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Non-repeated cycle lengths and Sidon sequences

Jie Ma Tianchi Yang

Abstract

We prove a conjecture of Boros, Caro, Füredi and Yuster on the maximum number of edges in
a 2-connected graph without repeated cycle lengths, which is a restricted version of a longstanding
problem of Erdős. Our proof together with the matched lower bound construction of Boros, Caro,
Füredi and Yuster show that this problem can be conceptually reduced to the seminal problem
of finding the maximum Sidon sequences in number theory.

1 Introduction

An old problem of Erdős since 1975 (see [1], p. 247, Problem 11) asks to determine the maximum
number n + f(n) of edges in an n-vertex graph in which no two cycles have the same length. An
early result of Shi [9] gives that f(n) ≥ ⌊(

√
8n− 15 − 3)/2⌋, with equality for 2 ≤ n ≤ 16. Since

then Lai has obtained a series of sequential improvements on the lower bound (see [2, 6] for details),
including the current record [6] that f(n) ≥

√

238n/99 ≈ 1.55
√
n. For the upper bound, Lai [5]

proved f(n) = O(
√
n log n), which was later reproved in [3]. In a breakthrough result, Boros, Caro,

Füredi and Yuster [2] deduced f(n) ≤ 1.98
√
n from the minimum cover of non-uniform hypergraphs,

and thus established the order of the magnitude of f(n) to be Θ(
√
n). It remains open to determine

f(n), even asymptotically.
Another interesting problem is to consider the restricted version of Erdős’ problem for 2-connected

graphs. Following the notation in [2], let n+ f2(n) be the maximum number of edges in an n-vertex
2-connected graph in which no two cycles have the same length. In 1988, employing the standard
ear-decomposition of 2-connected graphs, Shi [9] proved f2(n) ≤

√
2n + o(

√
n). In [3] Chen, Lehel,

Jacobson and Shreve revisited this upper bound and used it to derive f(n) = O(
√
n log n). Using

Sidon sequences in number theory, they [3] also showed that f2(n) ≥
√

n/2 − o(
√
n). A sequence

of integers a1, a2, ..., ak is called a Sidon sequence if all pairwise sums ai + aj for 1 ≤ i ≤ j ≤ k
are distinct. Let b2(n) denote the maximum size of a Sidon subsequence of {1, 2, ..., n}. It is well
known that b2(n) =

√
n + o(

√
n), where the upper bound was proved by Erdős and Turán in their

celebrated paper [4] (later simplified in [7]) and the lower bound was provided by Singer [10]. Boros,
Caro, Füredi and Yuster [2] refined the use of Sidon sequences and made a significant improvement
on the lower bound of [3] by showing that

f2(n) ≥
√
n− o(

√
n). (1)

To illustrate this somehow surprised relation between f2(n) and Sidon sequences, we now give a sketch
for the proof of (1). Utilizing the result of Singer [10] (together with Erdős-Turán Theorem [4]), it is
demonstrated in [2] that for any integer n > 0, there exist integers a1 = 1 < a2 < ... < ak = n−1 such
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that k =
√
n−O(n9/20) and all differences aj − ai for 1 ≤ i < j ≤ k are pairwise distinct. Construct

an n-vertex 2-connected graph G as follows: let V (G) = {v0, v1, ..., vn−1} and E(G) consist of the
edges in a Hamilton cycle C = v0v1...vn−1v0 and the edges v0vai for all 1 < i < k. It is easy to see that
each cycle in G contains two edges incident to v0 (say v0vai and v0vaj ) and the subpath of C between
vai and vaj not containing v0. So all cycle lengths in G are of the form aj − ai +2 for 1 ≤ i < j ≤ k,
which are pairwise distinct. This proves (1) that f2(n) ≥ e(G) − n = k − 2 =

√
n− o(

√
n).

The authors of [2] further conjectured that the lower bound (1) is asymptotically tight.

Conjecture 1.1 (Boros, Caro, Füredi and Yuster, Conjecture 5.3 in [2]).

lim
n→∞

f2(n)/
√
n = 1.

As remarked in [2], this would imply “the (difficult) upper bound in the Erdős Turán Theorem” on
Sidon sequences. A weaker question was raised in [8] to determine the maximum number of edges in
a hamiltonian graph with no two cycles of the same length.1

Our main result in this paper is to give a proof of Conjecture 1.1 by the following.

Theorem 1.2. Any n-vertex 2-connected graph with no two cycles of the same length contains at
most n+

√
n+ o(

√
n) edges.

We introduce some notation. Let G be a graph. For a subset A of edges (or vertices) in G, let
G\A be the graph obtained from G by deleting the elements in A. Let P be a path with endpoints
x, y. We say that P is an (x, y)-path and any vertex or edge in P\{x, y} is inner. For a tree T
with x, y ∈ V (T ), we denote xTy to be the unique subpath in T between x and y. Suppose F,F ′

are subgraphs of G. By F△F ′ we denote the subgraph consisting of the edges which appears in
exactly one of F and F ′, and by F\F ′ we denote the subgraph consisting of the edges in F but not
in F ′. An F -ear in G is a path in G whose two endpoints lie in F but whose inner vertices do not.
An ear-decomposition of G is a nested sequence (G0, G1, ..., Gs) of subgraphs of G such that G0 is a
cycle, Gi+1 = Gi ∪ Pi+1 where Pi+1 is a Gi-ear in G for 0 ≤ i < s, and Gs = G. It is well known
that a graph G is 2-connected if and only of it has an ear-decomposition. Let us point out that any
ear-decomposition of G has s = |E(G)| − |V (G)|. Throughout this paper, let [n] = {1, 2, ..., n} and
all logarithms in this paper are binary (with base 2).

We organize this paper as follows. In Section 2, we set up our proof environment by defining an
ear-decomposition associated with a special linear ordering of vertices and then using it to construct
a family F of paths which will serve as the building blocks to generate cycles later. In Section 3, we
prove some preliminary propositions on the paths in F and classify all pairs of F in three types. In
Section 4, we prove Lemma 4.1, which gives a structural description on F (very loosely speaking, it
shows that almost all pairs of F form a similar local structure). In Section 5, we prove Lemma 5.1,
which roughly says that one can reorder the paths of F in a nice way such that for almost every
edge e, the paths containing e are listed almost consecutively. In Section 6, we complete the proof
of Theorem 1.2. In the final section, we conclude this paper by mentioning some remarks.

2 Basic setting

Throughout the rest of the paper, let G be an n-vertex 2-connected graph with n+ s edges, where n
is sufficiently large and s ≥ (1+ o(1))

√
n. Our ultimate goal is to show that G contains two cycles of

1Note that a hamiltonian graph is naturally 2-connected.



the same length. To this end, we assume in the rest of the paper that G contains at most one cycle
of length i for each 3 ≤ i ≤ n and thus in particular,

G contain at most n− 2 cycles. (2)

To begin with, we define an ear-decomposition (G0, G1, ..., Gs) of G and a linear order ≺ of V (G)
using the following iterated procedure. (This will be crucial for all the coming proofs.)

(i) Fix an edge uv ∈ E(G) and let G0 be any cycle in G containing uv. Let P0 = ux1 · · · xav be
the path G0\{uv}. We define a linear order on V (G0) by letting u≺x1≺· · · ≺xa≺v.

(ii) Now suppose we have defined Gi−1 and a linear order ≺ on V (Gi−1) for some 1 ≤ i ≤ s. Among
all choices of Gi−1-ears in G, let Pi be a Gi−1-ear with endpoints ℓi, ri ∈ V (Gi) such that ℓi
is minimum under ≺ of V (Gi−1) and subject to this, ri is minimum under ≺ of V (Gi−1).

2

Let Gi = Gi−1 ∪ Pi. Write Pi = ℓiy1 · · · ybri and let ℓ+i be the vertex of Gi−1 that succeeds
ℓi immediately in the linear order ≺. We extend the linear order ≺ on V (Gi−1) to V (Gi) by
inserting all vertices yj with j ∈ [b] between ℓi and ℓ+i such that ℓi≺y1≺ · · · ≺yb≺ℓ+i .

Using this ear-decomposition, we define

L = P0 ∪
(

∪i∈[s]Pi\{ri}
)

and R = P0 ∪
(

∪i∈[s]Pi\{ℓi}
)

. (3)

It is easy to see that L and R are two spanning trees in G, and we will view u as the root of L and
v as the root of R. Now we define a family of (u, v)-paths as following:

Let f0 = P0 and for i ∈ [s], let Li = uLℓi, Ri = riRv and fi = Li ∪ Pi ∪Ri.

Let F = {fi : 0 ≤ i ≤ s}. These paths will be used to generate cycles in coming proofs.

3 Preliminaries on F
In this section, we prove some basic propositions about the paths in F . The first one can be derived
directly from the above definitions.

Proposition 1. Let x, y ∈ V (G) and let i, j be the minimum indices such that x ∈ V (Pi) and
y ∈ V (Pj). If x ∈ uLy or x ∈ yRv, then i ≤ j.

Proposition 2. For any i, j ∈ [s], Li ∪Rj does not contain cycles.

Proof. Suppose there is a cycle C in Li ∪ Rj. Then there must exist two vertices a, b such that
C = aLib ∪ aRjb. Let a≺b and let k and ℓ be the minimum indices satisfying a ∈ V (Pk) and
b ∈ V (Pℓ). Clearly we have a ∈ uLb and then Proposition 1 implies k ≤ ℓ. But we also have b ∈ aRv
and by Proposition 1 again, we derive ℓ ≤ k. So k = ℓ and a, b are two inner vertices of Pk. This
shows that aLib = aLb = aPkb = aRb = aRjb, a contradiction.

Proposition 3. For distinct i, j ∈ {0, 1, ..., s}, we have Pi 6⊆ fj.

Proof. Suppose that Pi is a subpath of fj for some i 6= j. Clearly we may assume i, j ∈ [s]. Since
Pi, Pj have no common edges, it follows that either Pi ⊆ Lj or Pi ⊆ Rj . Now we note that Pi is not
a subpath of the tree L (or respectively R), but Lj (or respectively Rj) is, a contradiction.

2Note that by this choice, we have ℓi≺ri for each i ∈ [s].



The following proposition is also straightforward to see (we omit its proof here).

Proposition 4. For any i ∈ {0, 1, ..., s}, fi is a (u, v)-path, whose vertices, as traversing from u to
v, increase in the linear order ≺.3

Let i 6= j ∈ {0, 1, ..., s}. A vertex in fi ∪ fj is called splitting if it has at least three neighbors
in fi ∪ fj. By Proposition 4, there exists some integer t ≥ 1 such that fi△fj consists of t cycles
aℓPibℓ ∪ aℓPjbℓ for ℓ ∈ [t], where a1≺b1�a2≺· · · ≺bt−1�at≺bt are all splitting vertices of fi ∪ fj.

