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In this paper, we extend and refine previous Turán-type results on graphs with a
given circumference. Let Wn,k,c be the graph obtained from a clique Kc−k+1 by adding
n− (c−k+ 1) isolated vertices each joined to the same k vertices of the clique, and let
f(n,k,c) = e(Wn,k,c). Improving a celebrated theorem of Erdős and Gallai [8], Kopylov
[18] proved that for c<n, any 2-connected graph G on n vertices with circumference c has
at most max{f(n,2, c),f(n,b c

2
c, c)} edges, with equality if and only if G is isomorphic to

Wn,2,c or Wn,b c
2
c,c. Recently, Füredi et al. [15,14] proved a stability version of Kopylov’s

theorem. Their main result states that if G is a 2-connected graph on n vertices with
circumference c such that 10≤c<n and e(G)>max{f(n,3, c),f(n,b c

2
c−1, c)}, then either

G is a subgraph of Wn,2,c or Wn,b c
2
c,c, or c is odd and G is a subgraph of a member of

two well-characterized families which we define as Xn,c and Yn,c.

We prove that if G is a 2-connected graph on n vertices with minimum degree at least
k and circumference c such that 10≤ c<n and e(G)>max{f(n,k+1, c),f(n,b c

2
c−1, c)},

then one of the following holds:

(i) G is a subgraph of Wn,k,c or Wn,b c
2
c,c,

(ii) k=2, c is odd, and G is a subgraph of a member of Xn,c∪Yn,c, or

(iii) k≥3 and G is a subgraph of the union of a clique Kc−k+1 and some cliques Kk+1’s,
where any two cliques share the same two vertices.

This provides a unified generalization of the above result of Füredi et al. [15,14] as well as
a recent result of Li et al. [20] and independently, of Füredi et al. [12] on non-Hamiltonian
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graphs. A refinement and some variants of this result are also obtained. Moreover, we
prove a stability result on a classical theorem of Bondy [2] on the circumference. We use a
novel approach, which combines several proof ideas including a closure operation and an
edge-switching technique. We will also discuss some potential applications of this approach
for future research.

1. Introduction

All graphs in this paper are simple and finite. The circumference c(G) of a
graph G is the length of a longest cycle in G. A graph G is called Hamiltonian
if c(G) = |V (G)|. Let δ(G) and e(G) denote the minimum degree and the
number of edges in G, respectively.

Determining the circumference of a graph is a classical problem in graph
theory. It is well known that even determining if the graph is Hamiltonian
is NP-hard. There has been extensive research investigating various rela-
tions between the circumference and other natural graph parameters. One
such example is the famous theorem proved by Dirac [6] in 1952, which
states that for any 2-connected graph G, c(G)≥min{2δ(G), |V (G)|}. In this
paper, we mainly focus on the Turán-type problems on the circumference.
One cornerstone in this direction is the following celebrated Erdős–Gallai
theorem.

Theorem 1.1 (Erdős and Gallai [8]). For any graph G on n vertices,

e(G)≤ c(G)(n−1)
2 .1

This is sharp if n− 1 is divisible by c− 1 (where c := c(G)), by consid-
ering the graph consisting of cliques Kc’s sharing only one common vertex.
Theorem 1.1 also implies that if an n-vertex graph G contains no paths of

length k,2 then e(G)≤ (k−1)n
2 .

Bondy [2] generalized this theorem by showing the following.

Theorem 1.2 (Bondy [2]). Let G be a graph on n vertices and let C be
a longest cycle of G of length c. Then the number of edges with at most one
endpoint in C is at most c

2 · (n− c). In addition, if G is 2-connected, then
this number is at most b c2c ·(n−c).

Since there are at most
(
c
2

)
edges spanned in V (C), we see that Theo-

rem 1.2 indeed is a strengthening of Theorem 1.1.3

1 For a graph G without cycles, we view c(G)=2.
2 We specify that throughout this paper, a path of length k has k edges (and hence k+1

vertices).
3 An improved version for 2-connected graphs can be found in Fan [9].
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Throughout this paper, let Wn,k,c be the graph obtained from a clique
Kc−k+1 by adding n−(c−k+1) isolated vertices each joined to the same k
vertices of Kc−k+1, and

f(n, k, c) :=

(
c− k + 1

2

)
+ k · (n− c+ k − 1).

