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In this note we give a self-contained proof of the following result. For more results on related topics,
we direct interested readers to [3].

Theorem. Let ¢ > 10° be even and G be a Cy-free (¢? + g + 1)-vertex graph with more than %q(q +
1)2 — 0.2 edges. Then there exists a unique polarity graph of order ¢ containing G as a subgraph.

Proof. The proof stems from the celebrated work of Fiiredi and will be completed in three steps.

Step 1. We may assume A(G) = g + 1. First suppose on the contrary that A(G) = d(v1) > ¢ + 3.
Let T be the number of 2-paths in G with none of its endpoints in N(v;). Since any two vertices have
at most one common neighbor and any two vertices in N (v;) are contained in a 2-path, we have

<q2+q;—1—A) _ <n—2A> szZn:('N(“i);N(Ul)|>.

=2

Since G is Cy-free, we see |N(v;) \ N(v1)| = d(v;) — d(vi,v1) > d(v;) — 1 for 2 < i < n. As e(G) >
2q(q+1)*—0.2q, we have that >_7" , [N (v;) \ N(v1)| > 2e(G) — A — (n—1) > ¢* +¢* — 0.4g — A. Using
Jensen’s inequality, we have

<q2+q;1—A> . ; (IN(vi);N(mﬂ) § (q2+q><q3+q2q?23fq_A>.

This is equivalent to (¢ +¢)(¢? +q¢+1—A)(@®> +q—A) > (¢*+¢*> — 0.4 — A)(¢® — 1.4 — A). As q
is large, the above inequality does not hold for ¢ + 3 < A < ¢ + ¢. This shows A(G) < ¢ + 2.

Let S; be the set of all vertices of degree i. Next we show that |Sy42| < 1. Suppose on the contrary
that there are at least two vertices v; and vg of degree ¢ + 2. First suppose N(v1) N N(vy) = (). Then
for 2 < i < n, since G is Cy-free, we have

IN(v;) \ (N(v1) UN (v2))] = d(v;) — d(v;,v1) — d(vi, v2) > d(v;) — 2.

Similarly, by double counting the number of 2-paths with none of its endpoints in N(v;) U N(v2) and
using Jensen’s inequality, we have

<n _22A> . ; (uvm) V) uzv<w>>|> ) <z<d2<>>> s <(G);+>

This is a contradiction as this inequality does not hold. Therefore we may assume N (v1) N N (va) # (.
Let N(v1)NN(vy) = {vs} and let A = N(v3)\{v1,v2}. Then we have [N (v;)\ (N (v1)UN (v2))| > d(v;)—1
for v; € A, and |N(v;) \ (N(v1) UN(v2))| > d(v;) — 2 for v; ¢ N(v3). Thus we have

Z,Zn; (IN(vi) \ (N(;n) U N(v2))l> > <d(03; - 2> n v; (d(vi; - 1) n ngvz[vg} (d(vj; - 2>

By similarly arguments as above, we have
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The minimum value of the equation on the right is taken when d(v3) = 2, which is still greater than
the left hand side, a contradiction. This proves |Sy42| < 1.

Now assume the following holds: If G is C4-free graphs on g% +q-+1 vertices with at least %q(qul)2 —
0.2¢q edges and A(Gy) = g + 1, then there exists a unique polarity graph of order ¢ containing Gy as a
subgraph. Since |S;12| < 1, we can delete at most one edge from G to get a subgraph G’ with maximum
degree ¢+ 1 and e(G') > e(G) —1 > %q(q +1)2 — 0.2¢. By the above assumption there exists a unique
polarity graph H containing G’ as a subgraph. Let e be the possible edge in E(G)\E(G"). If e does not
exist, then G = G’ is a subgraph of H. So e = zy ¢ FE(H). By properties on polarity graphs, H U {e}
contains at least ¢ — 1 copies of Cy, all of which contain e and are edge-disjoint otherwise. Consider
G’ U{e}, which is a subgraph of G and thus is Cy-free. Any of these g — 1 copies of Cy in HU{e} has an
edge not in G’ U {e}, which are distinct. This shows that e(G') < e(H)—(¢—1) < 3q(¢+1)* — (¢—1),
which contradicts e(G’) > 2q(g + 1)> — 0.2q. This proves Step 1.