Proposition 5. For distinct i, j ∈ {0, 1, ..., s}, fi△fj consists of one or two cycles such that each
cycle shares edges with Pi ∪ Pj and each of Pi and Pj shares edges with at most one cycle in fi△fj.

Proof. First we show that each cycle C in fi△fj contains some edges in Pi ∪Pj . Suppose not. Then
we have E(C) ⊆ E(Li ∪Ri∪Lj ∪Rj). Let us assume i < j here. By the choice of ears, we see ℓi�ℓj .
If there exists x ∈ V (Li) ∩ V (Rj), then ℓj≺rj�x�ℓi, a contradiction. So V (Li) ∩ V (Rj) = ∅. If C
has an edge in Li, then Li has at least two splitting vertices of fi ∪ fj. But Li ∪Lj has at most one
splitting vertex, while Li and Ri ∪Rj have no common vertex, a contradiction. So C has no edge in
Li and similarly we can show C has no edge in Rj . Thus C is contained in Ri ∪ Lj , a contradiction
to Proposition 2.

Next we show each of Pi and Pj shares edges with at most one cycle in fi△fj. Suppose for a
contradiction that Pi shares edges with two cycles in fi△fj. Then there exists a common vertex x
in fi and fj between these two cycles. We see that x is an inner vertex of Pi and thus cannot be an
inner vertex of Pj . So x ∈ V (Lj) ∪ V (Rj). If x ∈ V (Lj), then both of ufix and uLjx are in L and
thus cannot contain cycles, a contradiction. If x ∈ V (Rj), then xfiv ∪ xRjv ⊆ R, a contradiction.
Combining with these two facts, it is easy to see that fi△fj consists of at most two cycles.

Proposition 6. Suppose fi△fj consists of two cycles, where i < j. Let a≺b�c≺d be all splitting
vertices of fi∪fj. Then Pi ⊆ afib, Pj ⊆ cfjd and there exists some k < i such that fk = ufjc∪cfiv ∈
F and b, c are inner vertices of Pk.

Proof. Let k be the minimum index such that c ∈ V (Pk). So c is an inner vertex of Pk. By
Proposition 5, we have E(Pi) ∩ E(afib) 6= ∅ and E(Pj) ∩ E(cfjd) 6= ∅ (this is because, otherwise,
E(Pi) ∩ E(afib) = ∅ and E(Pj) ∩ E(afjb) 6= ∅, which would imply that ℓj≺b�ℓi, contradicting that
i < j). So c ∈ V (Lj ∪ Pj\rj). This, together with the fact c is an inner vertex of Pk, show that
ufkc = uLc = ufjc. We also have E(Pi) ∩ E(cfid) = ∅ and thus c ∈ V (Ri), implying k < i and
cfkv = cRv = cfiv. Hence fk = ufjc ∪ cfiv ∈ F .

Now we see fi△fk = afib ∪ afjb is a cycle and since k < i, this cycle must contain the entire Pi

and some edge in Pk. Similarly since k < j, fj△fk = cfid∪ cfjd is a cycle which contains the entire
Pj and some edge in Pk. Therefore, we see Pi ⊆ afib, Pj ⊆ cfjd, and Pk contains some edge in afjb
and some edge in cfid, which shows that b, c are inner vertices of Pk.

Let i, j be distinct. By Proposition 5, we see that fi\fj consists of one or two subpaths, exactly
one of which contains edges in Pi. By the primary segment ps(i, j) of fi\fj, we denote the unique
subpath in fi\fj containing edges in Pi. Note that ps(i, j) and ps(j, i) are distinct.

We now classify all pairs of F in the following three types:

3It will be convenient for us to picture that each fi has an imagined orientation from u to v, as to capture the linear
ordering ≺ on its vertices.
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• A pair {fi, fj} in F is called type-I, if fi△fj consists of two cycles. In this case, we call
the path fk ∈ F guaranteed in Proposition 6 as the base of {fi, fj}. See Figure 1 for an
illustration.

• A pair {fi, fj} in F is called type-II, if it is not type-I and there exists some fℓ ∈ F such that
ps(i, ℓ) = afic and ps(j, ℓ) = bfjd where a≺b≺c≺d lie in fℓ. Such a path fℓ is called a crossing
path of {fi, fj}, and the crossing path fℓ with minimum ℓ is called the base of {fi, fj}. See
Figure 1.

• Finally, a pair {fi, fj} in F is normal, if it is neither type-I nor type-II.

Proposition 7. Let i, j, ℓ be distinct. If Pℓ ⊆ fi ∪ fj, then {fi, fj} is type-I with base fℓ.

Proof. By Proposition 3, we see Pℓ 6⊆ fi and Pℓ 6⊆ fj. So Pℓ∩fi 6= ∅ and Pℓ∩fj 6= ∅. By Proposition 6,
{fi, fℓ} and {fj , fℓ} are not type-I. Let a ≺ b be the splitting vertices in fi ∪ fℓ and c ≺ d be the
splitting vertices in fj ∪ fℓ. We may assume a�c. If c≺b, since E(cfℓb) ∩ E(fi ∪ fj) = ∅, we see
E(cfℓb) ∩ E(Pℓ) = ∅. This implies that either E(Pℓ) ∩ E(afℓb) = ∅ or E(Pℓ) ∩ E(cfℓd) = ∅, a
contradiction. Hence, a≺b�c≺d lie in fℓ. If there exists some z ∈ V (afib) ∩ V (cfjd), then we have
a contradiction that c≺z≺b. So afib and cfjd are internally disjoint. Now we see that {fi, fj} is a
type-I pair with base fℓ.

For paths R1, R2 in G, we write R1�R2 (resp., R1≺R2) if any s ∈ V (R1) and t ∈ V (R2) satisfy
s�t (resp., s≺t).

Proposition 8. Let i, j, k, ℓ be distinct. If Pℓ ⊆ fi ∪ fj ∪ fk, then there exist α, β ∈ {i, j, k} such
that Pℓ ⊆ fα ∪ fβ and thus {fα, fβ} is type-I with base fℓ.

Proof. If there are α, β ∈ {i, j, k} such that Pℓ ⊆ fα∪fβ, then the conclusion follows by Proposition 7.
So we may assume that there exist edges ei, ej , ek in Pℓ such that ei ∈ fi\(fj ∪ fk), ej ∈ fj\(fi ∪ fk),
and ek ∈ fk\(fi ∪ fj). Without loss of generality, we may assume that ei�ej�ek lie in fℓ. Clearly
{fj, fℓ} is not type-I (as otherwise, E(Pℓ) ∩ E(fj) = ∅ by Proposition 6). We have ej ∈ E(fj ∩ fℓ).
So fj contains either the subpath of fℓ from u to ej or the subpath of fℓ from ej to v, which implies
either ei ∈ E(fj) or ek ∈ E(fj), a contradiction. This completes the proof.

4 Almost all pairs are normal

For any subset A of F , we define G(A) to be the subgraph of G consisting of all edges e, which
appears in some path of A but not in every path of A. Note that if A ⊆ B ⊆ F , then G(A) is a
subgraph of G(B). We say {x, y} ⊆ ⋂

fi∈A V (fi) is the separator of A, if G(A) ⊆ ⋃

fi∈A xfiy and
subject to this,

⋃

fi∈A xfiy is minimal.
The main result of this section is the following lemma.



Lemma 4.1. There exist disjoint subsets F1,F2,F3,F4 in F such that
∑

i∈[4] |Fi| ≥ s−90
√
n/ log n,

all G(Fi)’s are edge-disjoint, and each Fi contains at most 2
√
n log2 n pairs of type-I and type-II.

We show that the proof of Lemma 4.1 can be reduced to two lemmas in below.

Lemma 4.2. There exist two disjoint subsets A1,A2 in F such that |A1|+ |A2| > s− 30
√
n/ log n,

G(A1) and G(A2) are edge-disjoint, and each Ai contains at most
√
n log2 n type-I pairs.

Lemma 4.3. There exist two disjoint subsets B1,B2 in F such that |B1| + |B2| > s − 60
√
n/ log n,

G(B1) and G(B2) are edge-disjoint, and each Bi contains at most
√
n log2 n type-II pairs.

Proof of Lemma 4.1 (Assume Lemmas 4.2 and 4.3). Let A1,A2 be obtained from Lemma 4.2
and B1,B2 be obtained from Lemma 4.3. For 1 ≤ i, j ≤ 2, let Cij = Ai∩Bj. Following the properties
of A1,A2,B1,B2, it is easy to see that the four subsets Cij ’s are disjoint, each Cij contains at most
2
√
n log2 n pairs of type-I and type-II, and

∑

1≤i,j≤2

|Cij| = |(A1 ∪A2) ∩ (B1 ∪ B2)| ≥ |A1 ∪ A2|+ |B1 ∪ B2| − |F| ≥ s− 90
√
n/ log n.

It remains to show that all G(Cij)’s are edge-disjoint. Fix i ∈ [2]. Since Cij ⊆ Bj for each j ∈ [2], by
the observation before Lemma 4.1, we have G(Cij) ⊆ G(Bj) for each j ∈ [2]. We also see from Lemma
4.3 that G(B1) and G(B2) are edge-disjoint, so it is clear that G(Ci1) and G(Ci2) are edge-disjoint for
all i ∈ [2]. Similarly, G(C1j) and G(C2j) are edge-disjoint for all j ∈ [2], finishing the proof.

For the proofs of Lemmas 4.2 and 4.3 (also for the proof in Section 5), we need to introduce some
notation on collections of paths in F , which are used to generate cycles of some special characters.

• A triple {fi, fj, fℓ} in F is called feasible, if {uv} ∪ fi ∪ fj ∪ fℓ contains a cycle C(i, j, ℓ) such
that for all possible {α, β, γ} = {i, j, ℓ}, either Pα\(fβ ∪fγ) = ∅ or C(i, j, ℓ) contains some edge
in Pα\(fβ ∪ fγ). Such a cycle C(i, j, ℓ) is called 3-feasible.

• A quadruple {fi, fj, fk, fℓ} in F is called feasible, if {uv} ∪ fi ∪ fj ∪ fk ∪ fℓ contains a cycle
C(i, j, k, ℓ) such that for all possible {α, β, γ, θ} = {i, j, k, ℓ}, either Pα\(fβ ∪ fγ ∪ fθ) = ∅ or
C(i, j, k, ℓ) contains some edge in Pα\(fβ∪fγ∪fθ). Such a cycle C(i, j, k, ℓ) is called 4-feasible.