So Wn,k,c has n vertices, minimum degree k and circumference c with
e(Wn,k,c)=f(n,k,c).

1.1. Stability on non-Hamiltonian graphs with large minimum
degree

For non-Hamiltonian graphs G (that is, c(G)≤n−1), Ore [21] proved that
e(G)≤

(
n−1
2

)
+1=f(n,1,n−1). This was generalized further by Erdős [7].

Theorem 1.3 (Erdős [7]). If G is a non-Hamiltonian graph on
n vertices with δ(G) ≥ k, where 1 ≤ k ≤ (n − 1)/2, then
e(G)≤max{f(n,k,n−1),f(n,bn−12 c,n−1)}.

This bound is sharp for all 1 ≤ k ≤ (n− 1)/2. Recently, Li and Ning
[20], and independently, Füredi, Kostochka and Luo [12] proved a stability
version of this theorem.

Theorem 1.4 ([20,12]). Let G be a non-Hamiltonian graph on n
vertices with δ(G) ≥ k, where 1 ≤ k ≤ (n − 1)/2. If e(G) >
max{f(n,k+ 1,n− 1),f(n,bn−12 c,n− 1)}, then G is a subgraph of either
Wn,k,n−1 or the edge-disjoint union of two cliques Kn−k and Kk+1 sharing
a common vertex.

Very recently, Füredi, Kostochka and Luo obtained a stronger stability
theorem (and also some other related results) in [13].

1.2. Stability on graphs with given circumference

There are many refinements of Theorem 1.1 in the literature, see
[11,19,23,18] or the survey [16]. Among them, Kopylov [18] proved the fol-
lowing strong version in 1977.

Theorem 1.5 (Kopylov [18]). Let G be a 2-connected graph on n ver-
tices. If c(G)=c≤n−1, then e(G)≤max{f(n,2, c),f(n,b c2c, c)}.



4 JIE MA, BO NING

We also mention that another proof of Theorem 1.5 was found by Fan,
Lv, and Wang [10] in 2004. Using an edge-switching technique, the authors
of [10] proved a slightly stronger result when n− 1 ≥ c(G) ≥ 2n

3 + 1. This,
together with a result of Woodall [23] that if G is a 2-connected graph with
circumference c ≤ 2n+2

3 , then e(G) ≤ f(n,b c2c, c), gives a different proof of
Theorem 1.5. More importantly for us, the technique of [10] provides an
integral ingredient to the proof of our main theorem (see Subsection 4.3).

In 2016, Füredi, Kostochka, and Verstraëte [15] proved a stability result of
Theorem 1.5 in the range of n≥3b c2c. Together with this, Füredi, Kostochka,
Luo, and Verstraëte [14] recently obtained a completed stability version of
the above theorem of Kopylov. To state their result, we need to introduce
two families Xn,c and Yn,c, which contain graphs of a given circumference c
where c is odd, as follows:

– A graph G in the family Xn,c has n vertices and V (G)=A∪B∪X such
that G[A] induces a clique Kb c

2
c, both G[B] and G[X] are stable, (A,B) is

complete bipartite, and there exist two vertices a∈A and b∈B such that
for any x∈X, NG(x)={a,b}.

– A graph G in the family Yn,c has n vertices and V (G)=A∪B∪Y such
that G[A] induces a clique Kb c

2
c, G[B] is stable, G[Y ] is a nontrivial star

forest4, (A,B) is complete bipartite, and there exist two vertices a,b ∈ A
such that every star S in G[Y ] is {a,b}-feasible: that is, NG(S)={a,b} and
if |V (S)| ≥ 3, then all leaves of S have degree 2 in G and have a common
neighbor in {a,b}.

Theorem 1.6 (Füredi, Kostochka, Luo, and Verstraëte [14]). Let G
be a 2-connected graph on n vertices with circumference c, where 10≤ c≤
n− 1. If e(G) > max{f(n,3, c),f(n,b c2c − 1, c)}, then one of the following
conclusions holds:

(a) G⊆Wn,2,c,

(b) G⊆Wn,b c
2
c,c, or

(c) if c is odd, then G is a subgraph of a member of Xn,c∪Yn,c.

