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The minimum number of clique-saturating edges

Jialin He1 Fuhong Ma1 Jie Ma1 Xinyang Ye2

Abstract

Let G be a Kp-free graph. We say e is a Kp-saturating edge of G if e /∈ E(G) and G+e contains

a copy of Kp. Denote by fp(n, e) the minimum number ofKp-saturating edges that an n-vertexKp-

free graph with e edges can have. Erdős and Tuza conjectured that f4(n, ⌊n2/4⌋+1) = (1 + o(1)) n
2

16 .

Balogh and Liu disproved this by showing f4(n, ⌊n2/4⌋+1) = (1+ o(1))2n
2

33 . They believed that a

natural generalization of their construction for Kp-free graph should also be optimal and made a

conjecture that fp+1(n, ex(n,Kp) + 1) =
(

2(p−2)2

p(4p2
−11p+8) + o(1)

)

n2 for all integers p ≥ 3. The main

result of this paper is to confirm the above conjecture of Balogh and Liu.

1 Introduction

Given a graph H, we say a graph G is H-free if G does not contain H as a subgraph. Let the Turán

number ex(n,H) of H denote the maximum number of edges in an n-vertex H-free graph. The study

of Turán numbers can date back to the work of Mantel [9] and is the central subject in extremal graph

theory (see [7] for a recent survey). The classical theorem of Turán [10] states that for any integer

p ≥ 2, the unique n-vertex Kp+1-free graph attaining the maximum number ex(n,Kp+1) of edges is

the p-partite Turán graph Tp(n), i.e., the n-vertex complete balanced graph.

For p ≥ 3, let G be a Kp-free graph and e be a non-edge of G (i.e., an edge in the complement

of G). We say e is a Kp-saturating edge of G, if G + e contains a copy of Kp. This notion is closely

related to Turán numbers. Indeed, a Kp-free graph G is maximal if and only if every non-edge of G

is a Kp-saturating edge (let us call this property ⋆). So in other words, Turán’s Theorem determines

the maximum number of edges e(G) over all Kp-free graphs G satisfying the property ⋆. On the other

hand, Zykov [11] and independently Erdős, Hajnal and Moon [6] determined the minimum number

e(G) over all n-vertex Kp-free graphs G satisfying the property ⋆, which is uniquely attained by the

n-vertex complement graph of a clique of size n − p + 2. For more references on this minimization

problem, we refer interested readers to the recent surveys [4, 8] and to [1, 2] for related problems in

the language of graph bootstrap percolation.

In this paper, we consider another type of extremal problems on the clique-saturating edges. For

a Kp-free graph G, let fp(G) denote the number of Kp-saturating edges of G. Let fp(n, e) be the

minimum number of Kp-saturating edges of an n-vertex Kp-free graph with e edges. For all integers
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p ≥ 3, the example of the Turán graph Tp−1(n) shows that

fp+1(n, e) = 0 for all 0 ≤ e ≤ ex(n,Kp).

Erdős and Tuza (see [5]) proved that f4(n, ⌊
n2

4 ⌋ + 1) ≥ cn2 for some constant c > 0; that is, for the

case p = 3, if adding one more edge to the above extreme, then the function will suddenly jump

from 0 to Ω(n2). Erdős and Tuza also made a conjecture that f4

(

n,
⌊

n2

4

⌋

+ 1
)

= (1 + o(1)) n2

16 . This

however was disproved by Balogh and Liu in [3], where they constructed an n-vertex K4-free graph

with ⌊n
2

4 ⌋+ 1 edges and with only (1 + o(1))2n
2

33 K4-saturating edges (see Figure 1 in the case p = 3

for the construction). Furthermore, Balogh and Liu [3] showed that this construction is best possible.

Theorem 1.1 (Balogh-Liu [3]). f4(n, ⌊
n2

4 ⌋+ 1) = (1 + o(1)) 2n2

33 .

In fact, they proved a stronger statement that f4(n, ⌊
n2

4 ⌋+ t) = 2
33n

2 +Θ(n) for every 1 ≤ t ≤ n
66 .

Balogh and Liu [3] commented that a similar phenomenon like Theorem 1.1 should also hold for general

p and thus made an explicit conjecture (see Remark (iii) in [3]) suggested by a natural generalization

of their K4-free construction that for all integers p ≥ 3,

fp+1

(

n, ex(n,Kp) + 1
)

=

(

2(p − 2)2

p(4p2 − 11p + 8)
+ o(1)

)

n2.

The main result of the present paper is to prove the above conjecture of Balogh and Liu [3].

Theorem 1.2. For all integers p ≥ 3, fp+1

(

n, ex(n,Kp) + 1
)

=
(

2(p−2)2

p(4p2−11p+8) + o(1)
)

n2.

Most of this paper will be devoted to the lower bound of the following theorem, which implies the

lower bound of Theorem 1.2. Note that for any integer p ≥ 3, fp+1(G) = 0 holds for G = Tp−1(n).

Theorem 1.3. Let p ≥ 3 and n ≥ 8p5 be integers. Let G be the family consisting of all n-vertex

Kp+1-free graphs with exactly ex(n,Kp) edges. Then

min
G∈G\{Tp−1(n)}

fp+1(G) =
2(p − 2)2

p(4p2 − 11p + 8)
n2 −

(p− 2)(2p − 3)

4p2 − 11p + 8
n+Op(1).

In addition, if n is divisible by p(p− 1)(4p2 − 11p + 8), then

min
G∈G\{Tp−1(n)}

fp+1(G) =
2(p − 2)2

p(4p2 − 11p + 8)
n2 −

(p− 2)(2p − 3)

4p2 − 11p + 8
n.

We refer readers to the beginning of Section 4 for a proof sketch of this theorem.

