussion in Subsection 2.2, one can derive that

P (x[r]) ≈ P (x[r − 1]) · (1− p) ·
(
1 + Ω

(
1√
k

))r−1
for every r ≥ 3. (12)

5Throughout this paper, the symbol ∧ denotes the joint occurrence of two or more events.
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This implies that P (x[r]) ≈ (1− p)r ·
(
1 + Ω

(
1√
k

))(r2)
for r = O(

√
k), and P (x[r]) ≈ P (x[r − 1]) ·

(1 − o(1)) ≈ (1 − p)o(r) for r ≫
√
k. Combing this with (10), the analogous expression (9) on κr

and the assumption ℓ ≫
√
k, we obtain that

P blue,Cℓ ≳ (1− p)o(ℓ
2) ≫ (1− p)(

Cℓ
2 ),

which forces n to be supremely small under the union bound requirement. In summary, the di-
mension k must be carefully chosen in an intermediate regime, so as to balance between limiting
dependencies and preserving geometric structure.

The Overall Strategy. The problem now reduces to estimating the quantities κr and κr. Based
on the earlier observations (e.g., (12)), it is natural to expect that κr+1

κr
< p and κr+1

κr
> 1 − p.

What matters for our purposes, however, is not just these inequalities, but the relative size of the
deviations: the gap p− κr+1

κr
needs to significantly exceed the gap κr+1

κr
− (1− p). The central part

of our analysis is thus to estimating these gaps quantitatively in Gk,p(n). We show that there exists

a constant ak,p =
(
e−c2

2π

)3/2
> 0, where c := ck,p is from (4),6 such that for all r = O(

√
k),

κr+1

κr
≲ p−

ak,p
p2

· r√
k

and
κr+1

κr
≲ 1− p+

ak,p
(1− p)2

· r√
k
. (13)

Combining this with (8) and (10), and choosing k ≈ ℓ2, we get

Pred,ℓ ≲

(
p−

ak,p
p2

· ℓ

3
√
k

)(ℓ2)
and P blue,Cℓ ≲

(
1− p+

ak,p
(1− p)2

· Cℓ

3
√
k

)(Cℓ
2 )

.

A key observation is that if p is sufficiently close to pC , then the sum of the two base terms(
p−

ak,p
p2

· ℓ

3
√
k

)
+

(
1− p+

ak,p
(1− p)2

· Cℓ

3
√
k

)
= 1 +

ak,p · ℓ
3
√
k

(
C

(1− p)2
− 1

p2

)
is strictly less than 1, since

C · p2

(1− p)2
≈

p2C log pC
(1− pC)2 log(1− pC)

< 1 for any pC ∈ (0, 12). (14)

Therefore, we can choose some p ∈ (pC ,
1
2) and a constant ε0 = ε0(C) > 0 such that

p−
ak,p
p2

· ℓ

3
√
k
≤ pC − ε0

ℓ√
k

and 1− p+
ak,p

(1− p)2
· Cℓ

3
√
k
≤ 1− pC − ε0

ℓ√
k
,

completing the proof of Theorem 3.1.

Breakdown into Key Quantities. We now examine (13) in more detail. Recall from (9) that
κr = E

[
P (x[r]) | Ared,r

]
. To estimate κr, we consider P (x[r]) for any given sequence of vectors

x[r] = (x1, ...,xr) ∈ (Sk)r via the following expression:

P (x[r]) =
r−1∏
s=0

Q[s](xs+1).

6We will show in Lemma 4.1 that ck,p converges as k → ∞ so it is absolutely bounded.
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Here, for every 0 ≤ s ≤ r the quantity Q[s] : S
k → [0, 1] is defined as

Q[s](y) :=
P (x1, . . . ,xs,y)

P (x1, . . . ,xs)
for each y ∈ Sk,

where we use the notation from Definition 2.3.7 Recall the projection π[s](·) := πspan(x1,...,xs)(·)
from Definition 2.4. Under the assumption that x[s] ∈ (Sk)s and y ∈ Sk are in generic position, we
are able to bound Q[s](y) using the expectation of the inner product between the projection π[s](y)
of y and the projection of a random vector (see Theorem 6.2), as follows:

Q[s](y) ≲ p−
√

k

2π
e−

c2

2 · Ez[⟨π[s](y), π[s](z)⟩],

where the vector z is sampled uniformly from N(x[s]), and the constant c := ck,p is given by (4).
Returning to the setting of κr = E

[
P (x[r]) | Ared,r

]
, the expectation above becomes one taken

over the joint distribution of the random vectors y = xs+1 and z;8 we estimate it by proving (see
Section 8) that

Ey,z[⟨π[s](y), π[s](z)⟩] ≈
e−c2

2πp2
· s
k
.

The upper bound on κr+1

κr
in (13) is essentially derived from the above estimates; similarly, so is κr+1

κr
.

However, random vectors may exhibit highly variable behavior, making computation intractable. To
overcome this, we introduce a useful notion called a perfect sequence (see Definition 5.1). Roughly
speaking, a sequence of vectors in Sk is said to be perfect if the vectors are nearly vertical to each
other. We then work with all of the above quantities in the corresponding “perfect” setting instead.
This turns out to be sufficient, as the probability that random vectors form a non-perfect sequence
is sufficiently small (see Section 7).

4 Auxiliary Lemmas

Before we proceed to the proof of Theorem 3.1, we first establish several auxiliary but useful lemmas
concerning the random sphere graph and the standard normal distribution.

Throughout the rest of the paper, let Φ(x) := 1√
2π

∫ x
−∞ e−t2/2 dt denote the cumulative distribu-

tion function (CDF) of the standard normal distribution, and let ϕ(x) := Φ′(x) = 1√
2π
e−x2/2 denote

its probability density function (PDF). We denote by Φ−1 : (0, 1) → R the corresponding quantile
function, defined by the property that Φ

(
Φ−1(p)

)
= p for all p ∈ (0, 1).

The first lemma shows that the constant ck,p given by (4) converges to Φ−1(1− p) as k → ∞.

Lemma 4.1. Fix any p ∈ (0, 1/2). The constant ck,p given by (4) satisfies

ck,p = Φ−1(1− p) +O

(
1

k

)
. (15)

In particular, we have limk→∞ ck,p = Φ−1(1− p).

7For the exact notation Q[s](y) used in the proof, see Definition 6.1.
8More precisely, the expectation is taken over the following random variables: x[r] ∈ (Sk)r is sampled uniformly

conditioned on the event Ared,r, and z ∈ N(x[s]) is sampled uniformly and independently of x[r] \ x[s].

10



Proof. Let e ∈ Rk+1 be a fixed unit vector, and let x be a random point uniformly distributed on
Sk. Then for any a ∈ (−1, 1), the spherical cap probability P(⟨x, e⟩ ≤ a) satisfies that

P(⟨x, e⟩ ≤ a) =
Vol

(
{x ∈ Sk : ⟨x, e⟩ ≤ a}

)
Vol(Sk)

=

∫ a

−1
(1− t2)

k−2
2 dt∫ 1

−1
(1− t2)

k−2
2 dt

. (16)

Hence, the definition of the constant c := ck,p in (4) can be translated into the following formula∫ − c√
k

−1
(1− t2)

k−2
2 dt = p

∫ 1

−1
(1− t2)

k−2
2 dt.

Substituting t = sin θ, this becomes∫ π
2

arcsin( c√
k
)
cosk−1 θdθ = p

∫ π
2

−π
2

cosk−1 θdθ = p

√
2π

k

(
1 +O

(
1

k

))
. (17)

Using the following approximation which follows by the Taylor expansion of cosine,∣∣∣∣cosk−1 θ − e−
(k−1)θ2

2

∣∣∣∣ = O

(
1

k

)
for θ ∈

(
0, arcsin(

c√
k
)

)
,

we can replace the cosine integral with a Gaussian integral and derive∫ arcsin( c√
k
)

0
e−

(k−1)θ2

2 dθ =

∫ arcsin( c√
k
)

0
cosk−1 θdθ +O

(
1

k
√
k

)
=

(
1

2
− p

)√
2π

k

(
1 +O

(
1

k

))
,

where the last equation uses (17). Substituting x =
√
k − 1 · θ, we have

1√
2π

∫ √
k−1·arcsin( c√

k
)

0
e−

x2

2 dx =

(
1

2
− p

)√
k − 1

k

(
1 +O

(
1

k

))
=

1

2
− p+O

(
1

k

)
.

This shows that Φ
(√

k − 1 · arcsin( c√
k
)
)
= 1− p+O

(
1
k

)
, implying that

Φ−1(1− p) =
√
k − 1 arcsin

(
c√
k

)
+O

(
1

k

)
= c+O

(
1

k

)
,

where the last equation follows from the Taylor expansion of the function arcsin.

The following lemma gives a concentration inequality for the probability that random points
sampled uniformly from the sphere Sk are nearly mutually orthogonal. In particular, it serves as a
key tool for the analysis of perfect and non-perfect sequences (to be defined in Section 5).

Lemma 4.2. Fix a constant C > 1, and define αC := max
{
1000, 20

√
C log(10/pC)

}
. Let ℓ0 ≫

D ≫ C be as specified in Theorem 3.1. Suppose that ℓ ≥ ℓ0 and k = D2ℓ2. Let Xr ⊂ Rk+1 be an
r-dimensional subspace, where 1 ≤ r ≤ Cℓ. Then for a random vector y sampled uniformly from
the unit sphere Sk, the orthogonal projection π[r] : Rk+1 → Xr satisfies the following tail bound:

P

(
|π[r](y)| >

αC

√
ℓ

2
√
k

)
≤
(pC
10

)Cℓ
.
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Proof. Let X ′ ⊆ Rk+1 be a Cℓ-dimensional linear subspace such that Xr ⊆ X ′. Then,

P

(∣∣π[r](y)∣∣ > αC

√
ℓ

2
√
k

)
≤ P

(
|πX′(y)| > αC

√
ℓ

2
√
k

)
.

Hence, it suffices to consider the case when r = Cℓ. From now on, we assume Xr = X ′.
Let y be a random vector sampled uniformly from Sk. Define u = |πX′(y)|2. Then, u ∈ [0, 1]

follows a beta distribution with parameters
(
Cℓ
2 , k−Cℓ+1

2

)
. That is, the PDF of u is

f(u) =
u

Cℓ
2
−1(1− u)

k−Cℓ−1
2

B
(
Cℓ
2 , k−Cℓ+1

2

) , where B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt denotes the beta function.

Let θ1 := arcsin
(
αC

√
ℓ

2
√
k

)
. A straightforward calculation then yields that

P

(
|πX′(y)| > αC

√
ℓ

2
√
k

)
=

∫ 1

α2
C

ℓ

4k

u
Cℓ
2
−1(1− u)

k−Cℓ−1
2 du∫ 1

0
u

Cℓ
2
−1(1− u)

k−Cℓ−1
2 du

=

∫ π
2

θ1

sinCℓ−1 θ cosk−Cℓ θ dθ∫ π
2

0
sinCℓ−1 θ cosk−Cℓ θ dθ

, (18)

where the second equality follows from the substitution u = sin2 θ. We begin by bounding the
numerator of (18) from above. Using the elementary inequalities that 2x ≥ arcsinx ≥ x ≥ arctanx
for all 0 ≤ x ≪ 1, together with the conditions that k = D2ℓ2 ≫ Cℓ and αC ≥ 4

√
C, we obtain

αC

√
ℓ√

k
≥ θ1 = arcsin

(
αC

√
ℓ

2
√
k

)
≥ αC

√
ℓ

2
√
k

≥
√

Cℓ− 1

k − Cℓ
≥ arctan

(√
Cℓ− 1

k − Cℓ

)
. (19)

This implies that for every θ1 ≤ θ ≤ π
2 , we have

d

dθ

(
sinCℓ−1 θ cosk−Cℓ θ

)
=
(
(Cℓ− 1)− (k − Cℓ) tan2 θ

) (
sinCℓ−2 θ cosk−Cℓ+1 θ

)
≤ 0,

and hence, sinCℓ−1 θ cosk−Cℓ θ ≤ sinCℓ−1 θ1 cos
k−Cℓ θ1. Therefore, the numerator of (18) satisfies∫ π

2

θ1

sinCℓ−1 θ cosk−Cℓ θ dθ ≤ π

2
sinCℓ−1 θ1 cos

k−Cℓ θ1 ≤
π

2
· θCℓ−1

1 ·
(
1− θ21

3

)k−Cℓ

, (20)

where the last inequality uses the facts that sin θ1 ≤ θ1 and cos θ1 ≤ 1− θ21
3 .

