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In this note we give a self-contained proof of the following result. For more results on related topics,
we direct interested readers to [3].

Theorem. Let q ≥ 109 be even and G be a C4-free (q2 + q + 1)-vertex graph with more than 1
2q(q +

1)2 − 0.2q edges. Then there exists a unique polarity graph of order q containing G as a subgraph.

Proof. The proof stems from the celebrated work of Füredi and will be completed in three steps.
Step 1. We may assume ∆(G) = q + 1. First suppose on the contrary that ∆(G) = d(v1) ≥ q + 3.

Let T be the number of 2-paths in G with none of its endpoints in N(v1). Since any two vertices have
at most one common neighbor and any two vertices in N(vi) are contained in a 2-path, we have(

q2 + q + 1−∆

2

)
=

(
n−∆

2

)
≥ T ≥

n∑
i=2

(
|N(vi) \N(v1)|

2

)
.

Since G is C4-free, we see |N(vi) \ N(v1)| = d(vi) − d(vi, v1) ≥ d(vi) − 1 for 2 ≤ i ≤ n. As e(G) >
1
2q(q+ 1)2− 0.2q, we have that

∑n
i=2 |N(vi) \N(v1)| ≥ 2e(G)−∆− (n− 1) ≥ q3 + q2− 0.4q−∆. Using

Jensen’s inequality, we have(
q2 + q + 1−∆

2

)
≥

n∑
i=2

(
|N(vi) \N(v1)|

2

)
≥ (q2 + q)

( q3+q2−0.4q−∆
q2+q

2

)
.

This is equivalent to (q2 + q)(q2 + q + 1−∆)(q2 + q −∆) ≥ (q3 + q2 − 0.4q −∆)(q3 − 1.4q −∆). As q
is large, the above inequality does not hold for q + 3 ≤ ∆ ≤ q2 + q. This shows ∆(G) ≤ q + 2.

Let Si be the set of all vertices of degree i. Next we show that |Sq+2| ≤ 1. Suppose on the contrary
that there are at least two vertices v1 and v2 of degree q + 2. First suppose N(v1) ∩N(v2) = ∅. Then
for 2 < i ≤ n, since G is C4-free, we have

|N(vi) \ (N(v1) ∪N(v2))| = d(vi)− d(vi, v1)− d(vi, v2) ≥ d(vi)− 2.

Similarly, by double counting the number of 2-paths with none of its endpoints in N(v1) ∪N(v2) and
using Jensen’s inequality, we have(
n− 2∆

2

)
≥

n∑
i=3

(
|N(vi) \ (N(v1) ∪N(v2))|

2

)
≥ (n− 2)

(∑n
i=3(d(vi)−2)

n−2

2

)
= (n− 2)

(2e(G)−2∆−2n+4
n−2

2

)
.

This is a contradiction as this inequality does not hold. Therefore we may assume N(v1) ∩N(v2) 6= ∅.
Let N(v1)∩N(v2) = {v3} and let A = N(v3)\{v1, v2}. Then we have |N(vi)\(N(v1)∪N(v2))| ≥ d(vi)−1
for vi ∈ A, and |N(vi) \ (N(v1) ∪N(v2))| ≥ d(vi)− 2 for vi /∈ N(v3). Thus we have

n∑
i=3

(
|N(vi) \ (N(v1) ∪N(v2))|

2

)
≥
(
d(v3)− 2

2

)
+
∑
vi∈A

(
d(vi)− 1

2

)
+

∑
vj /∈N [v3]

(
d(vj)− 2

2

)
By similarly arguments as above, we have(

n− 2∆ + 1

2

)
≥

n∑
i=3

(
|N(vi) \ (N(v1) ∪N(v2))|

2

)
≥
(
d(v3)− 2

2

)
+ (n− 3)

(2e(G)−2∆−2n+4
n−3

2

)
.
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The minimum value of the equation on the right is taken when d(v3) = 2, which is still greater than
the left hand side, a contradiction. This proves |Sq+2| ≤ 1.