4.1 The number of feasible tuples

In the following proposition, we estimate the number of feasible triples and quadruples in F .

Proposition 9. There are at most n feasible triples and at most 4n feasible quadruples in F .

Proof. A feasible triple {fi, fj , fk} is called degenerate, if there exists some {α, β, γ} = {i, j, k} with
Pα\(fβ ∪ fγ) = ∅. By Propositions 6 and 7, {fβ, fγ} is type-I with base fα, where α < min{β, γ}.
Thus, each degenerate feasible triple consists of a unique type-I pair and its base.4 Next we claim
that for any two distinct non-degenerate feasible triples {fi, fj , fk} and {fi′ , fj′ , fk′}, their 3-feasible
cycles C(i, j, k) and C(i′, j′, k′) are distinct. Suppose C(i, j, k) = C(i′, j′, k′). Let i < j < k and
i′ < j′ < k′. By symmetry let us assume k ≥ k′. If k > k′, then we have E(Pk)∩E(fi′ ∪fj′∪fk′) = ∅,
which contradicts that E(Pk) ∩ E(C(i, j, k)) 6= ∅. Thus it must be k = k′. Now assume j ≥ j′. If
j > j′, then E(Pj) ∩ E(fi′ ∪ fj′) = ∅, implying that C(i′, j′, k) does not contain edges in Pj\fk.

4Reversely, each type-I pair determines a degenerate feasible triple.



But C(i, j, k) does contain edges in Pj\fk, a contradiction. Thus j = j′. Finally we may assume
i ≥ i′. If i > i′, then E(Pi) ∩ E(fi′) = ∅ and thus C(i′, j, k) does not contain edges in Pi\(fk ∪ fj).
However, C(i, j, k) does contain such edges. This gives a contradiction that {i, j, k} = {i′, j′, k′},
proving the claim. It is straightforward to see that each non-degenerate feasible triple and each
degenerate feasible triple have different 3-feasible cycles. Hence, each feasible triple contributes a
unique 3-feasible cycle. By (2), we see that F has at most n feasible triples.

Similarly, a feasible quadruple {fi, fj, fk, fℓ} is called degenerate if there exists some {α, β, γ, θ} =
{i, j, k, ℓ} with Pα\(fβ∪fγ∪fθ) = ∅. It is analogous to show that each non-degenerate feasible quadru-
ple contributes a unique 4-feasible cycle. So F has at most n non-degenerate feasible quadruples.

Now consider a degenerate feasible quadruple {fi, fj , fk, fℓ} with Pi ⊆ fj ∪ fk ∪ fℓ.
We claim that Pα\(fβ ∪ fγ ∪ fi) 6= ∅ for any {α, β, γ} = {j, k, ℓ}. Suppose for a contradiction

that Pj ⊆ fi ∪ fk ∪ fℓ. Since both of fi, fj cannot be the base of {fk, fℓ} at the same time, by the
symmetries between fi and fj and between fk and fℓ, using Proposition 8 we may assume that fi is
the base of the type-I pair {fj , fk}. We then see i < min{j, k} from Proposition 6, and this in turn
implies that {fk, fℓ} is type-I with base fj. But then {fj, fk} is not type-I, a contradiction.

By Proposition 8, we may assume that Pi ⊆ fj ∪ fk and {fj, fk} is type-I with base fi. This
yields fi ⊆ fj ∪ fk and thus the 4-feasible cycle C(i, j, k, ℓ) is contained in {uv} ∪ fj ∪ fk ∪ fℓ.
Using the previous claim, C(i, j, k, ℓ) contains some edge in Pα\(fβ ∪ fγ ∪ fi) ⊆ Pα\(fβ ∪ fγ) for any
{α, β, γ} = {j, k, ℓ}. Thus this cycle is also 3-feasible for {fj , fk, fℓ}, which now is known to be a
feasible triple. Note that fi is the base of {fj, fk}. So the number of degenerate feasible quadruples
is at most three times the number of feasible triples, that is at most 3n. Hence in total there are at
most 4n feasible quadruples in F . This completes the proof.

For any pair {i, j} ⊆ {0}∪ [s], letWij be the set of all paths fℓ ∈ F such that the triple {fi, fj , fℓ}
is either feasible or contained in a feasible quadruple. By Proposition 9, we see that

∑

all pairs {i,j}

|Wij| ≤ n

(

3

2

)

+ 4n

(

4

2

)

· 2 = 51n. (4)

4.2 Proof of Lemma 4.2

To show Lemma 4.2, we will first establish some properties on type-I pairs. In this subsection, unless
otherwise specified we assume i < j and {fi, fj} is a type-I pair in F with base fk. Let a ≺ b�c ≺ d
be all splitting vertices in fi ∪ fj. For any ℓ ∈ [s]\{i, j, k}, by Proposition 7 we have Pℓ 6⊆ fi ∪ fj.

Let Mij consist of paths fℓ ∈ F with ℓ /∈ {i, j, k} such that fℓ\(fi ∪ fj) is a path xℓfℓyℓ with
xℓ≺yℓ�c and cfℓv = cfiv, where either xℓ�a≺b�yℓ�c or both xℓ, yℓ lie in one of afib and afjb. Let
Nij consist of paths fℓ ∈ F with ℓ /∈ {i, j, k} such that fℓ\(fi ∪ fj) is a path xℓfℓyℓ with b�xℓ≺yℓ
and ufℓb = ufjb, where either b�xℓ�c≺d�yℓ or both xℓ, yℓ lie in one of cfid and cfjd.

Proposition 10. Let ℓ /∈ {i, j, k}. If the triple {fi, fj, fℓ} is not feasible, then fℓ ∈ Mij ∪ Nij.

Proof. Fix ℓ /∈ {i, j, k} such that {fi, fj, fℓ} is a non-feasible triple. We point out that by Proposi-
tion 7 and the fact that {fi, fj} is type-I, Pα\(fβ ∪ fγ) 6= ∅ for any {α, β, γ} = {i, j, ℓ}. Take any
subpath xfℓy in fℓ\(fi∪fj) which contains some edge of Pℓ, where we assume x≺y. By Proposition 6,
since i < j, we see that Pi ⊆ afib, Pj ⊆ cfjd, and fi ∪ fj can be partitioned into edge-disjoint paths
afib, cfjd and fk. We will proceed by considering whether x, y lie in afib, cfjd or fk. In the coming
proof, we will make use of the symmetry between x and y and the symmetry between fi and fj.



x y

fℓ

u vfka b

fi

c d

fj
fk

(a)

x′

y′

fℓ

u va b

fi

c d

fj
fk

(b)

x y

fℓ

u va b

fi

c d

fj

fk

(c)

Figure 2

First, suppose that x, y are not both in afib, cfjd or fk. If x lies in afib and y lies in cfjd (see
Figure 2-a), then as Pi ⊆ afib and Pj ⊆ cfjd, one can see that {uv}∪ fi∪ fj ∪xfℓy always contains a
3-feasible cycle C(i, j, ℓ) and thus {fi, fj, fℓ} is feasible, a contradiction. By symmetry between afib
and cfjd, it suffices to consider the case that one of {x, y} (say x′) lies in afib\{a, b} and the other y′

lies in fk\{a, b} (see Figure 2-b), where {x, y} = {x′, y′} and y′ may lies in any of ufia, afjb, bfic, cfid
and dfiv. However, it is not hard to see that in any possible location of y′, one can always find a
3-feasible cycle C(i, j, ℓ) in {uv} ∪ fi ∪ fj ∪ xfℓy, a contradiction. For example, when y′ ∈ ufia\{a},
if E(Pi) ∩ afix

′ 6= ∅, then y′fℓx′ ∪ x′fia ∪ afjv ∪ {vu} ∪ ufiy
′ forms a 3-feasible cycle for {fi, fj, fℓ};

otherwise E(Pi) ∩ x′fib 6= ∅, then y′fℓx′ ∪ x′fib ∪ bfjv ∪ {vu} ∪ ufiy
′ forms a 3-feasible cycle for

{fi, fj , fℓ}.
Next, suppose that both x, y lie in one of the paths afib and cfjd. We first assume that x, y

lie in afib (see Figure 2-c). Then fi△fℓ contains the cycle xfℓy ∪ xfiy. If {fi, fℓ} is type-I, then
by Proposition 6, we see E(xfiy) ∩ E(Pi) = ∅, which implies that Pi ⊆ afix or Pi ⊆ xfib. In this
case one can easily find a 3-feasible cycle for {fi, fj , fℓ}, a contradiction. Therefore, {fi, fℓ} is not
type-I and fi△fℓ consists of the cycle xfℓy ∪xfiy. This shows that fℓ = (fi\xfiy)∪xfℓy ∈ Mij . By
symmetry, if x, y lie in cfjd, then one can show that fℓ ∈ Nij.

It remains to consider that both x, y lie in fk. Recall that x≺y. We discuss according to the
location of x. Assume that x≺a. Then we have b�y�c (as otherwise, one can always find a 3-feasible
cycle in {uv} ∪ fi ∪ fj ∪ xfℓy for {fi, fj , fℓ}, a contradiction). In this case, since xfℓy contains some
edge of Pℓ, we see that ufℓx = uLx = ufix and yfℓv = yRv = yfiv, implying that fℓ ∈ Mij .

Next assume that a�x≺b. We can derive that if x = a then a≺y�c, and if a≺x≺b then a≺x≺y�b
(as otherwise there is a 3-feasible cycle for {fi, fj , fℓ}). In both cases, we see that the first endpoint
of Pℓ precedes c in the linear order ≺. Suppose (fi, fℓ) is type-I. Since c is a vertex in fi with Pi≺c,
by Proposition 6, there exists a (u, c)-path containing Pi and Pℓ, whose vertices increase in ≺ as
traversing from u to c. Then this path can be easily extended to a cycle containing cfjd ⊇ Pj ,
which is 3-feasible for {fi, fj, fℓ}, a contradiction. Hence (fi, fℓ) is not type-I. Suppose that (fk, fℓ)
is type-I. Then fℓ\fk consists of two paths xfℓy and x′fℓy′. Since b, c are inner vertices of Pk,
Proposition 6 shows that y�x′≺b�c≺y′, where x′ lies in yfkb\{b} and y′ lies in cfkv\{c}, and xfℓy

′

is internally disjoint from afiy
′. If x′fℓy′ is internally disjoint from cfjd, then we can find 3-feasible

cycle afjx∪ xfℓy′ ∪ y′fid∪ dfjc ∪ cfia for {fi, fj , fℓ}, a contradiction. So x′fℓy′ intersects with cfjd.
Let x, y, x′, z be all splitting vertices in fj ∪ fℓ, where z ∈ V (cfjd)\{c, d}. Then we have d = y′

and x′fℓy′ = x′fℓz ∪ zfjd. This shows that (fj, fℓ) is type-I and by Proposition 6, Pj ⊆ cfjz. Then
afic ∪ cfjz ∪ zfℓa is a 3-feasible cycle for {fi, fj, fℓ}, a contradiction. Summarizing, we have that
both (fi, fℓ) and (fk, fℓ) are not type-I. Then in either case of a�x≺y�b and x = a≺b≺y�c, we see
that xfℓy is the unique path in fℓ\(fi ∪ fj) and cfℓv = cfiv, implying that fℓ ∈ Mij.

