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Abstract

We prove a new lower bound on the Ramsey number r(¢, C¥) for any constant C > 1 and
sufficiently large ¢, showing that there exists ¢ = ¢(C') > 0 such that

r(£,C0) > (p51/2 n s)g,

where pe € (0,1/2) is the unique solution to C' = mgk()%ifgc)

improvement over the classical lower bound obtained by Erd&s in 1947.

. This provides the first exponential

1 Introduction

The Ramsey number r({, k) denotes the smallest positive integer n such that every red-blue edge
coloring of the complete graph K,, on n vertices contains either a red clique K, (a complete subgraph
on ¢ vertices with all edges red) or a blue clique K}, (a complete subgraph on k vertices with all edges
blue). In 1930, Ramsey [17] proved that r(¢, k) is finite for all £,k € N. Since then, understanding
the growth rate of r(¢, k) has been a central problem in combinatorics for nearly a century. The
asymptotic study of Ramsey numbers naturally splits into two regimes: the case where ¢ is fixed
and k — oo (see [1, 4, 5, 7, 13, 15, 16, 19-21] and references therein), and the case where both
¢,k — oo. In this paper, we investigate the Ramsey number (¢, k) in the latter regime, where both
parameters ¢ and k tend to infinity.

In 1935, Erdés and Szekeres [10] established the first non-trivial upper bound for Ramsey num-
bers, proving that r(¢, k) < (kﬁf), and in particular that the diagonal Ramsey number satisfies
r(¢,0) < 4°. This upper bound remained unchanged until the work of Rédl (unpublished) and of
Graham and Rodl [11] in the 1980s. Thomason [22] was the first to improve it by a polynomial
factor in ¢ when k and ¢ are of the same order. Conlon [8] achieved a landmark result by extend-
ing Thomason’s quasi-randomness method, yielding a superpolynomial improvement when k£ and
¢ are comparable in size. This approach was later refined and optimized by Sah [18], who showed
that for any § € (0,1/2), there exists ¢; > 0 such that r(¢, k) < e~cs(os?)’ (k;f) holds whenever
¢/k € [0,1] and ¢ > 1/cs. A major breakthrough was achieved in 2023 by Campos, Griffiths, Morris
and Sahasrabudhe [6], who proved that

_ k+7/
< o—1/400+0(k)
r(l, k) <e ’
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holds for all integers £ < k, making the first exponential improvement over the Erd6s-Szekeres bound.
In particular, this implies the existence of a constant € > 0 such that r(£,£) < (4—¢)¢. Building on a
reinterpretation of this method, Gupta, Ndiaye, Norin and Wei [14] improved both bounds, showing
that (¢, k) < e~ ¢/20+o(k) (kf) holds for all integers ¢ < k, and in particular (¢, £) < 3.8+ More
recently, Balister, Bollobéds, Campos, Griffiths, Hurley, Morris, Sahasrabudhe and Tiba [3] provided
a different proof of these bounds, along with other generalizations.

For the lower bound on the Ramsey number (¢, k) in the regime where both ¢ and k tend to
infinity, our knowledge remains essentially limited to the classical result of Erdés [9] from 1947.
In this seminal work, Erddés introduced a probabilistic argument that laid the foundation for the
probabilistic method in combinatorics (see [2]). He established the first exponential lower bound on
r(¢, k) in the regime where k and ¢ are of comparable size; specifically, for any fixed C' > 1,

r(6,C0) = Q¢ ME) as £ — o00,! (1)

where M¢ = p51/2 and pc € (0,1/2] denotes the unique solution to C' = bgh()%ifgc)' Over the
78 years since Erdds’s proof, the only improvement has been a constant-factor refinement of the
original bound, due to Spencer [20] in 1975, via an application of the Lovész Local Lemma.

In this paper, we introduce a model called the random sphere graph and use it to obtain an
exponential improvement over the classical lower bound (1) for the Ramsey number r(¢, C¥), where

C > 1 is any fixed constant and ¢ — co. Our main result is stated below.

Theorem 1.1. For any constant C > 1, there exist ¢ = ¢(C) > 0 and {y = £o(C) > 0 such that for
all sufficiently large integers £ > £o(C),

T(Ea CE) = (MC +5)€7 (2)
where Mg = p51/2 and pc € (0,1/2) satisfies C' = loghzfifgc)‘

Using this result, we can immediately obtain the following corollary, which gives an exponential
improvement on the Ramsey number (4, k) in the general regime where ¢ and k are of comparable
size. For any 0 € (0,1/2), let ¢s > 0 be such that

. e(C) 1
cs = min —
o cel1/(1-8),1/8] | Mc ' £o(C)
For all £,k € N, let Er(¢, k) denote the lower bound obtained by Erdds’s probabilistic argument [9].
Corollary 1.2. For any § € (0,1/2), there exists cs > 0 such that
r(6,k) > (1+c5)" - Er(£, k)
whenever 6 < l/k<1—4¢ and { > 1/c;s.

The rest of the paper is organized as follows. In Section 2, we introduce our random graph
model, related notations, and discuss several basic geometric properties of this model. In Section 3,
we prove Theorem 1.1 by reducing it to Theorem 3.1 and provide a sketch of Theorem 3.1’s proof.
Section 4 collects several auxiliary lemmas. In Section 5, we introduce the crucial concept of perfect
sequences for unit vectors. Section 6 provides preliminary estimates on perfect sequences, while
Section 7 shows that perfect sequences capture the essential behavior of our problem. Section 8

contains the core technical arguments, where we derive estimates on key quantities. Finally, in
Section 9, we assemble all these estimates to complete the proof of Theorem 3.1. Throughout, for

any constant C' > 1, we define pc € (0,1/2) to be unique solution to C' = lmg%ifgc). We denote
[r] :={1,2,...,7}, and unless otherwise specified, all logarithms are base e. For a vector x € R",
we define its standard Euclidean norm by |z| = \/(x, ).

LA proof is given in Appendix A, establishing the optimality of this bound via Erdés’s first moment method.



2 The Random Sphere Graph Gy ,(n)

In this section, we introduce a random graph model based on geometric measure, which serves as
the foundation for our Ramsey construction.

Throughout this paper, let S* denote the k-dimensional unit sphere embedded in the (k + 1)-
dimensional Euclidean space R¥*1. Let Vol(-) denote the standard surface measure on S*, and let
x be a point sampled uniformly at random from S*. For any Borel set A C S*, we define the
probability P(A) of A to the probability that @ belongs to A, that is,

_ Vol(4)

P(4) = Bz € A) = G- (3)

Let e denote an arbitrary but fixed point on S*. For any p € (0, %], define ¢, > 0 as the unique
constant satisfying

P((e.e)<-%2) =, (4)

where (x, e) denotes the standard inner product between the vectors « and e.?

Definition 2.1 (Random Sphere Graphs). Let n,k € N and p € (0, %] The random sphere
graph Gy, p(n) is defined as a complete graph on n vertices 1,2, ..., ®,, equipped with a red-blue
coloring on its edges, constructed as follows: (see Figure 1 for an illustration)

e The vertices @1, T, ..., x, are sampled independently and uniformly from S*:

e Each edge x;x; is colored red if (x;, x;) < —C’CT’:, and blue otherwise.

X

Figure 1: The random sphere graph.

Remark. During the 2025 ICBS, we learned that a related random graph model defined in Eu-
clidean spaces, known as random geometric graphs, has been extensively studied in probability

%We often treat a point on S* and a unit vector interchangeably without distinction.



theory and theoretical computer science (see the monograph [12]). In this model, vertices are
placed randomly in a region according to a common probability density, and edges are typically
added between pairs of vertices that are close to each other. For example, a common variant on S*
connects two points x,y € S* whenever (x,y) exceeds a fixed positive threshold. We emphasize,
however, that this is distinct from the random sphere graph defined above, as it includes neither the
graph of blue edges nor that of red edges. We hope this remark clarifies the relationship between
these two models, which differ in both their underlying concepts and research focus.

It is evident that each edge of Gy, p(n) is colored red with probability p and blue with probability
1 — p. However, due to intrinsic geometric constraints, the events for coloring edges may not be
independent. This marks an essential difference from the Erd6s—Rényi random graph model. In
the remainder of this section, we formalize the notation underlying this new random model and
highlight several elementary geometric properties that motivate our analysis later.

2.1 Notation

Let k,r € N and fix p € (0,3]. Let [r] :== (@1,®2,...,x,) be a sequence of points on S*. The
graph Gp(x[r]) defines the complete graph with vertex set {x1, 2, ..., x,}, whose edges are colored
red or blue according to the same rule used in the definition of Gy ,(n). We refer to G,(x[r]) as
the induced subgraph on x[r]. Define the space (S*)" = {(x1,...,x,) : &; € S¥ forall 1 <i < r}.
A random r-tuple (x1, ..., z,) in (S*¥)" defines a tuple where each ; is sampled independently and
uniformly from S*. For any Borel set A C (S*)", we define P(A) as the probability that a random
r-tuple belongs to A. When r = 1, this coincides with the normalized surface measure as in (3).
The following probabilities that a random r-tuple forms a monochromatic clique will play a

central role in our analysis.

Definition 2.2. Let k,r € N and fix p € (0, %] Let x[r] = (x1,®2, ..., x,) be a random r-tuple in
(S*)r. We define P,eq, as the probability that the induced subgraph G, (z[r]) forms a red clique,
and Ppye, as the probability that G, (z[r]) forms a blue clique.

We also define neighborhoods and their associated probability measures for points and r-tuples.
Definition 2.3. Let x1,...,z,,y € S* be given. Define z[r] = (x1,x2,...,x,).

(1). The red-neighborhood N(y) and the blue-neighborhood N (y) of y are defined as (see Figure 1)

Vk vk

and their probability measures are given by

N(y) = {z e SF:y, 2) < —C’”’} and N(y) := {z €Sy, 2) > —c’”’},

P(y):=P(N(y)) and P(y):=P(N(y)).

(2). The red-neighborhood N(z[r]) and the blue-neighborhood N(z[r]) of x[r] are defined as (see
Figure 2)

N(z[r]) := N(z1)N---N N(z,) and N(z[r]):= N(z1)N---NN(z,),
and their probability measures are given by

P(wla"'7x'r')

P(a[r]) == P(N(2[r])) = P(N (21

D)

D
=

8
z



Loosely speaking, the average probability Peq, (from Definition 2.2) can be approximated by
a product of probabilities P(x[s]) for 1 < s < r (from Definition 2.3); See equations (8) and (9) for
the precise expression. A similar relation holds for ?blue,r, with the corresponding terms F(w[s])

'\’1 xi

N (xr23)

N (xc2))

Figure 2: The red-neighborhood N(z[r]) and the blue-neighborhood N (z[r]) for r = 2.

'\’1 xi

N (xr23)

N (xC2])

Figure 3: Orthogonal projection of neighborhoods N (z[2]) and N(x[2]) onto span(z1,x2)

Many of our proofs rely on estimates involving orthogonal projections of vectors. Below, we
summarize the definition of orthogonal projection used throughout this paper.

Definition 2.4. Let Y C R**! be a linear subspace. The mapping 7y : RF*1 — Y assigns to each
y € RFHL its orthogonal projection onto Y. For given vectors @1, ..., &, € RFl we write ) for
the special mapping 7y where Y = span(xy,...,x,), that is,

Ty (y) = 7rspa,n(xl,...,ar:,«)(y)'

5



We often denote the projected image by g := m,j(y) if there is no ambiguity.

We refer the reader to Figure 3, which illustrates the orthogonal projection of the neighborhoods
of x[2] = (x1,x2) from Figure 2 onto the subspace spanned by x; and xs.

2.2 Geometric Dependencies in G ,(n)

The geometric structure of random sphere graphs Gy, ,(n) gives rise to essential mathematical fea-
tures that differ fundamentally from those of classical random graph models, such as the Erd6s—Rényi
model ER(n,p). Recall that ER(n,p) denotes a random red-blue coloring of the edges of the com-
plete graph K,, where each edge is independently colored red with probability p and blue with
probability 1 — p. Analogous to Definition 2.2, we let PER denote the probability that any given

red,r
set of r vertices forms a red clique K, in ER(n, p), and nge,r the probability that they form a blue
clique K,. Since edge colorings in ER(n, p) are independent, it follows that for any r > 2,

r

PrEz(Fir = p(;) and Pgl}ie,r = (1 _p)(z)'

However, the situation changes entirely in Gy, ,(n) for all r > 3, assuming £ is sufficiently large.