Next we bound the denominator of (18) from below. Since k = D2ℓ2 ≫ Cℓ, similarly as before,

1 ≫ 2
√
Cℓ√
k

≥ θ2 := arctan

(√
Cℓ− 1

k − Cℓ

)
≥ 2

3

√
Cℓ− 1

k − Cℓ
≥ 1

2

√
ℓ

k
. (21)

For every θ2 ≤ θ ≤ 2θ2 < π/2, we have tan2 θ ≥ tan2 θ2 =
Cℓ−1
k−Cℓ and thus

d

dθ

(
sinCℓ−1 θ cosk−Cℓ θ

)
=
(
(Cℓ− 1)− (k − Cℓ) tan2 θ

) (
sinCℓ−2 θ cosk−Cℓ+1 θ

)
≤ 0,

implying that sinCℓ−1 θ cosk−Cℓ θ ≥ sinCℓ−1(2θ2) cos
k−Cℓ(2θ2). Using this, we can derive∫ π/2

0
sinCℓ−1 θ cosk−Cℓ θ dθ ≥

∫ 2θ2

θ2

sinCℓ−1 θ cosk−Cℓ θ dθ

≥ θ2 sin
Cℓ−1(2θ2) cos

k−Cℓ(2θ2) ≥
1

2

√
ℓ

k
· θCℓ−1

2

(
1− 2θ22

)k−Cℓ
,

(22)
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where the last inequality uses (21) and the estimates sin(2θ2) ≥ θ2 and cos(2θ2) ≥ 1− 2θ22.
Substituting the bounds from (20) and (22) into (18), we have

P

(
|πX′(y)| > αC

√
ℓ

2
√
k

)
≤ π

√
k

ℓ
·
θCℓ−1
1

(
1− 1

3θ
2
1

)k−Cℓ

θCℓ−1
2

(
1− 2θ22

)k−Cℓ
≤ πDℓ ·

(
θ1
θ2

)Cℓ

exp
(
3kθ22 − kθ21/6

)
≤ πDℓ · exp

(
ℓ ·
(
C log(2αC) + 12C − α2

C/24
))

,

(23)

where the second inequality holds since
(
1− 1

3θ
2
1

)k−Cℓ ≤
(
exp

(
−1

3θ
2
1

))k/2
= exp(−1

6kθ
2
1) and(

1− 2θ22
)k−Cℓ ≥

(
exp(−3θ22)

)k
= exp(−3kθ22), and the last inequality follows from (19) and (21).

Recall that αC = max{1000, 20
√

C log(10/pC)}. To complete the proof, we claim that

C log(2αC) + 12C −
α2
C

24
≤ −

α2
C

60
. (24)

To see this, note that p2C ·C ≤ p2C ·C
(1−pC)2

=
p2C log pC

(1−pC)2 log(1−pC)
< 1 (because of (14)), which implies that

logC ≤ 2 log(1/pC). Combining with αC ≥ 20
√
C log(10/pC), this implies that

C log(2αC)

α2
C

≤
log 40 + 1

2 logC + 1
2 log log(10/pC)

400 log(10/pC)
≤ 1

200
+

1

400
+

1

800
<

1

100
,

where the second inequality follows by the facts that log 40 < 4, log(10/pC) > log 10 > 2 and
log log(10/pC) < log(10/pC). This, together with α2

C ≥ 800C, would imply (24).
Finally, substituting the bound (24) into (23), we derive

P

(
|πX′(y)| > αC

√
ℓ

2
√
k

)
≤ πDℓ · exp

(
−
α2
Cℓ

60

)
≤ exp

(
−
α2
Cℓ

100

)
≤
(pC
10

)Cℓ
,

where the last inequality holds since α2
C ≥ 100C log(10/pC), completing the proof.

The next lemma is crucial in the proof of Theorem 6.2, particularly for obtaining estimates on
the probability ratios Q[r](y) and Q[r](y).

Lemma 4.3. Fix a constant C > 1. Let ℓ0 ≫ D ≫ C be as specified in Theorem 3.1. Suppose that
ℓ ≥ ℓ0 and k = D2ℓ2. For a fixed constant A > 0, define

H := − c√
k
− A

D
√
k
,

where c := ck,p is given by (4). Let 1 ≤ r ≤ Cℓ. For a random vector y sampled uniformly from
Sk−r ⊆ Rk−r+1 and any fixed unit vector e ∈ Rk−r+1, we have

P (⟨y, e⟩ ≤ H) = p− A√
2πD

e−c2/2 +O

(
1

D2

)
Proof. Let us begin by recalling two well-known estimates: first, Wallis’ formula∫ 1

0
(1− t2)

k−r−2
2 dt =

∫ π
2

0
cosk−r−1 x dx =

√
π√

2(k − r − 2)
+O

(
1

k
√
k

)
;
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second, the Gaussian integral
∫∞
−∞ e−

k−r−2
2

t2 dt =
√
2π√

k−r−2
. Using these, along with the fact that

e−
k−r−2

2
t2 −

(
1− t2

) k−r−2
2 ≥ 0, we derive that for all t ∈ [−1, 1],

0 ≤
∫ H

−∞
e−

k−r−2
2

t2dt−
∫ H

−1

(
1− t2

) k−r−2
2 dt

≤
∫ ∞

−∞
e−

k−r−2
2

t2dt−
∫ 1

−1

(
1− t2

) k−r−2
2 dt = O

(
1

k
√
k

)
.

This, together with (16), implies that

P (⟨y, e⟩ ≤ H) =

∫ H

−1

(
1− t2

) k−r−2
2 dt∫ 1

−1

(
1− t2

) k−r−2
2 dt

=

∫ H

−∞
e−

k−r−2
2

t2dt+O

(
1

k
√
k

)
∫ ∞

−∞
e−

k−r−2
2

t2dt+O

(
1

k
√
k

)

=

∫ H

−∞
e−

k−r−2
2

t2dt∫ ∞

−∞
e−

k−r−2
2

t2dt

+O

(
1

k

)
=

∫ −(c+A
D
)
√
k−r−2√

k

−∞

1√
2π

e−
t2

2 dt+O

(
1

k

)

= Φ

(
−
(
c+

A

D

) √
k − r − 2√

k

)
+O

(
1

k

)
,

(25)

where Φ denotes the CDF of the standard normal distribution. By Lemma 4.1, we have

−
(
c+

A

D

)√
k − r − 2

k
= −

(
c+

A

D

)(
1− r + 2

2k
+O

(
r2

k2

))
= −c− A

D
+O

( r
k

)
= −Φ−1(1− p)− A

D
+O

(
ℓ

k

)
= Φ−1(p)− A

D
+O

(
1

D
√
k

)
.

Combining this with (25) and using the Taylor expansion of Φ, we obtain

P (⟨y, e⟩ ≤ H) = Φ

(
Φ−1(p)− A

D
+O

(
1

D
√
k

))
+O

(
1

k

)
= p− A

D
ϕ(Φ−1(p)) +O

(
1

D2

)
= p− A√

2πD
e−

c2

2 +O

(
1

D2

)
,

where the last equality follows from Lemma 4.1 that Φ−1(p) = −c+O( 1k ), completing the proof.

We conclude with a lemma on technical properties of the standard norm distribution, used to
estimate expectations in Lemma 8.7.

Lemma 4.4. Let X ∼ N (0, 1) denote a standard normal random variable. Then the conditional
expectation µ(t) := E[X | X ≥ t] satisfies

µ(t) =
ϕ(t)

1− Φ(t)
=

e−
t2

2∫ ∞

t
e−

s2

2 ds

, and moreover,
∣∣µ′(t)

∣∣ ≤ 100 for all t ∈ R.
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Proof. The formula for µ(t) follows from a straightforward calculation:

µ(t) =

1√
2π

∫ ∞

t
se−

s2

2 ds

1√
2π

∫ ∞

t
e−

s2

2 ds

=
e−

t2

2∫ ∞

t
e−

s2

2 ds

=
ϕ(t)

1− Φ(t)
.

Differentiating yields that µ′(t) = ϕ′(t)(1−Φ(t))+ϕ(t)2

(1−Φ(t))2
= µ(t)2 − tµ(t). For t ≥ 1, we obtain

t ≤ µ(t) =
e−

t2

2∫ ∞

t
e−

s2

2 ds

≤ (1 + 1/t2)e−
t2

2∫ ∞

t
(1 + 1/s2)e−

s2

2 ds

=
(1 + 1/t2)e−

t2

2

e−
t2

2 /t
=

t2 + 1

t
,

implying 0 ≤ µ′(t) = µ(t)2 − tµ(t) ≤ 2. For t ≤ 1, since 1− Φ(t) ≥ 1− Φ(1) ≥ 1√
2π
e−2, we have

|µ′(t)| ≤
∣∣∣∣ ϕ′(t)

1− Φ(t)

∣∣∣∣+ ∣∣∣∣ ϕ(t)2

(1− Φ(t))2

∣∣∣∣ ≤ e2 sup
t∈R

|te−
t2

2 |+ e4 sup
t∈R

|e−t2 | ≤ e2 + e4 < 100.

Putting everything together, we conclude that |µ′(t)| ≤ 100 for all t ∈ R.

5 Perfect Sequences

Before defining perfect sequences, we first set up the parameters used throughout the remainder of

the paper. We fix a constant C > 1. Let pC ∈ (0, 1/2) be as defined earlier, and set MC = p
−1/2
C .

Let αC be as given in Lemma 4.2. Let ℓ0 ≫ D ≫ C be as specified in Theorem 3.1. Throughout,
we assume p ∈

(
pC ,

1
2

)
, ℓ ≥ ℓ0, and k = D2ℓ2. Let c := ck,p be defined by (4). Our focus is on the

Ramsey number r(ℓ, Cℓ) in the setting of the random sphere graph Gk,p(n).
Let x[r] = (x1, . . . ,xr) be a sequence of points on the sphere Sk ⊆ Rk+1. For each i ∈ [r], define

Xi = span(x1, . . . ,xi).

For each 1 ≤ i ≤ r − 1, denote by δi+1 ∈ [0, π2 ] the angle between the vector xi+1 and the i-
dimensional subspace Xi. Recall the projection π[i](·) : Rk+1 → Xi from Definition 2.4.

Definition 5.1 (Perfect Sequences). For 2 ≤ r ≤ Cℓ, a sequence x[r] = (x1, . . . ,xr) ∈ (Sk)r is
called perfect, if for every 1 ≤ i ≤ r − 1,

|π[i](xi+1)| = cos δi+1 ≤
αC

√
ℓ√

k
.

By convention, any singleton (x1) ∈ Sk is considered perfect.

It can be easily verify that any subsequence of a perfect sequence is perfect; we refer to this
property as monotonicity. In view of Lemma 4.2, we expect that the probability of a random
sequence failing to be perfect is extremely small. With this in mind, we now introduce modified
notations tailored to the setting of perfect sequences. First, we define the “perfect” variants of
neighborhoods and their corresponding probability measures.

Definition 5.2. For any perfect sequence x[r] = (x1, . . . ,xr), we define
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• The perfect red-neighborhood

Nper(x[r]) := {y ∈ N(x[r]) : (x[r],y) is perfect} , 9

with corresponding probability measure

Pper(x[r]) := P (Nper(x[r])) .

• The perfect blue-neighborhood

Nper(x[r]) :=
{
y ∈ N(x[r]) : (x[r],y) is perfect

}
,

with corresponding probability measure

P per(x[r]) := P
(
Nper(x[r])

)
.

The following definition provides the “perfect” analogues of Definition 2.2 and of the quantities
κr and κr (see, e.g., (9)). These are the primary objects of study in the rest of the paper.

Definition 5.3. For 1 ≤ r ≤ Cℓ, let x[r] = (x1, . . . ,xr) be a random r-tuple in (Sk)r.

• Let Ared,r denote the event that Gp(x[r]) forms a red clique, and let Ablue,r denote the event
that Gp(x[r]) forms a blue clique.

• Let Br denote the event that the sequence x[r] is perfect.10

• Define P per
red,r := P(Ared,r ∧Br) and P

per
blue,r := P(Ablue,r ∧Br).

• Define κperr := E [Pper(x[r]) | Ared,r ∧Br] and κperr := E
[
P per(x[r]) | Ablue,r ∧Br

]
.

We conclude this section with two simple lemmas. The first lemma connects the quantities P per
red,r

and κperr , and is analogous to the decomposition in (8) presented in the proof sketch of Theorem 3.1.
For any event A, let 1A denote its indicator random variable.

Lemma 5.4. For any 1 ≤ r ≤ Cℓ, we have

κperr =
P per
red,r+1

P per
red,r

and κperr =
P

per
blue,r+1

P
per
blue,r

.

Equivalently,
P per
red,r+1 = κper1 · · ·κperr and P

per
blue,r+1 = κper1 · · ·κperr .

Proof. We proceed by induction on r to prove that P per
red,r+1 = κper1 · · ·κperr . Since P per

red,1 = 1, the base
case r = 1 holds trivially. Assume the statement holds for some r ≥ 1. Let x[r + 1] = (x1, . . . ,xr+1)
be a random (r + 1)-tuple in (Sk)r+1. Define A = Ared,r ∧Br. So A depends only on x[r], with

P per
red,r = P(A) and κperr = E [Pper(x[r]) | A] .

Let Y be the event that xr+1 ∈ Nper(x[r]). Then E[1Y | x[r]] = P(Y | x[r]) = Pper(x[r]). Using this,
we can derive that P per

red,r+1 = P(A ∧ Y ) is equal to

E[1A · 1Y ] = E
[
1A · E[1Y | x[r]]

]
= E

[
1A · Pper(x[r])

]
= E

[
Pper(x[r]) | A

]
· P(A) = κperr · P per

red,r,

where the first equality holds since A depends only on x[r] and the third equality follows from the
definition of conditional expectation. Now, the statement for P per

red,r+1 follows easily by induction.

We omit the analogous proof for P
per
blue,r+1.

9Here and throughout, we write (x[r],y) = (x1, . . . ,xr,y).
10For notational convenience, we treat each of Ared,1, Ablue,1, and B1 as the event that always occurs.
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The last lemma highlights an important property that partly reflects the coherent definition of
perfect sequences. This will play a crucial role in the proofs presented in the next section.