Putting the above together, we infer b�x. By the symmetry between x and y, one can also infer
that y�c. That is b�x≺y�c. Then ufix ∪ xfℓy ∪ yfjv ∪ vu forms a 3-feasible cycle for {fi, fj, fℓ}.



This final contradiction completes the proof of Proposition 10.

Recall the definition of Wij in the end of Subsection 4.1.

Proposition 11. Let fp ∈ Mij\Wij and fq ∈ Nij\Wij . Then the paths xpfpyp and xqfqyq are
internally disjoint, where xp≺yp�xq≺yq.

Proof. Suppose for a contradiction that xpfpyp and xqfqyq share a common inner vertex z. If
yp�xq, then we have xp≺z≺yp�xq≺z≺yq, a contradiction. So we have xq≺yp, which implies that
xp�a≺b�xq≺z≺yp�c≺d�yq. We see {fp, fq} is type-I. By Proposition 6, one of xpfpz ∪ zfqyq and
xqfqz∪zfpyp contains some edge in Pp and in Pq, respectively. In either case, we can find a 4-feasible
cycle for {fi, fj, fp, fq} and thus {fi, fj , fp} is contained in a feasible quadruple, which shows that
fp ∈ Wij, a contradiction. Hence the paths xpfpyp and xqfqyq are internally disjoint. Suppose that
xq≺yp. Then we have xp�a≺b�xq≺yp�c≺d�yq. In this case, one can derive the same contradiction
by finding a 4-feasible cycle for {fi, fj, fp, fq}. This shows that yp�xq.

Proposition 12. Let S be any subset of F with separator {x, y} such that |S| ≥ s− 30
√
n

logn and x≺y.
Assume that there do not exist two disjoint subsets S1 and S2 of S such that |S1|+ |S2| ≥ |S|− 52

√
n

log2 n
,

G(S1) and G(S2) are edge-disjoint, and each Si contains at most
√
n log2 n type-I pairs for i ∈ [2].5

Then there exists S ′ ⊆ S with separator {x′, y′} such that |S ′| ≥ |S| − 53
√
n

log2 n
, x�x′≺y′�y, and

each (x′, y′)-path in G(S ′) can be extended to two distinct (x, y)-paths in G(S).

Proof. If every type-I pair {fi, fj} in S has |Wij| ≥ 51
√
n/ log2 n, then by (4), one can infer that

S itself contains at most
√
n log2 n type-I pairs, a contradiction to the assumption (as we can just

take S1 = S and S2 = ∅). So we may assume that there is a type-I pair {fi, fj} in S with |Wij| <
51
√
n/ log2 n, where i < j. Let fk be the base of {fi, fj} and a ≺ b�c ≺ d be all splitting vertices in

fi ∪ fj, where x�a and d�y.
By Proposition 10, any fℓ ∈ S\(Wij∪{fi, fj , fk}) belongs toMij∪Nij. Let S1 = (S∩Mij)\(Wij∪

{fi, fj , fk}) and S2 = (S ∩ Nij)\(Wij ∪ {fi, fj, fk}). Then we have

|S1|+ |S2| = |S\(Wij ∪ {fi, fj , fk})| ≥ |S| − 52
√
n/ log2 n.

By Proposition 11, there exists some vertex z in bfic such that any fp ∈ S1 and fq ∈ S2 satisfy
V (xpfpyp)�z�V (xqfqyq). So G(S1) and G(S2) are edge-disjoint. Now we claim that for any ℓ ∈
{1, 2}, any type-I pair {fα, fβ} in Sℓ together with any path fγ in S3−ℓ form a feasible triple.
Without loss of generality, let ℓ = 1. Then every vertex in the two cycles of fα△fβ precedes z in ≺,
so fγ /∈ Mαβ ∪Nαβ. Then Proposition 10 shows that {fα, fβ, fγ} is feasible, proving the claim.

Suppose that every Sℓ for ℓ ∈ [2] contains at least
√
n/ log2 n paths. If for some t ∈ [2], St

contains more than
√
n log2 n type-I pairs, then the above claim shows that there are more than n

feasible triples, a contradiction to Proposition 9. So we may assume that each of S1 and S2 contains
at most

√
n log2 n type-I pairs, but then such S1 and S2 contradict our assumption. Therefore, there

exists some ℓ ∈ [2] such that |Sℓ| <
√
n/ log2 n and thus |S3−ℓ| ≥ |S|−53

√
n/ log2 n. We now explain

that such S3−ℓ is the desired S ′. Without loss of generality, let ℓ = 1 and let the separator of S2 be
{x′, y′}. Then we can derive x�a≺b�z�x′≺y′�y. It is clear that afib and afjb can be extended to
two paths in G(S) from x to x′ and internally disjoint from G(S2). This completes the proof.

We are ready to prove Lemma 4.2.

5Here it is possible that one Si is an empty set (if so, G(Si) is an empty graph).



Proof of Lemma 4.2. Assume on the contrary that there do not exist two disjoint subsets S1,S2
in F satisfying that |S1| + |S2| > s − 30

√
n/ log n, G(S1) and G(S2) are edge-disjoint, and each Si

contains at most
√
n log2 n type-I pairs.

Let F0 = F have separator {x0, y0} with x0≺y0. So |F0| = s+ 1. Suppose that we have defined

Fi ⊆ F for some i ≥ 0 with separator {xi, yi} such that xi≺yi and |Fi| ≥ s − 30
√
n

logn + 52
√
n

log2 n
. One

can easily derive from our assumption that such Fi satisfies the conditions of Proposition 12 (for
the S therein). So by Proposition 12, there exists Fi+1 ⊆ Fi with separator {xi+1, yi+1} such that

|Fi+1| ≥ |Fi| − 53
√
n

log2 n
, xi�xi+1≺yi+1�yi, and each (xi+1, yi+1)-path in G(Fi+1) can be extended to

two different (xi, yi)-paths in G(Fi). We repeat this process until the first subset (say Ft) of size less

than s − 30
√
n

logn + 52
√
n

log2 n
appears. Since |Fi| − |Fi+1| ≤ 53

√
n

log2 n
for 0 ≤ i < t and n is sufficiently large,

we have t ≥ 30
53 log n− 1.

Note that for each 0 ≤ i < t, every (xi+1, yi+1)-path in G(Fi+1) can be extended to two distinct
(xi, yi)-paths in G(Fi). Also G(Ft) contains at least |Ft| many (xt, yt)-paths, where |Ft| ≥ s −
30

√
n

logn −
√
n

log2 n
≥ √n/2. Hence, there exist at least 2t|Ft| ≥ 2t

√
n/2 ≥ n distinct (x0, y0)-paths in

G(F) = G(F0), which can be extended to at least n distinct (u, v)-paths and thus at least n cycles
in G. This contradicts (2) and completes the proof of Lemma 4.2.

4.3 Proof of Lemma 4.3

In this subsection we prove Lemma 4.3. Throughout we assume i < j and {fi, fj} is a type-II pair
with base fk. Let a ≺ b ≺ c ≺ d be vertices in fk such that ps(i, k) = afic and ps(j, k) = bfjd.

Before we show some structural properties on type-II pairs, we point out that afic and bfjd are
disjoint. This is because otherwise there exists some z ∈ V (afic)∩ V (bfjd) and thus fi△fj contains
at least two cycles, from which Proposition 5 infers that {fi, fj} is type-I, a contradiction.

Proposition 13. fi = ufka ∪ afic ∪ cfkv, fj = ufkb ∪ bfjd ∪ dfkv, and E(Pk) ∩E(bfkc) 6= ∅.

Proof. We first show that both {fi, fk} and {fj , fk} are not type-I.
Suppose for a contradiction that {fi, fk} is a type-I pair. By Proposition 6, {fi, fk} has a base

path fℓ for some ℓ < min{i, k}. Our plan is to show that fℓ is a crossing path of {fi, fj}, which
together with ℓ < k would contradict that fk is the base of {fi, fj}. To see this, first note that
afic ∪ afkc is a cycle in fi△fk. So afkc = afℓc and afic = ps(i, ℓ). Also b is a splitting vertex of
fj ∪ fℓ and obviously there is no other splitting vertex of fj ∪ fℓ in bfℓc. By Proposition 6 we also
have cfℓv = cfiv. Since {fi, fj} is not type-I, there is at most one splitting vertex of fi ∪ fj in cfiv;
on the other hand, as c /∈ fj there should be some splitting vertex of fi ∪ fj in cfiv. Let d′ be the
unique splitting vertex of fi ∪ fj in cfiv. Since cfℓv = cfiv, d

′ is also a splitting vertex of fj ∪ fℓ.
If d ∈ V (bfjd

′), as E(Pj) ∩ E(bfjd) 6= ∅, we have ps(j, ℓ) = bfjd
′. Since a≺b≺c≺d′ lie in fℓ with

afic = ps(i, ℓ) and ps(j, ℓ) = bfjd
′, this shows that fℓ is a crossing path of {fi, fj}, a contradiction.

Hence, we have d′ ∈ V (bfjd). If E(Pj)∩E(bfjd
′) 6= ∅, then again we have ps(j, ℓ) = bfjd

′, which also
shows that fℓ is a crossing path of {fi, fj}. So we may assume that E(Pj) ∩ E(bfjd

′) = ∅ and thus
Pj ⊆ d′fjv. However in this case, since {fi.fj} is type-II, the cycle fi△fj belongs to ufid

′ ∪ ufjd
′,

which cannot contain any edge in Pj , a contradiction to Proposition 5. This proves that {fi, fk} is
not type-I and thus fi = ufka ∪ afic ∪ cfkv. Similarly, we can show fj = ufkb ∪ bfjd ∪ dfkv.

By Proposition 3, each of ps(k, i) = afkc and ps(k, j) = bfkd contains some edge in Pk. Therefore,
we see that bfkc contains some edge in Pk, completing the proof.