We remark that the case c ≤ 9 was also fully characterized in [15,14];
in particular, the case c= 9 requires another extremal graph, besides those
stated in Theorem 1.6. As a corollary in [14], if in addition G is 3-connected
in Theorem 1.6, then one must have G⊆Wn,b c

2
c,c.

By imposing minimum degree as a new parameter, Woodall [23] asked
the following refinement of Theorem 1.1 in 1976.

4 We say a star forest is nontrivial, if it has at least two stars and every star has at least
one edge.
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Conjecture 1 (Woodall [23]). LetG be a 2-connected graph on n vertices
with δ(G)≥k. If c(G)=c≤n−1, then e(G)≤max{f(n,k,c),f(n,b c2c, c)}.

One may also view this as a unification of Theorems 1.3 and 1.5. It should
be mentioned that Kopylov’s original proof in [18] can be modified to give
a solution of this conjecture.

The Turán-type problem of cycles of given lengths for graphs with a
given minimum degree is well-studied (see Chapter 5 of [1] for an inclusive
discussion).

1.3. The main result

Our main result is a stability version of Woodall’s conjecture, which also
is a unified generalization of Theorem 1.6 and Theorem 1.4 for 2-connected
graphs. We define the graph Zn,k,c to be the union of a clique Kc−k+1 and
n−(c−k+1)

k−1 cliques Kk+1’s such that any two cliques share the same two ver-
tices.

Theorem 1.7. Let G be a 2-connected graph on n vertices with
δ(G) ≥ k and circumference c, where 10 ≤ c ≤ n − 1.5 If
e(G) > max

{
f(n,k+1, c),f

(
n,
⌊
c
2

⌋
−1, c

)}
, then one of the following con-

clusions holds:

(a) G⊆Wn,k,c,

(b) G⊆Wn,b c
2
c,c,

(c) if k=2 and c is odd, then G is a subgraph of a member of Xn,c∪Yn,c,
or

(d) if k≥3, then G⊆Zn,k,c.

We make some remarks. First, we see that the case k=2 of Theorem 1.7
gives the precise statement of Theorem 1.6. Secondly, by letting c= n−1,
Theorem 1.7 also provides a refined version of Theorem 1.4 for 2-connected
graphs. Also we have c≥2k in Theorem 1.7, which follows by Dirac’s theorem
that c ≥ min{n,2k}. Note that Zn,k,c has n vertices, minimum degree k
(assuming c≥2k) and circumference c with

e(Zn,k,c) =

(
c− k + 1

2

)
+
k + 2

2
· (n− c+ k − 1).

Thus, in certain range it holds that

e(Zn,k,c) > max
{
f(n, k + 1, c), f

(
n,
⌊ c

2

⌋
− 1, c

)}
.

5 Following the proofs, we shall see that the same statement also holds for the case c=8.
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We also notice that every graph in Xn,c∪Yn,c has a vertex of degree 2,
and the graph Zn,k,c has a 2-cut. Therefore, it is prompt to deduce that

Corollary 1.8. Let G be a 3-connected graph on n vertices with
δ(G) ≥ k and circumference c, where 10 ≤ c ≤ n − 1. If e(G) >
max

{
f(n,k+1, c),f

(
n,
⌊
c
2

⌋
−1, c

)}
, then either G⊆Wn,k,c or G⊆Wn,b c

2
c,c.

1.4. A refinement

Using a novel closure operation which we define below, we are able to refine
Theorem 1.7 in more detail. We point out that the closure operation has
proved to be a powerful tool for finding long cycles (see [3,4,22]). However
it is surprising for us that in some cases one can even precisely describe the
extremal graphs using closures.

The k-closure of a graph G is the graph obtained from G by recursively
joining pairs of nonadjacent vertices whose degree sum is at least k until no
such pair remains. We also say that the resulting graph is k-closed. Let G be
a graph and C be a cycle of G of length c. The C-closure of G, denoted as
G, is obtained from G by replacing the subgraph G[C] by its (c+1)-closure.
It is crucial to observe that G⊆G.