Lemma 5.5. For 1 ≤ r ≤ Cℓ, let x[r] ∈ (Sk)r be a given perfect sequence. Let z be a random
vector uniformly distributed in either Nper(x[r]) or Nper(x[r]), with the orthogonal decomposition

z = z̃ + ẑ, where z̃ = π[r](z) ∈ span(x[r]) and ẑ ∈ (span(x[r]))⊥. Then the normalized random

vector ẑ
|ẑ| is independent of z̃ and is uniformly distributed on Sk−r.

Proof. Let x[r] = (x1, . . . ,xr). By symmetry, assume z is sampled uniformly at random from
Nper(x[r]). Since z − z̃ = ẑ ∈ (span(x[r]))⊥, we have ⟨z,xi⟩ = ⟨z̃,xi⟩ for each i ∈ [r]. Combined
with the definition of perfect sequences, this shows that the event z ∈ Nper(x[r]) depends only on
z̃ and is thus independent of the choice of ẑ

|ẑ| . The conclusion then follows directly.

6 Preliminary Estimates on Perfect Sequences

In this section, we begin our study of perfect sequences. Recall the parameters we set up at the
beginning of Section 5. As we proceed to estimate various probabilistic quantities, it is important
to clarify the following convention used throughout:

• The big-O notation O(·) denotes terms whose implicit constant may depend on C, pC , αC , p,
and c, but not on D.

In this section, we aim to prove two results about perfect sequences, both of which rely on
Lemma 4.3 and Lemma 5.5. The first result establishes upper bounds for the central quantities
Q[r](y) and Q[r](y), whose formal definitions are given below.

Definition 6.1. For 1 ≤ r ≤ Cℓ, let (x[r],y) ∈ (Sk)r+1 be a perfect sequence. Define

Q[r](y) :=
Pper(x[r],y)

Pper(x[r])
and Q[r](y) :=

P per(x[r],y)

P per(x[r])
.

Note that, in particular, we have Q[0](y) = Pper(y) ≤ p and Q[0](y) = P per(y) ≤ 1− p.

Theorem 6.2. Let (x[r],y) ∈ (Sk)r+1 be a given perfect sequence. Then the following hold:

Q[r](y) ≤ p−
√

k

2π
e−

c2

2 Ez

[
⟨π[r](y), π[r](z)⟩

]
+O

(
1

D2

)
, (26)

where z denotes the random vector sampled uniformly from Nper(x[r]), and

Q[r](y) ≤ 1− p+

√
k

2π
e−

c2

2 Ez

[
⟨π[r](y), π[r](z)⟩

]
+O

(
1

D2

)
, (27)

where z denotes the random vector sampled uniformly from Nper(x[r]).

Proof. For conciseness, we present the full proof for (26) only, as the proof for (27) follows anal-
ogously. Suppose that (x[r],y) is a perfect sequence, and let z be sampled uniformly at random
from Nper(x[r]). Consider the orthogonal decompositions:

y = ỹ + ŷ and z = z̃ + ẑ,
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where ỹ = π[r](y) and z̃ = π[r](z) belong to span(x[r]), while ŷ and ẑ lie in (span(x[r]))⊥. Since
⟨y, z⟩ = ⟨ỹ, z̃⟩+ ⟨ŷ, ẑ⟩, we have z ∈ N(y) if and only if〈

ŷ

|ŷ|
,
ẑ

|ẑ|

〉
≤ − 1

|ŷ||ẑ|

(
c√
k
+ ⟨ỹ, z̃⟩

)
=: H. (28)

Both (x[r],y) and (x[r], z) are perfect, so we have |ỹ|, |z̃| ≤ αC

√
ℓ√

k
, which implies that

|⟨ỹ, z̃⟩| ≤ |ỹ||z̃| = O

(
ℓ

k

)
= O

(
1

D
√
k

)
. (29)

By the unit norm condition (i.e., |ỹ|2+ |ŷ|2 = |y|2 = 1), we obtain 1− α2
Cℓ
k ≤ |ŷ|2, |ẑ|2 ≤ 1, yielding

1

|ŷ||ẑ|
= 1 +O

(
ℓ

k

)
= 1 +O

(
1

D
√
k

)
. (30)

Note that all bounds above hold uniformly over all y and z. We can derive from (29) and (30) that

H = −
(

c√
k
+ ⟨ỹ, z̃⟩

)
·
(
1 +O

(
ℓ

k

))
= − c√

k
− ⟨ỹ, z̃⟩+O

(
ℓ

k
√
k

)
, (31)

where the term −⟨ỹ, z̃⟩+O
(

ℓ
k
√
k

)
is of the order O

(
1

D
√
k

)
.

We note that the random vector z is completely determined by the two random variables ẑ
|ẑ|

and z̃, so z can be regarded as the joint distribution of ẑ
|ẑ| and z̃. By Lemma 5.5, ẑ

|ẑ| is independent

of z̃, and it is uniformly distributed on Sk−r. We can derive the following for any fixed z̃:

P (z ∈ N(y) | z̃) = P
(〈

ẑ

|ẑ|
,
ŷ

|ŷ|

〉
≤ H

∣∣∣ z̃)
=p−

√
k

2π
e−

1
2
c2 ·
(
⟨ỹ, z̃⟩+O

(
ℓ

k
√
k

))
+O

(
1

D2

)
= p−

√
k

2π
e−

1
2
c2 · ⟨ỹ, z̃⟩+O

(
1

D2

)
,

(32)

where the first equality uses (28) and the second equality follows from Lemma 4.3, (31) as above,
and the fact that ẑ

|ẑ| remains uniformly distributed on Sk−r when fixing z̃ (because that ẑ
|ẑ| and z̃

are independent). We emphasize that the O
(

1
D2

)
term above holds uniformly over all z̃. Viewing

z as a random variable uniformly distributed in Nper(x[r]), we can derive that

Q[r](y) =
Pper(x[r],y)

Pper(x[r])
=

P(Nper(x[r],y))

P(Nper(x[r]))
≤ P(Nper(x[r]) ∩N(y))

P(Nper(x[r]))
= P(z ∈ N(y))

= Ez̃ [P(z ∈ N(y) | z̃)] = p−
√

k

2π
e−

c2

2 Ez̃[⟨ỹ, z̃⟩] +O

(
1

D2

)
,

where the inequality follows from the monotonicity of perfect sequences (i.e., if (x[r],y, z) is perfect,
then so is (x[r], z)), and the last equality uses (32). Note that Ez̃

[
⟨ỹ, z̃⟩

]
= Ez

[
⟨ỹ, z̃⟩

]
, where z̃

depends only on z, and z is sampled uniformly from Nper(x[r]). This proves (26).

Using similar arguments, we establish a lower bound on the probability of common neighbor-
hoods for perfect sequences. Recall that p ∈

(
pC ,

1
2

)
in the random sphere graph Gk,p(n).
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Lemma 6.3. Let 1 ≤ r ≤ Cℓ, and let x[r] = (x1, . . . ,xr) ∈ (Sk)r be a perfect sequence. Then

Vol(Nper(x[r]))

Vol(N(x[r − 1]))
≥ pC

2
and

Vol(Nper(x[r]))

Vol(N(x[r − 1]))
≥ pC

2
. (33)

In particular, this implies that

P(N(x[r])) ≥ P(Nper(x[r])) ≥
(pC

2

)r
and P(N(x[r])) ≥ P(Nper(x[r])) ≥

(pC
2

)r
. (34)

Proof. In this proof, we write Ns = N(x[s]) and N s = N(x[s]) for a fixed sequence x[s]. Recall
from Definition 2.4 that π[s] denotes the orthogonal projection from Rk+1 to span(x[s]). Define

Ms :=

{
y ∈ Sk :

∣∣π[s](y)∣∣ ≤ αC

√
ℓ√

k

}
.

Let 1 ≤ s ≤ Cℓ and x[s] be a perfect sequence. Then Nper(x[s]) = Ns ∩Ms. By Lemma 4.2,

Vol(Sk \Ms)

Vol(Sk)
= P(y /∈ Ms) = P

(∣∣π[s](y)∣∣ > αC

√
ℓ√

k

)
≤ P

(∣∣π[s](y)∣∣ > αC

√
ℓ

2
√
k

)
≤
(pC
10

)Cℓ
, (35)

where y is sampled uniformly at random from Sk. Then, as long as Vol(Ns) ≥
(pC

2

)s
Vol(Sk),

Vol(Nper(x[s]))

Vol(Ns)
=

Vol(Ns ∩Ms)

Vol(Ns)
≥ 1− Vol(Sk \Ms)

Vol(Ns)
≥ 1− (pC/10)

Cℓ

(pC/2)
s ≥ 1− 2−Cℓ. (36)

We proceed induction on r to prove the first inequality of (33), i.e.,
Vol
(
Nper(x[r])

)
Vol(Nr−1)

≥ pC
2 . The

base case r = 1 holds trivially by (35). Suppose this holds for all integers s up to some r ≥ 1.
Consider any perfect sequence x[r + 1] = (x[r],xr+1) ∈ (Sk)r+1. The inductive hypothesis implies

that Vol(Ns)
Vol(Ns−1)

≥ Vol
(
Nper(x[s])

)
Vol(Ns−1)

≥ pC
2 for all s ∈ [r], hence

Vol(Nr) ≥ Vol(Nper(x[r])) ≥
(pC

2

)r
·Vol(Sk). (37)

By (36) (with s = r), this implies that

Vol(Nr ∩Mr)

Vol(Nr)
≥ 1− 2−Cℓ. (38)

Let y be a vector sampled uniformly at random from Nper(x[r]). Define

ỹ = π[r](y) and ŷ = y − ỹ; similarly, define x̃r+1 = π[r](xr+1) and x̂r+1 = xr+1 − x̃r+1.

The following arguments are similar to that of Theorem 6.2. Using the fact ⟨y,xr+1⟩ = ⟨ỹ, x̃r+1⟩+
⟨ŷ, x̂r+1⟩, we derive that y ∈ Nr+1 (which is equivalent to y ∈ N(xr+1)) if and only if〈

ŷ

|ŷ|
,
x̂r+1

|x̂r+1|

〉
≤ 1

|ŷ||x̂r+1|

(
− c√

k
− ⟨ỹ, x̃r+1⟩

)
=: H. (39)
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Since y,xr+1 ∈ Mr, we have |ỹ|, |x̃r+1| ≤ αC

√
ℓ√

k
. Following the same bounds as in (29) and (30),

the right-hand side of (39) simplifies to H = − c√
k
+ O

(
1

D
√
k

)
. By Lemma 5.5, ŷ

|ŷ| is uniformly

distributed in Sk−r and is independent of ỹ. Therefore, for any fixed ỹ, by Lemma 4.3 we have

Vol(π−1
[r] (ỹ) ∩Nr+1)

Vol(π−1
[r] (ỹ))

= P
(〈

ŷ

|ŷ|
,
x̂r+1

|x̂r+1|

〉
≤ − c√

k
+O

(
1

D
√
k

))
= p−O

(
1

D

)
>

2pC
3

, (40)

where the last inequality holds since p ∈ (pC , 1/2) and D ≫ C. Using (40) and integrating over all
possible ỹ = π[r](y) ∈ π[r](Nper(x[r])), we can show that

Vol(Nr+1 ∩Mr) ≥
2pC
3

·Vol(Nr ∩Mr).

This, together with (38), implies that

Vol(Nr+1)

Vol(Nr)
≥ Vol(Nr+1 ∩Mr)

Vol(Nr)
=

Vol(Nr ∩Mr)

Vol(Nr)
· Vol(Nr+1 ∩Mr)

Vol(Nr ∩Mr)
≥
(
1− 2−Cℓ

) 2pC
3

>
3pC
5

(41)

and Vol(Nr+1) ≥
(pC

2

)r+1
Vol(Sk). Applying (36) again (with s = r + 1), and using (41), we have

Vol(Nper(x[r + 1]))

Vol(Nr)
=

Vol(Nper(x[r + 1]))

Vol(Nr+1)
· Vol(Nr+1)

Vol(Nr)
≥
(
1− 2−Cℓ

)
· Vol(Nr+1)

Vol(Nr)
>

pC
2
.

This completes the proof of the first inequality in (33). The second inequality in (33) follows
analogously.11 As for (34), its proof proceeds in exactly the same way as that of (37).

7 From Perfect to General

In this section, we show that the “perfect” variants (see, e.g., Definition 5.3) are the principal cases
for monochromatic clique probabilities (Definition 2.2) and their generalizations. In particular,
building on a more general result, we obtain the following.

Theorem 7.1. For every 2 ≤ r ≤ Cℓ, we have

Pred,r ≤
(
1 + 2−Cℓ

)
P per
red,r and P blue,r ≤

(
1 + 2−Cℓ

)
P

per
blue,r (42)

To facilitate our estimates in the non-perfect cases, we introduce the notion of the non-perfect
index for sequences of points in Sk.

Definition 7.2. For any r ∈ N∗, we say a sequence x[r] = (x1, . . . ,xr) of points in Sk has non-
perfect index j, if there exists a subset J ⊆ {2, . . . , r} of size j satisfying the following dichotomy:

|π[i−1](xi)| > αC

√
ℓ√
k

for i ∈ J,

|π[i−1](xi)| ≤ αC

√
ℓ√
k

for i ∈ {2, . . . , r} \ J.

The set J is called the non-perfect profile of x[r]. If J = ∅ or J = {r− j+1, . . . , r} consists of j ≥ 1
consecutive indices ending at r, then we say the sequence x[r] is faithful.