Let Aij consist of all paths fℓ ∈ F with ℓ /∈ {i, j, k} satisfying that fℓ = ufixℓ ∪ xℓfℓyℓ ∪ yℓfiv,
where xℓ, yℓ ∈ V (afic) are splitting vertices in fℓ ∪ fi and xℓfℓyℓ is disjoint from fk ∪ fj. Let Bij
consist of all paths fℓ ∈ F with ℓ /∈ {i, j, k} satisfying that fℓ = ufjxℓ ∪ xℓfℓyℓ ∪ yℓfjv, where
xℓ, yℓ ∈ V (bfjd) are splitting vertices in fℓ ∪ fj and xℓfℓyℓ is disjoint from fk ∪ fi.

Proposition 14. Let ℓ /∈ {i, j, k}. If fℓ /∈ Wij, then fℓ ∈ Aij ∪ Bij .

Proof. Fix some ℓ /∈ {i, j, k} with fℓ /∈ Wij. Our general proof strategy is, using the symmetry
between x and y and the symmetry between afic and bfjd, either to show fℓ ∈ Aij ∪Bij, or to find a
3-feasible cycle C(i, j, ℓ), or to find a 4-feasible cycle C(i, j, k, ℓ). Each of the latter two cases implies
that fℓ ∈ Wij and thus reaches a contradiction.

We first show that there exists some path say xfℓy in fℓ\(fi ∪ fj ∪ fk), which contains some edge
in Pℓ. Otherwise, Pℓ ⊆ fi ∪ fj ∪ fk, then by Proposition 8 fℓ is the base of some type-I pair in
{fi, fj , fk}; however, by Proposition 13 none of the pair in {fi, fj, fk} is type-I, a contradiction.

We shall divide the coming proof into several cases by considering the locations of x, y. Note
that by Proposition 13, each of x, y lies in afic, bfjd or fk. Before we proceed, it will be convenient
for later use to collect some properties about afic, bfjd, bfkc and xfℓy. Given α ∈ I ⊆ {0} ∪ [s], we
write ∪I\α for the union of paths fβ for all β ∈ I\{α}. A path Q is called α-unique for I, if either
Pα\(∪I\α) = ∅ or E(Q) ∩ E(Pα\(∪I\α)) 6= ∅. We claim that

afic is i-unique, bfjd is j-unique, bfkc is k-unique, and xfℓy is ℓ-unique for {i, j, k, ℓ}. (5)

This is clear for xfℓy. Considering bfkc, we have either E(bfkc) ∩ E(Pk\(fi ∪ fj ∪ fℓ)) 6= ∅ or
E(bfkc) ∩ E(Pk) ⊆ E(fℓ), the latter of which implies that Pk ⊆ fi ∪ fj ∪ fℓ (using the structure of
Proposition 13). Hence, bfkc is k-unique for {i, j, k, ℓ}. Similarly, one can see that afic is i-unique
and bfjd is j-unique for {i, j, k, ℓ}, completing the proof of (5). Also we claim that

afic is i-unique, bfjd is j-unique, and xfℓy is ℓ-unique for {i, j, ℓ}. (6)

This is also clear for xfℓy. Now suppose E(afic) ∩ E(Pi) ⊆ E(fℓ), which implies Pi ⊆ fk ∪ fℓ.
By Proposition 7, {fk, fℓ} is type-I with base fi and thus fi ⊆ fk ∪ fℓ. Note that the splitting
vertices a, c in fi ∪ fk are also splitting vertices in fk ∪ fℓ. Since b, d are the splitting vertices in
fj ∪ fk such that a≺b≺c≺d lie in fk, we can conclude that fj 6∈ Mkℓ ∪ Nkℓ and thus Proposition
10 implies that {fj , fk, fℓ} is feasible. Using the fact that fi ⊆ fk ∪ fℓ, one can verify that any
3-feasible cycle for {fj , fk, fℓ} is a 4-feasible cycle for {fi, fj, fk, fℓ}. This shows that fℓ ∈ Wij ,
a contradiction. Hence E(afic) ∩ E(Pi) 6⊆ E(fℓ), which implies that afic is i-unique for {i, j, ℓ}.
Analogously, E(bfjd) ∩ E(Pj) 6⊆ E(fℓ) and thus bfjd is j-unique for {i, j, ℓ}, proving (6).
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Figure 3

Now consider the case that both of x, y lie in afic or bfjd. By symmetry, let us assume x, y ∈
V (afic) with x≺y (see Figure 3-a). If {fi, fℓ} is not type-I, then it is easy to see that fℓ ∈ Aij. Now



suppose {fi, fℓ} is type-I. By Proposition 6, Pℓ ⊆ xfℓy and E(xfiy) ∩E(Pi) = ∅. As ps(i, k) = afic,
we see that R = afix∪ xfℓy ∪ yfic is an (a, c)-path, which is both i-unique and ℓ-unique for {i, j, ℓ}.
So by (6), R ∪ cfid ∪ dfja forms a 3-feasible cycle C(i, j, ℓ).

Suppose that x ∈ V (afic)\{a, c} and y ∈ V (bfjd)\{b, d} (see Figure 3-b). By (6), it is easy
to see that one of the following four cycles can form a 3-feasible cycle C(i, j, ℓ). These include: (a)
xfℓy∪yfja∪afix, (b) xfℓy∪yfjv∪{uv}∪ufix, (c) xfℓy∪yfjd∪dfix, and (d) xfℓy∪yfju∪{uv}∪vfix.

Next suppose that both x, y lie in fk\{a, d}. Let x≺y. If x, y /∈ V (bfkc), by (5) and (6) one
can always find either a 3-feasible cycle C(i, j, ℓ) containing afic ∪ bfjd ∪ xfℓy or a 4-feasible cycle
C(i, j, k, ℓ) containing afic ∪ bfjd ∪ bfkc ∪ xfℓy. So by symmetry between x and y, we may assume
that y ∈ V (bfkc). If x≺a, then by (5), one of the cycles xfℓy ∪ yfkb ∪ bfjd ∪ dfix and xfℓy ∪ yfkc ∪
cfia ∪ afjv ∪ {uv} ∪ ufkx gives a 4-feasible cycle C(i, j, k, ℓ). If a≺x≺b, then one of the cycles
xfℓy∪yfkb∪bfjd∪dfia∪afkx and xfℓy∪yfkc∪cfiu∪{uv}∪vfjx gives a 4-feasible cycle C(i, j, k, ℓ).
Then it remains to consider b�x≺y�c. If E(Pk) ∩ E(xfky) 6= ∅, then {fk, fℓ} is not type-I and
thus fℓ = ufkx ∪ xfℓy ∪ yfkv, which implies that ufic ∪ cfℓb ∪ bfjv ∪ {vu} forms a 3-feasible cycle
C(i, j, ℓ). So E(Pk)∩E(xfky) = ∅. By (5), one of bfkx and yfkc is k-unique for {i, j, k, ℓ}. Therefore,
xfℓy ∪ yfkc ∪ cfiu ∪ {uv} ∪ vfjb ∪ bfkx forms a 4-feasible C(i, j, k, ℓ), proving this case.

The only possible case left is that one of x, y is in V (afic∪ bfjd)\{b, c} and the other is in V (fk).
By symmetry, we may assume that x ∈ V (afic)\{c} and y ∈ V (fk)\{a, c} (see Figure 3-c). Recall
that in the proof of (6), we proved E(afic)∩E(Pi) 6⊆ E(fℓ). So either (a) E(afix)∩E(Pi) 6⊆ E(fℓ),
or (b) E(xfic) ∩ E(Pi) 6⊆ E(fℓ). First suppose (a) occurs. If y ∈ V (ufkb ∪ dfkv)\{a, c}, then there
is a (y, a)-path Q in the cycle {uv} ∪ fj containing bfjd. In this case, we see that Q ∪ afix ∪ xfℓy
forms a 3-feasible cycle C(i, j, ℓ).p So we may assume y ∈ V (bfkd)\{c}. Then one of the cycles
ufix∪ xfℓy ∪ yfkb∪ bfjv ∪ {uv} and afix∪ xfℓy ∪ yfkd∪ dfja is a 4-feasible cycle for {fi, fj , fk, fℓ}.

Therefore (b) occurs. If y�b, then yfℓx ∪ xfid ∪ dfjy forms a 3-feasible cycle C(i, j, ℓ). If c≺y,
then yfℓx∪xfic∪cfkb∪bfjd∪dfky forms a 4-feasible cycle C(i, j, k, ℓ). So it only remains to consider
y ∈ V (bfkc)\{b, c}. If bfky is k-unique for {i, j, k, ℓ}, then bfky∪ yfℓx∪xfid∪ dfjb forms a 4-feasible
cycle C(i, j, k, ℓ), a contradiction. By (5) we have E(yfkc) ∩E(Pk\fℓ) 6= ∅. In particular, yfkc 6⊆ fℓ.
Also we have bfky 6⊆ fℓ (as otherwise bfℓx∪xfid∪dfjb is a 3-feasible cycle C(i, j, ℓ)). Note that y is a
splitting vertex in fk∪fℓ, so {fk, fℓ} must be type-I, with base say fk′. Since E(yfkc)∩E(Pk\fℓ) 6= ∅
and bfky 6⊆ fℓ, by Proposition 6, y can not be the first or the last splitting vertex in fk ∪ fℓ. So x≺y
(as otherwise, y must be the first splitting vertex in fk ∪ fℓ) and y is an inner vertex of Pk′ . This
further implies that fk′ = ufky ∪ yfℓv, and bfky is k′-unique and xfℓy is ℓ-unique for {i, j, k′, ℓ}.
Because of (b) and E(bfjd)∩E(Pj) 6⊆ E(fℓ) (proved in the proof of (6)), one can derive that xfic is
i-unique and bfjd is j-unique for {i, j, k′, ℓ}. Then xfℓy ∪ yfkb ∪ bfjd ∪ dfix forms a 4-feasible cycle
for {fi, fj , fk′ , fℓ}, so fℓ ∈ Wij. This final contradiction finishes the proof of Proposition 14.

Proposition 15. For fα ∈ Aij\Wij and fβ ∈ Bij\Wij , the paths xαfαyα and xβfβyβ are disjoint.

Proof. By Proposition 13, we see that a, d are two splitting vertices in fα ∪ fβ. Suppose for a
contradiction that xαfαyα and xβfβyβ have a common vertex z. It is clear that z is a splitting vertex
in fα ∪ fβ with a≺z≺d. So {fα, fβ} is type-I. By Proposition 6, exactly one of Q1 = xαfαz ∪ zfβyβ
and Q2 = xβfβz ∪ zfαyα contains some edges in Pα\(fi ∪ fj ∪ fβ) and in Pβ\(fi ∪ fj ∪ fα). First
assume that Q1 does so. Note that either afixα or xαfic contains some edge in Pi\(fj ∪ fα ∪ fβ),
and either bfjyβ or yβfjd contains some edge in Pj\(fi ∪ fα ∪ fβ). So there are four possibilities
and it is not hard to verify that one can always find a 4-feasible cycle C(i, j, α, β) containing Q1 in
each possibility. The proof for the other case (that is, Q2 contains those edges mentioned above) is
analogous, and we can always find a 4-feasible cycle C(i, j, α, β) containing Q2. In any case, we see
that both fα and fβ are contained in Wij, a contradiction.