Therefore in the remaining proof, it is enough to assume that e(G) > 3¢(g+1)? —0.2¢g and A(G) =
g+1. Welet B={z eV :|N(z)NS|>0.1q} and A= Sg41\B. Let R = {N(x) : x € A}

Step 2. We show that R can be embedded into a projective plane of order g uniquely. Let S be the
set of all vertices of degree at most q. We claim that if ¢ is even and A(G) = ¢ + 1, then any
vertex in Sy41 has a neighbor in S and moreover, |S| > ¢ + 1. Indeed, suppose on the contrary
that there exists some v € Sy41 and all its neighbors have degree ¢ + 1. Let m be the number of
edges contained in G[N(v)]. Clearly these edges form a matching (as otherwise there is a Cy) and
since ¢ is even, we have m < 4. We count the number M of edges between N(v) and V\N(v).
As G is Cy-free, every vertex in V\N[v] has at most one neighbor in N(v). Hence, we have that
Prqg=n—(q+2)+(@q+1)>M = Y zen) d@) —2m = (¢ + 1)2 — ¢, a contradiction. Thus
n— 18] = [Sgr1] < e(S,8411) < Y pegd(@) < ¢|S|. So (¢ +1)[S| > n = ¢> + ¢ + 1, implying that
|S| > g + 1. This proves the claim. Moreover, we have

q
g+ 1<1S <20+ 1Sl = F(V) = (g + Dn — 2¢(G) < 1dg + 1 (1)
=0

and thus ¢% — 0.4¢ < |Sy+1] < ¢% For any T C S, it holds that 1.4¢+ 1 > f(V) > f(T) + (|S| — |T|) >
f(T)+ (¢+1—1T]). This implies that f(T) < |T| + 0.4¢ for any 7' C S and in particular,

d(x) > 0.6q and d(z)+d(y) > 1.6q for any z,y € V. (2)

Now we show |B| < 14 and |A| > ¢* — 0.4¢ — 14. To see this, let ¢ be the number of adjacent ordered
pairs (b,v) with b € B and v € S. We have |B|-0.1¢ < t < |S| - ¢ < 2¢?, implying that |B| < 20q.
Consider the subgraph Gy of G induced by the set BU S, where |BU S| < 22¢. Since Gy is Cy-free, by
Reiman’s Theorem, we derive that §|B|-0.1g < e(Go) < % -10¢2 = 55¢3/? and thus |B| < 1100,/q.
For any b,b’ € B, we have |[Ng(b) N Ng(b')| < 1. By (1) and the inclusion-exclusion principle,

B
Ldg+1> 1S > | Upep Ns()| = S INs(b) = S [Ns(b) N Ns(¥)] > B - 0.1g — <| 2‘)
beB bbb eB

Since |B| < 1100,/ and g is large, we further derive |B| < 14. So |A| > [Sy41| — |B| > ¢* — 0.4¢ — 14.

Next we investigate properties on special vertices of degree ¢+1 defined as follows and then show that
R is 1-intersecting. We say a vertex v € V has property 1, if v € S, satisfies that [N (v) NSg41| =g
and |[N(v) NSy = 1. Let V; denote the set of all vertices of property 1 in G.

We claim |Vi| > 0.6¢% — 1.8¢. Indeed, for uv € E(G) with u € S and v € Sg41, we assign a weight
w(uv) to be the deficiency f(u). Let W denote the sum of the weights of these edges. We note that
any vertex in V; contributes one to the sum W, while any vertex in Sg41\Vi contributes at least two.
Hence, by (1) we can derive that

q
Vil +2(1Sg+1| = [VAl) Z =)@+ 1)[Sg—il < q- f(V) < q(ldg+1).