11For the blue case, the sign in (39) is reversed, and consequently the estimate in (40) becomes 1 − p + O(1/D),
which remains at least p+O(1/D) > 2

3
pC ; the other arguments remain unchanged.
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Note that a sequence has non-perfect index 0 if and only if it is a perfect sequence. The following
definition generalizes both Definition 2.2 and Definition 5.3, and will be used in the next section.

Definition 7.3. Let 0 ≤ s < r ≤ Cℓ be integers, and consider a sequence x[r] = (x1, . . . ,xr) ∈ Sk

in which the first s points form a fixed perfect sequence x[s], while the remaining r − s points are
sampled uniformly and independently from Sk. Under this setup, we define the following:

• Let Pred,r(x[s]) be the probability that Gp(x[r]) forms a red clique, and let P per
red,r(x[s]) be the

probability that Gp(x[r]) forms a red clique while x[r] forms a perfect sequence.12

• Let P blue,r(x[s]) be the probability that Gp(x[r]) forms a blue clique, and P
per
blue,r(x[s]) be the

probability that Gp(x[r]) forms a blue clique while x[r] forms a perfect sequence.

For the case s = 0, we view x[0] as the empty initial condition, and thus we have

Pred,r(x[0]) = Pred,r and P blue,r(x[0]) = P blue,r. (43)

Lemma 7.4. Let 0 ≤ s < r ≤ Cℓ and x[s] be a fixed perfect sequence. Then the following hold:

Pred,r(x[s]) ≤
r∑

t=s

(
r − s

r − t

)(pC
10

)Cℓ(r−t)
P per
red,t(x[s]),

P blue,r(x[s]) ≤
r∑

t=s

(
r − s

r − t

)(pC
10

)Cℓ(r−t)
P

per
blue,t(x[s]).

Proof. For any r ∈ N, we define a map φ : (Sk)r → (Sk)r as follows. Consider any x[r] ∈ (Sk)r.
Let J = {j1, . . . , jr−t} denote the non-perfect profile of x[r] for some 1 ≤ t ≤ r, with 2 ≤ j1 < . . . <
jr−t ≤ r. Let [r] \ J = {ℓ1, . . . , ℓt} with 1 = ℓ1 < . . . < ℓt ≤ r. Define y[r] = φ(x[r]) by letting

(y1, . . . ,yr) = φ(x[r]) := (xℓ1 , . . . ,xℓt ,xj1 , . . . ,xjr−t),

where we also define yi = xφ(i) for all i ∈ [r]. For each i ∈ [r], define

Yi := span(y1,y2, . . . ,yi) = span(xφ(1),xφ(2), . . . ,xφ(i)).

Then we have the following properties:

(1). For each 2 ≤ i ≤ t, we have φ(i) = ℓi ∈ [2, r]\J and Yi−1 ⊆ span(x1,x2, ...,xφ(i)−1), implying

|πYi−1(yi)| = |πYi−1(xφ(i))| ≤ |π[φ(i)−1](xφ(i))| ≤ αC

√
ℓ√
k
.13

This shows that (y1,y2, . . . ,yt) is a perfect sequence.

(2). For each t+ 1 ≤ i ≤ r, since φ(i) = ji−t ∈ J and Yi−1 ⊇ span(x1,x2, ...,xφ(i)−1), implying

|πYi−1(yi)| = |πYi−1(xφ(i))| ≥ |π[φ(i)−1](xφ(i))| > αC

√
ℓ√
k
.

12We point out that if the induced subgraph Gp(x[s]) on the given sequence x[s] is not a red clique, then both
probabilities defined here equal zero.

13Here, π[s](·) denotes the projection of points in Sk onto span(x1, . . . ,xs).
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Combining with both properties, we see that the non-perfect profile of y[r] is J ′ = {t+1, t+2, . . . , r},
hence y[r] = φ(x[r]) is always a faithful sequence with the same non-perfect index of x[r].

We now aim to prove the first inequality of this lemma. Consider the setting from Definition 7.3,
where x[s] is a fixed perfect sequence, and the remaining r− s points in x[r] are sampled uniformly
and independently from Sk. If x[s] does not induce a red clique, then both sides of the first inequality
are zero, and the inequality holds trivially. So we assume that x[s] induces a red clique Gp(x[s]).

Let r − t denote the non-perfect index of x[r]. Since x[s] is perfect, we have s ≤ t ≤ r, and
every element in the non-perfect profile J = {j1 < . . . < jr−t} of x[r] must be strictly greater
than s. Hence, the number of distinct choices for J is at most

(
r−s
r−t

)
. Note that y[r] = φ(x[r])

is a faithful sequence with the same non-perfect index r − t, obtained from x[r] by reordering the
positions of the points. It is important to observe that both sequences induce the same graph, i.e.,
Gp(x[r]) = Gp(y[r]). Moreover, the map φ, when restricted to all sequences x[r] with a given non-
perfect profile J , is injective and preserves volume measure (because it is an isometric embedding
with the standard Euclidean metric). Therefore, we can derive that the probability that Gp

(
x[r]

)
forms a red clique with a given non-perfect profile J is at most the probability p∗|J | that Gp

(
x[r]

)
forms a red clique, conditioned on x[r] being faithful and having non-perfect index |J |. Putting all
above together, and applying Lemma 4.2, we obtain

Pred,r(x[s]) =

r∑
t=s

P
(
Gp(x[r]) forms a red clique with |J | = r − t}

)
≤

r∑
t=s

(
r − s

r − t

)
· p∗r−t

≤
r∑

t=s

(
r − s

r − t

)
· P
(
x[t] is perfect, Gp(x[t]) is a red clique, and |π[i−1](xi)| > αC

√
ℓ√

k
∀t < i ≤ r

)
≤

r∑
t=s

(
r − s

r − t

)(pC
10

)Cℓ(r−t)
P per
red,t(x[s]).

This proves the first inequality. The second inequality follows by identical arguments under the
analogous condition, so we omit the details.

Now we are able to prove the main result of this section, as follows.

Theorem 7.5. Let 2 ≤ r ≤ Cℓ and 0 ≤ s ≤ r − 1. For any fixed perfect sequence x[s], we have

Pred,r(x[s]) ≤
(
1 + 2−Cℓ

)
P per
red,r(x[s]) and P blue,r(x[s]) ≤

(
1 + 2−Cℓ

)
P

per
blue,r(x[s]) (44)

Proof. We consider the first inequality. We may assume that x[s] induces the red clique Gp(x[s]);
otherwise, both sides equal zero, and the inequality holds trivially. For any s ≤ t < r, consider
any perfect sequence x[t] whose first s points form the given perfect sequence x[s]. Using (34) in
Lemma 6.3, we have Vol

(
Nper(x[t])

)
≥
(pC

2

)r
Vol(Sk). This implies that for any s ≤ t < r,

P per
red, t+1

(
x[s]

)
≥ inf

x[t] perfect

(
Vol
(
Nper(x[t])

)
Vol(Sk)

)
· P per

red, t

(
x[s]

)
≥
(pC

2

)r
· P per

red, t

(
x[s]

)
,

and thus

P per
red, r

(
x[s]

)
≥
(pC

2

)r(r−t)
· P per

red, t

(
x[s]

)
.
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Combining this with Lemma 7.4, we can then derive

Pred,r(x[s]) ≤P per
red,r(x[s]) +

r−1∑
t=s

(
r − s

r − t

)(pC
10

)Cℓ(r−t)
P per
red,t(x[s])

≤P per
red,r(x[s]) +

(
r−1∑
t=s

rr−t
(pC
10

)Cℓ(r−t) (pC
2

)−r(r−t)
)

· P per
red,r(x[s])

≤

(
1 +

r−1∑
t=s

4−Cℓ(r−t)

)
· P per

red,r(x[s]) ≤
(
1 + 2−Cℓ

)
· P per

red,r(x[s]),

where the third inequality follows from the analysis below (as r ≤ Cℓ and ℓ is sufficiently large)

rr−t
(pC
10

)Cℓ(r−t)
·
(pC

2

)−r(r−t)
≤
(
Cℓ · 5−Cℓ

)r−t
≤ 4−Cℓ(r−t).

This completes the proof of the first inequality of Theorem 7.5. The proof of the second inequality
follows analogously through similar arguments.

In view of (43), we see that Theorem 7.1 follows directly from the case s = 0 of Theorem 7.5.

8 Estimates on Key Quantities

This section focuses on deriving a crucial estimate for computing κperr and κperr . Let x[r] be a
random r-tuple in (Sk)r. Recall Definitions 5.2 and 6.1, which imply that

κperr = E [Pper(x[r]) | Ared,r ∧Br] , where Pper(x[r]) =
r−1∏
s=0

Q[s](xs+1), (45)

and an analogous expression for κperr . Since our analysis proceeds by fixing each perfect subsequence
x[s] for 0 ≤ s < r, the central quantity to estimate, as guided by Theorem 6.2, is

E
[
⟨π[s](xs+1), π[s](z)⟩ | Ared,r ∧Br

]
,

where z is sampled uniformly at random from Nper(x[s]), independently of xs+1, . . . ,xr.
Our goal in this section is to prove the following statement.

Theorem 8.1. Let 0 ≤ s < r ≤ Cℓ, and fix a perfect sequence x[s] = (x1, . . . ,xs). Independently
sample xs+1, . . . ,xr uniformly from Sk, and recall Ared,r, Ablue,r, and Br from Definition 5.3.

• If Gp(x[s]) forms a red clique, and z is sampled uniformly at random from Nper(x[s]), inde-
pendently of xs+1, . . . ,xr, then

E
[
⟨π[s](xs+1), π[s](z)⟩ | Ared,r ∧Br

]
=

e−c2

2πp2
· s
k
+O

(
ℓ

Dk

)
. (46)

• If Gp(x[s]) forms a blue clique, and z is sampled uniformly at random from Nper(x[s]), inde-
pendently of xs+1, . . . ,xr, then

E
[
⟨π[s](xs+1), π[s](z)⟩ | Ablue,r ∧Br

]
=

e−c2

2π(1− p)2
· s
k
+O

(
ℓ

Dk

)
. (47)

The remainder of this section is devoted to proving this result, divided into three subsections.
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8.1 Spectral Properties of Perfect Sequences

To facilitate the analysis of the desired expectations, we employ spectral arguments to study relevant
vectors associated with perfect sequences. We begin with the definitions of these concepts.

Definition 8.2. Let 1 ≤ r ≤ Cℓ and x[r] = (x1, . . . ,xr) be a perfect sequence in (Sk)r ⊆ (Rk+1)r.

• Let X ∈ R(k+1)×r be the matrix whose ith column is the vector xi for each i ∈ [r].14

• For each i ∈ [r], let vi ∈ span(x1, . . . ,xr) be the unique vector satisfying ⟨vi,xi⟩ = 1 and
orthogonal to span

(
{xj : j ∈ [r] \ {i}}

)
; see Figures 2 and 3. Let V ∈ R(k+1)×r denote the

matrix whose ith column is the vector vi for each i ∈ [r]. Equivalently, V = X(XTX)−1, i.e.,
V is the Moore–Penrose pseudoinverse of XT .

• For each i ∈ [r], let Xi := span(x1, . . . ,xi), and define X0 := {0}. Construct the orthonormal
basis {ei}ri=1 for the space Xr, where for each i ∈ [r], the vector ei ∈ Xi ∩X⊥

i−1 is the unique
unit vector satisfying ⟨xi, ei⟩ > 0.

• Let λ1 ≥ · · · ≥ λr ≥ 0 denote the eigenvalues of XTX, and let 0 ≤ µ1 ≤ · · · ≤ µr denote the
eigenvalues of VTV.

We first show that the common neighborhoods N(x[r]) and N(x[r]) can be characterized as a
corner generated by the previously defined vectors v1, . . . ,vr.

Proposition 8.3. Let x[r] = (x1, . . . ,xr) be a perfect sequence. Let X, v1, . . . ,vr, and V be
defined as in Definition 8.2. Then we have

N(x[r]) =

{
y ∈ Sk : π[r](y) =

r∑
i=1

aivi with ai ≤ − c√
k
for all i ∈ [r]

}
,

N(x[r]) =

{
y ∈ Sk : π[r](y) =

r∑
i=1

aivi with ai > − c√
k
for all i ∈ [r]

}
.

Proof. Consider the projection π[r](y) =
∑r

i=1 aivi onto the space Xr. Then we have

(⟨y,x1⟩, . . . , ⟨y,xr⟩) = yTX = (π[r](y))
T ·X

= (a1, . . . , ar)V
T ·X = (a1, . . . , ar) · (XTX)−1XTX = (a1, . . . , ar).

(48)

By Definition 2.3, we obtain that y ∈ N(x[r]) if and only if ai = ⟨y,xi⟩ ≤ − c√
k
for all i ∈ [r];

similarly, y ∈ N(x[r]) if and only if ai = ⟨y,xi⟩ > − c√
k
for all i ∈ [r], finishing the proof.

The following lemma will be useful in the coming proof. It offers multiple handy and broadly
applicable formulas for various vectors under the perfect-sequence condition.

Lemma 8.4. Let x[r] = (x1, . . . ,xr) be a perfect sequence. Let X, v1, . . . ,vr, V, λ1 ≥ · · · ≥ λr,
and µ1 ≤ · · · ≤ µr be defined as in Definition 8.2. Then the following hold:

(1) For all i ∈ [r], we have µi = λ−1
i with λi, µi = 1 +O

(
1
D

)
, and |vi| = 1 +O

(
1
D

)
.