Now assume the following holds: If G0 is C4-free graphs on q2+q+1 vertices with at least 1
2q(q+1)2−

0.2q edges and ∆(G0) = q + 1, then there exists a unique polarity graph of order q containing G0 as a
subgraph. Since |Sq+2| ≤ 1, we can delete at most one edge from G to get a subgraph G′ with maximum
degree q + 1 and e(G′) ≥ e(G)− 1 ≥ 1

2q(q + 1)2 − 0.2q. By the above assumption there exists a unique
polarity graph H containing G′ as a subgraph. Let e be the possible edge in E(G)\E(G′). If e does not
exist, then G = G′ is a subgraph of H. So e = xy /∈ E(H). By properties on polarity graphs, H ∪ {e}
contains at least q − 1 copies of C4, all of which contain e and are edge-disjoint otherwise. Consider
G′∪{e}, which is a subgraph of G and thus is C4-free. Any of these q−1 copies of C4 in H ∪{e} has an
edge not in G′ ∪{e}, which are distinct. This shows that e(G′) ≤ e(H)− (q− 1) ≤ 1

2q(q+ 1)2− (q− 1),
which contradicts e(G′) ≥ 1

2q(q + 1)2 − 0.2q. This proves Step 1.
Therefore in the remaining proof, it is enough to assume that e(G) ≥ 1

2q(q+ 1)2− 0.2q and ∆(G) =
q + 1. We let B = {x ∈ V : |N(x) ∩ S| ≥ 0.1q} and A = Sq+1\B. Let R = {N(x) : x ∈ A}.

Step 2. We show that R can be embedded into a projective plane of order q uniquely. Let S be the
set of all vertices of degree at most q. We claim that if q is even and ∆(G) = q + 1, then any
vertex in Sq+1 has a neighbor in S and moreover, |S| ≥ q + 1. Indeed, suppose on the contrary
that there exists some v ∈ Sq+1 and all its neighbors have degree q + 1. Let m be the number of
edges contained in G[N(v)]. Clearly these edges form a matching (as otherwise there is a C4) and
since q is even, we have m ≤ q

2 . We count the number M of edges between N(v) and V \N(v).
As G is C4-free, every vertex in V \N [v] has at most one neighbor in N(v). Hence, we have that
q2 + q = n − (q + 2) + (q + 1) ≥ M =

∑
x∈N(v) d(x) − 2m ≥ (q + 1)2 − q, a contradiction. Thus

n − |S| = |Sq+1| ≤ e(S, Sq+1) ≤
∑

x∈S d(x) ≤ q|S|. So (q + 1)|S| ≥ n = q2 + q + 1, implying that
|S| ≥ q + 1. This proves the claim. Moreover, we have

q + 1 ≤ |S| ≤
q∑
i=0

(i+ 1)|Sq−i| = f(V ) = (q + 1)n− 2e(G) ≤ 1.4q + 1 (1)

and thus q2 − 0.4q ≤ |Sq+1| ≤ q2. For any T ⊆ S, it holds that 1.4q + 1 ≥ f(V ) ≥ f(T ) + (|S| − |T |) ≥
f(T ) + (q + 1− |T |). This implies that f(T ) ≤ |T |+ 0.4q for any T ⊆ S and in particular,

d(x) ≥ 0.6q and d(x) + d(y) ≥ 1.6q for any x, y ∈ V. (2)

Now we show |B| ≤ 14 and |A| ≥ q2−0.4q−14. To see this, let t be the number of adjacent ordered
pairs (b, v) with b ∈ B and v ∈ S. We have |B| · 0.1q ≤ t ≤ |S| · q ≤ 2q2, implying that |B| ≤ 20q.
Consider the subgraph G0 of G induced by the set B ∪ S, where |B ∪ S| ≤ 22q. Since G0 is C4-free, by

Reiman’s Theorem, we derive that 1
2 |B| · 0.1q ≤ e(G0) ≤ 22q

4 · 10q
1
2 = 55q3/2 and thus |B| ≤ 1100

√
q.