To illustrate this, consider the case r = 3. Recall from Definition 2.2 that P.q3 denotes the

probability that a random triple (z1, s, z3) in (S)® forms a red triangle in Gy ,(n). Using the
notation from Definition 2.3, we can express this as

Preag =P (122 is red) - P(x3 € N(x[2]) | 122 is red) = p- P (N(x[2]) | 122 is red).

Suppose x1x9 is red. As shown in Figure 2, the red-neighborhood N(x[2]) is precisely the inter-
section of the two light-red spherical caps associated with N(x1) and N(x2). To build geometric
intuition, we consider the projection of N(x[2]) onto the plane span(xi,x2). In Figure 3, the
projection of N(x[2]) appears as the dark-red region Aj2, bounded by lines 1 and 2 representing
N(x1) and N(x2), respectively. If we rotate xs so that it becomes orthogonal to i, then line 2
becomes line 3, and the resulting region Aj3 (bounded by lines 1 and 3) has normalized surface
measure approximately p?. It is clear from Figure 3 that Ay is properly contained in A3, and
hence P (N (z[2])) < p? holds whenever 125 is red. This implies that

Pred,3 =p-P (N(Q?[Q]) ‘ Tri1xs is red) < p3.

Analogously, Figure 3 suggests that Ppes = (1 — p) - P(N(z[2]) | 122 is blue) > (1 — p)3.3 One
can naturally extend the above argument to conclude that for any r» > 3,

T

Prear < p(g) and ?blue,r > (1 —p)(2) (5)

hold in the random sphere graph Gy, ,(n). These properties highlight geometric dependencies in
G p(n), which set it apart from the Erdés-Rényi model, leaving room for potential improvements.

To prove the main result of this paper, we undertake a detailed analysis to accurately estimate
Preq,r and Pblue,. A sketch of the argument is given in the next section.

3We point out that it is not necessarily true that P (N(ZL'[Q])) > (1 —p)2 for every blue edge &1 a2, but this inequality
holds on average.



3 Proof of Main Theorem: Reduction and Sketch

In this section, we reduce the validation of our main result, Theorem 1.1, to the following theorem
and then provide a sketch of its proof. We consider the Ramsey number r(¢,C¥¢) for any fixed

constant C' > 1. Recall that pc denotes the unique real number in (0, %) satisfying C' = 1051?1%7550)'

Theorem 3.1. For any constant C > 1, there ezists eg = £o(C) > 0 such that the following holds.
Let D = D(C) and o = £o(C) be constants with £y > D > C.* Then for every { > ly and
k = D202, there exists p = p(C, /) € (pc, %) such that in the random sphere graph Gy, p(n),
CZ)

(2) — (
Pred e < (pc - 60%) *and Pyuecr < (1 —pc — Eoﬁ) ° (6)

3.1 Reduction to Theorem 3.1

We now show that Theorem 1.1 follows directly from Theorem 3.1.

Proof of Theorem 1.1, using Theorem 3.1. Fix any constant C' > 1. Let D = D(C) and

lo = £o(C) be constants, and let ¢ be any integer satisfying £ > £y > D > C. Let k = D?(?. Then

there exist g9 = £9(C) and p = p(C, ) € (pc, 3) such that the conclusion of Theorem 3.1 holds. Let
_ Mceg

_ 0
€= —%p and n=(Mc+e), (7)

where Mg = p61/2 = (1 —pc)~¢/2. Then the probability P* that there exists a red clique K or a
blue clique K¢y in the random sphere graph Gy, ,(n) satisfies that

% n n —
P* < <£> Prea e+ (C€> Prue,ce

0e—1)

nt 14 2 nct ] 4
<— —£0—= +—|(1—-pc—c0—
2 (pc 0\/E> 2 ( be 0\/%)

C22
L O T S L R N
=2\ 2 2 e

cece—1)
2

where the first inequality holds by the union bound, the second inequality follows from Theorem 3.1,
and the second last inequality holds because

3 _s = %

Mc 2D ~ 2(1 —pc)D ~ 2pcD’

4Throughout this paper, we use D > C to mean that D is sufficiently large relative to C.



which implies
-3
€0 €0 €
— <l—-———-<1-3—X<K 1+) .
2pcD 2(1 —pc)D Mc < Mc
Hence, there exists an instance of Gy ,(n) that contains neither a red Kj nor a blue K¢gp. This
shows that (¢, Cf) > n = (M¢ + ), finishing the proof of Theorem 1.1. O

3.2 Proof Sketch of Theorem 3.1

The proof of Theorem 3.1 essentially requires determining both Peq ¢ and Fbluepg, the probabilities
of forming monochromatic cliques in the random sphere graph Gy, ,(n), up to second-order terms.

By symmetry, we focus on sketching the proof from the perspective of Peq¢. Let x[f] =
(x1,...,x¢) be a random (-tuple in (S¥)’. For every r € [f], we interpret Pieq, as the probabil-
ity of the event Ayeq, that x[r] = (21, ..., z,) induces a red clique K, in Gy, p(n). Then Preq, admits
the following simple decomposition:

P,
Preqe = K1+ Ke—1, where K, = “redrtl for every 1 <r </ —1. (8)

Pred,r
Let Y, denote the event z,+1 € N(z[r]), 50 Aredr+1 = Yy A Arear.° We can rewrite r, as

_ Pred,r+1 . P()fr A Ared,r) . . B
e T PAny) O [ Arae) = B[l | Arear] = B[P[]) | Avear], - (9)

where the last equation holds by the law of total expectation and the fact that Eg, ., [1y, ] = P(Y;) =
P(N(x[r])) = P(z[r]). Similarly, we define

Pblue,r+1

Phlue,ce = F1 -+ Kee—1, where R, = for every 1 <r < Cl¢ — 1. (10)

blue,r

Choice of the dimension k. Before we proceed to estimate the clique probabilities, we first
discuss the choice of the dimension k, which plays a critical role in the analysis. While its feasible
value (i.e., k =~ ¢?) will become clear from the precise expressions for clique probabilities later on,
it is important to observe from the beginning that k needs to be appropriately scaled in terms of
¢. To motivate this, note that for two independent random vectors x,y € S*, their typical inner
product satisfies

(@.y)| = © (%) . (11)

If & — oo, then such vectors become nearly orthogonal, and the random sphere graph Gy ,(n)
approaches the Erdés—Rényi random graph ER(n,p), thereby losing the geometric structure essen-
tial to our analysis. Conversely, if k is small (say k < ¢?), dependencies between edges become
substantial, and the blue-clique probability Ppe cs deviates significantly from its expected value.
To see this, observe that from (11) and the discussion in Subsection 2.2, one can derive that

() ~ Plafr —1)- (1 —p) - (149 (L)) forevery r >3 (12)

il

SThroughout this paper, the symbol A denotes the joint occurrence of two or more events.



This implies that P(z[r]) ~ (1 —p)" - (1 +Q (ﬁ)) G) for r = O(V'k), and P(zx[r]) ~ P(x[r —1]) -

(1 —o0(1)) = (1 —p)°™) for r > k. Combing this with (10), the analogous expression (9) on &,
and the assumption £ > \/E, we obtain that

Phne.ce 2 (1= p)°) > (1 - (%),

which forces n to be supremely small under the union bound requirement. In summary, the di-
mension k must be carefully chosen in an intermediate regime, so as to balance between limiting
dependencies and preserving geometric structure.

The Overall Strategy. The problem now reduces to estimating the quantities k, and k.. Based

on the earlier observations (e.g., (12)), it is natural to expect that ”;—J:l < p and ”gl >1-—p.
What matters for our purposes, however, is not just these inequalities, but the relative size of the
deviations: the gap p — ”;—jl needs to significantly exceed the gap “t — (1 — p). The central part

Ry
of our analysis is thus to estimating these gaps quantitatively in Gy, ,(n). We show that there exists
_e2

3/2
a constant ay, = (eQ—W) > 0, where ¢ := ¢y, is from (4),% such that for all » = O(Vk),

K a r K a
fril <y Bhp T and U<y g TR 0 T (13)

o PV z T-pP Vk

Combining this with (8) and (10), and choosing k ~ £2, we get

()
ak.p 14 k.p (@74 ) 2
P 3k (1-p)?* 3vk '
A key observation is that if p is sufficiently close to pc, then the sum of the two base terms
Qk.p 4 ) ( ak.p CY ) Qk.p * / < C 1 >
— |+l =pF+ =] =1+ - =
<p P 3k P02 vk sk \(1—p)  #

is strictly less than 1, since

(2) _
Pred,f SJ < - ) and Pblue,CZ 5 <1 —p+

C-p? - pZ log pe
(1-p)?  (1-pc)?log(l—pc)

<1 for any pc € (0,3). (14)

Therefore, we can choose some p € (pc, 3) and a constant g9 = £9(C) > 0 such that

(@4 14
and 1—p+&-—§1—pc—50—

(1-p)? 3vk V'

ak,p

/ l

- —_— < — E —_—

p2 3\/E > pc 0 \/E
completing the proof of Theorem 3.1.

Breakdown into Key Quantities. We now examine (13) in more detail. Recall from (9) that
Ky = E[P(az[r]) \ Ared,r]. To estimate k,, we consider P(x[r]) for any given sequence of vectors
x[r] = (x1,...,2,) € (S*)" via the following expression:

r—1
P(zlr]) = [ Qu(@ss1)-
s=0

%We will show in Lemma 4.1 that ¢, converges as k — oo so it is absolutely bounded.



Here, for every 0 < s < r the quantity Q : Sk —10,1] is defined as

P(mla"'vmsay)

for each y € S*,
P(mla"wms) Y

Q[s] (y) =

where we use the notation from Definition 2.3.7 Recall the projection W[S](') = Wspan(ml,,__,xs)(')
from Definition 2.4. Under the assumption that x[s] € (S¥)* and y € S* are in generic position, we
are able to bound Q4 (y) using the expectation of the inner product between the projection 74 (y)
of y and the projection of a random vector (see Theorem 6.2), as follows:

02
Q) $p—\ gee™ T - Ballmy ), w9 ()
where the vector z is sampled uniformly from N(x[s]), and the constant ¢ := ¢, is given by (4).
Returning to the setting of x, = E[P(x[r]) | Ared,r|, the expectation above becomes one taken
over the joint distribution of the random vectors y = xs,1 and z;® we estimate it by proving (see
Section 8) that
e s
E'.’J,ZKW[S}(y)?ﬂ[s}(Z))] ~ ?pg ) %

The upper bound on H;—jl in (13) is essentially derived from the above estimates; similarly, so is E%—jl
However, random vectors may exhibit highly variable behavior, making computation intractable. To
overcome this, we introduce a useful notion called a perfect sequence (see Definition 5.1). Roughly
speaking, a sequence of vectors in S* is said to be perfect if the vectors are nearly vertical to each
other. We then work with all of the above quantities in the corresponding “perfect” setting instead.
This turns out to be sufficient, as the probability that random vectors form a non-perfect sequence
is sufficiently small (see Section 7).

4 Auxiliary Lemmas

Before we proceed to the proof of Theorem 3.1, we first establish several auxiliary but useful lemmas
concerning the random sphere graph and the standard normal distribution.

Throughout the rest of the paper, let ®(z) := \/%7 f_zoo e~*/2 dt denote the cumulative distribu-

tion function (CDF) of the standard normal distribution, and let ¢(z) := ®'(z) = \/%6_5'32/ 2 denote

its probability density function (PDF). We denote by ®~! : (0,1) — R the corresponding quantile
function, defined by the property that ®(®~'(p)) = p for all p € (0,1).
The first lemma shows that the constant ¢, given by (4) converges to ®~1(1 — p) as k — oo.

Lemma 4.1. Fiz any p € (0,1/2). The constant cy, given by (4) satisfies

oy =B (1=p)+0 <]1€) . (15)

In particular, we have limy_ ckp = @711 — p).

"For the exact notation Q(s)(y) used in the proof, see Definition 6.1.
8More precisely, the expectation is taken over the following random variables: x[r] € (S*)" is sampled uniformly
conditioned on the event Ared,r, and z € N(x[s]) is sampled uniformly and independently of x[r] \ x[s].