By comparing Proposition 15 with Proposition 11, we see that Aij ,Bij can play the same roles
ofMij,Nij as in Subsection 4.2. The next result is analogue to Proposition 12.

Proposition 16. Let T be any subset of F with separator {x, y} such that |T | ≥ s− 60
√
n

logn and x≺y.
Assume that there do not exist two disjoint subsets T1 and T2 of T such that |T1|+ |T2| ≥ |T |− 52

√
n

log2 n
,

G(T1) and G(T2) are edge-disjoint, and each Ti contains at most
√
n log2 n type-II pairs for i ∈ [2].

Then there exists T ′ ⊆ T with separator {x′, y′} such that |T ′| ≥ |T | − 103
√
n

log2 n
, x�x′≺y′�y, and

each (x′, y′)-path in G(T ′) can be extended to two distinct (x, y)-paths in G(T ).

Proof. The proof will follow the lines as in Proposition 12. So we will omit details when the corre-
sponding argument is the same as before.

First, we may assume that there is a type-II pair {fi, fj} in T with |Wij | < 51
√
n/ log2 n. Let fk

be the base of {fi, fj} and let a≺b≺c≺d be vertices in fk such that ps(i, k) = afic and ps(j, k) = bfjd.
Let T1 = (T ∩ Aij)\(Wij ∪ {fi, fj, fk}) and T2 = (T ∩ Bij)\(Wij ∪ {fi, fj, fk}). By Proposition 14,

|T1|+ |T2| = |T \(Wij ∪ {fi, fj, fk})| ≥ |T | − 52
√
n/ log2 n.

Let {xA, yA} and {xB , yB} be the separators of T1 and T2, respectively. Then a�xA≺yA�c lie in
afic, b�xB≺yB�d lie in bfjd, and by Proposition 15, G(T1) and G(T2) are disjoint. We claim that

for any ℓ ∈ {1, 2} and any type-II pair {fα, fβ} in Tℓ, we have T3−ℓ ⊆ Wαβ.

To see this, note that fα△fβ ⊆ G(Tℓ). So any path in T3−ℓ does not belong to Aαβ ∪ Bαβ . Then
Proposition 14 shows that T3−ℓ ⊆ Wαβ, as claimed.

Suppose |Tℓ| ≥ 51
√
n/ log2 n for every ℓ ∈ [2]. If there exists some t ∈ [2] such that Tt contains

more than
√
n log2 n type-II pairs, then the above claim would derive a contradiction to (4); otherwise,

each of T1 and T2 contains at most
√
n log2 n type-II pairs, a contradiction to our assumption.

Therefore, we may assume |T1| < 51
√
n/ log2 n and thus |T2| ≥ |T | − 103

√
n/ log2 n. Recall the

separator {xB , yB} of T2 such that x�a≺b�xB≺yB�d�y lie in fj. To show that T2 is the desired T ′, it
suffices to see that each (xB , yB)-path R0 in G(T2) can be extended to two (x, y)-paths R1∪R0∪yBfjy
and R2 ∪R0 ∪ yBfjy in G(T ), where R1 = xfjxB and R2 = xfja ∪ afic ∪ cfkb ∪ bfjxB .

We can then prove Lemma 4.3 promptly.

Proof of Lemma 4.3. By replacing Proposition 12 with Proposition 16, this proof is identical to
the proof of Lemma 4.2. We left the verification to readers.

Now the proof of the main result Lemma 4.1 in this section is completed.

5 Reordering and partitioning F
The goal of this section is to show that roughly speaking, one can reorder most paths in F and par-
tition them into a bounded number of intervals such that for every relevant edge e, paths containing
e in each interval are listed almost consecutively. The precise statement is as follows.

Lemma 5.1. There exist disjoint subsets P1,P2,P3,P4 in F and constants β, γ with β ≥ n1/4 log n
and γ = β log n ≤ √n such that the following hold:



1).
∑

i∈[4] |Pi| ≥ (1−o(1))·s, all G(Pi)’s are edge-disjoint, and each Pi contains at most 2
√
n log2 n

pairs of type-I and type-II.

2). For any edge e in G(Pi), let d(e) denote the number of paths in Pi containing e. Then there
are at most 9n log log n/ log n edges e in G(Pi) satisfying that β ≤ d(e) ≤ γ.

3). Each Pi has an arrangement {gj}j≥1 and a partition of at most 3
√
n/γ intervals such that the

following holds.6 For any edge e in G(Pi) with d(e) ≥ γ, one can delete at most 3β paths in
Pi such that there is at most one interval of Pi which can contain some remaining paths gj , gk
with e ∈ E(gj) and e /∈ E(gk) and moreover, all such paths gj , gk satisfy j < k.

We devote the rest of this section to the proof of Lemma 5.1. We begin by defining the desired
subsets Pi of F . Let F1,F2,F3,F4 be the four disjoint subsets of F from Lemma 4.1.

Definition 5.2. For each i ∈ [4], let Pi be obtained from Fi by deleting all paths each of which is
contained in at least 26

√
n log n sets Wjk’s or at least n1/4 pairs of type-I and type-II in Fi.

From Lemma 4.1 we see that the number of type-I and type-II pairs in each Fi is at most
2
√
n log2 n. Together with (4), we have |Pi| ≥ |Fi| − n1/2/(2 log n)− 2n1/4 log2 n. So by Lemma 4.1

again, we can derive that

| ∪i∈[4] Pi| ≥ | ∪i∈[4] Fi| − 2
√
n/ log n− 8n1/4 log2 n = (1− o(1)) · s.

Since Pi ⊆ Fi implies G(Pi) ⊆ G(Fi), we see that G(Pi)’s are pairwise edge-disjoint and each Pi
contains at most 2

√
n log2 n pairs of type-I and type-II. This proves the first item of Lemma 5.1.

Next we define the constants β and γ. For each edge e contained in G(Pi) for some i ∈ [4], we
define its degree d(e) to be the number of paths in Pi containing e. So obviously 1 ≤ d(e) ≤ s+ 1 ≤
2
√
n for every such e. Let A =

⌈ logn
4 log logn

⌉

− 2 and let α0, α1, ..., αA be a geometric sequence of reals

such that αj = n1/4(log n)j+1. By average, there is some j0 ∈ [A] such that the number of edges e

with d(e) ∈ [αj0−1, αj0 ] is at most 2e(G)
A ≤ 9n log logn

logn . Let β = αj0−1 and γ = αj0 . So β ≥ n1/4 log n

and γ = β log n ≤ √n, as wanted.
It remains to show the third item of Lemma 5.1. For this, in the rest of this section we shall

focus on one of Pi’s and express it as P.
We need to collect some properties on the edges in P first. Let {u0, v0} be the separator of P

with u0≺v0. Recall the spanning trees L and R from (3). So all paths in P contain uLu0 ∪ v0Rv.

Proposition 17. Let e ∈ E(G(P)). If there are fk, fℓ ∈ P with e ∈ E(Lk)∩E(Rℓ), then d(e) ≤ 2n
1

4 .

Proof. Suppose that d(e) > 2n1/4. Then there are at least 2n1/4 paths fj in P\{fk, fℓ} with e ∈
E(Lj)∪E(Rj). If e ∈ E(Rj), then e ∈ E(Rj)∩E(Lk) and by Proposition 3, {fj , fk} must be type-I.
Similarly, if e ∈ E(Lj), then we also can see that {fj , fℓ} is type-I. Thus, one of fk and fℓ is contained
in at least n1/4 type-I pairs in P. However this is a contradiction to the definition of P.

Proposition 18. All edges e ∈ E(G(P)) with d(e) ≥ γ induce two edge-disjoint trees LP and RP
with roots u0 and v0, which are subtrees of L and R, respectively.

Proof. Consider such edges e with d(e) ≥ γ ≥ α0 > 2n1/4. By Proposition 17, there are two kinds of
such edges e: either (1) all paths fj in P containing e satisfy e ∈ E(Lj ∪ Pj), or (2) all paths fj in

6Here, an interval of Pi means a subset of Pi consisting of paths gj for all integers j in some interval [a, b].



P containing e satisfy e ∈ E(Pj ∪Rj). Let e = xy with x≺y. In the former case (1), we see that all
paths in P containing e also contain the path L[u0, y], so all edges in L[u0, y] have degree at least
d(e) ≥ γ. This shows that all edges satisfying (1) induce a subtree of L (with root u0). The analog
also holds for the latter case. This finishes the proof.

Definition 5.3. Each leaf-edge in the rooted tree LP or RP is called a transforming edge of P.
For any paths f, g ∈ P, let the first and the last splitting vertices in f ∪ g (according to the linear

ordering ≺) be LS(f, g) and RS(f, g), respectively.

We now define an arrangement {gj}j≥1 for P in the following algorithm.

Algorithm for ordering the paths in P. Initially, set j = 1 and S = P. We iterate the following
three steps until S = ∅.

(a). If j=1, let x = u0, y = v0 and S1 = S2 = S. Otherwise, we have j ≥ 2. Let x be the maximum
LS(gj−1, f) in ≺ over all f ∈ S, and let S1 be the set of all f ∈ S containing the subpath u0Lx.
Next, let y be the minimum RS(gj−1, f

′) in ≺ over all f ′ ∈ S1, and then let S2 be the set of all
f ′ ∈ S1 containing the subpath yRv0.

(b). If there exists some paths in S2 containing some transforming edge e in LP with x�V (e), then
let S3 be the set consisting of all such paths in S2; otherwise, let S3 = S2. Next, if there exists
some paths in S3 containing some transforming edge e′ in RP with V (e′)�y, then let S4 be the
set consisting of all these paths in S3; otherwise, let S4 = S3.

(c). Pick any path in S4 and denote it by gj . Update j ← j + 1 and S ← S\{gj}.

We also need some properties on gj ’s, which can be collected directly from the above algorithm.

Proposition 19. The following hold for any j < k < ℓ:

(i). If both gj and gℓ contain some subpath u0Lw, then gk also contains u0Lw.

(ii). LS(gj−1, gj)�LS(gj−1, gk), and if LS(gj−1, gj) = LS(gj−1, gk) then RS(gj−1, gj)�RS(gj−1, gk).