Since |Sy41| > ¢® — 0.4¢, we have |Vi| > 2|S,41| — q(1.4g + 1) > 0.6¢* — 1.8¢.

Next we describe the structure of the neighborhood of a vertex in V. Suppose v € Vi has N(v) =
{v1,...,; 9941} Let N; = N(v;)\Nv] for i€ [¢g+1]. We show that for v € Vi, the sets Ny, ..., Ny form
a partition of V\N[v], and G[N (v)] consists of a matching of size £ plus an isolated vertex of degree
q. Indeed, assume that the induced graph G[N(v)] contains m edges, which clearly form a matching.
Since G is Cy-free, any = € V\N|[v] has at most one neighbor in N(v). Hence

(@+aq+1)—(g+2)+(q+1) > > dx)—2m=q(g+1)+q—2m, (3)
€N (v)
implying that m > Z. Since ¢ is even, we derive that m = 4 and moreover, (3) must be an equality.
This further shows that Ny, ..., Ny41 form a partition of V\N{v].
Suppose d(vgy1) = ¢. It remains to show that vy4 is an isolated vertex in G[N(v)]. Suppose for
a contradiction that the edge set of G[N(v)] is {vavs, ..., vqvg+1}. Then |Ni| = q, |[Ng41] = ¢ — 2 and
|N;| = q—1for 2 <i <gq. Since G is Cy-free, every G[N;] contains at most ||N;|/2] edges and there
is no edge between No; and Np;qq for 1 <4 < 2. Also, there are at most min{|N;|,|N;|} edges between
N; and Nj for i,j € [¢ + 1]. Thus we have

> d(z) < [Ng| +2[|Na|/2] + min {|N1],[No|} + > min{|Na|,|N;|} = (¢ + 1)|No| — 2.
xEN> 4<i<g+1

So f(N2) = (¢ + 1)|Na| = > cn, d(x) > 2. Similarly, we have f(N;) > 2 for all 2 <i < ¢ — 1. Together

with (1), we can obtained 1.4¢+ 1> f(V) > >  f(N;) > 2q — 4 which is a contradiction.
2<i<qg—1

The following is a key for constructing a large (¢ + 1)-uniform 1l-interesting hypergraph. Suppose
v € Vi has N(v) = {vi,...,vg41}. If u € Sy41 \ N[v] is adjacent to Sgy1 N N(v), then we have
|IN(u) " N(v;)| =1 for all i € [¢+ 1]. (We denote this property by (%).) To see this, by the above
analysis, we assume that uvi,viv2 € E(G) for some vi,v2 € Sgq1. Then u has exactly one neighbor in
NJv], no neighbors in Ny and N7, ..., Ny41 form a partition of V\Nv]. Since u € Sy 41 has at most one
neighbor in each N; for ¢ # 2, it follows that u must have exactly one neighbor in each N; for i # 2.
Since N(u) N N(v2) = {v1}, we see that indeed |N(u) N N(v;)| =1 holds for all ¢ € [q + 1].

We then show that the neighborhood of any vertex in A contains many vertices of property 1. To
do so, for any = € A we define

Sy =N(z)NS and S; =5, U(N(Sz)NN(x)). (4)

Since x € A, we have |S;| < 0.1q. Every vertex in S, has at most one neighbor in N (z), so |Sk\ S| < | S|
and thus |S%| < 2]S,| < 0.2q.

We conclude that for x € A, there are at least 0.3¢ + 1 vertices of property 1 in N(z)\S%. To show
this, let N(z) = {z1,...,zq41} and N; = N(z;) \ N[z] for i € [¢ + 1]. We assert that f(N;) > 1 for any
x; € N(z)\S;. Indeed by definition, such z; € Sy41 and every neighbor of z; in S must lie outside of
N{z] (that is in IV;). Also by the above analysis, x; has at least one neighbor in S which belongs to N;.
So we have f(NV;) > 1. From this argument, we also see that x; € N(x)\ S has f(N; U{z;}) =1 if and
only if z; € V;. If we let m be the number of vertices of property 1 in N(x)\S%, then we have

m+2(d(x) — 1S5 —m) + S| < > F(N;U{ai}) < F(V) < 14g+ 1.
i€lg+1]

Using d(z) = ¢+ 1 and 2|S%| — |S.| < 0.3¢q, we can derive that m > 0.3¢ + 1.