We use standard notations on graphs throughout the paper. Let G be a graph. For a subset

U ⊆ V (G), the subgraph of G induced by the vertex set U is denoted by G[U ], while the subgraph

obtained from G by deleting all vertices in U is expressed by G\U . Let NG(U) =
⋂

v∈U NG(v) be the

common neighborhood of all vertices of U in G. Suppose that U,W are two disjoint vertex subsets in G.

We denote EG(U,W ) to be the set of edges of G between U and W and let eG(U,W ) = |EG(U,W )|.

We often drop the above subscripts when they are clear from context. For positive integers k, we

write [k] for the set {1, 2, ..., k} and the notation
(

x
2

)

means the function x(x− 1)/2 for all reals x. We

often omit floors and ceilings whenever they are not critical.

2



The rest of the paper is organized as follows. In Section 2, we provide constructions which match

with the upper bounds of Theorems 1.2 and 1.3. In Section 3, we prove Theorem 1.2 by using

Theorem 1.3. In Section 4, we give a complete proof of Theorem 1.3. Finally, we conclude the paper

with some remarks.

2 The constructions for the upper bounds

In this section, we establish the upper bounds of Theorems 1.2 and 1.3 by defining some explicit Kp+1-

free graphs. These graphs are suggested by Balogh and Liu in [3], each of which is an appropriate

blow-up of the following graph: take a complete (p − 1)-partite graph K = K2,...,2 and add a new

vertex by making it adjacent to exactly one vertex in each partite set of K.

In the rest of this section, we write n = p(p − 1)(4p2 − 11p + 8)x + y, where x, y are integers

such that x ≥ 0 and 0 ≤ y < p(p − 1)(4p2 − 11p + 8). By Turán’s Theorem, we have ex(n,Kp) =
p−2

2(p−1) · p
2(p− 1)2(4p2− 11p+8)2x2+ p(p− 2)(4p2 − 11p+8)xy+ tp−1(y), where tp−1(y) = e(Tp−1(y)).

First, we prove the desired upper bound of Theorem 1.3.

The upper bound of Theorem 1.3. In this case, we will construct an n-vertex Kp+1-free graph

H1 with exactly ex(n,Kp) edges and fp+1(H1) =
2(p−2)2

p(4p2−11p+8)
n2 − (p−2)(2p−3)

p(4p2−11p+8)
n+Op(1).

To do so, we first construct a graph H0 as follows (see Figure 1). First, take a (p − 1)-partite

complete graph K2,...,2 with vertex set {vi, ui : i ∈ [p − 1]}, where vi and ui are in the same part for

i ∈ [p−1]. Next, take a new vertex v0 and make it adjacent to each vi for i ∈ [p−1]. Finally, let H0 be

obtained by blowing-up v0 into an independent set V0 of size 2(p−1)(p−2)2x, blowing-up each vi into

an independent set Vi of size 4(p− 1)2(p− 2)x for i ∈ [p− 1], blowing-up each ui into an independent

set Ui of size p(3p− 4)x for i ∈ [p− 1]. We can check that H0 is Kp+1-free on p(p− 1)(4p2 − 11p+8)x

vertices with p−2
2(p−1) · p

2(p− 1)2(4p2 − 11p + 8)2x2 edge.1

Next we construct the desired graph H1 from H0 by enlarging the size of V0 with 2y more new

vertices and deleting y vertices which form a Tp−1(y) in H0

[

⋃p−1
i=1 Ui

]

. Indeed, since n ≥ 8p5 and by

our definitions of x and y, we can check that p(p− 1)(3p− 4)x > y. Thus, the above deletion process

succeed. By a careful calculation, we can derive that H1 is Kp+1-free on n vertices with ex(n,Kp)

edges. The only Kp+1-saturating edges are the pairs in Vi for 0 ≤ i ≤ p − 1. This (see Appendix A)

leads to

fp+1(H1) =
2(p− 2)2

p(4p2 − 11p + 8)
n2 −

(p − 2)(2p − 3)

p(4p2 − 11p + 8)
n+

8(p − 1)3

p(4p2 − 11p + 8)
y2 −

2(p− 1)2

4p2 − 11p + 8
y

=
2(p− 2)2

p(4p2 − 11p + 8)
n2 −

(p − 2)(2p − 3)

4p2 − 11p + 8
n+Op(1),

completing the proof for the upper bound.

1All the detailed calculations in this proof can be found in Appendix A.
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V0

V1 V2 Vp−2 Vp−1

U1 U2 Up−2 Up−1

2(p − 1)(p − 2)2x

4(p − 1)2(p− 2)x 4(p − 1)2(p− 2)x

p(3p − 4)xp(3p − 4)x

Figure 1. Constructions for the upper bounds of Theorem 1.2 and 1.3.

The construction for the upper bound of Theorem 1.2 is quite similar to the one above. The only

differences are the sizes of the parts in the blow-up.

The upper bound of Theorem 1.2. In this case, we will construct an n-vertex Kp+1-free graph G

with exactly ex(n,Kp) + 1 edges and fp+1(G) = 2(p−2)2

p(4p2−11p+8)n
2 − (p−2)(2p2−5p+4)

p(4p2−11p+8) n+Op(1).

To do so, we first let H0 be the same as above (see Figure 1). We then construct a graph H2 from

H0 by enlarging the size of V0 with 2y + 1 more new vertices and deleting y + 1 vertices which forms

a Tp−1(y + 1) in H0

[

⋃p−1
i=1 Ui

]

. By a similar calculation as the previous case, one can derive that H2

is Kp+1-free on n vertices with

ex(n,Kp) +
(p− 2)3

p(p− 1)(4p2 − 11p+ 8)
n+Op(1)

edges. Again, the only Kp+1-saturating edges are the pairs in Vi for 0 ≤ i ≤ p − 1. By some careful

calculation, one can derive that

fp+1(H2) =
2(p − 2)2

p(4p2 − 11p + 8)
n2 −

(p − 2)(2p2 − 5p+ 4)

p(4p2 − 11p + 8)
n+Op(1).