(iii). Suppose that LS(gj−1, gj) = LS(gj−1, gk) and RS(gj−1, gj) = RS(gj−1, gk). If gj contains no
transforming edge in LP , then gk also contains no transforming edge in LP .

(iv). Under the same conditions of (iii), if gk contains a transforming edge in RP and gj does not,
then gj contains a transforming edge in LP but gk does not.

We then partition P = {gj}j≥1 into a bounded number of subsets in the next definition.

Definition 5.4. For any transforming edge e of P, the path gj ∈ P containing e with the minimum
j is called a fence of P. Let {gjk}1≤k<kP be the set of all fences of P, where the sequence {jk} is
increasing with k. Then the set Ik = {gj : jk ≤ j < jk+1} for each 0 ≤ k < kP is called an interval
of P, where we define j0 = 1 and jkP = |P|+ 1.

So P is partitioned into at most kP intervals. By Proposition 18, any path in P has at most one
leaf-edge in LP and at most one leaf-edge in RP . This shows that kP ≤ 2|P|/γ ≤ 3

√
n/γ, as desired.

Towards Lemma 5.1, we first prove the following weaker version. Let us recall the definitions of
feasible triples and quadruples, stated right before Subsection 4.1.



Proposition 20. For any edge e in G(P), let gi be the path in P containing e with minimum i.
Then one can delete at most 2β paths from P such that for any k > j > i, if some remaining path
gj does not contain e, then every remaining path gk does not contain e.

Proof. Suppose this fails for some edge xy in G(P) with x≺y. Let gi be the path in P containing
xy with minimum i. We may assume that d(xy) > 2β and there are at least β paths in P behind gi
which does not contain xy. Let B be the set of the first β such paths. Note that paths in B may not
be consecutive in P. Let gj0 be the path in B with maximum j0. Let C be the set consisting of all
paths in P behind gj0 and containing xy, and we may also assume that |C| ≥ β.

Let gj be the path in B with minimum j. Then gj does not contain xy, while gj−1 does. As
β ≥ α0 ≥ n1/4 log n, we see that there are at least β−2n1/4 ≥ β/2 paths gk in C such that {gj−1, gk}
and {gj , gk} are normal pairs. From now on, by gk we mean any one of such paths in C.

Let a≺b be the two splitting vertices in gj−1 ∪ gk (see Figure 4-a). Since xy ∈ E(gj−1) ∩ E(gk),
we have either y�a or b�x. If y�a, then xy is in the tree L and thus both gj−1 and gk contain the
subpath u0Ly, while gj does not. This contradicts Proposition 19 (i). Hence, b�x. Since xy /∈ E(gj),
we see that RS(gj−1, gj) and RS(gk, gj) are the same vertex, say z, with b�x≺y�z.
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Figure 4

Let w = LS(gj−1, gj). We claim that a≺w≺b. Note that {gj , gk} is a normal pair and by
Proposition 19 (ii), w� LS(gj−1, gk) = a. If w�b, then we have gj = ugj−1w ∪ wgjz ∪ zgj−1v,
which implies that {gj , gk} is type-II, a contradiction. So a�w≺b. Now assume that w = a. Let
w′ = LS(gj , gk). So w′ ∈ V (agkb)\{b} and gj = ugkw

′ ∪ w′gjz ∪ zgkv. We see a = LS(gj−1, gj) =
LS(gj−1, gk), but RS(gj−1, gj) = z≻b = RS(gj−1, gk), a contradiction to Proposition 19 (ii). This
proves the claim that a≺w≺b. Now a, z are the only two splitting vertices in gj ∪ gk.

If {gj−1, gj} is not type-I, then gj = ugj−1w ∪ wgjz ∪ zgj−1v and further, we see that gj−1 is a
crossing path of {gj , gk}, contradicting that {gj , gk} is a normal pair. Thus, {gj−1, gj} is type-I.

Since a, z are the only two splitting vertices in gj ∪ gk, we may assume that the splitting vertices
in gj−1 ∪ gj are w, x′, y′, z such that a ≺ w ≺ x′ � y′ ≺ b ≺ z lie in gj−1. We write fπ(t) = gt for each
t ∈ {j − 1, j, k}. If Pπ(j) ⊆ ygjz, then {gj , gk} is type-II with a crossing path gj−1, a contradiction.
So by Proposition 6, we can deduce that Pπ(j) ⊆ wgjx

′ and Pπ(j−1) ⊆ y′gj−1z. In particular, y′gj−1b
contains some edge in Pπ(j−1). Let the base of {gj−1, gj} be fℓ. Then Proposition 6 also shows that
y is an inner vertex of Pℓ and thus y′fℓz = y′gjz contains some edge in Pℓ.

Recall the set B. For any chosen gk ∈ C from above, we can find at least β − 3n1/4 ≥ β/2 paths
gj′ ∈ B such that gj′ forms a normal pair with any path in {gj−1, gj , gk}. Notice that we do not
require {gj′ , fℓ} to be a normal pair as fℓ may not be in P. Let z′ = RS(gj′ , gj−1). As gj′ does not
contain xy, we see z′ � y and thus z′ is also the vertex RS(gj′ , gk). Since {gj′ , gj−1} and {gj′ , gk}
both are normal, gj′\(gj−1 ∪ gk) forms a path, say a′gj′z′, where a′ ∈ V (u0gj−1x∪ agkb). See Figure
4-b for an illustration.



We claim that a′ = a. Since j < j′ < k and both gj−1 and gk contain ugj−1a = uLa, by
Proposition 19, gj′ also contains ugj−1a, which implies that a′�a. If a′�b, then gj′ = ugj−1a

′ ∪
a′gj′z′ ∪ z′gj−1v and {gj′ , gk} forms a type-I pair, a contradiction. If a′ ∈ V (agj−1b)\{a, b}, then
{gj′ , gk} is type-II with a crossing path gj−1, a contradiction. If a′ ∈ V (agkb)\{a, b}, then {gj′ , gj−1}
is type-II with a crossing path gk, again a contradiction. Therefore we have a′ = a.

Next we claim that agj′z
′ is internally disjoint with y′gjz. Suppose on the contrary that there

exists a splitting vertex w′ ∈ V (agj′z
′)∩V (y′gjz) in gj′ ∪gj. Since {gj′ , gj} is normal, we have z′ = z

and w′gj′z = w′gjz. However, as a≺y′≺w′≺z lie in gj , we see that gj is a crossing path of {gj′ , gj−1},
a contradiction. This proves the claim.

Recall that y′gj−1b contains some edge in Pπ(j−1) and y′fℓz = ygjz contains some edge in Pℓ.
Thus, agkb ∪ bgj−1y

′ ∪ y′fℓz ∪ zgkz
′ ∪ z′gj′a is a 4-feasible cycle for {gj−1, gj′ , gk, fℓ}.

Putting everything together, there are at least β/2 choices of gk ∈ C and subject to a fixed gk,
there are at least β/2 choices of gj′ ∈ B such that {gj−1, gk, gj′} is contained in a feasible quadruple.
That is, gj−1 ∈ P is contained in at least β2/4 ≥ √n log2 n/4 > 26

√
n log n distinctWpq’s. This final

contradiction (to the definition of P) completes the proof of Proposition 20.

Finally, we are ready to complete the proof of Lemma 5.1.

Proof of Lemma 5.1. Putting everything above together, it suffices for us to prove the following
statement. For any edge e in G(P) with d(e) ≥ γ, one can delete at most 3β paths in P such that
there is at most one interval of P which can contain some remaining paths gj, gk with e ∈ E(gj) and
e /∈ E(gk) and moreover, all such paths gj , gk satisfy j < k.

Suppose this fails for some edge e with d(e) ≥ γ. Let gi be the path in P containing e with
minimum i. By Proposition 20, one can delete at most 2β paths from P such that for any k > j > i,
if some remaining path gj does not contain e, then every remaining path gk does not contain e. If gi
is a fence, then only the last interval of P, which has some remaining path containing e, can contain
some remaining path gℓ with e /∈ E(gℓ), and the conclusion holds. Therefore, we may assume that
gi is not a fence. It will be enough for us to show that by deleting extra β paths, every remaining
path in the interval containing gi contains the edge e.

Let A be the set of all paths before gi in this interval. We may assume that |A| ≥ β. By
Proposition 18, e is in either LP or RP . We consider two cases (see Figure 5 for an illustration).

Case A. e is in LP.

We obverse that gi contains no transforming edge which lies below e in LP (as otherwise, gi would
be the first path in P containing this transforming edge and thus become a fence). There exists at
least one transforming edge e′ in LP such that e lies in the subpath of LP between u0 and e′. Let B
be the set of all paths in P containing e′. Then |B| ≥ γ and all paths in B also contain e. There are
at least γ − 2n1/4 ≥ β paths gk ∈ B such that {gk, gi−1} and {gk, gi} are normal. From now on, we
fix such a path gk. Note that gi−1 does not contain e, while gi and gk contain e.

Let a, b be the two splitting vertices in gi ∪ gk. Clearly V (e)�a≺b. Also we see that LS(gi−1, gi)
and LS(gi−1, gk) are the same vertex, say w, such that w�V (e). We make the following claim.

Claim A. Let z = RS(gi−1, gi). Then z is an inner vertex in agib.

Proof of Claim A. Let z′ = RS(gi−1, gk). If z
′≺b, then clearly z′gi−1v = z′gkv, implying that z′≺b =

z, a contradiction to Proposition 19 (ii). So z′ � b. If z � b, then we see z = z′. In this case, gk
contains some transforming edge (that is e′) in LP , while gi does not, a contradiction to Proposition
19 (iii). If z�a, then wgi−1v = wgi−1z ∪ zgiv and thus {gi−1, gk} must be type-I, a contradiction to
the choice of gk. Hence, z is an inner vertex in afib (and also RS(gi−1, gk) = b).



If {gi−1, gi} is not type-I, then gi−1\(gi ∪ gk) is a subpath wgi−1z, which shows that {gi−1, gk} is
type-II with a crossing path gi, a contradiction.