10



Proof. Let e € RF! be a fixed unit vector, and let « be a random point uniformly distributed on
S*. Then for any a € (—1,1), the spherical cap probability P({(x, e) < a) satisfies that

. “1- )R
P((w,e)Sa)—VOI({wGSk'<w7e>§a})—/_1 (16)

Vol(5) /1 1 2)Fa

-1

Hence, the definition of the constant ¢ := ¢y in (4) can be translated into the following formula

__c 1
/ ﬁ(l—tz)szdt:p/ (1—2)"2 dt.
-1 -1

Substituting ¢ = sin 6, this becomes

/2 cos® 1 0dh = p/2 cos* 1 0df = py 2n <1 +0 <1>> . (17)
arcsin(ﬁ) — k k

s
2

Using the following approximation which follows by the Taylor expansion of cosine,

—0 (;) for <0, arcsin(\/cé)) ,

we can replace the cosine integral with a Gaussian integral and derive

arcsin(ﬁ) (k—1)62 arCSin(ﬁ) 1 1 2 1
e” 2z df = / cos* 1 0dH + O () = < — ) - (1 +0 <>> ,
/0 0 kVk g P k k

where the last equation uses (17). Substituting z = vk — 1 - 6, we have

1 \/HAarcsin(ﬁ) 22 1 kE—1 1 1 1
— T2 - o T 1 1. — 9 k )
7 S UL G Q)R REN 0

This shows that ® <\/k‘ —1- arcsin(ﬁ)) =1-p+0 (%), implying that

_ _ (k=162
cosF=19 —¢ 2

d~1(1 - p) = VE — Larcsin (ﬁ) +0 (;) =c+0 (i) ;

where the last equation follows from the Taylor expansion of the function arcsin. O

The following lemma gives a concentration inequality for the probability that random points
sampled uniformly from the sphere S* are nearly mutually orthogonal. In particular, it serves as a
key tool for the analysis of perfect and non-perfect sequences (to be defined in Section 5).

Lemma 4.2. Fiz a constant C' > 1, and define ac = max{lOOO, 20\/Clog(10/p(;)}. Let ly >

D > C be as specified in Theorem 3.1. Suppose that £ > by and k = D*¢?. Let X, C RFT! be an
r-dimensional subspace, where 1 < r < Cl. Then for a random vector y sampled uniformly from
the unit sphere S*, the orthogonal projection ] R — X, satisfies the following tail bound:

ac\l pe\ Ct
P(\wfy)w 2%) <(%).
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Proof. Let X’ C RF! be a C¢-dimensional linear subspace such that X, € X’. Then,

P(\mruy)} ?f) (m« > O‘;f)

Hence, it suffices to consider the case when r = C¥. From now on, we assume X, = X’.
Let y be a random vector sampled uniformly from S*. Define u = |wx:(y)|2. Then, u € [0, 1]
follows a beta distribution with parameters (%, %) That is, the PDF of u is

1—wu S
fu) = B((gz’k C)£+1)

1
, where B(z,y) = / t*~1(1 — t)¥~'dt denotes the beta function.
0

Let 6, := arcsin (0‘2%2). A straightforward calculation then yields that

1 x
el k—Ce—1 2
/2 U2 - du / sin®1 0 cos* = 0 db

acV! & 0
P <7TX (y)| > VE ) A - — = 1% , (18)
/ wz Hl—w) 2z du / sin®“1 9 cos* =0 do
0 0

where the second equality follows from the substitution u = sin?f. We begin by bounding the
numerator of (18) from above. Using the elementary inequalities that 2z > arcsinx > x > arctanz
for all 0 < z < 1, together with the conditions that k = D2¢? > C¢ and o > 4v/C, we obtain

acVl [ acVi acf ct—1 ct—1
> = > _— > .
N 6, = arcsin ( E ) > Q\f g 2 et A\ (19)

This implies that for every ) <6 < 5, we have

j@ <smC‘ 19 cosk—C* 9) ((CL—1) = (k — Cf) tan® 6) (sin04—2 0 cosh—Ct+1 9) <0,

and hence, sin®1 9 coskF =t 9 < sin®“—1 0, cosk =1 9. Therefore, the numerator of (18) satisfies

us

™ g2\ k—Ct
/2 sin®“ 1 g cosFClodp < gsimm*1 0, cos" ¢l o, < g '9103_1 . <1 - 31> , (20)
01

where the last inequality uses the facts that sinf; < 60; and cosf; <1 — ?.
Next we bound the denominator of (18) from below. Since k = D?¢? >> C/, similarly as before,

2/C/ [Ce 2 [Cl-1 \f
> = —_
L> NI 02 := arctan < k— C’E) 3V k& e =2 (21)

For every 6, < 6 < 265 < 7/2, we have tan 6 > tan? 60y = l?fa; and thus

je (sme 19 cost—C* 9) = ((Cl=1) = (k — C0) tan®0) (sinCH 0 cosh—Ct+1 9) <0,

implying that sin®~1 0 cos*~¢* 9 > sin“*~1(26,) cos*~C¥(26,). Using this, we can derive

/2 202
/ sin®“1 9 cos* ¢t 9 dp > / sin®1 9 cosF—CC 9 dp
0 02 (22)

1 _
> 0, sinC1(265) cost=CY(26,) > 2\/?920“ (1—262) ",
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where the last inequality uses (21) and the estimates sin(2602) > 62 and cos(262) > 1 — 263.
Substituting the bounds from (20) and (22) into (18), we have

_ k—C¢ cY
acV? \/E Gfﬁ 1 (1 — %H%) (91> 9 9
P |7y > <my\/ = - <7Dl | — e 3k05 — kO7/6

<| X (y)‘ 2\/E ) = / 9206—1 (1 _26%)]€_04 = 0y Xp( 2 1/ )

<aDl-exp (¢- (Clog(2ac) + 12C — o /24)) ,

(23)

where the second inequality holds since (1 — %9%)k_ce < (exp (—%9%))k/2 = exp(—3k6?) and

(1- 29§)k_0€ > (exp(—SG%))k = exp(—3k03), and the last inequality follows from (19) and (21).
Recall that ao = max{1000,20+/C log(10/pc)}. To complete the proof, we claim that
o .t
log(2 120 — =+ < ——=. 24
Clog(2a¢c) + 12C 21 = T80 (24)
reC pg logpo < 1 (because of (14)), which implies that

: 2

To see this, note that pz, - C' < (-pc)® = (=pc)ZToe(1=p0)

log C' < 2log(1/pc). Combining with aec > 204/C'log(10/p¢), this implies that
C'log(2a¢) - log 40 + 3 log C + 3 loglog(10/pc) 1 1 1 1

< 4 — < —
o2 = 400log(10/pc) =200 " 400 "800 < 1007

where the second inequality follows by the facts that log40 < 4, log(10/pc) > log10 > 2 and
loglog(10/pc) < log(10/pc). This, together with a2, > 800C, would imply (24).
Finally, substituting the bound (24) into (23), we derive

acVe agl agl pc\ ¢t
P / < D . - < I = < [ =
(!7TX(y)|> 2\@)—” ¢ eXp( 60 ) = “P\ " 100 —<10) ’

where the last inequality holds since o, > 100C log(10/p¢), completing the proof. O

The next lemma is crucial in the proof of Theorem 6.2, particularly for obtaining estimates on
the probability ratios Qp(y) and Qp,(y).

Lemma 4.3. Fizx a constant C' > 1. Let by > D > C be as specified in Theorem 3.1. Suppose that
0>ty and k = D*(%. For a fized constant A > 0, define

__c A
vk  DVE’

where ¢ 1= ¢y, s given by (4). Let 1 < r < Cl. For a random vector y sampled uniformly from
Sk=r C RF="*1 and any fized unit vector e € RE"1 we have

A 1
P((y,e) <H)=p— me—@/? +0 <D2>

Proof. Let us begin by recalling two well-known estimates: first, Wallis’ formula

1 e 7 1
/(l—tz)k2th:/2cosk_r_1mda::ﬁ—i—O();
0 0 2(k —r —2) kvk
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second, the Gaussian integral f o T g = \/% Using these, along with the fact that
k—r—2 t2

ez U —(1- t2) = > 0, we derive that for all ¢t € [—1,1],
H . H k—r—2
og/ e E 2t2dt/ (1-#)" 7 dt
—00 -1
S — 1 k—r—2 1
g/ et — /)u—¥)2 ﬁ:O()
—00 -1 k‘\/E

This, together with (16), implies that

H kE—r—2 H r— 1
/(1—752) 2t / et 2t2dt+0<k

P((y,€>§H): _11 - _;?

Wk
k—r—2 k— r 2,2 1
1—¢t?) 2 dt ‘/ tﬁ+0<>
/1 ( ) —o0 < kVE

H
_k ;ﬂ 2t2dt
/_Ooe o 1 (e 5)2 7ﬁdt o 1
= — | = P} -
/OO o= k— = Qtht + k /oo \/%e + k

A k—r—2 1
—d (- SyvrT T2 -
((+5) ") o)
where ® denotes the CDF of the standard normal distribution. By Lemma 4.1, we have
A k—r—2 A r+42 r? A r
(e AV (e A) (1722 0 (2)) = e Ao ()
A l A 1
=0 11—p) —= =0 p) - = — .

Combining this with (25) and using the Taylor expansion of ®, we obtain

R R T

—p- @ ) +0 (55 ) =r- e T 40 (5.

where the last equality follows from Lemma 4.1 that ®~*(p) = —c+O(+), completing the proof. [

We conclude with a lemma on technical properties of the standard norm distribution, used to
estimate expectations in Lemma 8.7.

Lemma 4.4. Let X ~ N(0,1) denote a standard normal random variable. Then the conditional
expectation p(t) := E[X | X > t] satisfies

; 2

p(t) = o) = Ooe : . and moreover, |p/(t)] <100 for all t € R.
1—®(t) / _s?

e 2ds

t
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Proof. The formula for p(t) follows from a straightforward calculation:

1 [ 2
—_— se” 2ds _2
_ \/27T/t R )

1 > 52 o > 52 B — '
/ e 2ds / e 2ds L=2@)
V2 Jt t

Differentiating yields that p/(t) = ¢/(t)((11:q;(fg)))§¢(t)2 = u(t)? — tu(t). For t > 1, we obtain

pu(t)

2 2
e A+1/t)e" 7 (1417 241

t < M(t) = 9 2 > E3) 2 2 P
/ e 2ds / (1+1/s*)e 2 ds ez [t
t t

implying 0 < p/(t) = p(t)? — tu(t) < 2. For t < 1, since 1 — ®(t) > 1 — &(1) > \/%6_2, we have
/ 2
' P'(t) (1) 2 -2 4 —t2 2 4
w(t S’ ’—l—‘ <e“suplte” 2|+ e suple <e“+e* < 100.
HOTS [T e A ey = 5l e
Putting everything together, we conclude that |u/(¢)] < 100 for all ¢ € R. O

5 Perfect Sequences

Before defining perfect sequences, we first set up the parameters used throughout the remainder of
the paper. We fix a constant C' > 1. Let pc € (0,1/2) be as defined earlier, and set Mo = p61/2.
Let ac be as given in Lemma 4.2. Let ¢g > D > C be as specified in Theorem 3.1. Throughout,
we assume p € (pc, %), ¢ > ly, and k = D?0%. Let ¢ := cip be defined by (4). Our focus is on the
Ramsey number r(¢, C¥) in the setting of the random sphere graph Gy, ,(n).

Let x[r] = (x1,...,x,) be a sequence of points on the sphere S¥ C R¥+1. For each i € [r], define
X; = span(xy,...,x;).

For each 1 < i < r — 1, denote by d;11 € [0, 7] the angle between the vector ;11 and the 4-
dimensional subspace X;. Recall the projection 7 (-) : Rk — X; from Definition 2.4.

Definition 5.1 (Perfect Sequences). For 2 < r < C/, a sequence x[r] = (x1,...,x,) € (S*)" is
called perfect, if for every 1 <i <r —1,

acVil
N

By convention, any singleton (1) € S* is considered perfect.

|73 (®i41)| = cos diy1 <

It can be easily verify that any subsequence of a perfect sequence is perfect; we refer to this
property as monotonicity. In view of Lemma 4.2, we expect that the probability of a random
sequence failing to be perfect is extremely small. With this in mind, we now introduce modified
notations tailored to the setting of perfect sequences. First, we define the “perfect” variants of
neighborhoods and their corresponding probability measures.