Now one can easily remove some edges from H2 (i.e., edges incident with vertices in Ui’s) without

changing the number of Kp+1-saturating edges until the remaining graph G has exactly ex(n,Kp)+ 1

edges. In this way, we obtain the desired graph G with fp+1(G) = fp+1(H2) and thus prove that

fp+1

(

n, ex(n,Kp) + 1
)

≤
2(p − 2)2

p(4p2 − 11p+ 8)
n2 −

(p− 2)(2p2 − 5p + 4)

p(4p2 − 11p + 8)
n+Op(1)

holds for all integers n.
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3 Proof of Theorem 1.2

In this section, assuming Theorem 1.3, we complete the proof of Theorem 1.2. The upper bound of

Theorem 1.2 is given by the last section, so it suffices to prove the lower bound. Let G be a Kp+1-free

graph with ex(n,Kp) + 1 edges. By Turán’s Theorem, G contains a copy of Kp. Let G′ be obtained

from G by removing a single edge such that G′ still contains a Kp. Then G′ is Kp+1-free with ex(n,Kp)

edges. As G′ contains a Kp, it cannot be the Turán graph Tp−1(n). By Theorem 1.3, we have

fp+1(G) ≥ fp+1(G
′) ≥

2(p − 2)2

p(4p2 − 11p+ 8)
n2 −

(p− 2)(2p − 3)

4p2 − 11p + 8
n+Op(1),

finishing the proof of Theorem 1.2.

We remark that the above proofs actually show a sharper bound than the statement of Theorem 1.2.

Namely, for all integers p ≥ 3 and n, if we write

gp(n) = fp+1

(

n, ex(n,Kp) + 1
)

−
2(p − 2)2

p(4p2 − 11p + 8)
n2,

then we have

−
(p− 2)(2p − 3)

4p2 − 11p + 8
n+Op(1) ≤ gp(n) ≤ −

(p− 2)(2p2 − 5p+ 4)

p(4p2 − 11p + 8)
n+Op(1)

such that gp(n) → −n
2 + o(n) as p → ∞.

4 Proof of Theorem 1.3

We begin with a sketch of the proof of Theorem 1.3. Let G be an n-vertex Kp+1-free graph with

ex(n,Kp) edges and containing at least one copy of Kp. Following the approach of [3], we partition

the vertex set of G into two parts V (R) and its complement V (G)\V (R), where R is a maximum

family of vertex-disjoint Kp’s in G and V (R) denotes the set of all vertices contained in R. Then

all Kp-saturating edges of G can be divided into two types, the first type of which are those Kp-

saturating edges incident to V (R) and the other type are those contained in V (G)\V (R). Estimations

on the number of saturating edges of these two types have been established in [3], respectively, which

work quite well when p is small. The problem is that when p is getting bigger, the complexity of

computations based on these estimations will be difficult to handle. So some novel ideas will be

needed. A key motivation for us comes after Lemma 4.4, which roughly says that for any p-clique R

in R, as long as there are enough edges between R and V (G)\V (R), any p − 1 vertices of R have

some common neighbors in V (G)\V (R) (it can even be set up as Ω(1) many if required). Therefore

one may hope to use similar proof ideas as in Hajnal-Szemerédi Theorem to find a larger collection of

vertex-disjoint p-cliques than R and thus obtain a contradiction to the maximality of R. This indeed

would work. And it turns out that if we choose R with an additional requirement on the number of

edges contained in V (G)\V (R), then the proof can be shortened and a contradiction can already be

reached using some appropriate vertex-switching techniques (in fact this would provide a shortcut for

the proof in [3] for the case p = 3 as well).

Throughout the rest of this section, we present the proof of Theorem 1.3. The upper bounds

5



of Theorem 1.3 are given by the aforementioned constructions. Consider any integers p ≥ 3 and

n ≥ 120p2. (As n ≥ 8p5 ≥ 120p2, here we remark that n ≥ 120p2 is enough to show the lower bounds

of Theorem 1.3). Let G be any n-vertex Kp+1-free graph with ex(n,Kp) edges, but not the (p − 1)-

partite Turán graph Tp−1(n). It suffices to show that fp+1(G) is bounded from below by the desired

formula. By Turán’s Theorem, G contains at least one copy of Kp with

e(G) = ex(n,Kp) =
p− 2

2(p − 1)
n2 − δ, (1)

where δ = t(p−1−t)
2(p−1) for t ∈ {0, 1, ..., p − 2} with t ≡ n mod (p − 1). We note that 0 ≤ δ ≤ p−1

8 , and

δ = 0 if and only if n is divisible by p− 1.

We now partition V (G) into two parts V (R) and V (G)\V (R) satisfying the following conditions

(i). R is a maximum family of vertex-disjoint Kp’s in G, and2

(ii). subject to (i), the remaining graph G\V (R) has the maximum number of edges.

Let HR := G\V (R) and |R| := rn. Since G contains a Kp, we have

1/n ≤ r ≤ 1/p. (2)

By the choice of (i), we know that HR is Kp-free with (1− pr)n vertices, thus by Turán’s Theorem,

e(HR) ≤
(p − 2)

2(p− 1)
(1− pr)2n2. (3)

For any p-clique R ∈ R and 0 ≤ j ≤ p, we let

Zj(R) = {all vertices in HR that has exactly j neighbors in V (R)} and zj(R) := |Zj(R)|/n.