Theorem 1.9. Let G be a 2-connected graph on n vertices with δ(G) ≥
k and let C be a longest cycle in G of length c ∈ [10,n− 1]. If e(G) >
max

{
f(n,k+1, c),f

(
n,
⌊
c
2

⌋
−1, c

)}
, then one of the following holds:

(a) G=Wn,k,c, where G denotes the C-closure of G,

(b) G⊆Wn,b c
2
c,c,

(c) if k=2 and c is odd, then G is a subgraph of a member of Xn,c∪Yn,c,
or

(d) if k≥3, then G=Zn,k,c.

1.5. Two variants

The following two variants of the main result also can be obtained analo-
gously, from which we see how the extremal graphs of Theorem 1.9 change
as the parameters vary in the function f(n,k,c).

Theorem 1.10. Let G be a 2-connected graph on n vertices with δ(G)≥
k and let C be a longest cycle in G of length c ∈ [10,n− 1]. If e(G) >
max

{
f(n,k+1, c),f

(
n,
⌊
c
2

⌋
, c
)}

, then G=Wn,k,c or Zn,k,c, where G denotes
the C-closure of G.
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Theorem 1.11. Let G be a 2-connected graph on n vertices with δ(G)≥
k and let C be a longest cycle in G of length c ∈ [10,n− 1]. If e(G) >
max

{
f(n,k,c),f

(
n,
⌊
c
2

⌋
−1, c

)}
, then either G⊆Wn,b c

2
c,c, or k=2, c is odd

and G is a subgraph of a member of Xn,c∪Yn,c.

In particular, if we choose c=n−1 in Theorem 1.10, then it follows that
G=Wn,k,n−1. This is because that Zn,k,n−1 is valid only for k=2, but when
k= 2, Wn,2,c and Zn,2,c are identical. This provides another refined version
of Theorem 1.4 for 2-connected graphs.

1.6. Stability on a theorem of Bondy

Our other result on the circumference of a graph is a stability version of
Theorem 1.2.

Theorem 1.12. Let G be a 2-connected graph on n vertices and C be a
longest cycle in G of length c, where 10≤ c≤n−1. If the number of edges
with at most one endpoint in C is more than

(⌊
c
2

⌋
−1
)

(n− c), then either
G⊆Wn,b c

2
c,c, or c is odd and G is a subgraph of a member of Xn,c∪Yn,c.

1.7. Proof reduction

In this subsection, we give a sketch of the proof of Theorem 1.9, which we
emphasize is quite different from the existing ones in [12,14,15].

The proof will be split into two parts, according to the simple observation
that given a longest cycle C in the graph G which has many edges, either
the number of edges with at most one endpoint in C is large or the number
of edges spanned in V (C) is large. The former case will be dealt with by
Theorem 1.12, and the latter case will be handled by the following result.

Define h(n,k) :=
(
n−k
2

)
+k(k−1). We point out that h(n+1,k)=e(Wn,k,n).

Theorem 1.13. Let G be a 2-connected graph on n vertices with
δ(G) ≥ k and C be a longest cycle in G of length c ∈ [6,n − 1]. If
e(G) > max

{
f(n,k+1, c),f

(
n,
⌊
c
2

⌋
−1, c

)}
and e(G[C]) > h

(
c+1,

⌊
c
2

⌋
−1
)
,

then either G⊆Wn,b c
2
c,c, or G ∈ {Wn,k,c, Zn,k,c}, where G denotes the C-

closure of G.

We give the formal reduction of Theorem 1.9 to Theorems 1.12 and 1.13.
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Proof of Theorem 1.9. (Assuming Theorems 1.12 and 1.13.) Let
G,C be as in Theorem 1.9. We notice that e(G) > f(n,b c2c − 1, c) =
(b c2c−1)(n−c)+h(c+1,b c2c−1). So either e(G−C)+e(G−C,C)>(b c2c−1)(n−c)
or e(G[C])>h(c+1,b c2c−1). If the former case occurs, then by Theorem 1.12,
either G⊆Wn,b c

2
c,c, or c is odd and G is a subgraph of a member of Xn,c∪Yn,c.