Definition 5.2. For any perfect sequence x[r] = (x1,...,x,), we define

15



e The perfect red-neighborhood
Nper(z[r]) := {y € N(z[r]) : (z[r],y) is perfect},”
with corresponding probability measure
Bper(®[r]) := P (Nper (2[r])) -
e The perfect blue-neighborhood
Nper(m[r}) = {y S N(m[r]) (x[r],y) is perfect},
with corresponding probability measure
Pper([r]) :=P (Nper(w[r])) ‘
The following definition provides the “perfect” analogues of Definition 2.2 and of the quantities
kr and R, (see, e.g., (9)). These are the primary objects of study in the rest of the paper.
Definition 5.3. For 1 < < C/, let x[r] = (x1,...,,) be a random r-tuple in (S*)".

e Let Ayeq, denote the event that G, (z[r]) forms a red clique, and let Apjye, denote the event
that Gp(x[r]) forms a blue clique.

e Let B, denote the event that the sequence x[r] is perfect.!”

—sper

e Define PP = ]P)(Ared,r A Br) and Pblue,r

red,r

= ]P)(Zblue,r A Br)

e Define 7 :=E [Pper(2[r]) | Arear A Br] and R :=E [Pper(x[r]) | Apluer A Br] .

We conclude this section with two simple lemmas. The first lemma connects the quantities Pf;ff .
and 1", and is analogous to the decomposition in (8) presented in the proof sketch of Theorem 3.1.

For any event A, let 14 denote its indicator random variable.

Lemma 5.4. For any 1 <r < C¥¢, we have

per —sper

P
er _ ~red,r41 _per __ * blue,r+1
"<‘77I”) - Pper and ’%71") - Fper
red,r blue,r
FEquivalently,
per ___per per —Sper _ _per —per

PmdmJrl =FK] ‘Kb and Pblue,r—i—l =FK] R,

. . per __ per per . per __
Proof. We proceed by induction on r to prove that Preqri1 =k - Kr - Since PML1 =1, the base
case r = 1 holds trivially. Assume the statement holds for some r > 1. Let @[r + 1] = (@1, ..., Zr11)

be a random (7 + 1)-tuple in (S*)"+1. Define A = Ayeq, A Br. So A depends only on z[r], with
PP =P(A) and kP =E [Py (z[r]) | 4].

red,r

Let Y be the event that @,41 € Nper(x[r]). Then E[1y| x[r]] = P(Y| x[r]) = Pyer(x[r]). Using this,

we can derive that PYy , = P(AAY) is equal to

E[14-1y] =E[14-E[ly| z[r]]] = E[14 - Pyer(z[r])] = E[Pper([r]) | A] - P(A) = P - PP

red,r’

where the first equality holds since A depends only on @[r] and the third equality follows from the

definition of conditional expectation. Now, the statement for PP7 4 follows easily by induction.

We omit the analogous proof for ?Eﬁiew 11 0

9Here and throughout, we write (z[r],y) = (z1,..., %, y).
OFor notational convenience, we treat each of Ared,1, Ablue,1, and By as the event that always occurs.
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The last lemma highlights an important property that partly reflects the coherent definition of
perfect sequences. This will play a crucial role in the proofs presented in the next section.

Lemma 5.5. For 1 < r < CU, let x[r] € (S*)" be a given perfect sequence. Let z be a random
vector uniformly distributed in either Nper(x[r]) or Npe(z[r]), with the orthogonal decomposition
z = z + z, where z = 7,)(2) € span(zx[r]) and 2 € (span(a[r]))". Then the normalized random
vector é is independent of 2 and is uniformly distributed on S*~7.

Proof. Let x[r] = (x1,...,2,). By symmetry, assume z is sampled uniformly at random from

Nper(z[r]). Since z — 2 = 2 € (span(z[r]))", we have (z,x;) = (Z,x;) for each i € [r]. Combined

with the definition of perfect sequences, this shows that the event z € Npe(x[r]) depends only on
z

z and is thus independent of the choice of HE The conclusion then follows directly. O

6 Preliminary Estimates on Perfect Sequences

In this section, we begin our study of perfect sequences. Recall the parameters we set up at the
beginning of Section 5. As we proceed to estimate various probabilistic quantities, it is important
to clarify the following convention used throughout:

e The big-O notation O(-) denotes terms whose implicit constant may depend on C, pc, o, p,
and ¢, but not on D.

In this section, we aim to prove two results about perfect sequences, both of which rely on
Lemma 4.3 and Lemma 5.5. The first result establishes upper bounds for the central quantities
Qp(y) and @y (y), whose formal definitions are given below.

Definition 6.1. For 1 <r < O/, let (z[r],y) € (S*)"*! be a perfect sequence. Define

Poer(2[r], y) o _
Pper(w [’I“]) and Q[T] (y) T

Q[r] (y) = Pper(m[’l“],’!)/)

Prer(]r]
Note that, in particular, we have Qg (y) = Pper(y) < p and @[O] (y) = Pper(y) <1 —p.
Theorem 6.2. Let (z[r],y) € (S¥)"*! be a given perfect sequence. Then the following hold:

Qui(y) <p-— \/ge22 E. [(m1(y), 7 (2))] + O (;) ; (26)

where z denotes the random vector sampled uniformly from Npe(x[r]), and

) <10+ o e Bl @] 40 (1) (27

where z denotes the random vector sampled uniformly from Npe(2[r]).

Proof. For conciseness, we present the full proof for (26) only, as the proof for (27) follows anal-
ogously. Suppose that (z[r],y) is a perfect sequence, and let z be sampled uniformly at random
from Nper(z[r]). Consider the orthogonal decompositions:

y=y+y and z=2z+ %,

17



where y = m,4(y) and 2 = 7, (2) belong to span(z[r]), while § and 2 lie in (span(e[r]))*. Since
(y,z) = (9, 2) + (y, 2), we have z € N(y) if and only if

<r§r’ r;> <G (@ * <@’2>> =1 (28)

=113 Ve
Both (x[r],y) and (x[r], z) are perfect, so we have |g|, |Z| < O‘Cf , which implies that

15.2)] < 912 = O (f;) —0 (Dlﬁ) (29)

By the unit norm condition (i.e., |g|> +|9|> = |y|?> = 1), we obtain 1 — %~ £ < |92, |2|> < 1, yielding

1 4 1
_ :1+0(>:1+o<>. 30
FE z VR o
Note that all bounds above hold uniformly over all y and z. We can derive from (29) and (30) that
H——<C+(20 @+O(®>——C< >+O< ) (31)
Vi k vk NG

where the term —(y, 2) + O (kf) is of the order O (Df)

We note that the random vector z is completely determined by the two random variables é—l

and 2z, so z can be regarded as the joint distribution of é and z. By Lemma 5.5, é is independent

of %, and it is uniformly distributed on S*~". We can derive the following for any fixed Z:

Peenw -5 L) <n|2)
e B30 ) () o)

where the first equality uses (28) and the second equality follows from Lemma 4.3, (31) as above,
and the fact that |z | remains uniformly distributed on S*~" when fixing z (because that |z—| and z

N>
CQ>

(32)

are independent). We emphasize that the O ( D7 ) term above holds uniformly over all z. Viewing
z as a random variable uniformly distributed in Npe;(2[r]), we can derive that

Bl y)  PMNou(@lry) _ P(Nper(elrl) N N(g))
W) =P @)~ BVpelelr]) P(Nper (21))

=E:[P(z € N(y) | 2)] =p - \/ZeszK 2)]+0 (;)

=< =P(z € N(y))

where the inequality follows from the monotonicity of perfect sequences (i.e., if ( [r], y, z) is perfect,
then so is (x[r], z)), and the last equality uses (32). Note that Ez[(g, >] E.[(g,2)], where Z
depends only on z, and z is sampled uniformly from Nper(@[r]). This proves (26). O

Using similar arguments, we establish a lower bound on the probability of common neighbor-
hoods for perfect sequences. Recall that p € (pc, %) in the random sphere graph Gy, ,(n).
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Lemma 6.3. Let 1 <r < CYl, and let x[r] = (x1,..., ;) € (S¥)" be a perfect sequence. Then

Vol(Nper (x[r]))
Vol(N (z]r — 1]))

>

e, VolWpulalr)
2

bc
Vol(N (z[r — 1])) = 2 (33)

In particular, this implies that

P(N(@lr]) = P(Nper(@lr]) = (B5)" and P(N(@[]) 2 P(Npu(el]) = (%) (39)

Proof. In this proof, we write Ny = N(z[s]) and Ny = N(z[s]) for a fixed sequence x[s]. Recall
from Definition 2.4 that my denotes the orthogonal projection from R**1 to span(zx[s]). Define

acV/l
M = {y e S*: |mg(y)] < \C/;[}

Let 1 < s < C/ and x[s| be a perfect sequence. Then Nper(x[s]) = Ny N M. By Lemma 4.2,

Vol(S*\ My) _ Py ¢ M) =P (\W[s](y)l > Om/z) <P (\W[sl(yﬂ > ac\/E> = (;%)0@’ (35)

Vol(S¥) vk 2Vk

where y is sampled uniformly at random from S*. Then, as long as Vol(N,) > (Z2)” Vol(S*),

Vol(Nper(x[s]) _ Vol(N N M) Vol(S* \ My) _ . (pc/10)¢*

Vol(Ns) ~ Vol(Ns) — Vol(Ns) — (pc/2)°

Y

1-27¢ (36)

Vol ( Nper (2[r])
\golFNr,l) ) > bf. The

base case r = 1 holds trivially by (35). Suppose this holds for all integers s up to some r > 1.
Consider any perfect sequence x[r + 1] = (x[r], x,41) € (S*¥)"+!. The inductive hypothesis implies

Vol(N,)  — Vol (Nper(a[s]))
Vol(Ns—1) = = Vol(Ns_1)

We proceed induction on r to prove the first inequality of (33), i.e.,

that

> P2 for all s € [r], hence

VOl(N,) > Vol (Nyex(2[r])) > (%C) - Vol(S"). (37)

By (36) (with s = r), this implies that

Vol(N, N M,) _ov
—_— 2 >1 27" 38
Vol(N,) — (38)
Let y be a vector sampled uniformly at random from Nper(x[r]). Define

y=mp)(y) and g =y —y; similarly, define &, 1 = 7, (Tr41) and Tr1 = Tryp1 — Tig1

The following arguments are similar to that of Theorem 6.2. Using the fact (y, z,4+1) = (¥, &,4+1) +
(Y, &ry1), we derive that y € Ny41 (which is equivalent to y € N(x,41)) if and only if

@ i7»+1 1 ( C - . )
—_—, — < — ———(y,wr 1 =: H. 39)
<\y\ \wr+1r> Wlenl \vE +1) (
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Since y, x,4+1 € M,, we have |g|,|Z,+1] < O‘CT;C/E. Following the same bounds as in (29) and (30),

the right-hand side of (39) simplifies to H = —ﬁ +0 <ﬁ) . By Lemma 5.5, % is uniformly
distributed in S*~" and is independent of 4. Therefore, for any fixed 4, by Lemma 4.3 we have

Vol(m, @) N Newt) (/G @ \ e ol LN\, oL e
1/~ - RIS >~ = = p— > , (40)
VOI(W[T] (v)) Y] |21 VE DVk D 3
where the last inequality holds since p € (pc,1/2) and D > C. Using (40) and integrating over all
possible ¥ = 7,1 (y) € 7} (Nper (z[r])), we can show that

2
Vol(N,41 N M,) > % - Vol(N, N M,).

This, together with (38), implies that

Vol(N;41) S Vol(N,y1 N M)  Vol(N. N M,) ' Vol(N,4+1 N M,) - (1 B 2fce> 2pc _ 3pc

VolN,) —  Vol(N,)  Vol(N,)  Vol(N, n ) 3 > 5 W)

and Vol(Ny41) > (I’TC)TJrl Vol(S*). Applying (36) again (with s = r + 1), and using (41), we have

Vol(Ny(oly + 1) _ Vol(Mya(alr + 1)) YolWrar) , (; _ y-cry VollNeor)  pe

Vol(N,) Vol(N,11) Vol(N,,) Vol(N,) ~ 2~

This completes the proof of the first inequality in (33). The second inequality in (33) follows
analogously.!! As for (34), its proof proceeds in exactly the same way as that of (37). O

7 From Perfect to General

In this section, we show that the “perfect” variants (see, e.g., Definition 5.3) are the principal cases
for monochromatic clique probabilities (Definition 2.2) and their generalizations. In particular,
building on a more general result, we obtain the following.