Now we are ready to prove that R is a l-intersecting (q + 1)-hypergraph with |R| > ¢? — 0.4¢q — 14.
It is clear that R is (¢ + 1)-uniform and |R| = |A| > ¢® — 0.4¢ — 14. So it is enough to show that
R is 1-interesting. Suppose that there exist some z,y € A with no common neighbor. First consider
the case zy € E(G). By the above analysis, there exists some z € N(x) NV; — {y}. Clearly we have
yz ¢ E(G). Applying (%) by viewing z as the vertex v therein, since y € S,41\N[2] is adjacent to



x € Sgy1 N N(z), we can conclude that |[N(y) N N(z)| = 1, a contradiction. Assume that zy ¢ E(G).
Let N(z) = {z1,...,xq41}. Let N; = N(x;)\N[z] for i € [g+ 1] and Y = V\(N[z] U Ny U...U Ngy1).
So we have y € Y. Since each x; has at most one neighbor in N(z), we get that |Y| <n — (¢ +2) —
Z?;rll (d(z;) —2) = Zf;rll (x;). Let Ni(x) be the set of vertices in N(z)\Sk of property 1. By above
analysis, |[N1(z)| > 0.3¢ + 1. Further let Nao(x) = N(x)\(Ni(x) U S%). Then, we have f(N;) = 1 for
each z; € Ni(x) and f(N;) > 2 for each x; € Na(x). Thus, we can derive that

g+1
Y] < Zf(ffi) = Z f(xi) <14q+1—|Ni(x)] — 2| Na(z)].
i=1 T;€ESy

Since N (z) = Ni(x)UNy(z)US?, we see that the number of neighbors of y in those N;’s with z; € Ni(x)
is at least d(y) — (|]Y'| — 1) — |S%| — |N2(x)|, which is at least

(4+2) — (Ldg+ 1) + [Ni(@)] + | Nao(a)| - [S5] > 0.2 +2 > 0.1,

where we used the above estimation on |Y| and the facts that g+1 = |Ny(x)|+|Na(z)|+|S%|, | Sk < 0.2q.
Since |[N(y) N'S| < 0.1¢, among those neighbors of y, there is a vertex z € N(y) N Sy4+1. Suppose that
z € Nj for some x; € Ni(x) C Vi. Applying (x) by viewing z; as the vertex v, since y € Sg41\N[z;] is
adjacent to z € N(x;) N Sq41, we can derive that y and € N(z;) have a common neighbor. Since G
is Cy-free, x and y have exactly one common neighbor. Thus R is 1-intersecting.

By an embedding result in [4], R can be embedded into a projective plane P of order q. Moreover
by a result in [1], this embedding is unique. This proves Step 2.

Step 3. There exists a unique polarity graph of order g containing G as a subgraph. Let R¢ = P\R.
We say v € V is feasible, if there exists a line L € P with N(v) C L; otherwise, we say v is non-feasible.
For non-feasible v, we say it is near-feasible, if there exist a line L € R¢ and a subset K, C N(v) such
that N(v)\K, C L and |K,| < 50,/q. In both definitions, we say v and L are associated with each
other. For feasible v, we let K, = ). By (2) and since G is Cy-free, for any two feasible or near-feasible
vertices u and v, we have

|(N(u)\Ku) U (N(@)\Ky)| > (d(u) — 504/q) + (d(v) — 50y/q) —1 >1.6¢ — 100,/ —1>q+1. (5)

This implies that each line in P is associated with at most one feasible or near-feasible vertex. On the
other hand, if there are two lines in P associated with the same feasible or near-feasible vertex v, as
d(v) > 0.6¢ by (2), then it is easy to see that these two lines will intersect with more than two vertices,
a contradiction. So each feasible or near-feasible vertex is associated with a unique line in P.