For any b, b′ ∈ B, we have |NS(b) ∩NS(b′)| ≤ 1. By (1) and the inclusion-exclusion principle,

1.4q + 1 ≥ |S| ≥ | ∪b∈B NS(b)| ≥
∑
b∈B
|NS(b)| −

∑
b,b′∈B

|NS(b) ∩NS(b′)| ≥ |B| · 0.1q −
(
|B|
2

)
.

Since |B| ≤ 1100
√
q and q is large, we further derive |B| ≤ 14. So |A| ≥ |Sq+1| − |B| ≥ q2 − 0.4q − 14.

Next we investigate properties on special vertices of degree q+1 defined as follows and then show that
R is 1-intersecting. We say a vertex v ∈ V has property 1, if v ∈ Sq+1 satisfies that |N(v)∩Sq+1| = q
and |N(v) ∩ Sq| = 1. Let V1 denote the set of all vertices of property 1 in G.

We claim |V1| ≥ 0.6q2 − 1.8q. Indeed, for uv ∈ E(G) with u ∈ S and v ∈ Sq+1, we assign a weight
w(uv) to be the deficiency f(u). Let W denote the sum of the weights of these edges. We note that
any vertex in V1 contributes one to the sum W , while any vertex in Sq+1\V1 contributes at least two.
Hence, by (1) we can derive that

|V1|+ 2(|Sq+1| − |V1|) ≤W ≤
q∑
i=0

(q − i)(i+ 1)|Sq−i| ≤ q · f(V ) ≤ q(1.4q + 1).
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Since |Sq+1| ≥ q2 − 0.4q, we have |V1| ≥ 2|Sq+1| − q(1.4q + 1) ≥ 0.6q2 − 1.8q.
Next we describe the structure of the neighborhood of a vertex in V1. Suppose v ∈ V1 has N(v) =

{v1, ..., vq+1}. Let Ni = N(vi)\N [v] for i ∈ [q+1]. We show that for v ∈ V1, the sets N1, ..., Nq+1 form
a partition of V \N [v], and G[N(v)] consists of a matching of size q

2 plus an isolated vertex of degree
q. Indeed, assume that the induced graph G[N(v)] contains m edges, which clearly form a matching.
Since G is C4-free, any x ∈ V \N [v] has at most one neighbor in N(v). Hence

(q2 + q + 1)− (q + 2) + (q + 1) ≥
∑

x∈N(v)

d(x)− 2m = q(q + 1) + q − 2m, (3)

implying that m ≥ q
2 . Since q is even, we derive that m = q

2 and moreover, (3) must be an equality.
This further shows that N1, ..., Nq+1 form a partition of V \N [v].

Suppose d(vq+1) = q. It remains to show that vq+1 is an isolated vertex in G[N(v)]. Suppose for
a contradiction that the edge set of G[N(v)] is {v2v3, ..., vqvq+1}. Then |N1| = q, |Nq+1| = q − 2 and
|Ni| = q − 1 for 2 ≤ i ≤ q. Since G is C4-free, every G[Ni] contains at most b|Ni|/2c edges and there
is no edge between N2i and N2i+1 for 1 ≤ i ≤ q

2 . Also, there are at most min{|Ni|, |Nj |} edges between
Ni and Nj for i, j ∈ [q + 1]. Thus we have∑

x∈N2

d(x) ≤ |N2|+ 2b|N2|/2c+ min {|N1|, |N2|}+
∑

4≤i≤q+1

min {|N2|, |Ni|} = (q + 1)|N2| − 2.

So f(N2) = (q+ 1)|N2| −
∑

x∈N2
d(x) ≥ 2. Similarly, we have f(Ni) ≥ 2 for all 2 ≤ i ≤ q− 1. Together

with (1), we can obtained 1.4q + 1 ≥ f(V ) ≥
∑

2≤i≤q−1
f(Ni) ≥ 2q − 4 which is a contradiction.