14We will view all vectors in Rk+1 as column vectors.
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(2) For a matrix A = (aij)m×n, let ∥A∥F =
√∑m

i=1

∑n
j=1 a

2
ij denote its Frobenius norm. Then

r∑
i=1

(λi − 1)2 = ∥XTX− I∥2F = O

(
1

D2

)
,

r∑
i=1

(µi − 1)2 = ∥VTV − I∥2F = O

(
1

D2

)
.

In particular, for each i ∈ [r], let Vr(i) = span
(
{vj : j ∈ [r] \ {i}}

)
. Then we have

r∑
i=1

|πVr(i)(vi)|2 = O

(
1

D2

)
.

(3) Let y ∈ Sk be a vector such that (x[r],y) is perfect, and let π[r](y) =
∑r

i=1 aivi. Then∑r
i=1 a

2
i = O

(
ℓ
k

)
and for any I ⊆ [r],

∑
i∈I

a2i =

(
1 +O

(
1

D

))
·

∣∣∣∣∣∑
i∈I

aivi

∣∣∣∣∣
2

.

Proof. Let x[r] = (x1, . . . ,xr) be a fixed perfect sequence. For item (1), we first observe that

VTV = (XTX)−1XTX(XTX)−1 = (XTX)−1.

This proves that µi = λ−1
i for all i ∈ [r]. Note that yTXXTy =

∑r
i=1⟨y,xi⟩2, and XTX and XXT

share identical nonzero eigenvalues. By the Courant-Fischer theorem, we have

λ1 = sup
y∈Xr

|y|=1

r∑
i=1

⟨y,xi⟩2 and λr = inf
y∈Xr

|y|=1

r∑
i=1

⟨y,xi⟩2. (49)

Recall the orthonormal basis {ei}ri=1 defined in Definition 8.2. For all 1 ≤ i, j ≤ r, we have

⟨xi, ej⟩2 =


O
(
ℓ
k

)
, 1 ≤ j < i,

1−O
(
ℓ
k

)
, j = i,

0, i < j ≤ r.

(50)

Consider any unit vector y =
∑r

i=1 biei ∈ Xr (with
∑r

i=1 b
2
i = 1). It follows that

r∑
i=1

⟨y,xi⟩2 =
r∑

i=1

 r∑
j=1

bj⟨ej ,xi⟩

2

=

r∑
i=1

bi⟨ei,xi⟩+

〈
xi,

i−1∑
j=1

bjej

〉2

=

r∑
i=1

b2i ⟨ei,xi⟩2︸ ︷︷ ︸
(I)

+2

r∑
i=1

bi⟨ei,xi⟩

〈
xi,

i−1∑
j=1

bjej

〉
︸ ︷︷ ︸

(II)

+

r∑
i=1

〈
xi,

i−1∑
j=1

bjej

〉2

︸ ︷︷ ︸
(III)

=

(
1 +O

(
1

D

))
·

r∑
i=1

b2i ⟨ei,xi⟩2 + (1 +O(D)) ·
r∑

i=1

〈
xi,

i−1∑
j=1

bjej

〉2

,
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where the last inequality holds because the absolute value of (II) is at most 1
D (I) +D (III), by the

AM–GM inequality (i.e., 2ab ≤ 1
Da2 + Db2). Using (50) and the identity

∑r
i=1 b

2
i = 1, we have∑r

i=1 b
2
i ⟨ei,xi⟩2 = 1 +O( ℓk ). Moreover, since

∑i−1
j=1 bjej ∈ Xi−1 and

∑i−1
j=1 b

2
j ≤ 1, we can get

〈
xi,

i−1∑
j=1

bjej

〉2

=

〈
π[i−1](xi),

i−1∑
j=1

bjej

〉2

≤ |π[i−1](xi)|2 ·

∣∣∣∣∣∣
i−1∑
j=1

bjej

∣∣∣∣∣∣
2

≤ α2
C

ℓ

k
·

 i−1∑
j=1

b2j

 ≤ α2
C

ℓ

k
,

where the second last inequality follows from the fact that x[r] is a perfect sequence. Combining all
above bounds, and noting that r ≤ Cℓ and k = D2ℓ2, we obtain that for any unit vector y ∈ Xr,

r∑
i=1

⟨y,xi⟩2 =
(
1 +O

(
1

D

))
·
(
1 +O

(
ℓ

k

))
+ (1 +O(D)) ·O

(
rℓ

k

)
= 1 +O

(
1

D

)
.

This, together with (49), implies that for every i ∈ [r], λi = 1+O
(
1
D

)
and thus µi = λ−1

i = 1+O
(
1
D

)
.

We apply the Courant-Fischer theorem for the matrix VTV: for any unit vector y ∈ Rr, we have
µ1 ≤ yTVTVy ≤ µr. For each i ∈ [r], by taking y to be the unit vector yi ∈ Rr, where the ith

entry is 1, we derive |vi|2 = yT
i V

TVyi = 1 +O
(
1
D

)
and thus |vi| = 1 +O

(
1
D

)
, proving item (1).

For any I ⊆ [r], let VI ∈ R(k+1)×|I| denote the matrix whose columns are the vectors vi for all
i ∈ I; define XI analogously. By Cauchy’s eigenvalue interlacing theorem, it is easy to obtain that

Property (⋆). all |I| eigenvalues of VT
I VI (respectively, XT

I XI) are equal to 1 + O
(
1
D

)
, and the

same holds for the nonzero eigenvalues of VIV
T
I (respectively, XIX

T
I ).

Now we prove item (2). Fix s ∈ [r−1], and recall Xs = span({xi : i ∈ [s]}). Let zs := πXs(xs+1)
be the projection of xs+1 onto Xs. Then we have

s∑
i=1

⟨xs+1,xi⟩2 =
s∑

i=1

⟨zs,xi⟩2 = zT
s X[s]X

T
[s]zs =

(
1 +O

(
1

D

))
· |zs|2 = O

(
ℓ

k

)
, (51)

where the penultimate equality follows from Property (⋆) above and the Courant–Fischer theorem,
and the final equality holds because x[r] is perfect. Since |xi| = 1 for all 1 ≤ i ≤ r, it follows from
(51) that the following Frobenius norm satisfies

r∑
i=1

(λi − 1)2 = ∥XTX− I∥2F =
∑

1≤i,j≤r
i ̸=j

⟨xi,xj⟩2 = 2
r∑

j=1

∑
1≤i<j

⟨xi,xj⟩2 = O

(
ℓ2

k

)
= O

(
1

D2

)
.

Using the fact that µ−1
i = λi = 1+O

(
1
D

)
for each i ∈ [r], we deduce from the above equation that

∥VTV − I∥2F =

r∑
i=1

(µi − 1)2 =

r∑
i=1

(λi − 1)2

λ2
i

= O

(
1

D2

)
.

Next, consider the projections ui := πVr(i)(vi), where Vr(i) = span
(
{vj : j ∈ [r] \ {i}}

)
. Using the

same discussion as in (51), we can obtain that for any i ∈ [r],∑
j∈[r]\{i}

⟨vi,vj⟩2 = uT
i V[r]\{i}V

T
[r]\{i}ui =

(
1 +O

(
1

D

))
· |ui|2.
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This implies the final desired equality of item (2) as follows:

r∑
i=1

|πVr(i)(vi)|2 =
(
1 +O

(
1

D

))
·
∑

1≤i ̸=j≤r

⟨vi,vj⟩2 ≤
(
1 +O

(
1

D

))
· ∥VTV − I∥2F = O

(
1

D2

)
.

It remains to prove item (3). Consider any y ∈ Sk such that (x[r],y) is perfect. Let π[r](y) =∑r
i=1 aivi. Let a = (a1, . . . , ar)

T . Then by the same arguments as above, we have

(
1 +O

(
1

D

))
· aTa = aTVTVa =

∣∣∣∣∣
r∑

i=1

aivi

∣∣∣∣∣
2

=
∣∣π[r](y)∣∣2 = O

(
ℓ

k

)
,

where the last equality follows by the perfectness of the sequence (x[r],y). This implies
∑r

i=1 a
2
i =

O
(
ℓ
k

)
. For any I ⊆ [r], by replacing a and V with the vector aI = (ai : i ∈ I)T and the matrix VI

in the leftmost equation above, it follows that
∑

i∈I a
2
i =

(
1 +O

(
1
D

))
·
∣∣∑

i∈I aivi

∣∣2 . This completes
the proof of Lemma 8.4.

We conclude this subsection with the next lemma, which provides an estimate of the difference
between the orthonormal basis e1, . . . , er and v1, . . . ,vr.

Lemma 8.5. Let x[r] = (x1, . . . ,xr) be a perfect sequence. Let X, e1, . . . , er, V, and v1, . . . ,vr be
defined as in Definition 8.2. Let Vr(i) = span

(
{vj : j ∈ [r] \ {i}}

)
. Then for all i ∈ [r], we have

⟨vi, ei⟩ = 1 +O

(
ℓ

k

)
and

∣∣πVr(i)(ei)
∣∣ = O

(√
ℓ√
k

)
.

Proof. Recall that for each i ∈ [r], ei is the unit vector in Xi ∩X⊥
i−1 satisfying ⟨xi, ei⟩ > 0. So

ei =
xi − π[i−1](xi)∣∣xi − π[i−1](xi)

∣∣ . (52)

By Definition 8.2, we have ⟨vi,xj⟩ = 0 for all j ̸= i, thus by (52)

1 = ⟨vi,xi⟩ = ⟨vi,xi − π[i−1](xi)⟩+ ⟨vi, π[i−1](xi)⟩ =
∣∣xi − π[i−1](xi)

∣∣ · ⟨vi, ei⟩.

Then using the fact that x[r] is a perfect sequence, we can derive

⟨vi, ei⟩ =
1∣∣xi − π[i−1](xi)

∣∣ = 1√
1−

∣∣π[i−1](xi)
∣∣2 =

1√
1−O (ℓ/k)

= 1 +O

(
ℓ

k

)
.

By the property ⟨vj ,xi⟩ = 0 for all j ̸= i, we have πVr(i)(xi) = 0. This, together with (52), implies

∣∣πVr(i)(ei)
∣∣ = ∣∣∣∣∣πVr(i)

(
xi − π[i−1](xi)∣∣xi − π[i−1](xi)

∣∣
)∣∣∣∣∣ = 1∣∣xi − π[i−1](xi)

∣∣ ∣∣πVr(i)

(
−π[i−1](xi)

)∣∣
≤

∣∣π[i−1](xi)
∣∣∣∣xi − π[i−1](xi)
∣∣ ≤

(
1 +O

(
ℓ

k

))
·O

(√
ℓ√
k

)
= O

(√
ℓ√
k

)
,

completing the proof.
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8.2 Estimate of E[⟨π[r](y), ei⟩]: Single Random Projection

In this subsection, we present the core technical step in proving Theorem 8.1, as follows.

Lemma 8.6. Let 1 ≤ r ≤ Cℓ, and let x[r] = (x1, . . . ,xr) be a perfect sequence. Let v1, . . . ,vr,
e1, . . . , er and Vr(s) = span

(
{vi : i ∈ [r] \ {s}}

)
for s ∈ [r] be defined as in Definition 8.2. If y is

sampled uniformly at random from Nper(x[r]), then for each s ∈ [r],

E[⟨π[r](y), es⟩] = − e−c2/2

p
√
2πk

(
1 +O

(
1

D

))
+O

(√
ℓ√
k
|πVr(s)(vs)|

)
(53)

Analogously, if y is sampled uniformly at random from Nper(x[r]), then for each s ∈ [r],

E[⟨π[r](y), es⟩] =
e−c2/2

(1− p)
√
2πk

(
1 +O

(
1

D

))
+O

(√
ℓ√
k
|πVr(s)(vs)|

)
(54)

The essential part of this lemma is formulated in the next lemma, which we prove first.

Lemma 8.7. Let x[r],v1, . . . ,vr and Vr(s) be given as in Lemma 8.6. Consider the vector y
sampled uniformly at random from Nper(x[r]), with π[r](y) =

∑r
i=1 aivi. Then for each s ∈ [r],

E[as] = −
(
1 +O

(
1

D

))
· e−c2/2

p
√
2πk

+O

(√
ℓ√
k
|πVr(s)(vs)|

)
. (55)

Analogously, consider the vector y sampled uniformly at random from Nper(x[r]), with π[r](y) =∑r
i=1 aivi. Then for each s ∈ [r],

E[as] =
(
1 +O

(
1

D

))
· e−c2/2

(1− p)
√
2πk

+O

(√
ℓ√
k
|πVr(s)(vs)|

)
. (56)

Proof. Fix a perfect sequence x[r] = (x1, . . . ,xr) and let v1, . . . ,vr be defined from x[r] as in Def-
inition 8.2. Let y be the vector sampled uniformly at random from Nper(x[r]), and let π[r](y) =∑r

i=1 aivi. From now on, we regard y as the joint distribution of the random variables ai for
i ∈ [r]. We fix an index s ∈ [r], and aim to prove (55) for this choice of s. Write ωs ≜(
a1, . . . , as−1, as+1, . . . , ar

)
and define the event A ≜

{
ωs :

∣∣∣∑i∈[r]\{s} aivi

∣∣∣ ≤ (αC − 2)
√
ℓ√
k

}
.