By the assumption that G is Kp+1-free, it is clear that Zp(R) = ∅. So for any p-clique R ∈ R,

p−1
∑

j=0

zj(R) = 1− pr. (4)

We will also need to consider a refined partition of Zp−1(R) as follows. Let {v1, v2, ..., vp} represent

the vertex set of a given p-clique R ∈ R. For any i ∈ [p], define

Ai(R) := NHR
(R\{vi})

to be the common neighborhood of V (R)\{vi} in V (HR). Let us observe that Ai(R)’s are pairwise

vertex-disjoint independent sets in Zp−1(R) (for otherwise
(
⋃

i Ai(R)
)

∪ R would contain a copy of

Kp+1, a contradiction to G is Kp+1-free). In particular, we have

p
∑

i=1

|Ai(R)|/n = zp−1(R). (5)

2Throughout we will write V (R) for the union of the vertex sets of all Kp’s in R.
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It is crucial to see that every non-edge inside each Ai(R) is a Kp+1-saturating edge in G.

R HR

CR\C C ′ HR\C
′

Figure 2. The proof of Lemma 4.1

The following lemma is key in our proof. It shows that by the choice of R and HR, there are

enough many edges incident to new p-cliques obtained from some R ∈ R by switching some vertices

in R with vertices in HR of equal size.

Lemma 4.1. Let R ∈ R be a p-clique and C be a subclique of R. If there exists a clique C ′ in HR of

equal size as C such that R′ := (R\C)∪C ′ remains a clique in G, then R′ := (R\{R}) ∪ {R′} is also

a maximum family of vertex-disjoint Kp’s in G with e(R′,HR′) ≥ e(R,HR), where HR′ = G\V (R′)

Proof. First observe thatR′ is also a maximum family of rn vertex-disjoint Kp’s. Let HR′ = G\V (R′).

So HR′ = (HR\C
′) ∪ C (see Figure 2). By (ii), we have e(HR) ≥ e(HR′). Since e(C ′) = e(C),

e(HR) = e(C ′) + e(C ′,HR\C
′) + e(HR\C

′) and e(HR′) = e(C) + e(C,HR\C
′) + e(HR\C

′),

it follows that

e
(

C ′,HR\C
′
)

≥ e
(

C,HR\C
′
)

.

Therefore, as e(R\C,C ′) = e(R\C,C), one can derive that

e(R′,HR′)− e(R,HR) = e
(

C ′,HR\C
′
)

− e
(

C,HR\C
′
)

≥ 0.

This completes the proof of Lemma 4.1.

Next we proceed to prove three technical lemmas and we should emphasize in advance that these

lemmas hold for any family R solely satisfying the condition (i). The first one says that for any family

R satisfying the condition (i), there is a R∗ ∈ R such that e(R∗,HR) is large.

Lemma 4.2. Suppose that R is under the condition (i) and HR = G\V (R). Then there exists a

p-clique R∗ ∈ R such that

e(R∗,HR) ≥

(

p(p − 2)

p− 1
−

p(2p2 − 4p + 1)

2(p − 1)
r

)

n−
δ

rn
. (6)

Moreover, for any R∗ ∈ R satisfying (6), it holds that

zp−1(R
∗) ≥

p− 2

p− 1
−

p(2p− 3)

2(p− 1)
r −

δ

rn2
. (7)

7



Proof. Note that the edge set of G can be partitioned into E(HR), E(V (R),HR) and E(G[V (R)]).

Since G is Kp+1-free, by Turán’s Theorem e(G[V (R)]) ≤ ex(prn,Kp+1) =
(

p
2

)

r2n2. Together with (1)

and (3), we have that

e(V (R),HR) = e(G) − e(HR)− e(G[V (R)])

≥

(

p− 2

2(p− 1)
−

(p− 2)

2(p − 1)
(1− pr)2 −

p(p− 1)

2
r2
)

n2 − δ

=

(

p(p− 2)

p− 1
r −

p(2p2 − 4p+ 1)

2(p− 1)
r2
)

n2 − δ.

By averaging, there exists a clique R∗ ∈ R with

e(R∗,HR) ≥
e(V (R),HR)

rn
≥

(

p(p− 2)

p− 1
−

p(2p2 − 4p+ 1)

2(p − 1)
r

)

n−
δ

rn
.

As G is Kp+1-free, every vertex in HR has at most r−1 neighbors in V (R∗). So we have e(R∗,HR) ≤

|Zp−1(R
∗)|+ (p − 2)

∑p−1
j=0 |Zj(R

∗)|, which by (4) implies that

zp−1(R
∗) ≥

e(R∗,HR)

n
− (p− 2)(1 − pr) ≥

p− 2

p− 1
−

p(2p− 3)

2(p − 1)
r −

δ

rn2
.

This completes the proof of Lemma 4.2.

Denote by ℓR1 the number of Kp+1-saturating edges incident to V (R), and by ℓR2 the number of

Kp+1-saturating edges in HR. Obviously fp+1(G) = ℓR1 + ℓR2 . The lemma below gives a lower bound

on ℓR1 , which in particular shows that Theorem 1.3 holds in case r is close to 1/p.

Lemma 4.3. Suppose that R is under the condition (i). Then

ℓR1 ≥

(

p− 2

p− 1
r −

p(p− 2)

2(p − 1)
r2
)

n2 −
pr

2
n− δ.

Moreover, if r > 2(p−2)(2p−3)
p(4p2−11p+8)

, then Theorem 1.3 holds.

Proof. Let R = {R1, R2, ..., Rrn}, HR = G\V (R) and ri = e(Ri, G\
⋃i

j=1Rj) for i ∈ [rn] such that

rn
∑

i=1

ri = e(G) − e(HR)−

(

p

2

)

rn.