Next we study some properties on non-feasible vertices v € V. Let N(v) = {v1,...,vq}. Since v is
non-feasible, we see N(v) € L for any L € P and thus v ¢ A. Then any pair {v;, v;} for 4, j € [d] is not
contained in any line N(u) € R. This is because that otherwise, we see that v;uv;vv; forms a Cy in G,
a contradiction. So every such pair {v;,v;} is contained in a unique line L € R¢. Let £, be the family
of lines L € P which contains at least two vertices of N(v). Then we have £, C R¢ and thus

|ILy| <Rl =|P|—|R| < 1.4q+ 15. (6)

We also point out that any vertex in N (v) appears in at least two lines of £,.

We process to show that all non-feasible vertices are near-feasible in the following. First we show
that any vertex v € V has a neighbor v; with dg(v;) = |[N(v;) N A| > ¢ — 16. In addition, if v ¢ B has
degree at least 0.9¢+43, then v has a neighbor v; with dg (vj) > ¢—1. To see this, let N(v) = {v1,...,v4}.
By (2), we have d = d(v) > 0.6¢q. Let N; = N(v;)\N[v] for i € [d]. Since the sets N; U {v;} are disjoint
over i € [d], we have 1.4g+1 = f(V) = 3 icrq f(NiU{vi}) + f(v) = Doieq f(NsU{vi}) + (¢+1—d). By
averaging, there is some j € [d] with f(N; U{v;}) < O'Tleq +1 < 2. By the definition of f, there is some
J € [d] with f(N; U{v;}) < 1. Therefore, dr(vj) = [Nw;) N Al > [N; N A| > [N;| — [N; N S| - [B] >
(d(vj) —2) — f(Nj) =14 = (¢ —1— f(v;)) — f(N;) — 14 > g — 16, as desired.

Next we consider vertices v ¢ B with d = d(v) > 0.9¢ + 43. Let B, = N(v) N (S U B) and
B} = B, U (N(By) N N(v)). Then we have |B,| < |[N(v)NS|+|B| < 0.1g + 14. Since G is Cy-free,



every vertex in B, has at most one neighbor in N(v), implying that |B}| < 2|B,|. Let T' = {v; €
N@)\B; : N;yn B = (}. Since N;’s are disjoint and there are at most |B| many N;’s containing
some vertex in B, we get |T'| > |[N(v)\Bj| — |B| > d — 0.2¢q — 42. If f(N;) > 2 for all v; € T, then
14g+1> f(V) > 2|T| > 2(d — 0.2¢ — 42) > 1.4q + 2, a contradiction. Therefore, there exists a vertex
v;j € T such that f(N;) < 1. By the definition of T', we can see that dg(v;) = d(v;) —1— f(N;) > ¢—1.

Partition V into three disjoint sets Uy U Us U Us, where U; consists of all feasible vertices and Us
consists of non-feasible vertices v ¢ B with d(v) > 0.9q + 43.

We claim that there exists one vertex w € V such that all v € Uy are near-feasible with K, = {w}.
Indeed, for any v € Us, by the above property, there is a neighbor v; of v with dg(v;) > ¢ — 1. By the
foregoing discussion, v; appears in at least two lines in £, C R¢. If dg(vj) > ¢, then dp(v;) > ¢+ 2, a
contradiction. So dg(vj) = ¢ —1 and there are exactly two lines, say L; and Lo, in £, C R containing
vj. Let Ny = L1 N N(v) and Ny = Lo N N(v). Then we have Ny N Ny = {v;} and Ny U Ny = N(v).
Consider any other line L; € £,\{L1, Lo} for i > 3. Set N; = L; N N(v). We see that for any ¢ > 3
and j € {1,2}, |Nz ﬂNj| <1 and |]VZ N N1| + |]VZ N N2| > |Nz N (Nl U N2)| = |Nz| > 2. This shows
that for any ¢ > 3, N; consists of two vertices, one from Ni\{v;} and the other from Ny\{v;}. Hence,
[0l = (IN1] — )| Na] — 1) + 2