Therefore, {gi−1, gi} is type-I with base fℓ and splitting vertices w≺x�y≺z. Since w, b are the
only two splitting vertices in gi−1 ∪ gk, we see that w≺a≺x�y≺z≺b lie in gi. Let fπ(t) = gt for every
t ∈ {i − 1, i, k}. If Pπ(i−1) ⊆ wgi−1x, then again {gi−1, gk} is type-II with a crossing path gi. So by
Proposition 6, Pπ(i) ⊆ wgix, Pπ(i−1) ⊆ ygi−1z, and x, y are inner vertices of Pℓ. This shows that

agix contains some edge in Pπ(i) and xgi−1w = xfℓw contains some edge in Pℓ. (7)

There exist at least β − 3n1/4 − 1 ≥ β/2 paths gj in A\{fℓ} such that gj forms a normal pair
with any path in {gi−1, gi, gk}. Any such path gj does not contain the edge e. So we can set
w′ = LS(gj , gi) = LS(gj , gk) such that w′�V (e). Then as gj forms a normal pair with each of gi
and gk, we can infer that gj\(gi ∪ gk) is a path, say w′gjz′ with z′ ∈ V (y′giv ∪ agkb), where we
write e = x′y′ with x′≺y′. Note that z′ ∈ V (y′gia) is impossible, as otherwise we can deduce that
agjv = agiv = agkv, a contradiction. If z′ ∈ V (agkb)\{a, b}, then {gj , gi} is type-II with a crossing
path gk, a contradiction. If z′ ∈ V (agib)\{a, b}, then {gj , gk} is type-II with a crossing path gi, a
contradiction. So we have z′ ∈ V (bgiv) and gj = ugiw

′∪w′gjz′∪ z′giv. Let fπ(j) = gj . Whenever the
two paths w′gjz′ and wgi−1x = wfℓx intersect or not (if they do then w = w′), xfℓw∪wgiw′∪w′gjz′

contains an (x, z′)-path Q which contains some edge in Pℓ and some edge in Pπ(j). By (7), we see
that Q ∪ z′gka ∪ agix contains a 4-feasible cycle for {gi, gj , gk, fℓ},

Putting all together, there are at least β choices of gk ∈ B and subject to a fixed gk, there are
at least β/2 choices of gj ∈ B such that {gi, gj , gk} is contained in a feasible quadruple. So gi in P
is contained in at least β2/2 > 26

√
n log n distinct Wjk’s. This contradicts the definition of P and

completes the proof of Case A.
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Figure 5

Case B. e is in RP .

The proof of this case is similar to that of Case A. We also see that gi contains no transforming
edge which lies in RP below e (as otherwise gi is a fence). So there exists a transforming edge e0 in
RP such that e lies in the path of RP between v0 and e0. Let C be the set of all paths in P containing
e0. Then |C| ≥ γ and all paths in C also contain e. There are at least γ − 2n1/4 ≥ β paths gk ∈ C
such that {gk, gi−1} and {gk, gi} are normal. Let a, b be the only two splitting vertices in gk ∪ gi.
Note that gi and gk contain e, while gi−1 does not. So RS(gi−1, gi) and RS(gi−1, gk) are the same
vertex, say z, such that a≺b�V (e)�z.

We need the following claim, which plays the parallel role as Claim A in the previous case.

Claim B. Let w = LS(gi−1, gi). Then w is an inner vertex in agib.



Proof of Claim B. First suppose that b�w. Since ugi−1w = ugiw contains agib, we see that {gi−1, gk}
must be a type-I pair, a contradiction to the choice of gk.

To prove Claim B, it suffices to consider when w�a (see Figure 5). Let w′ = LS(gi−1, gk). If
w′≻a, then clearly ugi−1w

′ = ugkw
′, implying that w = a≺w′, a contradiction to Proposition 19

(ii). So w′�a. In this case, we see w = w′ ∈ V (ugia), that is, gi and gk share the same first and
last splitting vertices with gi−1. Since gk contains a transforming edge in RP while gi does not, by
Proposition 19 (iv), gi contains a transforming edge (say e1) in LP and gk does not. Clearly, such
e1 is in agib. If gi−1 does not contain e1, then gi is the first path in P containing e1 and thus gi
is a fence, a contradiction. Hence, gi−1 also contains e1 ∈ E(LP ). By Proposition 18, gi−1 and
gi contains all edges in the subpath of L from u to e1. This indicates that LS(gi−1, gi) = w≻a, a
contradiction. Therefore, w must be an inner vertex in agib.

The remaining proof is analogous to Case A. In fact, once we are equipped with Claims A and B,
these two cases are identical if one revises the linear ordering ≺. For simplicity, we omit the detailed
verification of the remaining proof of Case B here. We finish the proof of Lemma 5.1.

6 Proof of the main result

Now we are ready to prove Theorem 1.2, by using a counting strategy motivated by [7]. Let n be
sufficiently large and G be an n-vertex 2-connected graph with n + s edges which does not contain
two cycles of the same length. Suppose for a contradiction that s ≥ (1 + o(1))

√
n.

Let P1,P2,P3,P4 be subsets of F and β, γ be constants from Lemma 5.1. So β ≥ n1/4 log n,
γ = β log n ≤ √n, s′ := ∑

i∈[4] |Pi| ≥ (1− o(1))s, and each Pi has an arrangement {gj}j≥1.
Let Φ be the set of all normal pairs {gj , gk} such that gj , gk are from the same interval of Pi for

some i ∈ [4] and β ≤ |j − k| ≤ √βγ. For e ∈ E(G) and {gj , gk} ∈ Φ, let δ(e, gj , gk) be an index
function such that δ = 1 if exactly one of the paths gj , gk contains e and δ = 0 otherwise.

In the coming proof, we are estimating the summation Σ of δ(e, gj , gk) over all e ∈ E(G) and
{gj , gk} ∈ Φ. First, let us bound the size of Φ. The total number of pairs {gj , gk} such that gj , gk lie

in some Pi and β ≤ |j− k| ≤ √βγ is at least
∑

√
βγ

r=β (s
′− 4r) ≥ (1− o(1))s

√
βγ = (1− o(1))sβ

√
log n,

where the inequality holds because s′ =
∑

i∈[4] |Pi| ≥ (1 − o(1))s and every r ≤ √βγ = γ/
√
log n ≤

√

n/ log n = o(s). By Lemma 5.1, there are at most 3
√
n/γ intervals in Pi for each i ∈ [4], so there

are at most (12
√
n/γ) · (√βγ)2 = 12

√
nβ pairs {gj , gk} such that gj , gk lie in different intervals of

some Pi and |j − k| ≤ √βγ. We also know that each Pi contains at most 2
√
n log2 n pairs of type-I

and type-II. Putting all together, as s ≥ (1 + o(1)
√
n and β ≥ n1/4 log n, we see that

|Φ| ≥ (1− o(1))sβ
√

log n− 12
√
nβ − 8

√
n log2 n ≥ (1− o(1))sβ

√

log n.

Since each {gj , gk} in Φ is a normal pair, the difference gj△gk induces a cycle. One can see that
all such cycles gj△gk are distinct and thus have different lengths. Observe that

∑

e∈E(G) δ(e, gj , gk)
equals the length of the cycle gj△gk, denoted by |gj△gk|. Therefore, the summation

Σ =
∑

{gj ,gk}∈Φ





∑

e∈E(G)

δ(e, gj , gk)



 =
∑

{gj ,gk}∈Φ
|gj△gk| ≥

|Φ|
∑

ℓ=1

ℓ ≥ |Φ|
2

2
≥

(

1

2
− o(1)

)

s2βγ. (8)

Next we fix e ∈ E(G) and estimate the sum of δ(e, gj , gk) over all {gj , gk} ∈ Φ. Note that
any paths gj , gk ∈ Pi share the same edges out of E(G(Pi)), so it suffices for us to consider edges
e ∈ E(G(Pi)) for some i ∈ [4] (while for other edges e, the above sum always equals zero).



For e ∈ E(G(Pi)) with d(e) ≥ γ, by Lemma 5.1 one can delete 3β paths in Pi such that there
is at most one interval of Pi which can contain some remaining paths gj, gk with e ∈ E(gj) and
e /∈ E(gk) and moreover, all such paths gj , gk satisfy j < k. Let Φ(e) be the set of pairs in Φ
containing at least one of the above 3β paths we delete. So |Φ(e)| ≤ 3β · 2√βγ = 6βγ/

√
log n, and

for any β ≤ r ≤ √βγ, there are at most r pairs {gj , gk} in Φ\Φ(e) satisfying δ(e, gj , gk) = 1. For
e ∈ E(G(Pi)) with d(e) ≤ β, we let Φ(e) be the set of all pairs in Φ which contains at least one
path containing e. Then it is clear that |Φ(e)| ≤ β · 2√βγ = 2βγ/

√
log n and δ(e, gj , gk) = 0 for all

{gj , gk} in Φ\Φ(e). Hence, for every e with d(e) ≥ γ or d(e) ≤ β, we have

∑

{gj ,gk}∈Φ
δ(e, gj , gk) ≤





∑

{gj ,gk}∈Φ\Φ(e)

δ(e, gj , gk)



+ |Φ(e)| ≤
√
βγ

∑

r=β

r + 6βγ/
√

log n ≤
(

1

2
+ o(1)

)

βγ.

By Lemma 5.1, there are at most 9n log log n/ log n edges e with β ≤ d(e) ≤ γ. Each such e is
contained in at most γ paths gj , while at most 2

√
βγ paths gk can satisfy {gj , gk} ∈ Φ. So at most

γ · 2√βγ = 2β2(log n)3/2 pairs {gj , gk} ∈ Φ can give δ(e, gj , gk) = 1. This implies that

∑

β≤d(e)≤γ

∑

{gj ,gk}∈Φ
δ(e, gj , gk) ≤

9n log log n

log n
· 2β2(log n)3/2 = o(nβγ).

Adding all edges e ∈ E(G) together, we can obtain the following upper bound

Σ =
∑

e∈E(G)





∑

{gj ,gk}∈Φ
δ(e, gj , gk)



 ≤ (n+ s) ·
(

1

2
+ o(1)

)

βγ + o(nβγ) =

(

1

2
+ o(1)

)

nβγ. (9)

Combining with (8) and (9), we can derive that s2 ≤ (1 + o(1))n and thus s ≤ (1 + o(1))
√
n. This

finishes the proof of Theorem 1.2.

7 Concluding remarks

In this paper, we prove that any n-vertex 2-connected graph G with no two cycles of the same length
has at most n+

√
n+ o(

√
n) edges. We remark that through a more careful calculation, the present

proof can show that G contains at most n+
√
n+ 20

√

n/ log n edges.
We also would like to point out that all statements in Sections 3–5 can hold only under the

assumption (2). Indeed, throughout Sections 3–5, all we need in the proofs is just the upper bound
on the total number of cycles, while the stronger assumption that G contains at most one cycle of
length i for each 3 ≤ i ≤ n was only used in Section 6. That also says, the structural constraints
we develop in Sections 3–5 also apply to 2-connected graphs G with relatively many edges but few
cycles. In particular, an analog of Lemma 5.1 still holds for 2-connected graphs G with n vertices,
n + s edges and m cycles, assuming that m ≪ s3. This may shed some light on an old problem
of Entringer from 1973, which asks to determine all graphs G with exactly one cycle of each length
between 3 and |V (G)| (see [1], p. 247, Problem 10).
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