Since G is Kp+1-free, every vertex has at most p − 1 neighbors on each Ri. So there exist at least

ri − (p − 2)(n − pi) vertices in G\
⋃i

j=1Rj with exactly p − 1 neighbors in V (Ri), each of which

8



contributes a Kp+1-saturating edges to ℓR1 . Therefore, we have

ℓR1 ≥
rn
∑

i=1

(ri − (p− 2)(n − pi))

=

(

e(G) − e(HR)−

(

p

2

)

rn

)

−

(

(p− 2)rn2 −
p(p− 2)

2
(rn+ 1)rn

)

≥

(

p− 2

2(p − 1)
−

(p− 2)

2(p − 1)
(1− pr)2 − (p − 2)r +

p(p− 2)

2
r2
)

n2 −
pr

2
n− δ

=

(

p− 2

p− 1
r −

p(p− 2)

2(p − 1)
r2
)

n2 −
pr

2
n− δ,

where the last inequality follows from (1) and (3).

For the second statement of this lemma, by (2) and the assumption therein, we have 2(p−2)(2p−3)
p(4p2−11p+8)

<

r ≤ 1
p
. Then the first statement implies that

fp+1(G) ≥ ℓR1 ≥

(

p− 2

p− 1
r −

p(p− 2)

2(p − 1)
r2
)

n2 −
pr

2
n− δ

≥
p− 2

p− 1
· r

(

1−
pr

2

)

n2 −
n

2
− δ

>

(

2(p− 2)2(2p− 3)

p(p− 1)(4p2 − 11p+ 8)
−

2(p − 2)3(2p − 3)2

p(p− 1)(4p2 − 11p + 8)2

)

n2 −
n

2
− δ

=
4(p− 1)(p − 2)2(2p− 3)

p(4p2 − 11p + 8)2
n2 −

n

2
− δ

≥
2(p − 2)2

p(4p2 − 11p+ 8)
n2 −

(p− 2)(2p − 3)

4p2 − 11p + 8
n− δ,

where the second last inequality holds because g(r) = r(1 − pr
2 ) is increasing for r ≤ 1

p
and the last

inequality holds whenever n ≥ 120p2. This matches the lower bounds of Theorem 1.3 (also for the case

when n is divisible by p(p− 1)(4p2 − 11p+8), as for which δ = 0). Now Lemma 4.3 is completed.

The next lemma says that for any R∗ ∈ R satisfying the conclusion of Lemma 4.2, one may assume

that the set Ai(R
∗) for every i ∈ [p] is non-empty.

Lemma 4.4. Suppose that R is under the condition (i). Let R∗ ∈ R be any clique satisfying (6). If

there exists some i ∈ [p] such that Ai(R
∗) = ∅, then Theorem 1.3 holds.

Proof. Let Ai = Ai(R
∗) and zp−1 = zp−1(R

∗). Without loss of generality, we assume that Ap = ∅.

Recall that each pair of vertices in Ai is a Kp+1-saturating edge in HR and by (5),
∑p−1

i=1 |Ai|/n =
∑p

i=1 |Ai|/n = zp−1. Using Jensen’s inequality, we get that

ℓR2 ≥

p−1
∑

i=1

(

|Ai|

2

)

≥ (p− 1)

( zp−1

p−1 n

2

)

=
z2p−1

2(p − 1)
n2 −

zp−1

2
n.

Since R satisfies the condition (i), by Lemma 4.3, we may assume that r ≤ 2(p−2)(2p−3)
p(4p2−11p+8)

. By (2), we

9



have r ≥ 1/n. Since δ ≤ p−1
8 , we can derive from (7) that

zp−1 ≥
p− 2

p− 1
−

p(2p − 3)

2(p − 1)
r −

δ

rn2

≥
p− 2

p− 1
−

p(2p − 3)

2(p − 1)
·
2(p − 2)(2p − 3)

p(4p2 − 11p + 8)
−

p− 1

8n

=
p− 2

4p2 − 11p+ 8
−

p− 1

8n
>

p− 1

2n
,

where the last inequality holds as n ≥ 120p2. Note that h(zp−1) =
z2p−1

2(p−1)n
2 −

zp−1

2 n is increasing in

the range of zp−1 >
p−1
2n and takes its minimum at the smallest value that zp−1 can take. Thus

ℓR2 ≥ h(zp−1) ≥

(

p−2
p−1 −

p(2p−3)
2(p−1) r −

δ
rn2

)2

2(p − 1)
n2 −

(

p−2
p−1 −

p(2p−3)
2(p−1) r −

δ
rn2

)

2
n

=
(2(p − 2)− p(2p− 3)r)2

8(p− 1)3
n2 −

2(p − 2)− p(2p− 3)r

4(p − 1)
n+ δ · F (n, p, r, δ), (8)

where

F (n, p, r, δ) =
δ

2(p − 1)r2n2
−

p− 2

(p − 1)2r
+

p(2p− 3)

2(p− 1)2
+

1

2rn
≥ −

p− 2

(p− 1)2r
. (9)

Thus, using r ≥ 1/n and δ ≤ p−1
8 , we have

ℓR2 ≥
(2(p − 2)− p(2p− 3)r)2

8(p − 1)3
n2 −

p− 2

2(p− 1)
n−

(p− 2)δ

(p− 1)2r

≥
(2(p − 2)− p(2p− 3)r)2

8(p − 1)3
n2 −

p− 2

2(p− 1)
n−

p− 2

8(p− 1)
n

>
(2(p − 2)− p(2p− 3)r)2

8(p − 1)3
n2 −

5

8
n.