Theorem 7.1. For every 2 <r < C{, we have
red,r blue,r

Pred,r < (1 + 2—CK> pper and ?blue,r < (1 + 2—C’€> prer (42)

To facilitate our estimates in the non-perfect cases, we introduce the notion of the non-perfect
index for sequences of points in S*.

Definition 7.2. For any r € N*, we say a sequence x[r| = (x1,...,x,) of points in Sk has non-
perfect index j, if there exists a subset J C {2,...,r} of size j satisfying the following dichotomy:

iy ()| > ac\\/fg for i € J,

|7T[z‘—1](33i)| < ac\\/fg forie{2,...,r}\ J

The set J is called the non-perfect profile of x[r]. If J=0or J ={r—j+1,...,r} consists of j > 1
consecutive indices ending at r, then we say the sequence x[r| is faithful.

"For the blue case, the sign in (39) is reversed, and consequently the estimate in (40) becomes 1 — p 4+ O(1/D),
which remains at least p 4+ O(1/D) > Zpc; the other arguments remain unchanged.
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Note that a sequence has non-perfect index 0 if and only if it is a perfect sequence. The following
definition generalizes both Definition 2.2 and Definition 5.3, and will be used in the next section.

Definition 7.3. Let 0 < s < r < C/ be integers, and consider a sequence x[r] = (x1,...,x,) € S*
in which the first s points form a fixed perfect sequence x[s|, while the remaining r — s points are
sampled uniformly and independently from S*. Under this setup, we define the following:

o Let Preda,r([s]) be the probability that Gy (x[r]) forms a red clique, and let P77 (x[s]) be the
12

probability that G,(x[r]) forms a red clique while x[r]| forms a perfect sequence.

o Let Pplye(x[s]) be the probability that G, (z[r]) forms a blue clique, and Fﬁﬁiem (z[s]) be the
probability that G,(x[r]) forms a blue clique while x[r] forms a perfect sequence.

For the case s = 0, we view x[0] as the empty initial condition, and thus we have
Pred,r(m[o]) = Pred,r and Fblue,r(m[o]) = Pblue,r- (43)
Lemma 7.4. Let 0 < s <r < Cl and x[s] be a fized perfect sequence. Then the following hold:

Paactels) <3 (177) ()™ Pitala

Prtuer(@ Z (20 ()™ Phictala

Proof. For any r € N, we define a map ¢ : (S¥)" — (S¥)" as follows. Consider any x[r] € (S*)".
Let J = {ji1,...,jr—t} denote the non-perfect profile of x[r] for some 1 < ¢ <r, with2 <j; <...<
Jr—t <. Let [r]\ J ={l1,..., 0} with 1 ={; < ... <l <r. Define y[r] = ¢(x[r]) by letting

(Y155 Y,) = o(2[r]) = (4, .- X0y, Tjys -, TG, ),
where we also define y; = @ ;) for all i € [r]. For each i € [r], define
Y; :=span(yy, Yo, - -, Y;) = SPAN(T (1), Tip(2)5 - - - > Tp(d))-
Then we have the following properties:
(1). For each 2 <i <t, we have (i) = ¢; € [2,7]\ J and Y;_1 C span(x1, 2, ..., T,(;)—1), implying

Ve
7y (Yl = |mvis (@) < [ -1 (2 i))‘gac’ﬁ'lg

This shows that (y1,vys,...,¥y,) is a perfect sequence.
(2). For each t +1 <4 <, since (i) = ji—¢ € J and Y;_1 2 span(x1, ®2, ..., Ty(;)—1), implying

Ve
mvia (U] = [mviss (@) | 2 1711 (Tp))| > a7

12We point out that if the induced subgraph G,(x[s]) on the given sequence z[s] is not a red clique, then both
probabilities defined here equal zero.
"%Here, 74 (-) denotes the projection of points in S* onto span(z1,..., ).
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Combining with both properties, we see that the non-perfect profile of y[r] is J' = {t+1,t+2,...,r},
hence y[r] = p(x[r]) is always a faithful sequence with the same non-perfect index of x[r].

We now aim to prove the first inequality of this lemma. Consider the setting from Definition 7.3,
where x[s] is a fixed perfect sequence, and the remaining r — s points in x[r] are sampled uniformly
and independently from S*. If x[s] does not induce a red clique, then both sides of the first inequality
are zero, and the inequality holds trivially. So we assume that x[s] induces a red clique G,(z[s]).

Let r — ¢t denote the non-perfect index of x[r|. Since x[s] is perfect, we have s < t < r, and
every element in the non-perfect profile J = {j1 < ... < jr,—} of x[r] must be strictly greater
than s. Hence, the number of distinct choices for J is at most (1~7). Note that y[r] = ¢(z[r])
is a faithful sequence with the same non-perfect index r — ¢, obtained from x[r] by reordering the
positions of the points. It is important to observe that both sequences induce the same graph, i.e.,
Gp(x[r]) = Gp(y[r]). Moreover, the map ¢, when restricted to all sequences x[r| with a given non-
perfect profile J, is injective and preserves volume measure (because it is an isometric embedding
with the standard Euclidean metric). Therefore, we can derive that the probability that G, (:c[r])
forms a red clique with a given non-perfect profile .J is at most the probability pTJ| that G, (m[r])
forms a red clique, conditioned on x[r] being faithful and having non-perfect index |.J|. Putting all
above together, and applying Lemma 4.2, we obtain

Pred.r( Z]P’ ) forms a red clique with |J| =r — t}) Z (:1 : 3> “Pr_t

t=s ¢

< Z <; : i) -P (:L'[t] is perfect, G (x[t]) is a red clique, and [mj;_qj(2;)| > acVl vy o < r)

VE
< Z (20 ()™ pret.

This proves the first inequality. The second inequality follows by identical arguments under the
analogous condition, so we omit the details. ]

Now we are able to prove the main result of this section, as follows.

Theorem 7.5. Let 2 <r < Cl and 0 < s <r — 1. For any fized perfect sequence x[s|, we have

Pear(als]) < (14+27) P2 (@ls])  and Pre,r(@ls]) < (1+27%) Phiue, (als)  (44)

Proof. We consider the first inequality. We may assume that [s] induces the red clique Gp(x[s]);
otherwise, both sides equal zero, and the inequality holds trivially. For any s < t < r, consider
any perfect sequence x[t] whose first s points form the given perfect sequence x[s|. Using (34) in
Lemma 6.3, we have Vol(Nper(2[t])) > (22)" Vol(S*). This implies that for any s <t <,

Vol (N, er er r er
Pllen(l) > ( (v;iék)m) Pl 2 (F) - PG (als),

and thus

red, r

P (el = (%) P e,
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Combining this with Lemma 7.4, we can then derive

r—1

Peactats) <Pl i) + 30 (1 77) (56)™ " Pl el

r—t

- (’i 59 (1)) e

r—1
S (1 + Z4—C€(T—t)> PI‘I;ZI"T( [ ]) S (1 _|_2—Cf> Pr};ilrr( [ ])7
t=s
where the third inequality follows from the analysis below (as r < C? and / is sufficiently large)

i (@)Cﬁ(r—t) ‘ (}2>—r(r—t) < (O€ . 5_06)7«4 - 4=Cllr—t)

10 2
This completes the proof of the first inequality of Theorem 7.5. The proof of the second inequality
follows analogously through similar arguments. O

In view of (43), we see that Theorem 7.1 follows directly from the case s = 0 of Theorem 7.5.

8 Estimates on Key Quantities

This section focuses on deriving a crucial estimate for computing x°" and /. Let x[r] be a
random 7-tuple in (S*)". Recall Definitions 5.2 and 6.1, which imply that

per

kP = B [Poer(®[r]) | Arear A Br],  where  Ppe( II@ﬂ%H (45)

and an analogous expression for %, . Since our analysis proceeds by fixing each perfect subsequence
x[s] for 0 < s < r, the central quantity to estimate, as guided by Theorem 6.2, is

E [<7r[8](w8+1)7 W[S](Z» | Ared,r A Br] s

where z is sampled uniformly at random from Nper([s]), independently of xsi1, ..., x,.
Our goal in this section is to prove the following statement.

Theorem 8.1. Let 0 < s < r < C¥, and fix a perfect sequence x[s| = (x1,...,xs). Independently
sample 541, . .., T, uniformly from Sk and recall Ayed,r, Abluem and B, from Definition 5.3.

o If G,(x[s]) forms a red clique, and z is sampled uniformly at random from Nper(x[s]), inde-

pendently of i1, ...,x,, then
)
E (i (@ss1), 1 (2)) | Areas ABy] = - S0 (L ). (46)
Ts)\Ls red,r 2 p A Dk
o If G,(x[s]) forms a blue clique, and z is sampled uniformly at random from Nper(2[s]), inde-
pendently of 11, ...,x,, then
e’ l
E[<7T[s] (®s541), 75 (2)) | Ablue,r A Br] = m E + O <Dk:) (47)

The remainder of this section is devoted to proving this result, divided into three subsections.
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8.1 Spectral Properties of Perfect Sequences

To facilitate the analysis of the desired expectations, we employ spectral arguments to study relevant
vectors associated with perfect sequences. We begin with the definitions of these concepts.

Definition 8.2. Let 1 <r < Cf and z[r] = (1, ..., x,) be a perfect sequence in (S¥)" C (RF+1),
e Let X € REFDX" he the matrix whose it column is the vector a; for each i € [r].!*

e For each ¢ € [r], let v; € span(xy,...,x,) be the unique vector satisfying (v;,x;) = 1 and
orthogonal to span({z; : j € [r] \ {i}}); see Figures 2 and 3. Let V € REFDXT denote the
matrix whose i'" column is the vector v; for each i € [r]. Equivalently, V = X(XTX)™!, i.e.,
V is the Moore-Penrose pseudoinverse of X7

e For each i € [r], let X; := span(zx1,...,x;), and define X := {0}. Construct the orthonormal
basis {e;}_, for the space X, where for each i € [r], the vector e; € X; N X;- | is the unique
unit vector satistfying (x;, e;) > 0.

e Let Ay > --- > A, > 0 denote the eigenvalues of XTX, and let 0 < p; < --- < p, denote the
eigenvalues of VI'V.

We first show that the common neighborhoods N (z[r]) and N(z[r]) can be characterized as a
corner generated by the previously defined vectors vq,...,v,.

Proposition 8.3. Let z[r] = (x1,...,x,) be a perfect sequence. Let X, vi,...,v,, and V be
defined as in Definition 8.2. Then we have

N(z[r]) = {y e S* . T (y) = Zai’vi with a; < —% for all i € [r]} )
i=1

N(z[r]) ={yeSk: ) (y) = Zaifvi with a; > ~ % forallie [r] o .
P vk

Proof. Consider the projection 7, (y) = > i, a;iv; onto the space X,. Then we have

(y,@1),...,(y,z,) =y X = (W[T](y))T -X

48
= (a1,...,a, )V - X = (a1,...,a,) - (XTX)'XTX = (ay,...,a,). (48)

By Definition 2.3, we obtain that y € N(x[r]) if and only if a; = (y,x;) < —ﬁ for all ¢ € [r];

similarly, y € N(z[r]) if and only if a; = (y,x;) > —ﬁ for all i € [r], finishing the proof. O

The following lemma will be useful in the coming proof. It offers multiple handy and broadly
applicable formulas for various vectors under the perfect-sequence condition.

Lemma 8.4. Let z[r] = (x1,...,x,) be a perfect sequence. Let X, v1,...,v,, V, A\ > -+ >\,
and py < -+ <, be defined as in Definition 8.2. Then the following hold:

(1) For alli € [r], we have p; = \;' with X, p1; = 1+ 0 (), and |v;| =1+ 0 (%).

MWe will view all vectors in R¥*! as column vectors.
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(2) For a matriz A = (aij)mxn, let [|[Allp = /3121 D 5—y a%j denote its Frobenius norm. Then

- 2 T 2 1
'E_l(Ai - 1) = ”X X - IHF =0 <DQ )
. 1
d (=1 =|V'V-I3 =0 <D2> :

i=1

In particular, for each i € [r], let V(i) = span({v; : j € [r] \ {i}}). Then we have
- 1
> ) =0 (52)-
i=1

3) Let y € S* be a vector such that (x[r],y) is perfect, and let m,1(y) = >+, av;. Then
[r] =1
> a2 = O(%) and for any I C [r],

sa-(o(3))

el

E aiv;

el

Proof. Let x[r] = (x1,...,x,) be a fixed perfect sequence. For item (1), we first observe that
VIv = (XTX)"IXTx(XTX)! = (xTXx)!