The following is a key for constructing a large (q + 1)-uniform 1-interesting hypergraph. Suppose
v ∈ V1 has N(v) = {v1, ..., vq+1}. If u ∈ Sq+1 \ N [v] is adjacent to Sq+1 ∩ N(v), then we have
|N(u) ∩ N(vi)| = 1 for all i ∈ [q + 1]. (We denote this property by (?).) To see this, by the above
analysis, we assume that uv1, v1v2 ∈ E(G) for some v1, v2 ∈ Sq+1. Then u has exactly one neighbor in
N [v], no neighbors in N2 and N1, ..., Nq+1 form a partition of V \N [v]. Since u ∈ Sq+1 has at most one
neighbor in each Ni for i 6= 2, it follows that u must have exactly one neighbor in each Ni for i 6= 2.
Since N(u) ∩N(v2) = {v1}, we see that indeed |N(u) ∩N(vi)| = 1 holds for all i ∈ [q + 1].

We then show that the neighborhood of any vertex in A contains many vertices of property 1. To
do so, for any x ∈ A we define

Sx = N(x) ∩ S and S∗x = Sx ∪ (N(Sx) ∩N(x)). (4)

Since x ∈ A, we have |Sx| ≤ 0.1q. Every vertex in Sx has at most one neighbor inN(x), so |S∗x\Sx| ≤ |Sx|
and thus |S∗x| ≤ 2|Sx| ≤ 0.2q.

We conclude that for x ∈ A, there are at least 0.3q + 1 vertices of property 1 in N(x)\S∗x. To show
this, let N(x) = {x1, ..., xq+1} and Ni = N(xi) \N [x] for i ∈ [q + 1]. We assert that f(Ni) ≥ 1 for any
xi ∈ N(x)\S∗x. Indeed by definition, such xi ∈ Sq+1 and every neighbor of xi in S must lie outside of
N [x] (that is in Ni). Also by the above analysis, xi has at least one neighbor in S which belongs to Ni.
So we have f(Ni) ≥ 1. From this argument, we also see that xi ∈ N(x)\S∗x has f(Ni ∪ {xi}) = 1 if and
only if xi ∈ V1. If we let m be the number of vertices of property 1 in N(x)\S∗x, then we have

m+ 2(d(x)− |S∗x| −m) + |Sx| ≤
∑

i∈[q+1]

f(Ni ∪ {xi}) ≤ f(V ) ≤ 1.4q + 1.

Using d(x) = q + 1 and 2|S∗x| − |Sx| ≤ 0.3q, we can derive that m ≥ 0.3q + 1.
Now we are ready to prove that R is a 1-intersecting (q + 1)-hypergraph with |R| ≥ q2 − 0.4q− 14.

It is clear that R is (q + 1)-uniform and |R| = |A| ≥ q2 − 0.4q − 14. So it is enough to show that
R is 1-interesting. Suppose that there exist some x, y ∈ A with no common neighbor. First consider
the case xy ∈ E(G). By the above analysis, there exists some z ∈ N(x) ∩ V1 − {y}. Clearly we have
yz /∈ E(G). Applying (?) by viewing z as the vertex v therein, since y ∈ Sq+1\N [z] is adjacent to
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x ∈ Sq+1 ∩N(z), we can conclude that |N(y) ∩N(x)| = 1, a contradiction. Assume that xy /∈ E(G).
Let N(x) = {x1, ..., xq+1}. Let Ni = N(xi)\N [x] for i ∈ [q + 1] and Y = V \(N [x] ∪ N1 ∪ ... ∪ Nq+1).
So we have y ∈ Y . Since each xi has at most one neighbor in N(x), we get that |Y | ≤ n − (q + 2) −∑q+1

i=1 (d(xi)− 2) =
∑q+1

i=1 f(xi). Let N1(x) be the set of vertices in N(x)\S∗x of property 1. By above
analysis, |N1(x)| ≥ 0.3q + 1. Further let N2(x) = N(x)\(N1(x) ∪ S∗x). Then, we have f(Ni) = 1 for
each xi ∈ N1(x) and f(Nj) ≥ 2 for each xj ∈ N2(x). Thus, we can derive that

|Y | ≤
q+1∑
i=1

f(xi) =
∑
xi∈Sx

f(xi) ≤ 1.4q + 1− |N1(x)| − 2|N2(x)|.