Next we claim that Theorem 1.3 holds in case r ≤ 1
40p(p−2)(2p−3) . Indeed, by the above lower bound

of ℓR2 , we have

fp+1(G) ≥ ℓR2 >
(2(p− 2)− p(2p − 3)r)2

8(p − 1)3
n2 −

5

8
n ≥

(

2(p − 2)− 1
40(p−2)

)2

8(p − 1)3
n2 −

5

8
n

>
4(p− 2)2 − 0.1

8(p − 1)3
n2 −

5

8
n ≥

2(p − 2)2

p(4p2 − 11p + 8)
n2 −

(p− 2)(2p − 3)

4p2 − 11p+ 8
n

where the last inequality holds whenever n ≥ 120p2 and p ≥ 3 (see the verification in Appendix B).

This matches the lower bounds of Theorem 1.3 and thus proves the above claim.

Therefore in the following of the proof, we may assume that 1
40p(p−2)(2p−3) ≤ r ≤ 2(p−2)(2p−3)

p(4p2−11p+8) .

By (8) and (9), we see that F (n, p, r, δ) ≥ − p−2
(p−1)2r ≥ −40p(p−2)2(2p−3)

(p−1)2 ≥ −40(p− 2)(2p− 3), and thus

ℓR2 ≥
(2(p − 2)− p(2p − 3)r)2

8(p − 1)3
n2 −

2(p − 2)− p(2p− 3)r

4(p − 1)
n− 40δ(p − 2)(2p − 3).

10



This together with the estimation on ℓR1 from Lemma 4.3 give that

fp+1(G) =ℓR1 + ℓR2

≥

(

p− 2

p− 1
r −

p(p− 2)

2(p − 1)
r2
)

n2 −
pr

2
n− δ +

(2(p − 2)− p(2p− 3)r)2

8(p− 1)3
n2

−
2(p − 2)− p(2p − 3)r

4(p − 1)
n− 40δ(p − 2)(2p − 3)

=
p(4p2 − 11p + 8)n2

8(p − 1)3
r2 −

2(p − 2)2n2 + p(p− 1)2n

4(p− 1)3
r +

(p− 2)2

2(p − 1)3
n2 −

p− 2

2(p − 1)
n

− δ (40(p − 2)(2p − 3) + 1)

≥
2(p − 2)2

p(4p2 − 11p + 8)
n2 −

(p− 2)(2p − 3)

4p2 − 11p + 8
n−

p(p− 1)

8(4p2 − 11p + 8)
− δ (40(p − 2)(2p − 3) + 1)

=
2(p − 2)2

p(4p2 − 11p + 8)
n2 −

(p− 2)(2p − 3)

4p2 − 11p + 8
n+Op(1),

where the last inequality holds since the quadratic function on r formed by the first two terms on one

side is minimized at r = 2(p−2)2

p(4p2−11p+8)
+ (p−1)2

(4p2−11p+8)n
(for the detailed calculation, see Appendix C). This

matches the lower bounds of Theorem 1.3. For the case when n is divisible by p(p−1)(4p2−11p+8), we

have δ = 0 and in this case, the optimal r for the last inequality should be chosen as r = 2(p−2)2

p(4p2−11p+8)

so that rn is an integer3; repeating the above calculation, it would exactly imply that fp+1(G) ≥
2(p−2)2

p(4p2−11p+8)
n2 − (p−2)(2p−3)

4p2−11p+8
n. Now Lemma 4.4 is completed.

Finally we are ready to finish the proof of Theorem 1.3. By Lemma 4.4, for any R satisfying the

condition (i) and for any R0 ∈ R satisfying (6), we may assume that Ai(R0) 6= ∅ for each i ∈ [p], i.e.,

any p− 1 vertices in V (R0) have at least one common neighbor in HR = G\V (R).

Let R∗ ∈ R be the p-clique obtained from Lemma 4.2. So R∗ satisfies (6). Let C be a clique in

HR of maximum size such that R∗∪C contains a p-clique R′ in G covering all the vertices of C. Since

Ai(R
∗) 6= ∅ for each i ∈ [p], such a clique C exists in HR (for instance, one can just take one vertex

in A1(R
∗)). Let V (R∗) = {v1, ..., vp} and V (C) = {x1, ..., xc} for some integer c ≥ 1. Without loss of

generality we may assume that

V (R′) = {x1, ..., xc, vc+1, ..., vp}.

In what follows, we should complete the proof by deriving the final contradiction that c ≥ p.

Suppose that c ≤ p− 1. In this case, we are always able to find a clique in HR of larger size than

C and satisfying the above conditions required for C. To see this, let R′ = (R\{R∗}) ∪ {R′} and

HR′ = G\V (R′). So R′ also satisfies the condition (i) and

V (HR′) = (V (HR)\{x1, . . . , xc}) ∪ {v1, . . . , vc}.

Applying Lemma 4.1 with the clique R therein being R∗, we know that

e(R′,HR′) ≥ e(R∗,HR) ≥

(

p(p − 2)

p− 1
−

p(2p2 − 4p+ 1)

2(p − 1)
r

)

n−
δ

rn
,

3Note that this value of r corresponds to the exact construction in Section 2
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where the last inequality holds as R∗ satisfies (6). That says, R′ ∈ R′ also satisfies (6). As discussed

earlier, by Lemma 4.4, any p − 1 vertices in V (R′) have at least one common neighbor in HR′ . In

particular, there exists a vertex y ∈ V (HR′) such that it is not adjacent to vp but is adjacent to all

other vertices of V (R′). Obviously, y /∈ {v1, . . . , vc}, since vivp ∈ E(G) for each i ∈ [c]. So it must be

the case that y ∈ V (HR)\{x1, . . . , xc}. Now let C ′ = {x1, . . . , xc, y} ⊆ V (HR). Then C ′ is a clique

in HR of size larger than C such that C ′ ∪ {vc+1, . . . , vp−1} is a p-clique contained in R∗ ∪ C ′ and

covering all vertices of C ′. This is a contradiction to our choice of C. Therefore, we must have that

c ≥ p. However, it is also a contradiction to the fact that HR is Kp-free, proving Theorem 1.3.