This proves that p; = \; ' for all i € [r]. Note that y" XX"y = >°7_ (y, z;)?, and X7X and XX”
share identical nonzero eigenvalues. By the Courant-Fischer theorem, we have

r

A1 = sup Z y, x;)> and Ar = inf (y,x;)%. (49)
yEXT i—1 yEXr i—1
lyl=1"" ly|=1"=

Recall the orthonormal basis {e;}!_; defined in Definition 8.2. For all 1 <, <, we have

O (%), 1<j<i,
<mi’ej>2 = 1_O(£)7 Jj=1, (50)
0, 1<j<r.

Consider any unit vector y = >__; bie; € X, (with Y!_; b? = 1). It follows that

2
. , i—1
> (g, @)’ —Z Zb (e ) | = | biles, @) + <$Ci,zbj6j>
—

i=1 i=1 \j=1 i=1

, 2
:Zb?(ei,mi>2+22 (ei, x;) <mz,2b e]>+z<ml,ijej>
i=1

i=1

~~

ey n (I1T)

(1+0(8) e+ v00 5 (. 5hne)

i=1 =1
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where the last inequality holds because the absolute value of (II) is at most % (I) + D (III), by the
AM-GM inequality (i.e., 2ab < 5a® + Db?). Using (50) and the identity Z b? = 1, we have

i=1"4

S bHen ) =1+ O(%). Moreover, since Zj:l bje; € X;—1 and Z; 11b§ <1, we can get

i—1 2 i—1 2
<$i,zbjej> = <7T[i—1](33i),zbjej> < w1y ()] Zb ej| = 0‘0* ZbQ = 0‘%}*7
j=1 =1

where the second last inequality follows from the fact that x[r] is a perfect sequence. Combining all
above bounds, and noting that » < C¢ and k = D?/?, we obtain that for any unit vector y € X,

;“’”2: (1+0(5))-(1+0(})) +aromn-o () =1+0(5).

This, together with (49), implies that for every i € [r], \; = 14+0 (3) and thus ; = \; ' = 140 (3).
We apply the Courant-Fischer theorem for the matrix VI'V: for any unit vector y € R”, we have
p < y"'VIVy < p,. For each i € [r], by taking y to be the unit vector y; € R”, where the i‘h
entry is 1, we derive |v;|? = y/ VI Vy; =1+ O (3) and thus |v;| = 14 O (3), proving item (1).
For any I C [r], let V1 € REFDXIT denote the matrix whose columns are the vectors v; for all
i € I; define X analogously. By Cauchy’s eigenvalue interlacing theorem, it is easy to obtain that

Property (x). all |I| eigenvalues of V?VI (respectively, X?XI) are equal to 1 + O(%), and the
same holds for the nonzero eigenvalues of V; VT (respectively, X;XT).

Now we prove item (2). Fix s € [r—1], and recall Xy = span({x; : i € [s]}). Let z5 := mx_(Ts41)
be the projection of 541 onto X;. Then we have

S o il = 3 (o = 21X,y = (1+0(3)) =r=0(5). o

where the penultimate equality follows from Property (x) above and the Courant—Fischer theorem,
and the final equality holds because @[r| is perfect. Since |z;| =1 for all 1 <14 <, it follows from
(51) that the following Frobenius norm satisfies

: 2 1
i1 =XTX-I|f = > (wiz;)* = 22 D (i xs)? = (k> 0 <l)2> .
i=1 1<i,j<r 71=11<i<y

i#]
Using the fact that ;- l— N =140 (%) for each i € [r], we deduce from the above equation that
. (i —1)? 1
VIV -1 = Z(Mi -1 = Z e =0 2
i=1 i=1 i

Next, consider the projections u; := 7y, () (v;), where V;.(i) = span({v; : j € [r] \ {i}}). Using the
same discussion as in (51), we can obtain that for any i € [r],

1
§ : 2 T T 2
<vi,vj> =u; Vm\{l}VM\{l}ul = <1 + 0 (D)) : |uz’ :
Jelr\{i}
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This implies the final desired equality of item (2) as follows:

It remains to prove item (3). Consider any y € S* such that (x[r],y) is perfect. Let my(y) =
Yoi_qavi. Let a = (ai,... ,a;)T. Then by the same arguments as above, we have

, 2
1 T TvT 2 L
(1—|—O<D)> a'a=a'V'Va = Z%Uz‘ = |7 (y)| _O<k ,

i=1
where the last equality follows by the perfectness of the sequence (x[r],y). This implies > .. =

11@

O (%) For any I C [r], by replacing a and V with the vector a; = (a; : i € I)T and the matrix V;
in the leftmost equation above, it follows that }_,c;a? = (1+ O (§)) - [> e aiv ‘2 . This completes

the proof of Lemma 8.4. O
We conclude this subsection with the next lemma, which provides an estimate of the difference

between the orthonormal basis ey, ..., e, and v1,...,v,.

Lemma 8.5. Let x[r] = (x1,...,x,) be a perfect sequence. Let X, ey,...,e,, V, and vy,...,v, be

defined as in Definition 8.2. Let V(i) = span({v; : j € [r]\ {i}}). Then for alli € [r], we have

<’Ui,ei> =140 <£> and ‘er(i)(ei)‘ =0 <\\;§> .

Proof. Recall that for each i € [r], e; is the unit vector in X; N X;- satisfying (z;, e;) > 0. So

Ty — Ti—1) ()
€; =

— . 52
EEr—r] 52

By Definition 8.2, we have (v;,x;) = 0 for all j # 4, thus by (52)

1= (v, x;) = (vi, &y — W[i—l](a:i» + <'Uz'u7r[i71]($i)> = ‘331 - W[ifl](wi)‘ (v, €).

Then using the fact that @[r] is a perfect sequence, we can derive

1 1 1 L
'Uhei = = 1 O .
< / |wl - W[ifl}(a’i)} \/1 — ‘ﬂ[i_1]<xz’)‘2 \/1 —O(t/k) i (k>

By the property (v;, ;) = 0 for all j # i, we have my, ;(x;) = 0. This, together with (52), implies

—_— ( = Ti— 1]($1) )‘ 1 ’ } T ( ﬂ-[z_l](wz))|

@ —m @] )| [ — (@

: \mi‘?i}[lf_(?kim = (1 O (f:)) o (%) =9 (%) ’

completing the proof. O

[mvio(ei)] =
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8.2 Estimate of E[(m})(y), e;)]: Single Random Projection

In this subsection, we present the core technical step in proving Theorem 8.1, as follows.

Lemma 8.6. Let 1 < r < C¢, and let x[r] = (x1,...,x,) be a perfect sequence. Let vy,..., v,
el,....e; and Vy(s) = span({v; : i € [r]\ {s}}) for s € [r] be defined as in Definition 8.2. If y is
sampled uniformly at random from Nper(x[r]), then for each s € [r],

/2 1 Vi
E[(mp,(y), es)] = ok (1 +0 (D>) +0 <\/E!7rms>(vs)\> (53)

Analogously, if y is sampled uniformly at random from Nper(z[r]), then for each s € [r],

B e=c’/2 1 Ve
E[{m(y), es)] = 0 p)vork (1 +0 <D>> +0 (\/EMVT,(S)(US)I) (54)

The essential part of this lemma, is formulated in the next lemma, which we prove first.

Lemma 8.7. Let x[r|,vi,...,v, and V.(s) be given as in Lemma 8.6. Consider the vector y
sampled uniformly at random from Nper(x[r]), with 7, (y) = >oi i a;v;. Then for each s € [r],

E[as] = — (1 +0 (llj)) : ;\_/;% +0 (\\/féym(s)(vs)l) . (55)

Analogously, consider the vector y sampled uniformly at random from Npe(2[r]), with T (Y) =
>oi_qavi. Then for each s € [r],

Ela,] = (1 e (;)) . u_;fm e (fgms)(vs)\) . (56)

Proof. Fix a perfect sequence x[r] = (x1,...,x,) and let v1,...,v, be defined from x[r| as in Def-
inition 8.2. Let y be the vector sampled uniformly at random from Nper(z[r]), and let 7, (y) =
> i qa;v;. From now on, we regard y as the joint distribution of the random variables a; for
i € [r]. We fix an index s € [r], and aim to prove (55) for this choice of s. Write wg =

< (ac—Q)%}.

We first claim that to prove (55), it suffices to show the following for the conditional expectation

Elas | ws] = —:\_/;2% (1 +0 (é)) +0 (\\/fé \er(s)(vs)\> , (57)

where wsz € A denotes an arbitrary but fixed outcome (al, ey O], Ggq],y - - .,ar) satisfying the
event A. To see this, we begin by estimating the probability P(A). By item (3) of Lemma 8.4,

7 ()] = <1+0 (é))\/?z (1+0 <113)> /iemz\:{s}ai = <1+0 (é)) ie%:{s}aivi .

Hence, the complement A of the event A satisfies that

<= (vt oo = (140 (1)) (oo -2 %)

< Vol (y € S fmp (y)] 2 O‘M) / Vol(Nyar(alr])) < () ()" <57,

(al, ey Os—1, (gt ]y - - ,ar) and define the event A £ {wg : Zie[r]\{s} a;V;

2k 10 2
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where the second inequality uses the fact that D > ac > 10 and the second last inequality follows
from Lemma 4.2 and Lemma 6.3. Using item (3) of Lemma 8.4 again, we have

s

= (0 (3)) =i

1= |y| 2 |7T[r] ;Ui

implying that |a;| < 2 for all ¢ € [r]. Under the assumption that (57) holds for every ws € A,
applying the law of total expectation, we can derive the desired estimation (55) in the following:

Elag] =P(A) - E[as | A]+ (1 -P(A))-E[ as | A°]

= (1-06") - (—;_/j% (1 1o (é)) 1o (\\/fgym(s)(vsn)) +0(57CY)
= _;\_/;2% (1 +0 <11))> +0 (\\/fém(s)(vs)o ,

where the last equality holds by the fact that O(5~¢*) = O (ﬁ)
The remainder of this proof is devoted to establishing (57) for every ws € A. By Proposition 8.3,
& .
a; < ———= for all i € [r] and ’7[‘[7,] ‘ =

VI
NG Zamz < ac——= }

Vk

Let I(ws) denote the set of all values as such that y = (a1,...,a,) € Nper(x[r]) while ws is fixed.
We claim that for any fixed ws € A, I(ws) = [—As, —ﬁ] is an interval with % <A < 20‘\%‘/2.
Note that, from the above expression of Npe(x[r]), the domain I(ws) of as is determined by the
conditions ag < —ﬁ and Y ;_; a;vi] < ac\‘? the latter of which can be viewed as a quadratic

inequality in the variable as. Thus, I(ws) must be an interval [—As, _ﬁ] for some constant A5 > 0.

Nper(x[r]) = {y = (a1,...,a,) € S*

Suppose that —% <as < —ﬁ. Then, since ws € A and |vs| = 1+0(%) (by Lemma 8.4), we have

|7 ()] < <Ozc—2—|—1+0<1>> :/@ \/\@

On the other hand, if a, f\/Z, then

__c Vi
\/E] C I(ws) and thus Ag > .

<5

implying that [—

Ve Ve

1
|7r[r](y)‘ > |asvs| — Z a;v;| > <2ac +0 <D) — (ac — 2)) ﬁ > acﬁ.
i€[r\{s}

Combining with the above bounds, we obtain that % <A < 20‘\%‘[, proving the claim.