Since N(x) = N1(x)∪N2(x)∪S∗x, we see that the number of neighbors of y in those Ni’s with xi ∈ N1(x)
is at least d(y)− (|Y | − 1)− |S∗x| − |N2(x)|, which is at least

(q + 2)− (1.4q + 1) + |N1(x)|+ |N2(x)| − |S∗x| ≥ 0.2q + 2 ≥ 0.1q,

where we used the above estimation on |Y | and the facts that q+1 = |N1(x)|+|N2(x)|+|S∗x|, |S∗x| ≤ 0.2q.
Since |N(y) ∩ S| < 0.1q, among those neighbors of y, there is a vertex z ∈ N(y) ∩ Sq+1. Suppose that
z ∈ Nj for some xj ∈ N1(x) ⊆ V1. Applying (?) by viewing xj as the vertex v, since y ∈ Sq+1\N [xj ] is
adjacent to z ∈ N(xj) ∩ Sq+1, we can derive that y and x ∈ N(xj) have a common neighbor. Since G
is C4-free, x and y have exactly one common neighbor. Thus R is 1-intersecting.

By an embedding result in [4], R can be embedded into a projective plane P of order q. Moreover
by a result in [1], this embedding is unique. This proves Step 2.

Step 3. There exists a unique polarity graph of order q containing G as a subgraph. LetRc = P\R.
We say v ∈ V is feasible, if there exists a line L ∈ P with N(v) ⊆ L; otherwise, we say v is non-feasible.
For non-feasible v, we say it is near-feasible, if there exist a line L ∈ Rc and a subset Kv ⊆ N(v) such
that N(v)\Kv ⊆ L and |Kv| ≤ 50

√
q. In both definitions, we say v and L are associated with each

other. For feasible v, we let Kv = ∅. By (2) and since G is C4-free, for any two feasible or near-feasible
vertices u and v, we have

|(N(u)\Ku) ∪ (N(v)\Kv)| ≥
(
d(u)− 50

√
q
)

+
(
d(v)− 50

√
q
)
− 1 ≥ 1.6q − 100

√
q − 1 > q + 1. (5)

This implies that each line in P is associated with at most one feasible or near-feasible vertex. On the
other hand, if there are two lines in P associated with the same feasible or near-feasible vertex v, as
d(v) ≥ 0.6q by (2), then it is easy to see that these two lines will intersect with more than two vertices,
a contradiction. So each feasible or near-feasible vertex is associated with a unique line in P.

Next we study some properties on non-feasible vertices v ∈ V . Let N(v) = {v1, ..., vd}. Since v is
non-feasible, we see N(v) 6⊆ L for any L ∈ P and thus v /∈ A. Then any pair {vi, vj} for i, j ∈ [d] is not
contained in any line N(u) ∈ R. This is because that otherwise, we see that viuvjvvi forms a C4 in G,
a contradiction. So every such pair {vi, vj} is contained in a unique line L ∈ Rc. Let Lv be the family
of lines L ∈ P which contains at least two vertices of N(v). Then we have Lv ⊆ Rc and thus

|Lv| ≤ |Rc| = |P| − |R| ≤ 1.4q + 15. (6)

We also point out that any vertex in N(v) appears in at least two lines of Lv.
We process to show that all non-feasible vertices are near-feasible in the following. First we show

that any vertex v ∈ V has a neighbor vj with dR(vj) = |N(vj) ∩A| ≥ q − 16. In addition, if v /∈ B has
degree at least 0.9q+43, then v has a neighbor vj with dR(vj) ≥ q−1. To see this, let N(v) = {v1, ..., vd}.
By (2), we have d = d(v) ≥ 0.6q. Let Ni = N(vi)\N [v] for i ∈ [d]. Since the sets Ni ∪ {vi} are disjoint
over i ∈ [d], we have 1.4q+1 ≥ f(V ) ≥