Let d = d(v). We may assume that d — 1 > |[Ny| > |Na| > 2. If |[Na| > 3, then we have |£,| =
(IN1|=1)(|N2| =1)+2>2(d—3)+2=2d—4 > 1.8¢+82 > 1.49+ 15 > |L,|, where the last inequality
holds by (6), a contradiction. Thus, |Ni| = d — 1 and |N2| = 2, implying |£,| = d. Suppose that
Ny = {vj, w}. Then every N; for 2 < i < d contains the vertex w. Also N(v)\{w} C L; € R, implying
that v € U is near-feasible with K, = {w}.

Assume there is another non-feasible vertex v' € Us with K,y = {w'}, where w’ # w. Let d = d(v)
and d’ = d(v'). By the above arguments, we see w and w’ appear in d — 1 and d’ — 1 lines in R€,
respectively. By (6), we have |[R¢|+2 < 1.4¢+ 17 < 1.8¢+84 < (d—1) + (d’' — 1), which shows that w
and w’ appear in at least two lines of R¢ in common. This contradicts that P is a projective plane.

Next we show that all non-feasible vertices are near-feasible. To see this, let v € V be any non-
feasible vertex. We have d(v) > 0.6¢. By the previous property, v has a neighbor u with dg(u) =
g+ 1—m, where m <17. Let Y ={L € L, : w € LN N(v)}. We have |U| < m and UreyNr = N(v),
where N7, := LN N(v). We assert that for all but at most one L € U, the size of Ny, is at most 2,/q.
Suppose on the contrary that there are L1, Ly € U with [Np,| > 2,/g+ 1 and |Np,| > 2,/g + 1. Then
all pairs (x,y) with € Nz, \{u} and y € Np,\{u} should appear in distinct lines in £,. By (6), this
shows that 1.4qg + 15 > |£,| > (|N,| — 1)(|NL,| — 1) > 4q, a contradiction.

Let Ly be the line in ¢/ with the maximum Ny, and let Ky = Uy (1,3 (No\{u}). Then N(v)\K, C
Ly € RE with [Ky| < 321 gz, (INL|=1) < (m—1)-2,/q < 32,/q < 50,/q. Therefore, v is near-feasible.

We express V = {v1,...,v,} such that Uy = {v1,...,v.}, Us = {vas1, ..., 0} and Us = {vpy1,...., v}
for 1 < a < b < n. Since all vertices in G are feasible or near-feasible, by the discussion after (5), we
can conclude that each v; € V is associated with a unique line denoted by L; in P.

Let 7 : V <> P be a function which maps v; <> L; for every i € [n]. Let M = (m;;) be the incidence
matrix of P with respect to .

Let s := |Us|. We point out that any v € Us either is in B or has d(v) < 0.9¢ + 42. In the latter
case, we have the deficiency f(v) = ¢+ 1 —d(v) > 0.1¢ — 41. Hence by (1), we have

1.4g + 1
V) gy a1l oy

< Bl + 2V ks
s<IBl+ g, = S 0.1q — 41 =

Let K be the union of K,’s over all v € V. By the above analysis, we know that K, = () for v € Uy,
K, = {w} for v € U and |K,| < 32,/q for v € Uz. Hence |K| <1+ s-32,/q < 929,/q.