While fixing ws = (al, e O, G gy - - - ,aT) € A, the surface area measure satisfies

Vol ye Sk T (y) = Z a;v; + asvs, as € [a,a + da] o (1 — |7r[r](y)‘2> * da.
i€[r]\{s}
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Therefore, E[as ] wg] can be written as

7% k—r—1 7% k
/ as (1= |mp(y)P?) = das / s XD <_|”[r]( ) > da 1
o T Ly e G ). e
[0 [ e (<imw) i
where the equality holds since for all 1 <7 < Cf and x := |7, (y)| = O(%)7
exp (I;:c2> (1-2%)F =exp (l; 2 kor-l ; mEye + O(klA))

=exp (O(tz* + kz')) =1+ 0 () :

Here, 7,1 (y) is viewed as a function of as, that is,

2
‘W[r](yﬂ = ag |’05’2 + 2as’v5| . < ’ Zalvl> + Z a; aj U;,’U]

iFs 1,JFs

To simplify the calculation of (58), we introduce the following shifted variables:

C v
t:= as|vs|+ Zazvz ;AL = Aglus| - Zam , Bli=—— o+ ) aiv; ).
[os]’ [os|’ Vk vs|

i£S i#£s

Before substituting these parameters into (58), we derive some estimates for them. By Lemma 8.4,

Vs | v (vs) Tv,.(s)
<‘US|,ZGZ"U@'> = <\Us| ,Zaivi> < ———= 1+O Zaﬂ)z

i#£s i#£s i#s

i i
=0(Imv, o (@s)l) - [> af =0 (\\/g : Iﬂvr(s)(vs)> =0 (D\§E> :

and using the bound % <A, < M, we have

r_ \/Z _ ﬂ I — ﬂ
0<As_<1+O<D >.AS+O<D\/E>_®<\/E> and \Bs|_O<D\/E>. (61)

Now, substituting ¢, A%, and B, for as, A, and —ﬁ, respectively, in (58) yields

/_i ( <| Nk Z‘Wz>) exp (—gﬂ) dt 1
E[as | ws] = /B; eXp( A 2) p <1 +0 (D))

(60)

—=t
—A 2 (62)




Using the basic equality f_ﬁoo texp <—%) dt = —exp (—%), we have
_A
s k
[ ()] ()
i (a2 () 2 (5),
/ texp (—2t2> dt exp *5(3 )

where the second equality follows frorn2(61) that (A%)% — (B.)? = (A, — B.)(A, + B.) > (Aj)z > L.
Furthermore, (61) gives <|Bg| + ﬁ) =0 (ﬁ) <L < (A’S)Q’ which implies that

DVE 6k = 4
—_A —A’
: ko 1 : ko 1 kg
_Z < _ - - . ——
/_Oo exp< 2t>dt_|A§|/_oo ( t)exp< 2t>dt ATk exp( 2(AS)
2
Ve k Vi k
SR Y (MR ) T
ovi P\ 2 (B o < |~ ()

1B k ¢ B; k 1
< — 22 at - —— )< 22 )dt-o=).
_/Bgﬂexp< 2t>dt exp( 16)_/ooexp< 2t>dtO<D>

DVk

Putting the above two bounds into (62), and using (60), we have

Bétex ke a
B i ol )

Next, applying (60) and Lemma 8.4 once more, we obtain the following equation

B = —%]vs\ + <’Z;;am> = —% : (1 +0 (é)) +0 (\\/fé : ]WVT(S)(US)O :

Let X be the standard normal random variable. By Lemma 4.4, we have that

z k
J / texp(—§t2)dt 1 d
— —o . — ’dIE[X|X < w\/E]‘ < 100.
v / exp(—§t2)dt Vi dz

Hence, we can derive from (63) that

e _ﬁ
[y | ws] = /_oo foxp ( 2t2> “ (1 +0 G))) +0 <Di/%) +0 (\\/fé - |wvr(s)(v5)y> . (64)

v k
/ vE exp (—2152) dt

Recall that ® is the standard normal CDF. By Lemma 4.1, c = ®~1(1 — p) + O (%) This yields

(&

~VE k
texp (—t2> dt 2

T = e T v T e

/ vE exp <—];t2> dt vk
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e—c2/2
NG and
1—®(c) =p+ O(3). Combining (64) and (65), we obtain (57), implying (55) (as shown earlier).
The proof of (56) proceeds analogously by considering the random vector y € Npe(x[r]) in
place of Nper(x[r]). In this blue case, the counterpart of (65) becomes ﬁE[X | X > —¢|, which
e—c?/2
(1-p)V2rk
for (58), which requires some modification. We provide a detailed proof below. Define m,j(y) =
Z;":l a;v;, and the same event A as before. Then for any fixed ws € A, in this case we have

_ c i 204(;\/2
I ws) = [—\/%,As} , where ﬁ <A, < i

Since this interval is not positive everywhere, the blue version of (58) cannot be obtained directly
from the previous estimation (59). However, we are able to derive the following (weaker) analogue
of (58), which nevertheless suffices for the purposes of the remaining proof:

As 9 k—r—1 As kj 2
/ as (1= |mp(y)?) 7 das / as exp <—2!7Tm(y)! )das

where the second equality follows from Lemma 4.4 and the last equality hods by ¢(c) =

contributes the main term . All arguments carry over with corresponding changes, except

c

e e [ Cime (7))

c

N
0 As
M = —/ s exp <—]7rm(y)]2> das, N’ :/ s exp (—2|7r[r](y)| >das,
_ﬁ 0
AS k—r—1 AS k
b= (1= |mp(w)?) = das and P':= / exp (—Qlﬂm(y)!Z) das
,% 7%
Using (59), we have M' = (1+ O(33))M, N’ = (1+ O(3z))N, and P’ = (1+ O(55))P. Then
1 M
~M'+N' =(-M+N)- <1+O <2> +0 <D2>.

Now using P’ = (14 O(3z)) P, we have

-M'+N' —-M+N 1 M
=2 (10 () ) o (s

This, together with an easy observation that |[M| = O (ﬁ) | P|, implies the above desired equality.

We point out that the extra O (ﬁ) term is negligible for the remaining proof of the blue case,

and therefore this analogue of (58) suffices for the proof of Lemma 8.7. O]

We are ready to prove the main result - Lemma 8.6 of this subsection.
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Proof of Lemma 8.6. Let x[r], vi,...,v,, and ej,...,e, be as given in the conditions. By sym-
metry, we only consider the vector y sampled uniformly at random from Npe:(x[r]). Recall that
T (y) = a1v1 + - - + a;v,. Using Lemma 8.5 and Lemma 8.7, we can show that for each s € [r],

<Zawi,7rw(s)(es)> <D ai| -y, () (es)] < <1+O <11)>> ' (ia?)é . (\‘/2)

its i#s i=1
oso(3) [l o) mom o) )

where the final equality follows by |7, (y)| = O (%) and £ = ﬁ. This implies that

]E[<7T[7‘] (y)7 es>] :E[as] : <v87 es> +E <Z a; Vs, es>

1#£s

a0 (140 (k) & | (Somamcste)

i#s
— S (o (5)) m(jg,wvsn) oS4

—c2/2 1 \/Z
e
=———= (140 (= | | +0| —=|my(s(vs)] |
p\/27rk< <D>> <\/E’ Vi) (Vs)]
where the second equality follows from Lemma 8.5 and the fact }_, . a;v; € Vi(s), and the third
equality holds by Lemma 8.7. This completes the proof of (53) (and similarly, of (54)). O

8.3 Estimate of E [(m4(y), 75)(2))]: Two Random Projections

In this subsection, we complete the proof of Theorem 8.1. To do so, we first establish the following
approximate version, involving two independent random vectors.

Lemma 8.8. Let 0 < s < r < CV and fiz a perfect sequence x[r]. Consider independent random
vectors y and z, where y is uniformly distributed in Nper([r]) and z in Nper(x[s]). Then

—C

B [(mg ) ma(2)] = 5 5+ 0 (57 ) (66)

Analogously, consider independent random vectors y and z, where y is uniformly distributed in
Noper(z[r]) and z in Nper(x[s]). Then

2
e ‘ s 14
E = .2 — .
(gm0 = 5 1+ 0 (57 (67)

Proof. We consider (66). Fix 0 < s < r < Cf and a perfect sequence z[r] = (1,...,x,) € (S*)".
As before, we define X; = span(x1,...,x;) for each i € [r]. Analogous to the basis vi,...,v, of X,
defined in Definition 8.2, we define a corresponding basis w1, ..., ws for X, such that

1, ifi=y;

0, ifi#j
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for all 1 < i,57 < s. Similarly, analogous to the subspaces V(i) of X, for i € [r], we define
Ws(i) := span(wj : j € [s|]\{i}). Finally, we recall the vectors ey, ..., e, from Definition 8.2. Note
that ey, ..., es form an orthonormal basis for X and depend only on x[s].

Let z be a random vector uniformly distributed in Npe(2[s]). By Lemma 8.6, we have

6—52/2 1 \/Z
Bilma(2).e] = = (140 (5 ) ) +0 (ﬁwi)(wi)r) (69

for all i € [s]. Let y be a random vector uniformly distributed in Nper(2[r]). For each i € [s], we
have (7(5)(y), €:) = (7;)(y), €i), and thus, applying Lemma 8.6 again, we can derive

e—c/2 1 Vi
Bl w):e] = Elimw).e] =~ (1405 ) ) +0 (@w.u)(vm) NG

Since y and z are independent, we have

<Z<ﬂ-[s} (y)7 61')61', Z<7T[s} (Z), ei>ei>] = Z E[<7T[S] (y)> ez>] : EKW[S] (Z), eZ>]
=1

=1 i=1

E [(((y), 7s(2))] =E

Substituting (68) and (69) into the right-hand side of the above expression and simplifying yield

E [(mq (y), 75 (2))] :ZS: <1 +0 <11)>> : p;(;:;) +0 (i) ';Ww(i)(vm |, (i) (wi)

=1
+0 (f) ‘Z(|7TVT(i)(vi)’ + |7y, i) (wi))
=1
e e e :
— (27Tp2 'z +0 (Dk:)> O <k;> : (Z \er(z')(vz‘)|2> (Z 7rVifs(z‘)(7~"i)|2>
=1 i=1
+0 (f) | Vs (Z\er(i)(vi)F) +Vs (Zﬂws(i)(wi”Z)
i=1 i=1

e s l
—— 2y
2mp?  k * <Dk> ’
where the second equality follows from the Cauchy—Schwarz inequality, and the last equality uses
the fact that s < C¢ and item (2) of Lemma 8.4, which gives > 7 , TrVr(i)(vi)‘Q =0 (ﬁ) and
iy |7TWS(,L~) ('wi)|2 =0 (ﬁ) This completes the proof of (66), and similarly of (67). O

Finally, we are ready to present the proof of Theorem 8.1.

Proof of Theorem 8.1. We aim to show (46). Let us restate the setting: Given 0 < s < r < C? and
a perfect sequence x[s] such that G,(x[s]) forms a red clique, we independently sample 5,1, ..., ,
uniformly from S*, and sample 2z uniformly from Npe ([s]), independently of {51, ..., 2, }.

We begin by considering a fixed perfect sequence x[r — 1] such that Gp,(x[r — 1]) forms a red
clique. Under this assumption, the event A,cq, A B, occurs if and only if @, € Nper(x[r —1]), so x,
corresponds to the random vector y sampled uniformly from Npe([r — 1]). Applying Lemma 8.8
for the fixed perfect sequence x[r — 1], we have

—C

E [(W[S](wr)ﬂr[ﬂ (2)) | Ared,r A By A {a[r — 1]}] =E Kﬁ[s] (y)’ﬂ-[s] (z)>] ) i +O <D€€> '

- 2mp?  k
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Integrating all such perfect sequences x[r — 1], we can get
_e?
E [(7(2), 74 (2)) | Areds ABp] = —— - > 4+ 0 LN (70)
[s] » s] 2 p k Dk
Note that under this setting, we can derive from Definition 7.3 and Theorem 7.5 that
IP>(14red,r A B'r) Prpe?irr( [S])
lP}(AAred 1") Pred r($[5])

This, together with the law of conditional probability and the fact [(7y(Zs+1), 7[5 (2))| < 1, implies

=1-0(27%).

E[(mis) (€ 541), 71 (2)) | Ared.r] = E[(75) (®541), 75 (2)) | Arear A Br] + 0(2_06)- (71)
We now reorder the sequence z[r] as y[r] = (y1,...,Y,) = (X1,...,Ts, Ts42,..., Ty, Tst1)-
Define A}, . as the event that Gy (y[r]) forms a red clique, and B, as the event that y[r] forms a

perfect sequence. Evidently, A/ , = Ared,r; by the independence of random vectors, we deduce
E[(7s)(®s+1), 7 (2)) | Aredr] = E[(75)(y,), 715 (2)) | Afear]- (72)
On the other hand, similar to the proof of (71), we have
E[<7T[s} (yr)a Ts] (Z)) ‘ Ared r] = E[<7T[s] (y’r)v 7T[s](z» | Ared A BH + 0(276%)' (73)

The final equation we need is as follows, which holds because x[r] and y[r] are identically distributed:

E[(7s)(y,), 7[5 (2)) | Atear A Brl = E[{m5)(r), 715 (2)) | Avea,r A By] (74)
Combining (71), (72), (73), and (74), we obtain

_ 2
eC

E[(”[s] (m3+1)v77[s](z)> | Ared,r/\Br] = ]E[<7T[s] (ZBT) ( )> ’ Ared r/\B ]"’0(2_0[) W%+O (D€€

where the last equality follows from (70) and the fact that 27¢¢ < ﬁ = %. This proves (46).