∑
i∈[d] f(Ni∪{vi})+f(v) =

∑
i∈[d] f(Ni∪{vi})+(q+1−d). By

averaging, there is some j ∈ [d] with f(Nj ∪ {vj}) ≤ 0.4q
d + 1 ≤ 5

3 . By the definition of f , there is some
j ∈ [d] with f(Nj ∪ {vj}) ≤ 1. Therefore, dR(vj) = |N(vj) ∩ A| ≥ |Nj ∩ A| ≥ |Nj | − |Nj ∩ S| − |B| ≥(
d(vj)− 2

)
− f(Nj)− 14 =

(
q − 1− f(vj)

)
− f(Nj)− 14 ≥ q − 16, as desired.

Next we consider vertices v /∈ B with d = d(v) ≥ 0.9q + 43. Let Bv = N(v) ∩ (S ∪ B) and
B∗v = Bv ∪ (N(Bv) ∩ N(v)). Then we have |Bv| ≤ |N(v) ∩ S| + |B| ≤ 0.1q + 14. Since G is C4-free,
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every vertex in Bv has at most one neighbor in N(v), implying that |B∗v | ≤ 2|Bv|. Let T = {vi ∈
N(v)\B∗v : Ni ∩ B = ∅}. Since Ni’s are disjoint and there are at most |B| many Ni’s containing
some vertex in B, we get |T | ≥ |N(v)\B∗v | − |B| ≥ d − 0.2q − 42. If f(Nj) ≥ 2 for all vj ∈ T , then
1.4q + 1 ≥ f(V ) ≥ 2|T | ≥ 2(d− 0.2q − 42) ≥ 1.4q + 2, a contradiction. Therefore, there exists a vertex
vj ∈ T such that f(Nj) ≤ 1. By the definition of T , we can see that dR(vj) = d(vj)−1−f(Nj) ≥ q−1.

Partition V into three disjoint sets U1 ∪ U2 ∪ U3, where U1 consists of all feasible vertices and U2

consists of non-feasible vertices v /∈ B with d(v) ≥ 0.9q + 43.
We claim that there exists one vertex w ∈ V such that all v ∈ U2 are near-feasible with Kv = {w}.

Indeed, for any v ∈ U2, by the above property, there is a neighbor vj of v with dR(vj) ≥ q − 1. By the
foregoing discussion, vj appears in at least two lines in Lv ⊆ Rc. If dR(vj) ≥ q, then dP(vj) ≥ q + 2, a
contradiction. So dR(vj) = q− 1 and there are exactly two lines, say L1 and L2, in Lv ⊆ Rc containing
vj . Let N1 = L1 ∩ N(v) and N2 = L2 ∩ N(v). Then we have N1 ∩ N2 = {vj} and N1 ∪ N2 = N(v).
Consider any other line Li ∈ Lv\{L1, L2} for i ≥ 3. Set Ni = Li ∩ N(v). We see that for any i ≥ 3
and j ∈ {1, 2}, |Ni ∩ Nj | ≤ 1 and |Ni ∩ N1| + |Ni ∩ N2| ≥ |Ni ∩ (N1 ∪ N2)| = |Ni| ≥ 2. This shows
that for any i ≥ 3, Ni consists of two vertices, one from N1\{vj} and the other from N2\{vj}. Hence,
|Lv| = (|N1| − 1)(|N2| − 1) + 2.

Let d = d(v). We may assume that d − 1 ≥ |N1| ≥ |N2| ≥ 2. If |N2| ≥ 3, then we have |Lv| =
(|N1|− 1)(|N2|− 1) + 2 ≥ 2(d− 3) + 2 = 2d− 4 ≥ 1.8q+ 82 > 1.4q+ 15 ≥ |Lv|, where the last inequality
holds by (6), a contradiction. Thus, |N1| = d − 1 and |N2| = 2, implying |Lv| = d. Suppose that
N2 = {vj , w}. Then every Ni for 2 ≤ i ≤ d contains the vertex w. Also N(v)\{w} ⊆ L1 ∈ Rc, implying
that v ∈ U2 is near-feasible with Kv = {w}.