Finally we show that M is symmetric. Indeed, we assert that if v; € A\K, then m;; = mj; for
all j € [n]. If mj; = 1, then as v; € A, we have v; € L; = N(v;) € R. Since v; ¢ K, we see
v; € N(v;)\K C N(vj)\K,; C Lj, which shows that mj; = 1 = m;;. Now we observe that as v; € A,
the i’th column and the i’th row of M have exactly ¢ + 1 many l-entries, and all these 1-entries are
in the symmetric positions. This shows that the ¢’th column and the i’th row are symmetric, proving



the assertion. Since |[A\K| > |A| — |K| > (¢* — 0.4q — 14) — 929,/q > ¢* — ¢+ 3, by a lemma in [2] (its
Lemma 3.7), the whole matrix M is symmetric.

Hence we see that the above function m : V <> P is a polarity of the projective plane P. Let H
be the polarity graph of m. For any k x ¢ matrices X = (z;) and Y = (y;;), we say X is at most ) if
x;j < y;; for all 7,7 and we express this by & < V.

Now we are going to finish the proof by showing that G is a subgraph of H. Let A = (a;j) be the
adjacent matrix of the graph G. It suffices to shows that A < M. We call these (i, j)-entries with
a;j = 1 and m;; = 0 problematic. Since both A and M are 0/1 matrices, it is equivalent for us to show
that there is no problematic entries.

For every v; € Uy, as it is feasible, we see that N(v;) C L; and thus the ¢’th row of A is at
most the i’th row of M. Since both A and M are symmetric, the i’th column of A is also at most
the i’th column of M, whenever v; € U;. Now consider vertices v; € Us. By the above discusion,
N(vi)\{w} C L;, where w = vy is fixed. Consider a;; = 1 for possible j which is not £. Then we have
vj € N(v;)\{w} € L;. This shows that the i’th row of A is at most the i’th row of M, except the
(i,¢)-entry. By symmetry, we see that for all v; € Us, the i’th column of A is at most the ¢’th column
of M, except the possible (¢,i)-entry. We also know w is feasible or near-feasible. So |K,| < 50,/
and the number of problematic (/,7)-entries is clearly at most |K,| < 50,/g. This further shows that
the number of problematic (4, j)- or (j,4)-entries for all v; € Us is at most 100,/q. Note that |Us| = s
is at most 29. Putting all the above together, we see that the number of problematic (i, 7)-entries for
i,j € [n] is at most 100,/ + 29 < 101,/q.

Let Ey be the set of v;v; for all problematic (i, j)-entries. It is easy to see that Ey = E(G)\E(H)
and |Ep| < 101,/q. Suppose that there is some edge say e = vv; € Ey. By the polarity lemma ,
H U {e} contains at least ¢ — 1 copies of Cy, all of which contain the edge e and are edge-disjoint
otherwise. Hence in order to turn H U {e} into a subgraph of G containing e (which is Cy-free), one
needs to delete at least ¢ — 1 edges in H U{e}. On the other hand, since H is a polarity graph, we have
e(H) < 1q(g+1)? and |E(H)\E(G)| — |Eo| = e(H) — e(G) < 0.2q. So one can delete |E(H)\E(G)| <
0.2q + |Ep| < 0.2¢ 4 101,/g < g — 1 edges to turn H U {e} into a subgraph of G while preserving the
edge e. This is a contradiction. Therefore, Ey = () and G is a subgraph of H.

It only remains to show that the polarity graph H is unique. Recall that the projective plane P
containing R has been shown to be unique. So it is equivalent to show that the polarity 7 is unique.
Suppose for a contradiction that there exists another polarity 7’ : V' < P, where 7’ : v; < L, for
some permutation o on [n]. Let M’ = (mj;) be the incidence matrix of P with respect to 7’. By the
same proof as above, we can deduce that A4 < M’. By (2), we see that any vertex v; € V has degree at
least 0.6¢ > 2. Choose any pair {x;,y;} C N(v;). Since the i’th row of A is at most the i’th row of M’,
we see {7, yi} C N(vi) € Lo(;) € P. Also we have {z;,y;} € N(v;) € L; € P. Since P is a projective
plane, it is clear that L,y = L; for all i € [n]. This shows that 7 = 7’ and indeed the polarity graph
H is unique. The proof of the result in this note is completed. ]
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