We first claim that to prove (55), it suffices to show the following for the conditional expectation

E
[
as | ωs

]
= − e−c2/2

p
√
2πk

(
1 +O

(
1

D

))
+O

(√
ℓ√
k

∣∣πVr(s)(vs)
∣∣) , (57)

where ωs ∈ A denotes an arbitrary but fixed outcome
(
a1, . . . , as−1, as+1, . . . , ar

)
satisfying the

event A. To see this, we begin by estimating the probability P(A). By item (3) of Lemma 8.4,

|π[r](y)| =
(
1 +O

(
1

D

))
·
√∑

i∈[r]

a2i ≥
(
1 +O

(
1

D

))
·
√ ∑

i∈[r]\{s}

a2i =

(
1 +O

(
1

D

))
·

∣∣∣∣∣∣
∑

i∈[r]\{s}

aivi

∣∣∣∣∣∣ .
Hence, the complement Ac of the event A satisfies that

P(Ac) ≤P

(
y ∈ Sk : |π[r](y)| ≥

(
1 +O

(
1

D

))
·
(
αC − 2

)√ℓ√
k

)

≤Vol

(
y ∈ Sk : |π[r](y)| ≥

αC

√
ℓ

2
√
k

)
/ Vol(Nper(x[r])) ≤

(pC
10

)Cℓ
·
(pC

2

)−r
≤ 5−Cℓ,
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where the second inequality uses the fact that D ≫ αC ≥ 10 and the second last inequality follows
from Lemma 4.2 and Lemma 6.3. Using item (3) of Lemma 8.4 again, we have

1 = |y|2 ≥ |π[r](y)|2 =

∣∣∣∣∣
r∑

i=1

aivi

∣∣∣∣∣
2

=

(
1 +O

(
1

D

))
·

s∑
i=1

a2i ≥
1

4

s∑
i=1

a2i ,

implying that |ai| ≤ 2 for all i ∈ [r]. Under the assumption that (57) holds for every ωs ∈ A,
applying the law of total expectation, we can derive the desired estimation (55) in the following:

E[as] = P(A) · E [ as | A ] + (1− P(A)) · E[ as | Ac ]

=
(
1−O(5−Cℓ)

)
·

(
− e−c2/2

p
√
2πk

(
1 +O

(
1

D

))
+O

(√
ℓ√
k
|πVr(s)(vs)|

))
+O(5−Cℓ)

= − e−c2/2

p
√
2πk

(
1 +O

(
1

D

))
+O

(√
ℓ√
k
|πVr(s)(vs)|

)
,

where the last equality holds by the fact that O(5−Cℓ) = O
(

1
D
√
k

)
.

The remainder of this proof is devoted to establishing (57) for every ωs ∈ A. By Proposition 8.3,

Nper(x[r]) =

{
y = (a1, . . . , ar) ∈ Sk

∣∣∣∣ ai ≤ − c√
k
for all i ∈ [r] and

∣∣π[r](y)∣∣ =
∣∣∣∣∣

r∑
i=1

aivi

∣∣∣∣∣ ≤ αC

√
ℓ√
k

}
.

Let I(ωs) denote the set of all values as such that y = (a1, . . . , ar) ∈ Nper(x[r]) while ωs is fixed.

We claim that for any fixed ωs ∈ A, I(ωs) = [−As,− c√
k
] is an interval with

√
ℓ√
k
≤ As ≤ 2αC

√
ℓ√

k
.

Note that, from the above expression of Nper(x[r]), the domain I(ωs) of as is determined by the

conditions as ≤ − c√
k
and |

∑r
i=1 aivi| ≤ αC

√
ℓ√
k
, the latter of which can be viewed as a quadratic

inequality in the variable as. Thus, I(ωs) must be an interval [−As,− c√
k
] for some constant As > 0.

Suppose that −
√
ℓ√
k
≤ as ≤ − c√

k
. Then, since ωs ∈ A and |vs| = 1+O( 1

D ) (by Lemma 8.4), we have

∣∣π[r](y)∣∣ ≤ (αC − 2 + 1 +O

(
1

D

)) √
ℓ√
k
≤ αC

√
ℓ√
k
,

implying that [−
√
ℓ√
k
,− c√

k
] ⊆ I(ωs) and thus As ≥

√
ℓ√
k
. On the other hand, if as < −2αC

√
ℓ√

k
, then

∣∣π[r](y)∣∣ ≥ |asvs| −

∣∣∣∣∣∣
∑

i∈[r]\{s}

aivi

∣∣∣∣∣∣ ≥
(
2αC +O

(
1

D

)
− (αC − 2)

) √
ℓ√
k
> αC

√
ℓ√
k
.

Combining with the above bounds, we obtain that
√
ℓ√
k
≤ As ≤ 2αC

√
ℓ√

k
, proving the claim.

While fixing ωs =
(
a1, . . . , as−1, as+1, . . . , ar

)
∈ A, the surface area measure satisfies

Vol

y ∈ Sk : π[r](y) =
∑

i∈[r]\{s}

aivi + asvs, as ∈ [a, a+ da]


 ∝

(
1−

∣∣π[r](y)∣∣2) k−r−1
2

da.
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Therefore, E
[
as | ωs

]
can be written as∫ − c√

k

−As

as
(
1− |π[r](y)|2

) k−r−1
2 das∫ − c√

k

−As

(
1− |π[r](y)|2

) k−r−1
2 das

=

∫ − c√
k

−As

as exp

(
−k

2
|π[r](y)|2

)
das∫ − c√

k

−As

exp

(
−k

2
|π[r](y)|2

)
das

(
1 +O

(
1

D2

))
, (58)

where the equality holds since for all 1 ≤ r ≤ Cℓ and x := |π[r](y)| = O(
√
ℓ√
k
),

exp

(
k

2
x2
)
(1− x2)

k−r−1
2 = exp

(
k

2
x2 − k − r − 1

2
x2 +O(kx4)

)
= exp

(
O(ℓx2 + kx4)

)
= 1 +O

(
1

D2

)
.

(59)

Here, π[r](y) is viewed as a function of as, that is,

∣∣π[r](y)∣∣2 = a2s |vs|2 + 2as|vs| ·

〈
vs

|vs|
,
∑
i ̸=s

aivi

〉
+
∑
i,j ̸=s

ai aj ⟨vi,vj⟩.

To simplify the calculation of (58), we introduce the following shifted variables:

t := as |vs|+

〈
vs

|vs|
,
∑
i ̸=s

aivi

〉
, A′

s := As |vs|−

〈
vs

|vs|
,
∑
i ̸=s

aivi

〉
, B′

s := − c√
k
|vs|+

〈
vs

|vs|
,
∑
i ̸=s

aivi

〉
.

Before substituting these parameters into (58), we derive some estimates for them. By Lemma 8.4,∣∣∣∣∣∣
〈

vs

|vs|
,
∑
i ̸=s

aivi

〉∣∣∣∣∣∣ =
∣∣∣∣∣∣
〈
πVr(s)(vs)

|vs|
,
∑
i ̸=s

aivi

〉∣∣∣∣∣∣ ≤ |πVr(s)(vs)|
1 +O

(
1
D

) ·

∣∣∣∣∣∣
∑
i ̸=s

aivi

∣∣∣∣∣∣
=O
(
|πVr(s)(vs)|

)
·
√∑

i ̸=s

a2i = O

(√
ℓ√
k
· |πVr(s)(vs)|

)
= O

( √
ℓ

D
√
k

)
,

(60)

and using the bound
√
ℓ√
k
≤ As ≤ 2αC

√
ℓ√

k
, we have

0 < A′
s =

(
1 +O

(
1

D

))
·As +O

( √
ℓ

D
√
k

)
= Θ

(√
ℓ√
k

)
and |B′

s| = O

( √
ℓ

D
√
k

)
. (61)

Now, substituting t, A′
s, and B′

s for as, As, and − c√
k
, respectively, in (58) yields

E
[
as | ωs

]
=

∫ B′
s

−A′
s

t−

〈
vs

|vs|
,
∑
i ̸=s

aivi

〉 exp

(
−k

2
t2
)
dt

∫ B′
s

−A′
s

exp

(
−k

2
t2
)
dt

(
1 +O

(
1

D

))

=

∫ B′
s

−A′
s

t exp

(
−k

2
t2
)
dt∫ B′

s

−A′
s

exp

(
−k

2
t2
)
dt

(
1 +O

(
1

D

))
+O

〈 vs

|vs|
,
∑
i ̸=s

aivi

〉 .

(62)
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Using the basic equality
∫ β
−∞ t exp

(
− t2

2

)
dt = − exp

(
−β2

2

)
, we have∣∣∣∣∣

∫ −A′
s

−∞
t exp

(
−k

2
t2
)
dt

∣∣∣∣∣∣∣∣∣∣
∫ B′

s

−∞
t exp

(
−k

2
t2
)
dt

∣∣∣∣∣
=

exp

(
−k

2
(A′

s)
2

)
exp

(
−k

2
(B′

s)
2

) = O

(
exp

(
− ℓ

10

))
= O

(
1

D

)
,

where the second equality follows from (61) that (A′
s)

2− (B′
s)

2 = (A′
s−B′

s)(A
′
s+B′

s) ≥
(As)2

4 ≥ ℓ
4k .

Furthermore, (61) gives
(
|B′

s|+
√
ℓ

D
√
k

)2
= O

(
ℓ

D2k

)
< ℓ

16k ≤ (A′
s)

2

4 , which implies that∫ −A′
s

−∞
exp

(
−k

2
t2
)
dt ≤ 1

|A′
s|

∫ −A′
s

−∞
(−t) exp

(
−k

2
t2
)
dt =

1

|A′
s|k

· exp
(
−k

2
(A′

s)
2

)

≤
√
ℓ

D
√
k
· exp

−k

2

(
|B′

s|+
√
ℓ

D
√
k

)2
 · exp

(
−k

4
(A′

s)
2

)

≤
∫ −|B′

s|

−|B′
s|−

√
ℓ

D
√
k

exp

(
−k

2
t2
)
dt · exp

(
− ℓ

16

)
≤
∫ B′

s

−∞
exp

(
−k

2
t2
)
dt ·O

(
1

D

)
.

Putting the above two bounds into (62), and using (60), we have

E
[
as | ωs

]
=

∫ B′
s

−∞
t exp

(
−k

2
t2
)
dt∫ B′

s

−∞
exp

(
−k

2
t2
)
dt

(
1 +O

(
1

D

))
+O

(√
ℓ√
k
· |πVr(s)(vs)|

)
. (63)

Next, applying (60) and Lemma 8.4 once more, we obtain the following equation

B′
s = − c√

k
|vs|+

〈
vs

|vs|
,
∑
i ̸=s

aivi

〉
= − c√

k
·
(
1 +O

(
1

D

))
+O

(√
ℓ√
k
· |πVr(s)(vs)|

)
.

Let X be the standard normal random variable. By Lemma 4.4, we have that∣∣∣∣∣∣∣∣
d

dx


∫ x

−∞
t exp(−k

2
t2)dt∫ x

−∞
exp(−k

2
t2)dt


∣∣∣∣∣∣∣∣ =

∣∣∣∣ 1√
k

d

dx
E[X|X ≤ x

√
k]

∣∣∣∣ ≤ 100.

Hence, we can derive from (63) that

E
[
as | ωs

]
=

∫ − c√
k

−∞
t exp

(
−k

2
t2
)
dt∫ − c√

k

−∞
exp

(
−k

2
t2
)
dt

(
1 +O

(
1

D

))
+O

(
1

D
√
k

)
+O

(√
ℓ√
k
· |πVr(s)(vs)|

)
. (64)

Recall that Φ is the standard normal CDF. By Lemma 4.1, c = Φ−1(1− p) +O
(
1
k

)
. This yields∫ − c√

k

−∞
t exp

(
−k

2
t2
)
dt∫ − c√

k

−∞
exp

(
−k

2
t2
)
dt

= − 1√
k
E[X|X ≥ c] = − 1√

k

ϕ(c)

1− Φ(c)
= − e−c2/2

p
√
2πk

+O

(
1

k
√
k

)
, (65)
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where the second equality follows from Lemma 4.4 and the last equality hods by ϕ(c) = e−c2/2
√
2π

and

1− Φ(c) = p+O( 1k ). Combining (64) and (65), we obtain (57), implying (55) (as shown earlier).
The proof of (56) proceeds analogously by considering the random vector y ∈ Nper(x[r]) in

place of Nper(x[r]). In this blue case, the counterpart of (65) becomes 1√
k
E[X | X ≥ −c], which

contributes the main term e−c2/2

(1−p)
√
2πk

. All arguments carry over with corresponding changes, except

for (58), which requires some modification. We provide a detailed proof below. Define π[r](y) =∑r
i=1 aivi, and the same event A as before. Then for any fixed ωs ∈ A, in this case we have

I(ωs) =

[
− c√

k
,As

]
, where

√
ℓ√
k
≤ As ≤

2αC

√
ℓ√

k
.

Since this interval is not positive everywhere, the blue version of (58) cannot be obtained directly
from the previous estimation (59). However, we are able to derive the following (weaker) analogue
of (58), which nevertheless suffices for the purposes of the remaining proof:∫ As

− c√
k

as
(
1− |π[r](y)|2

) k−r−1
2 das∫ As

− c√
k

(
1− |π[r](y)|2

) k−r−1
2 das

=

∫ As

− c√
k

as exp

(
−k

2
|π[r](y)|2

)
das∫ As

− c√
k

exp

(
−k

2
|π[r](y)|2

)
das

(
1 +O

(
1

D2

))
+O

(
1

D2
√
k

)
.