Assume there is another non-feasible vertex v′ ∈ U2 with Kv′ = {w′}, where w′ 6= w. Let d = d(v)
and d′ = d(v′). By the above arguments, we see w and w′ appear in d − 1 and d′ − 1 lines in Rc,
respectively. By (6), we have |Rc|+ 2 ≤ 1.4q+ 17 ≤ 1.8q+ 84 ≤ (d− 1) + (d′ − 1), which shows that w
and w′ appear in at least two lines of Rc in common. This contradicts that P is a projective plane.

Next we show that all non-feasible vertices are near-feasible. To see this, let v ∈ V be any non-
feasible vertex. We have d(v) ≥ 0.6q. By the previous property, v has a neighbor u with dR(u) =
q + 1−m, where m ≤ 17. Let U = {L ∈ Lv : u ∈ L ∩N(v)}. We have |U| ≤ m and ∪L∈UNL = N(v),
where NL := L ∩N(v). We assert that for all but at most one L ∈ U , the size of NL is at most 2

√
q.

Suppose on the contrary that there are L1, L2 ∈ U with |NL1 | ≥ 2
√
q + 1 and |NL2 | ≥ 2

√
q + 1. Then

all pairs (x, y) with x ∈ NL1\{u} and y ∈ NL2\{u} should appear in distinct lines in Lv. By (6), this
shows that 1.4q + 15 ≥ |Lv| ≥ (|NL1 | − 1)(|NL2 | − 1) ≥ 4q, a contradiction.

Let L1 be the line in U with the maximum NL1 and let Kv =
⋃
L∈U\{L1}(NL\{u}). Then N(v)\Kv ⊆

L1 ∈ Rc with |Kv| ≤
∑

L∈U\{L1}(|NL|−1) ≤ (m−1)·2√q ≤ 32
√
q ≤ 50

√
q. Therefore, v is near-feasible.

We express V = {v1, ..., vn} such that U1 = {v1, ..., va}, U2 = {va+1, ..., vb} and U3 = {vb+1, ...., vn}
for 1 ≤ a < b ≤ n. Since all vertices in G are feasible or near-feasible, by the discussion after (5), we
can conclude that each vi ∈ V is associated with a unique line denoted by Li in P.

Let π : V ↔ P be a function which maps vi ↔ Li for every i ∈ [n]. LetM = (mij) be the incidence
matrix of P with respect to π.

Let s := |U3|. We point out that any v ∈ U3 either is in B or has d(v) ≤ 0.9q + 42. In the latter
case, we have the deficiency f(v) = q + 1− d(v) ≥ 0.1q − 41. Hence by (1), we have

s ≤ |B|+ f(V )

0.1q − 41
≤ 14 +

1.4q + 1

0.1q − 41
≤ 29.

Let K be the union of Kv’s over all v ∈ V . By the above analysis, we know that Kv = ∅ for v ∈ U1,
Kv = {w} for v ∈ U2 and |Kv| ≤ 32

√
q for v ∈ U3. Hence |K| ≤ 1 + s · 32

√
q ≤ 929

√
q.

Finally we show that M is symmetric. Indeed, we assert that if vi ∈ A\K, then mij = mji for
all j ∈ [n]. If mij = 1, then as vi ∈ A, we have vj ∈ Li = N(vi) ∈ R. Since vi /∈ K, we see
vi ∈ N(vj)\K ⊆ N(vj)\Kvj ⊆ Lj , which shows that mji = 1 = mij . Now we observe that as vi ∈ A,
the i’th column and the i’th row of M have exactly q + 1 many 1-entries, and all these 1-entries are
in the symmetric positions. This shows that the i’th column and the i’th row are symmetric, proving
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the assertion. Since |A\K| ≥ |A| − |K| ≥ (q2 − 0.4q − 14)− 929
√
q ≥ q2 − q + 3, by a lemma in [2] (its

Lemma 3.7), the whole matrix M is symmetric.
Hence we see that the above function π : V ↔ P is a polarity of the projective plane P. Let H

be the polarity graph of π. For any k × ` matrices X = (xij) and Y = (yij), we say X is at most Y if
xij ≤ yij for all i, j and we express this by X ≤ Y.