5 Concluding remarks

In this paper, we determine the order of fp+1

(

n, ex(n,Kp)+1
)

, confirming a conjecture of Balogh and

Liu [3]. Balogh and Liu proved a stronger result in [3] that f4(n, ⌊
n2

4 ⌋ + t) = 2
33n

2 + Θ(n) holds for

every positive integer t up to n
66 . We remark that the upper bound construction of Theorem 1.2 as

well as the proof of Section 3 also show that

fp+1

(

n, ex(n,Kp) + t
)

=
2(p − 2)2

p(4p2 − 11p + 8)
n2 +Θ(n)

holds for any integer 1 ≤ t ≤ (p−2)3

p(p−1)(4p2−11p+8)n. It is interesting to determine the function of

fp+1(n,m) for every integer m between ex(n,Kp) and ex(n,Kp+1). We would like to ask if for all m,

the extremal Kp+1-free graph attaining this minimum number is always obtained from an appropriate

blow-up4 of the same graph suggested in [3] (i.e., the graph obtained by taking a complete (p − 1)-

partite graph K = K2,...,2 and adding a new vertex by making it adjacent to exactly one vertex in

each partite set of K) by deleting O(n) edges.

Let H be a given graph. For an H-free graph G, a non-edge of G is called an H-saturating edge, if

G+e contains a copy of H. Let fH(G) denote the number of H-saturating edges of G and let fH(n,m)

denote the minimum of fH(G) over all H-free n-vertex graphs G withm edges. It is natural to consider

the same minimization problem fH(n,m) for general H. The following family of graphs seems to be

of particular interest. A pair of two edges e, f in H is called critical if χ(H − {e, f}) = χ(H) − 2.

It is clear that such two edges e, f must be vertex-disjoint. We say a graph H is double-edge-critical

if it contains a critical pair of two edges e, f . We point out that there are many double-edge-critical

graphs, for example, any join obtained from a p-clique for p ≥ 4 and an arbitrary graph is double-

edge-critical. From the definition, we see that such H is also edge-critical,5 so is each of H − e and

H − f . Let χ(H) = p + 1. Then it follows that fH(n,m) = 0 for all integers m ≤ ex(n,Kp). We

believe that the same phenomenon as Theorem 1.2 holds for any double-edge-critical graph H, that

is, fH
(

n, ex(n,Kp) + 1
)

would suddenly jump to Ω(n2). We wonder if fH
(

n, ex(n,Kp) + 1
)

can be

determined for every double-edge-critical graph H with χ(H) ≥ 4.

Acknowledgements. The authors would like to thank Jozsef Balogh for suggesting the problem

4Here, we may allow that some vertices are blowing up to empty sets. For instance, a blow-up of Kp counts.
5A graph F is edge-critical if there exists an edge e∗ such that χ(F − e∗) = χ(F )− 1. A classical result of Erdős and

Simonovits states that for sufficiently large n, if F is an edge-critical graph, then the unique n-vertex F -free extremal
graph for ex(n, F ) is Tχ(F )−1(n).
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of [3] to the fourth author in 2020 Summer. The fourth author additionally thanks him for fruitful

discussions.
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Appendix A Calculations for the upper bound of Theorem 1.3

We first calculate |V (H0)| and e(H0) (see Figure 1). It is easy to see that |V (H0)| = 2(p − 1)(p −

2)2x+ 4(p − 1)3(p− 2)x+ p(p− 1)(3p − 4)x = p(p− 1)(4p2 − 11p + 8)x, and

e(H0) =8(p − 1)4(p− 2)3x2 +
p− 2

2(p − 1)
· (p− 1)2

(

4(p − 1)2(p − 2) + p(3p − 4)
)2

x2

=
p− 2

2(p − 1)
· p2(p − 1)2(4p2 − 11p + 8)2x2.

13



By our definition of H1, we get that |V (H1)| = |V (H0)|+ y = p(p− 1)(4p2 − 11p + 8)x+ y = n, and

e(H1) =e(H0) + 2y · 4(p − 1)3(p− 2)x− y · 4(p − 1)2(p− 2)2x− y · p(p− 2)(3p − 4)x+ tp−1(y)

=e(H0) + p(p− 2)(4p2 − 11p + 8)xy + tp−1(y)

=
p− 2

2(p− 1)
· p2(p− 1)2(4p2 − 11p + 8)2x2 + p(p− 2)(4p2 − 11p + 8)xy + tp−1(y) = ex(n,Kp).

Since the only Kp+1-saturating edges are the pairs in Vi for 0 ≤ i ≤ p− 1, we get that

fp+1(H1) =

(

2(p− 1)(p − 2)2x+ 2y

2

)

+ (p− 1)

(

4(p − 1)2(p− 2)x

2

)

=2p(p− 1)2(p − 2)2(4p2 − 11p + 8)x2 + 4(p − 1)(p − 2)2xy

− p(p− 1)(p − 2)(2p − 3)x+ 2y2 − y

=
2(p − 2)2

p(4p2 − 11p+ 8)

(

p(p− 1)(4p2 − 11p + 8)x+ y
)2

−
(p− 2)(2p − 3)

4p2 − 11p + 8

(

p(p− 1)(4p2 − 11p + 8)x+ y
)

+ 2y2 −
2(p − 2)2

p(4p2 − 11p + 8)
y2 +

(p − 2)(2p − 3)

4p2 − 11p + 8
y − y

=
2(p − 2)2

p(4p2 − 11p+ 8)
n2 −

(p− 2)(2p − 3)

4p2 − 11p + 8
n+

8(p − 1)3

p(4p2 − 11p + 8)
y2 −

2(p − 1)2

4p2 − 11p+ 8
y,

as desired.