To see this, we define

M := −
∫ 0

− c√
k

as
(
1− |π[r](y)|2

) k−r−1
2 das, N :=

∫ As

0
as
(
1− |π[r](y)|2

) k−r−1
2 das,

M ′ := −
∫ 0

− c√
k

as exp

(
−k

2
|π[r](y)|2

)
das, N ′ :=

∫ As

0
as exp

(
−k

2
|π[r](y)|2

)
das,

P :=

∫ As

− c√
k

(
1− |π[r](y)|2

) k−r−1
2 das and P ′ :=

∫ As

− c√
k

exp

(
−k

2
|π[r](y)|2

)
das.

Using (59), we have M ′ =
(
1 +O( 1

D2 )
)
M , N ′ =

(
1 +O( 1

D2 )
)
N , and P ′ =

(
1 +O( 1

D2 )
)
P . Then

−M ′ +N ′ = (−M +N) ·
(
1 +O

(
1

D2

))
+O

(
M

D2

)
.

Now using P ′ =
(
1 +O( 1

D2 )
)
P , we have

−M ′ +N ′

P ′ =
−M +N

P
·
(
1 +O

(
1

D2

))
+O

(
M

D2 · P

)
.

This, together with an easy observation that |M | = O
(

1√
k

)
|P |, implies the above desired equality.

We point out that the extra O
(

1
D2

√
k

)
term is negligible for the remaining proof of the blue case,

and therefore this analogue of (58) suffices for the proof of Lemma 8.7.

We are ready to prove the main result - Lemma 8.6 of this subsection.
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Proof of Lemma 8.6. Let x[r], v1, . . . ,vr, and e1, . . . , er be as given in the conditions. By sym-
metry, we only consider the vector y sampled uniformly at random from Nper(x[r]). Recall that
π[r](y) = a1v1 + · · ·+ arvr. Using Lemma 8.5 and Lemma 8.7, we can show that for each s ∈ [r],∣∣∣∣∣∣
〈∑

i ̸=s

aivi, πVr(s)(es)

〉∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
i ̸=s

aivi

∣∣∣∣∣∣ · |πVr(s)(es)| ≤
(
1 +O

(
1

D

))
·

(
r∑

i=1

a2i

) 1
2

·O

(√
ℓ√
k

)

≤
(
1 +O

(
1

D

))
·

∣∣∣∣∣
r∑

i=1

aivi

∣∣∣∣∣ ·O
(√

ℓ√
k

)
≤ |π[r](y)| ·O

(√
ℓ√
k

)
= O

(
1

D
√
k

)
,

where the final equality follows by |π[r](y)| = O
(√

ℓ√
k

)
and ℓ

k = 1
D
√
k
. This implies that

E[⟨π[r](y), es⟩] =E[as] · ⟨vs, es⟩+ E

〈∑
i ̸=s

aivi, es

〉
=E[as] ·

(
1 +O

(
1

D2ℓ

))
+ E

〈∑
i ̸=s

aivi, πVr(s)(es)

〉
=− e−c2/2

p
√
2πk

(
1 +O

(
1

D

))
+O

(√
ℓ√
k
|πVr(s)(vs)|

)
+O

(
1

D
√
k

)

=− e−c2/2

p
√
2πk

(
1 +O

(
1

D

))
+O

(√
ℓ√
k
|πVr(s)(vs)|

)
,

where the second equality follows from Lemma 8.5 and the fact
∑

i ̸=s aivi ∈ Vr(s), and the third
equality holds by Lemma 8.7. This completes the proof of (53) (and similarly, of (54)).

8.3 Estimate of E
[
⟨π[s](y), π[s](z)⟩

]
: Two Random Projections

In this subsection, we complete the proof of Theorem 8.1. To do so, we first establish the following
approximate version, involving two independent random vectors.

Lemma 8.8. Let 0 ≤ s ≤ r ≤ Cℓ and fix a perfect sequence x[r]. Consider independent random
vectors y and z, where y is uniformly distributed in Nper(x[r]) and z in Nper(x[s]). Then

E
[
⟨π[s](y), π[s](z)⟩

]
=

e−c2

2πp2
· s
k
+O

(
ℓ

Dk

)
. (66)

Analogously, consider independent random vectors y and z, where y is uniformly distributed in
Nper(x[r]) and z in Nper(x[s]). Then

E
[
⟨π[s](y), π[s](z)⟩

]
=

e−c2

2π(1− p)2
· s
k
+O

(
ℓ

Dk

)
. (67)

Proof. We consider (66). Fix 0 ≤ s ≤ r ≤ Cℓ and a perfect sequence x[r] = (x1, . . . ,xr) ∈ (Sk)r.
As before, we define Xi = span(x1, . . . ,xi) for each i ∈ [r]. Analogous to the basis v1, . . . ,vr of Xr

defined in Definition 8.2, we define a corresponding basis w1, . . . ,ws for Xs, such that

⟨xi,wj⟩ =

{
1, if i = j;

0, if i ̸= j
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for all 1 ≤ i, j ≤ s. Similarly, analogous to the subspaces Vr(i) of Xr for i ∈ [r], we define
Ws(i) := span(wj : j ∈ [s]\{i}). Finally, we recall the vectors e1, . . . , er from Definition 8.2. Note
that e1, . . . , es form an orthonormal basis for Xs and depend only on x[s].

Let z be a random vector uniformly distributed in Nper(x[s]). By Lemma 8.6, we have

E[⟨π[s](z), ei⟩] = − e−c2/2

p
√
2πk

(
1 +O

(
1

D

))
+O

(√
ℓ√
k
|πWs(i)(wi)|

)
(68)

for all i ∈ [s]. Let y be a random vector uniformly distributed in Nper(x[r]). For each i ∈ [s], we
have ⟨π[s](y), ei⟩ = ⟨π[r](y), ei⟩, and thus, applying Lemma 8.6 again, we can derive

E[⟨π[s](y), ei⟩] = E[⟨π[r](y), ei⟩] = − e−c2/2

p
√
2πk

(
1 +O

(
1

D

))
+O

(√
ℓ√
k
|πVr(i)(vi)|

)
. (69)

Since y and z are independent, we have

E
[〈
π[s](y), π[s](z)

〉]
=E

[〈
s∑

i=1

⟨π[s](y), ei⟩ei,
s∑

i=1

⟨π[s](z), ei⟩ei

〉]
=

s∑
i=1

E[
〈
π[s](y), ei

〉
] · E[

〈
π[s](z), ei

〉
].

Substituting (68) and (69) into the right-hand side of the above expression and simplifying yield

E
[〈
π[s](y), π[s](z)

〉]
=

s∑
i=1

(
1 +O

(
1

D

))
· e−c2

p2(2πk)
+O

(
ℓ

k

)
·

s∑
i=1

|πVr(i)(vi)| · |πWs(i)(wi)|

+O

(√
ℓ

k

)
·

s∑
i=1

(
|πVr(i)(vi)|+ |πWs(i)(wi)|

)
=

(
e−c2

2πp2
· s
k
+O

( s

Dk

))
+O

(
ℓ

k

)
·

(
s∑

i=1

|πVr(i)(vi)|2
) 1

2
(

s∑
i=1

|πWs(i)(wi)|2
) 1

2

+O

(√
ℓ

k

)
·

√
s ·

(
s∑

i=1

|πVr(i)(vi)|2
) 1

2

+
√
s ·

(
s∑

i=1

|πWs(i)(wi)|2
) 1

2


=
e−c2

2πp2
· s
k
+O

(
ℓ

Dk

)
,

where the second equality follows from the Cauchy–Schwarz inequality, and the last equality uses
the fact that s ≤ Cℓ and item (2) of Lemma 8.4, which gives

∑s
i=1

∣∣πVr(i)(vi)
∣∣2 = O

(
1
D2

)
and∑s

i=1

∣∣πWs(i)(wi)
∣∣2 = O

(
1
D2

)
. This completes the proof of (66), and similarly of (67).

Finally, we are ready to present the proof of Theorem 8.1.

Proof of Theorem 8.1. We aim to show (46). Let us restate the setting: Given 0 ≤ s < r ≤ Cℓ and
a perfect sequence x[s] such that Gp(x[s]) forms a red clique, we independently sample xs+1, . . . ,xr

uniformly from Sk, and sample z uniformly from Nper(x[s]), independently of {xs+1, . . . ,xr}.
We begin by considering a fixed perfect sequence x[r − 1] such that Gp(x[r − 1]) forms a red

clique. Under this assumption, the event Ared,r ∧Br occurs if and only if xr ∈ Nper(x[r− 1]), so xr

corresponds to the random vector y sampled uniformly from Nper(x[r − 1]). Applying Lemma 8.8
for the fixed perfect sequence x[r − 1], we have

E
[
⟨π[s](xr), π[s](z)⟩ | Ared,r ∧Br ∧ {x[r − 1]}

]
= E

[
⟨π[s](y), π[s](z)⟩

]
=

e−c2

2πp2
· s
k
+O

(
ℓ

Dk

)
.
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Integrating all such perfect sequences x[r − 1], we can get

E
[
⟨π[s](xr), π[s](z)⟩ | Ared,r ∧Br

]
=

e−c2

2πp2
· s
k
+O

(
ℓ

Dk

)
. (70)

Note that under this setting, we can derive from Definition 7.3 and Theorem 7.5 that

P(Ared,r ∧Br)

P(Ared,r)
=

P per
red,r(x[s])

Pred,r(x[s])
= 1−O(2−Cℓ).

This, together with the law of conditional probability and the fact |⟨π[s](xs+1), π[s](z)⟩| ≤ 1, implies

E[⟨π[s](xs+1), π[s](z)⟩ | Ared,r] = E[⟨π[s](xs+1), π[s](z)⟩ | Ared,r ∧Br] +O(2−Cℓ). (71)

We now reorder the sequence x[r] as y[r] = (y1, . . . ,yr) := (x1, . . . ,xs,xs+2, . . . ,xr,xs+1).
Define A′

red,r as the event that Gp(y[r]) forms a red clique, and B′
r as the event that y[r] forms a

perfect sequence. Evidently, A′
red,r = Ared,r; by the independence of random vectors, we deduce

E[⟨π[s](xs+1), π[s](z)⟩ | Ared,r] = E[⟨π[s](yr), π[s](z)⟩ | A′
red,r]. (72)

On the other hand, similar to the proof of (71), we have

E[⟨π[s](yr), π[s](z)⟩ | A′
red,r] = E[⟨π[s](yr), π[s](z)⟩ | A′

red,r ∧B′
r] +O(2−Cℓ). (73)

The final equation we need is as follows, which holds because x[r] and y[r] are identically distributed:

E[⟨π[s](yr), π[s](z)⟩ | A′
red,r ∧B′

r] = E[⟨π[s](xr), π[s](z)⟩ | Ared,r ∧Br] (74)

Combining (71), (72), (73), and (74), we obtain

E
[
⟨π[s](xs+1), π[s](z)⟩ | Ared,r∧Br

]
= E

[
⟨π[s](xr), π[s](z)⟩ | Ared,r∧Br

]
+O(2−Cℓ) =

e−c2

2πp2
· s
k
+O

(
ℓ

Dk

)
,

where the last equality follows from (70) and the fact that 2−Cℓ ≪ 1
D3ℓ

= ℓ
Dk . This proves (46).

The proof of (47) proceeds similarly, and thus we complete the proof of Theorem 8.1.

9 Proof of Theorem 3.1

In this section, we complete the proof of Theorem 3.1. The proof proceeds in two parts. First, we
derive upper bounds for P per

red,r and P
per
blue,r, by estimating κperr and κperr with the help of Theorems 6.2

and 8.1. We then conclude the proof of Theorem 3.1 with some further calculations.

9.1 Estimates of P per
red,r and P

per

blue,r (via κper
r and κper

r )

We first establish the following estimates for κperr and κperr .

Lemma 9.1. For every 1 ≤ r ≤ Cℓ, we have

κperr ≤
r−1∏
i=0

p−

(
e−c2

2π

) 3
2 1

p2
· i√

k
+O

(
1

D2

) , (75)

κperr ≤
r−1∏
i=0

1− p+

(
e−c2

2π

) 3
2 1

(1− p)2
· i√

k
+O

(
1

D2

) . (76)
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Proof. We focus on proving the first inequality. Let x[r] be a random r-tuple in (Sk)r. To proceed,
we show the following inequality by induction on s, descending from s = r − 1 to s = 0:

κperr ≤
r−1∏

i=s+1

p−

(
e−c2

2π

) 3
2 1

p2
· i√

k
+O

(
1

D2

) · E

 s∏
j=0

Q[j](xj+1)

∣∣∣∣∣∣Ared,r ∧Br

 . (77)

The base case s = r − 1 follows immediately from (45). We now assume that (77) holds for some
1 ≤ s ≤ r − 1, and we need to establish its validity for s− 1.

We begin by considering x[s] as a fixed perfect sequence for which Gp(x[s]) forms a red clique.
Let xs+1, . . . ,xr be independent random vectors uniformly distributed on Sk, and let z be chosen
uniformly from Nper(x[s]), independently of xs+1, . . . ,xr. By Theorem 6.2, we have

E
[
Q[s](xs+1) | Ared,r ∧Br

]
≤ p−

√
k

2π
e−

c2

2 · E[⟨π[s](xs+1), π[s](z)⟩ | Ared,r ∧Br] +O

(
1

D2

)
.