Now we are going to finish the proof by showing that G is a subgraph of H. Let A = (aij) be the
adjacent matrix of the graph G. It suffices to shows that A ≤ M. We call these (i, j)-entries with
aij = 1 and mij = 0 problematic. Since both A andM are 0/1 matrices, it is equivalent for us to show
that there is no problematic entries.

For every vi ∈ U1, as it is feasible, we see that N(vi) ⊆ Li and thus the i’th row of A is at
most the i’th row of M. Since both A and M are symmetric, the i’th column of A is also at most
the i’th column of M, whenever vi ∈ U1. Now consider vertices vi ∈ U2. By the above discusion,
N(vi)\{w} ⊆ Li, where w = v` is fixed. Consider aij = 1 for possible j which is not `. Then we have
vj ∈ N(vi)\{w} ⊆ Li. This shows that the i’th row of A is at most the i’th row of M, except the
(i, `)-entry. By symmetry, we see that for all vi ∈ U2, the i’th column of A is at most the i’th column
of M, except the possible (`, i)-entry. We also know w is feasible or near-feasible. So |Kw| ≤ 50

√
q

and the number of problematic (`, i)-entries is clearly at most |Kw| ≤ 50
√
q. This further shows that

the number of problematic (i, j)- or (j, i)-entries for all vi ∈ U2 is at most 100
√
q. Note that |U3| = s

is at most 29. Putting all the above together, we see that the number of problematic (i, j)-entries for
i, j ∈ [n] is at most 100

√
q + 292 ≤ 101

√
q.

Let E0 be the set of vivj for all problematic (i, j)-entries. It is easy to see that E0 = E(G)\E(H)
and |E0| ≤ 101

√
q. Suppose that there is some edge say e = vivj ∈ E0. By the polarity lemma ,

H ∪ {e} contains at least q − 1 copies of C4, all of which contain the edge e and are edge-disjoint
otherwise. Hence in order to turn H ∪ {e} into a subgraph of G containing e (which is C4-free), one
needs to delete at least q− 1 edges in H ∪{e}. On the other hand, since H is a polarity graph, we have
e(H) ≤ 1

2q(q + 1)2 and |E(H)\E(G)| − |E0| = e(H)− e(G) ≤ 0.2q. So one can delete |E(H)\E(G)| ≤
0.2q + |E0| ≤ 0.2q + 101

√
q < q − 1 edges to turn H ∪ {e} into a subgraph of G while preserving the

edge e. This is a contradiction. Therefore, E0 = ∅ and G is a subgraph of H.
It only remains to show that the polarity graph H is unique. Recall that the projective plane P

containing R has been shown to be unique. So it is equivalent to show that the polarity π is unique.
Suppose for a contradiction that there exists another polarity π′ : V ↔ P, where π′ : vi ↔ Lσ(i) for
some permutation σ on [n]. Let M′ = (m′ij) be the incidence matrix of P with respect to π′. By the
same proof as above, we can deduce that A ≤M′. By (2), we see that any vertex vi ∈ V has degree at
least 0.6q ≥ 2. Choose any pair {xi, yi} ⊆ N(vi). Since the i’th row of A is at most the i’th row ofM′,
we see {xi, yi} ⊆ N(vi) ⊆ Lσ(i) ∈ P. Also we have {xi, yi} ⊆ N(vi) ⊆ Li ∈ P. Since P is a projective
plane, it is clear that Lσ(i) = Li for all i ∈ [n]. This shows that π = π′ and indeed the polarity graph
H is unique. The proof of the result in this note is completed.
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