Appendix B Verifying an inequality in the proof of Lemma 4.4

We want to verify that the following inequality appeared as the last inequality in the second last

paragraph of the proof of Lemma 4.4 (see page 10) holds:

4(p − 2)2 − 0.1

8(p − 1)3
n2 −

5

8
n ≥

2(p − 2)2

p(4p2 − 11p+ 8)
n2 −

(p− 2)(2p − 3)

4p2 − 11p + 8
n

for any n ≥ 120p2 and p ≥ 3. First observe that the above inequality is equivalent to

(

4(p − 2)2 − 0.1

8(p − 1)3
−

2(p − 2)2

p(4p2 − 11p + 8)

)

n ≥
5

8
−

(p − 2)(2p − 3)

4p2 − 11p + 8
,

which can be further simplified to

p(4p2 − 16p + 15.9)(4p2 − 11p + 8)− 16(p − 1)3(p− 2)2

8p(p− 1)3(4p2 − 11p + 8)
n ≥

4p2 + p− 8

8(4p2 − 11p+ 8)
.

Let f(p) = p(4p2−16p+15.9)(4p2−11p+8)−16(p−1)3(p−2)2 = 4p4−32.4p3+97.1p2−128.8p+64.

Then we only need to show that nf(p) ≥ p(p− 1)3(4p2 + p− 8). First from the calculation by python

(see Figure A), we can see that f(p) ≥ 0 for all p ≥ 3.

Since f(p) ≥ 0, as n ≥ 120p2, we get that nf(p) ≥ 120p2f(p). Thus we only need to show that

120pf(p)− (p− 1)3(4p2 + p− 8) ≥ 0. Let g(p) = 120pf(p)− (p− 1)3(4p2 + p− 8) = 476p5 − 3877p4 +

11651p3 − 15479p2 +7705p− 8. Then, from the calculation by python (see Figure B), we can see that
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Fig 1
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1500
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g(p) = 476p5 − 3877p4 + 11651p3 − 15479p2 + 7705p− 8

(3,4)

Fig 2

indeed, g(p) ≥ 0 for all p ≥ 3. This proves the desired inequality.

Appendix C On an immediate step in the proof of Lemma 4.4

Here we want to show that the last inequality in the last paragraph of the proof of Lemma 4.4 (see

page 11) holds. This is equivalent to show that

h(n, p, r) ≥
2(p− 2)2

p(4p2 − 11p + 8)
n2 −

(p − 2)(2p − 3)

4p2 − 11p + 8
n−

p(p− 1)

8(4p2 − 11p + 8)
,

where h(n, p, r) = p(4p2−11p+8)n2

8(p−1)3
r2− 2(p−2)2n2+p(p−1)2n

4(p−1)3
r+ (p−2)2

2(p−1)3
n2− p−2

2(p−1)n. Reformulating the above

inequality by using factorization, we let

H(r) =8p(p− 1)3(4p2 − 11p + 8) · h(n, p, r)

=p2(4p2 − 11p + 8)2n2 · r2 −
(

4p(p − 2)2(4p2 − 11p + 8)n2 + 2p2(p − 1)2(4p2 − 11p + 8)n
)

· r

+ 4p(p− 2)2(4p2 − 11p+ 8)n2 − 4p(p − 1)2(p− 2)(4p2 − 11p + 8)n.

Then, it becomes to show that H(r) ≥ 16(p−1)3(p−2)2n2−8p(p−1)3(p−2)(2p−3)n−p2(p−1)4. Since

H ′′(r) > 0, H(r) is a convex quadratic function on r and minimized at r = 2(p−2)2

p(4p2−11p+8)
+ (p−1)2

(4p2−11p+8)n
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(i.e., the solution of the equation H ′(r) = 0). Thus, we have

H(r) ≥ H

(

2(p − 2)2

p(4p2 − 11p + 8)
+

(p− 1)2

(4p2 − 11p + 8)n

)

= p2(4p2 − 11p+ 8)2n2 ·

(

4(p − 2)4

p2(4p2 − 11p + 8)2
+

4(p − 1)2(p− 2)2

p(4p2 − 11p + 8)2n
+

(p− 1)4

(4p2 − 11p + 8)2n2

)

−
(

4p(p− 2)2(4p2 − 11p+ 8)n2 + 2p2(p− 1)2(4p2 − 11p + 8)n
)

·

(

2(p− 2)2

p(4p2 − 11p+ 8)
+

(p− 1)2

(4p2 − 11p + 8)n

)

+ 4p(p − 2)2(4p2 − 11p + 8)n2 − 4p(p− 1)2(p − 2)(4p2 − 11p + 8)n

=
(

4(p − 2)4 − 8(p − 2)4 + 4p(p− 2)2(4p2 − 11p + 8)
)

· n2 +
(

4p(p − 1)2(p− 2)2 − 4p(p− 1)2(p − 2)2−

− 4p(p − 1)2(p− 2)2 − 4p(p − 1)2(p− 2)(4p2 − 11p + 8)
)

· n+
(

p2(p− 1)4 − 2p2(p− 1)4
)

= 16(p − 1)3(p− 2)2n2 − 8p(p − 1)3(p− 2)(2p − 3)n− p2(p− 1)4,

as we wanted. This verifies the inequality under consideration.

E-mail address: hjxhjl@mail.ustc.edu.cn

E-mail address: fma@ustc.edu.cn

E-mail address: jiema@ustc.edu.cn

E-mail address: xinyang@stu.pku.edu.cn

16


	1 Introduction
	2 The constructions for the upper bounds
	3 Proof of Theorem 1.2
	4 Proof of Theorem 1.3
	5 Concluding remarks
	A Calculations for the upper bound of Theorem 1.3
	B Verifying an inequality in the proof of Lemma 4.4
	C On an immediate step in the proof of Lemma 4.4