This, together with Theorem 8.1, shows that

E
[
Q[s](xs+1) | Ared,r ∧Br

]
≤ p−

(
e−c2

2π

) 3
2 s

p2
√
k
+O

(
1

D2

)
. (78)

Here, it is worth noting that the error term O
(

ℓ
Dk

)
of Theorem 8.1 contributes an error of order

O
(

ℓ
D
√
k

)
= O

(
1
D2

)
as well. Given that the sequence x[s] is fixed, we further derive from (78) that

E

 s∏
j=0

Q[j](xj+1)

∣∣∣∣∣∣Ared,r ∧Br

 ≤

s−1∏
j=0

Q[j](xj+1)

 ·

p−

(
e−c2

2π

) 3
2 s

p2
√
k
+O

(
1

D2

) .

By averaging over all possible x[s], we have

E

 s∏
j=0

Q[j](xj+1)

∣∣∣∣∣∣Ared,r ∧Br

 ≤

p−

(
e−c2

2π

) 3
2 s

p2
√
k
+O

(
1

D2

)E

 s−1∏
j=0

Q[j](xj+1)

∣∣∣∣∣∣Ared,r ∧Br

 .

Combining this with the induction hypothesis for s, we obtain

κperr ≤
r−1∏

i=s+1

p−

(
e−c2

2π

) 3
2 1

p2
· i√

k
+O

(
1

D2

) · E

 s∏
j=0

Q[j](xj+1)

∣∣∣∣∣∣Ared,r ∧Br


≤

r−1∏
i=s

p−

(
e−c2

2π

) 3
2 1

p2
· i√

k
+O

(
1

D2

) · E

 s−1∏
j=0

Q[j](xj+1)

∣∣∣∣∣∣Ared,r ∧Br

 .

This completes the induction. Note that since Q[0](x) = Pper(x) ≤ p for all x ∈ Sk, the case s = 0
of (77) gives the desired inequality (75). The proof of (76) proceeds analogously.

Using the above lemma, we can readily obtain the following upper bounds for P per
red,ℓ and P

per
blue,Cℓ.

It is worth pointing out that the term of order ℓ√
k
is actually of order 1

D , thus serving as the second-

order term in these bounds.
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Theorem 9.2.

P per
red,ℓ ≤

p−

(
e−c2

2π

) 3
2 1

p2
· ℓ

3
√
k
+O

(
1

D2

)(ℓ2)

,

P
per
blue,Cℓ ≤

1− p+

(
e−c2

2π

) 3
2 C

(1− p)2
· ℓ

3
√
k
+O

(
1

D2

)(Cℓ
2 )

.

Proof. Using Lemmas 5.4 and 9.1, we obtain that for any 2 ≤ r ≤ ℓ,

P per
red,r =

r−1∏
i=1

κperi ≤
r−1∏
i=0

p−

(
e−c2

2π

) 3
2 1

p2
· i√

k
+O

(
1

D2

)r−1−i

= p(
r
2) · exp

−

(
e−c2

2π

) 3
2

·
r−1∑
i=0

i(r − 1− i)

p3
√
k

+O

(
r2

D2

)
= p(

r
2) · exp

−

(
e−c2

2π

) 3
2

· 1

p3
√
k
·
(
r

3

)
+O

(
r2

D2

)
=

p−

(
e−c2

2π

) 3
2 1

p2
· r − 2

3
√
k

+O

(
1

D2

)(r2)

.

It is clear that setting r = ℓ in the above inequality gives the desired bound for P per
red,ℓ. By the same

reasoning, the desired bound for P
per
blue,Cℓ follows.

9.2 Proof Completion

Before concluding the proof of Theorem 3.1, we state a simple proposition (proved in Appendix B).
Recall c = ck,p from (4). Define c0 = ck,pC and f(x) := 1

x2 − C
(1−x)2

. Note that f(pC) > 0 by (14).

Proposition 9.3. Let D ≫ C. Then there exists p ∈
(
pC , pC + 1/(p2C ·D)

)
⊆
(
pC , 1/2

)
such that

p−

(
e−c2

2π

) 3
2 1

3Dp2
≤ pC −

(
e−c20

2π

) 3
2 f(pC)

9D
, (79)

1− p+

(
e−c2

2π

) 3
2 C

3D(1− p)2
≤ 1− pC −

(
e−c20

2π

) 3
2 f(pC)

9D
. (80)

Proof of Theorem 3.1. Fix any constant C > 1. Let D = D(C) and ℓ0 = ℓ0(C) be constants
satisfying ℓ0 ≫ D ≫ C. Assume ℓ ≥ ℓ0 and set k = D2ℓ2. Let p ∈

(
pC , 1/2

)
be as given in

Proposition 9.3. We consider the random sphere graph Gk,p(n).
By Lemma 4.1, we have c0 = Φ−1(pC) +O(1/k) and thus

ϕ(Φ−1(pC)) =
1√
2π

· e−
c20
2 +O

(
1

k

)
≤ 1.1√

2π
· e−

c20
2 . (81)
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Recall that
√
k
ℓ = D ≫ C is sufficiently large. Applying Theorems 7.1 and 9.2, we have

Pred,ℓ ≤
(
1 + 2−Cℓ

)
P per
red,ℓ ≤

(
1 + 2−Cℓ

)
·

p−

(
e−c2

2π

) 3
2 1

3Dp2
+O

(
1

D2

)(ℓ2)

≤

pC −

(
e−c20

2π

) 3
2 f(pC)

9D
+O

(
1

D2

)(ℓ2)

≤
(
pC − ϕ(Φ−1(pC))

3 · f(pC)
18D

)(ℓ2)
,

where the third inequality follows from (79) and the fact that 2−Cℓ ≪ 1/D2, and the last inequality
holds by (81) and the fact that D ≫ C. Similarly, we can derive

P blue,Cℓ ≤
(
1 + 2−Cℓ

)
P

per
blue,Cℓ ≤

(
1 + 2−Cℓ

)
·

1− p+

(
e−c2

2π

) 3
2 C

3D(1− p)2
+O

(
1

D2

)(Cℓ
2 )

≤

1− pC −

(
e−c20

2π

) 3
2 f(pC)

9D
+O

(
1

D2

)(Cℓ
2 )

≤
(
1− pC − ϕ(Φ−1(pC))

3 · f(pC)
18D

)(Cℓ
2 )

.

Hence, setting the positive constant

ε0 = ε0(C) :=
1

18
ϕ
(
Φ−1(pC)

)3 · f(pC). (82)

completes the proof of Theorem 3.1.

Let us comment on the value of ε(C) as given in Theorem 1.1. A key related parameter is
the constant D(C). To simplify the presentation and calculations in our proofs, we take D(C)
sufficiently large relative to C. However, a more careful analysis shows that it suffices to take

D(C) = 105 · α4
C · p−3

C ·
(
f(pC)

)−1
,

where αC = max
{
1000, 20

√
C log(10/pC)

}
is as defined in Lemma 4.2. Combining (7) and (82),

we can choose the parameter ε(C) in Theorem 1.1 as

ε(C) =
ε0(C) · p−1/2

C

6D(C)
=

p
−1/2
C · ϕ(Φ−1(pC))

3 · f(pC)
108 ·D(C)

=
α−4
C · p5/2C

1.08× 107
· ϕ(Φ−1(pC))

3 · f(pC)2.

In particular, as C → 1+, we have ε(C) = Ω
(
(C − 1)2

)
, whereas as C → ∞, ε(C) = Ω

(
poly(logC)

C7/2

)
.

We believe that our approach does not extend to the diagonal Ramsey number case r(ℓ, ℓ) (i.e.,
when C = 1). On the other hand, it remains compatible with the Lovász Local Lemma.
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Appendix

A The Lower Bound from Erdős’s Probabilistic Method

Here, we present a proof that not only establishes the lower bound in (1) derived from Erdős’s first
moment method but also demonstrates its optimality. Let C ≥ 1 be a fixed constant.

For p ∈ (0, 1/2] and n ∈ N, consider the probability that a random edge-coloring of Kn, where
each edge is independently colored red with probability p and blue with probability 1− p, contains
either a red Kℓ or a blue KCℓ. This probability is clearly at most

f(n, p) := A(n, p) +B(n, p), where A(n, p) =

(
n

ℓ

)
p(

ℓ
2) and B(n, p) =

(
n

Cℓ

)
(1− p)(

Cℓ
2 ).

Hence, if f(n, p) ≤ 0.99, there exists at least one such coloring with no monochromatic clique,
implying r(ℓ, Cℓ) > n. It thus suffices to find the maximum value of n = n(p) such that f(n, p) =
0.99. Assume this maximum is achieved at p = pC,ℓ. Then,

∂f(n, pC,ℓ)

∂p
=

(
ℓ
2

)
pC,ℓ

(
n

ℓ

)
p
(ℓ2)
C,ℓ −

(
Cℓ
2

)
1− pC,ℓ

(
n

Cℓ

)
(1− pC,ℓ)

(Cℓ
2 ) = 0,

implying that logA(n, pC,ℓ) = logB(n, pC,ℓ)+O(log ℓ). Solving this along withA(n, pC,ℓ)+B(n, pC,ℓ) =
0.99, we obtain that logA(n, pC,ℓ) = O(log ℓ) and logB(n, pC,ℓ) = O(log ℓ), from which it follows

− log pC,ℓ =
2 log(en/ℓ)

ℓ− 1
+O

(
log ℓ

ℓ2

)
and − log(1− pC,ℓ) =

2 log(en/Cℓ)

Cℓ− 1
+O

(
log ℓ

ℓ2

)
.

We then derive that pC,ℓ = pC + O (1/ℓ), where the constant pC satisfies C = log pC
log(1−pC) . It follows

directly from the above that n = ℓ
e · p−(ℓ−1)/2

C,ℓ · eO(
log ℓ
ℓ ) = Θ(ℓ) ·

(
pC +O

(
1
ℓ

))−ℓ/2
= Θ

(
ℓ · M ℓ

C

)
,

where MC := p
−1/2
C . This establishes r(ℓ, Cℓ) = Ω

(
ℓ ·M ℓ

C

)
.

We remark that, with some additional work extending the proof above, the optimal lower bound
(with the best leading constant) obtainable via Erdős’s probabilistic method can be shown to be

r(ℓ, Cℓ) ≥
(
βC/e+ o(1)

)
· ℓ ·M ℓ−1

C ,

where βC := exp
((

C−1
2 · log(1− pC)− logC

)
· (1− pC) · log(1− pC)/H(pC)

)
, andH(x) := −x log x−

(1− x) log(1− x) denotes the entropy function.
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B Proof of Proposition 9.3

In this proof, besides the function f(x) = 1
x2 − C

(1−x)2
, we define g(x) = e

−c2k,x/2

√
2π

, h(x) = 1
x2 , and

F (x) := x− 1

3D
g(x)3 h(x) = x−

(
e−c2k,x

2π

)3/2
1

3Dx2

where x ∈ (0, 1/2) and ck,x is taken from (4). Since D ≫ C, and f(x), g(x) and h(x) are continuous

and positive for all x ∈ (0, 1/2), we have 0.99 < f(x)
f(pC) ,

g(x)
g(pC) ,

h(x)
h(pC) < 1.01 for any x ∈ (pC , pC +

1/(p2C ·D)). Let c0 = ck,pC , and define

p1 = pC +

(
e−c20

2π

) 3
2 1

3D

(
0.5

p2C
− 1

3
f(pC)

)
and p2 = pC +

(
e−c20

2π

) 3
2 1

3D

(
1.5

p2C
− 1

3
f(pC)

)
Since 0 < f(pC) < h(pC) =

1
p2C

, it is easy to verify that pC < p1 < p2 < pC + 1/(p2C ·D)). Then

F (p1) = pC +

(
e−c20

2π

) 3
2 1

3D

(
0.5

p2C
− 1

3
f(pC)

)
− 1

3D
(g(p1))

3h(p1)

≤ pC +

(
e−c20

2π

) 3
2 1

3D

(
0.5

p2C
− 1

3
f(pC)−

0.994

p2C

)
< pC −

(
e−c20

2π

) 3
2 1

9D
f(pC);

F (p2) = pC +

(
e−c20

2π

) 3
2 1

3D

(
1.5

p2C
− 1

3
f(pC)

)
− 1

3D
(g(p2))

3h(p2)

≥ pC +

(
e−c20

2π

) 3
2 1

3D

(
1.5

p2C
− 1

3
f(pC)−

1.014

p2C

)
> pC −

(
e−c20

2π

) 3
2 1

9D
f(pC).

By the intermediate value theorem, there exists some p ∈ (p1, p2) ⊆
(
pC , pC + 1

p2CD

)
such that

F (p) = p−

(
e−c2k,p

2π

) 3
2

1

3Dp2
= pC −

(
e−c20

2π

) 3
2 1

9D
f(pC),

which implies (79). Using this equality, we obtain

1− p+

(
e−c2k,p

2π

) 3
2

C

3D(1− p)2
= 1−

p−

(
e−c2k,p

2π

) 3
2

1

3Dp2

− 1

3D
(g(p))3f(p)

≤ 1− pC +

(
e−c20

2π

) 3
2 1

9D
f(pC)− 0.994(g(pC))

3 1

3D
f(pC) ≤ 1− pC −

(
e−c20

2π

) 3
2 1

9D
f(pC),

which implies (80). This completes the proof of Proposition 9.3.
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