The proof of (47) proceeds similarly, and thus we complete the proof of Theorem 8.1. O

9 Proof of Theorem 3.1

In this section, we complete the proof of Theorem 3.1. The proof proceeds in two parts. First, we
derive upper bounds for P and Phine.r by estimating £2" and &7 with the help of Theorems 6.2
and 8.1. We then Conclude the proof of Theorem 3.1 with some further calculations.

per DPer : per —per
9.1 Estimates of P}, and Py, (via kP and &P*)

We first establish the following estimates for s and ®p- .

Lemma 9.1. For every 1 <r < C¥¢, we have

r—1 6702
per H _ ( )
Ry > p

=0 2m

- e\? 1 i 1
RPT < 1:[ 1—p—|—< W) (1_p)2.ﬂ+0(D2) . (76)

3
2

1
— -
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Proof. We focus on proving the first inequality. Let x[r] be a random r-tuple in (S*)". To proceed,
we show the following inequality by induction on s, descending from s =r — 1 to s = O:

3
r—1 _c2\ 2 . s
er e ¢ 1 v 1
e < ] p—(%> setolm)) e i

1=s+1

The base case s = r — 1 follows immediately from (45). We now assume that (77) holds for some
1 <s<r—1, and we need to establish its validity for s — 1.

We begin by considering x[s] as a fized perfect sequence for which G, (z[s]) forms a red clique.
Let €441, ...,2, be independent random vectors uniformly distributed on S¥, and let z be chosen
uniformly from Npe(2[s]), independently of x4 1,...,z,. By Theorem 6.2, we have

[k _2 1
E [Q[s}(xs+1) ‘ Ared,r A Br] <p-— %6 2 -E[<7T[s](xs+1),7T[s](Z)> | Aredr A B ] +0 <D2>

This, together with Theorem 8.1, shows that

3
2\ 2
e ¢ s 1
<p—| — — | .
E [Q[s] (ws—‘rl) ’ Ared,r A BT] =p < o ) p2\/E + O <D2> (78)

Here, it is worth noting that the error term O (ﬁ) of Theorem 8.1 contributes an error of order

@) (DL\/E) = O (p) as well. Given that the sequence x[s] is fixed, we further derive from (78) that

s s—1 6_02 % s 1

[ Qu@ic)| Avear A Br | < [ [] Quuplaien) | - {2 - <2> ;10 < )

A . T N
Jj=0 7=0

By averaging over all possible x[s], we have

3
—c?

s e 2 s—1
H Q[]] (xj+1) Ared,r ANBr| < |p— <2ﬂ_> 2\/» + O < ) E JI;IOQ[]] (wj+1) Ared,r A By

Jj=0

Combining this with the induction hypothesis for s, we obtain

3
r—1 —c2\ 2 . S
or e ¢ 1 3 1
< ] p(%> 7o) e L Qutese|

i=s+1

[SI[eY

r—1 2 . a1
I[ e ¢ 1 7 1 -

: o p O e -E Qri1(xjr1)| Ared.r N By
1=5 (2 ) 2 \/E <D2> ]1_‘[) m( J 1) d, A

This completes the induction. Note that since Q|o)(z) = Pper(x) < p for all x € Sk the case s = 0
of (77) gives the desired inequality (75). The proof of (76) proceeds analogously. O

Using the above lemma, we can readily obtain the following upper bounds for P’ , and ?Eﬁiecz.

It is worth pointing out that the term of order ﬁ is actually of order %, thus serving as the second-
order term in these bounds.
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Theorem 9.2.

2\ 2

¢ 1 14 1
res (- (¢ ()]
redf—p <2ﬂ'>p 3\f

(74
-\ ¢ )
P <[1- ¢ . O\ —=
blue,C¢ < p+ ( or | A-p2 3vk O o2
Proof. Using Lemmas 5.4 and 9.1, we obtain that for any 2 < r </,
3 r—1—1
ppPer 1:I per 1:[ ( cQ) : 1 1 1
redr ki I +0 <2>
Pl Pl r vk D
—i(r—1—1) r2
- exp + 0 < )

e 1 " + 0 r
X . -
P 271' AVE \3 D2

3
_2\ 2
e ¢ 1 r—2 1
— _ —_. 210 =
P (27T> p? 3\/E+ <D2>

It is clear that setting r = £ in the above inequality gives the desired bound for Pp ed 0 By the same

reasoning, the desired bound for Pblue’CE follows. O

9.2 Proof Completion

Before concluding the proof of Theorem 3.1, we state a simple proposition (proved in Appendix B).
Recall ¢ = ¢, from (4). Define ¢y = ¢y, and f(x) := %2 - (1_%)2 Note that f(pc) > 0 by (14).

Proposition 9.3. Let D > C'. Then there exists p € (pc,pc +1/(p% - D))g (pc, 1/2) such that

3 3
—c2\ 2 —c2\ 2
e ¢ 1 e f(po)
_ < _
P (%) 3Dp? = PC (%) 9D (79)
e =8\ ? fo)
C
1- <1—po— . 80
p+<27r> 3D(1—p2 " ° (%) 9D (80)

Proof of Theorem 3.1. Fix any constant C' > 1. Let D = D(C) and ¢y = ¢y(C) be constants
satisfying £o > D > C. Assume ¢ > {5 and set k = D?(?. Let p € (pc,1/2) be as given in
Proposition 9.3. We consider the random sphere graph Gy, ,(n).

By Lemma 4.1, we have ¢y = @ (pc) + O(1/k) and thus

_ 1 4 1 L1 <%
(P 1(170)):\/%'6 2+O<k)§m'€ z. (81)
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ﬂ

Recall that Tk = D > ( is sufficiently large. Applying Theorems 7.1 and 9.2, we have
4
3 (2)

2
-Ct per _Cv e ¢ 1 1
Pred,€§(1+2 )Pred,4§(1+2 ) p<2ﬂ_> 3Ep2+0<[2

; © :
e—c% 2 (2)
< [ne- ( - ) ) 0( )] = (e -o@ e L2

where the third inequality follows from (79) and the fact that 27¢¢ < 1/D?, and the last inequality
holds by (81) and the fact that D > C. Similarly, we can derive

N
_ o\ — _ e\ ? C 1
Pie,ce < (1 +2 CZ) ngﬁe,cz < (1 +2 ce) |1-p+ ( ) )2 +0 <>

3 (2 ce
6*03 2 (2)
< 1—pc—<27r> T vo(g)) = (1-re- o wo- L2

Hence, setting the positive constant

1 _
e0 = 20(C) = 15 6(27 ()" - (o). (82)
completes the proof of Theorem 3.1. O

Let us comment on the value of ¢(C) as given in Theorem 1.1. A key related parameter is
the constant D(C). To simplify the presentation and calculations in our proofs, we take D(C')
sufficiently large relative to C. However, a more careful analysis shows that it suffices to take

D(C) =10° - ab - p2® - (f(pe))

where a¢ = max {1000, 20«/Clog(10/pc)} is as defined in Lemma 4.2. Combining (7) and (82),
we can choose the parameter ¢(C') in Theorem 1.1 as

0(C) e pMP b @ pe))® - floe) | agt-pd’

S T 108 - D(C) = Togx 107 #® ' we))’- flee)”

In particular, as C' — 17, we have £(C) = Q((C — 1)?), whereas as C — o0, £(C) = Q (%) .

We believe that our approach does not extend to the diagonal Ramsey number case r(¢, /) (i.e.,
when C' = 1). On the other hand, it remains compatible with the Lovédsz Local Lemma.
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Appendix
A The Lower Bound from Erdoés’s Probabilistic Method

Here, we present a proof that not only establishes the lower bound in (1) derived from Erdds’s first
moment method but also demonstrates its optimality. Let C' > 1 be a fixed constant.

For p € (0,1/2] and n € N, consider the probability that a random edge-coloring of K,,, where
each edge is independently colored red with probability p and blue with probability 1 — p, contains
either a red Ky or a blue K¢yp. This probability is clearly at most

4 CZ)

Fp) = )+ Blonp), - where Alnp) = (o) and BGop) = ()1 =)

Hence, if f(n,p) < 0.99, there exists at least one such coloring with no monochromatic clique,
implying r(¢, C¥¢) > n. It thus suffices to find the maximum value of n = n(p) such that f(n,p) =
0.99. Assume this maximum is achieved at p = pc¢. Then,

0f(n.pce)  (3) <n> (%)

"V = pe)(S) =
- e 1 _p07£ <C€) (1 pC,Z) 2 07

op P
implying that log A(n, pc¢) = log B(n, pc¢)+O(log £). Solving this along with A(n, pc¢)+B(n,pcy) =
0.99, we obtain that log A(n, pc ) = O(log¢) and log B(n,pc) = O(log¥), from which it follows

2log(en /¥ log ¢ 2log(en/CY log ¢
—logpcye = f(_ 1/ ) 1o <£g2 g(g _/1 )10 <€g2 > :

) _
¢

L
2
bc

)

) and —log(1 — pcye) =

We then derive that pcy = pc + O (1/¢), where the constant pc satisfies C' = bﬁiﬁcy It follows

directly from the above that n = g 'pa(;_l)m . 60(101%2) =0()- (pc +0 (%))_Z/2 = @(E . Mé),
where M¢ := pal/Q. This establishes r(¢, C0) = Q(¢- M{). O

We remark that, with some additional work extending the proof above, the optimal lower bound
(with the best leading constant) obtainable via Erdds’s probabilistic method can be shown to be

r(€,C0) > (Bc/e+o(1)) - - M5,

where Sc 1= exp ((% log(1 —pc) —logC) - (1 — pc) - log(1 — pc)/H(pc)), and H(z) := —xlogz—
(1 — x)log(1 — =) denotes the entropy function.
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B Proof of Proposition 9.3

o ﬁ, we define g(x) = N h(z) = m%, and

x

In this proof, besides the function f(z) =

1 .\
o 3 _ e ™
Fz):=2— g5 9(@) h(z) =z ( o ) 3D 22

where z € (0,1/2) and ¢4, is taken from (4). Since D > C, and f(z), g(x) and h(x) are continuous

and positive for all z € (0,1/2), we have 0.99 < szgfc)), gg(gfg), hh(gfc)) < 1.01 for any = € (pc,pc +

1/(p¢ - D)). Let ¢g = ¢gp,, and define

3 3
_c2 2 —_c2 2
e 1 0.5 1 e 1 1.5 1
= —_— - — — d = gy - =
p1=pc + ( 5 ) 3D (p% 3f(pc)> and ps =pc+ < o ) ) <p20 3f(pc)>

Since 0 < f(pc) < h(pc) = p%, it is easy to verify that pc < p1 < p2 < pc + 1/(p% - D)). Then
C

Fip1) = p + ( ) 3 (o~ 30)) = g5 lae))P (o)

C

3 3
_e2\ 2 4 _e2\ 2
e ‘o 1 0.5 1 0.99 e 1
< - - _ _ - .
<pc+ < 5 ) 3D (pQC 3f(pc) =) ) < pc < 5 ) 9Df(pc)7

3 3
e~%\% 1 /15 1 1.014 e~%\2 1
> — (=5 -z - > po — — :
> pc + ( 5 ) %) (p% AL =l > pe—| 5| gpfwc)

By the intermediate value theorem, there exists some p € (p1,p2) € (pc, po + ﬁ) such that
C

3 3
—c? 2 —c2\ 2
e Ck.p 1 e % 1
F == - _— — JE—
(p)=p ( 5 ) 3D = PC (27T> op ! Pc):

which implies (79). Using this equality, we obtain
—Cﬁ % C —cz % 1 1
e sP e D
1-— =1— _ _ 3
r < o ) 3D(1—p) P ( o > 5Dy | ~3pw) 1)

> ff (pc) — 0.99%(g(pc))? ff(pc) 1—pc— (2:) 9%f(pc)7

<1-—
pc + 27T

which implies (80). This completes the proof of Proposition 9.3. O
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