As every graph in Xn,c∪Yn,c has a vertex of degree 2, it is only valid when
k= 2. So the latter case occurs. Then the assertion of Theorem 1.9 follows
from Theorem 1.13.

1.8. Organization

The rest of the paper is organized as follows. In Section 2, first we introduce
notations and terminologies, which include an important concept ‘locally
maximal cycle’ for our proofs; then we collect and prove some lemmas on
cycles and closures. In Section 3, we prove Theorem 1.12. In Section 4, we
prove a stronger version (Theorem 4.1) of Theorem 1.13, whose proof will
be split into three technical lemmas. In Section 5, we complete the proofs
of the two variants, i.e., Theorems 1.10 and 1.11. In Section 6, we conclude
this paper by discussing some future research.

2. Preliminaries

2.1. Notations

Let G be a graph and H be a subgraph of G. We use G−H to denote the
resulting graph obtained from G by deleting all vertices of H. If H consists
of only one vertex v, then we just write it as G−v. For convenience, sometime
we would abuse the notation by using the subgraph H as its vertex set. For
instance, we often use |H| to express |V (H)|. Let A be a subset of V (G).
By NH(A), we mean the set of all vertices in V (H)\A which have at least
one neighbor in A. We write G[A] for the induced subgraph of G on A. We
say A is stable, if G[A] has no edges. If H,H ′ are two disjoint subgraphs (or
subsets) in G, we define (H,H ′) to be the induced bipartite subgraph of G
on the two parts V (H) and V (H ′). For x,y∈V (G), an (x,y)-path is a path
in G with two endpoints x and y, and an (x,H,y)-path is an (x,y)-path
with all internal vertices in V (H). We use d∗H(x,y) to denote the length of
a longest (x,H,y)-path. We say G is Hamiltonian-connected, if for any two
vertices x,y∈V (G), there exists an (x,y)-path which passes through every
vertex in G. The clique number of G is the maximum size of a clique in G.
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For a cycle or path C with a given orientation, we denote v+ and v− as the
successor and predecessor of the vertex v on C, respectively. For a subsect
A⊆V (C), by A+ (resp. A−) we mean the set consisting of v+ (resp. v−) for
all v∈A. An (x,y)-path in C sometime is also written as C[x,y]. Two edges
are independent, if their endpoints are distinct.

Let C be a cycle of a graph G and R be a component of G−C. A subset
M={x1,x2, . . . ,xs} of V (G) is called a strong attachment of R to C, if xi’s
lie on C in a cyclic order, and for any ordered pair of vertices xi,xi+1, where
xs+1=x1, there exist yi,yi+1∈V (R) such that xiyi,xi+1yi+1 are independent
edges.

A cycle C is locally maximal in a graph G if there is no cycle C ′ in G
such that |E(C ′)|> |E(C)| and |E(C ′)∩E(C,G−C)|≤2. This concept will
play an important role in our proofs (for Section 4 especially). It seems that
in most situations a locally maximal cycle C captures the properties of a
longest cycle, and yet it has its own advantages for counting the number of
edges incident with V (C).

Lastly, we consider the monotonicity of the function f(n,k,c), where n,c

are fixed. Basic calculation shows that f(n,k,c)= 3
2

[
k2−(4c−2n3 +1)k

]
+c2+c

2
is convex in k. So the maximum of f(n,k,c) over an interval [a,b] is always
attained at either k = a or k = b. Assuming that 10 ≤ c ≤ n− 1, we have⌊
c
2

⌋
−1≥ c−1

3 +1
2≥

2c−n
3 +1

2 , which implies that f
(
n,
⌊
c
2

⌋
, c
)
≥f

(
n,
⌊
c
2

⌋
−1, c

)
.

This inequality will be needed in the proof of Theorem 1.10.

2.2. Some results on cycles

We collect and prove some results on cycles here. The following result is due
to Bondy [2], which strengthens Dirac’s theorem.

Theorem 2.1 (Bondy [2]). Let G be a 2-connected graph on n vertices.
If every vertex except for at most one vertex is of degree at least k, then
c(G)≥min{n,2k}.

The next result, which was proved by Fan [9], can be viewed as an
average-degree version of the classical Erdős–Gallai theorem. This will be
frequently used in our coming proofs for finding long paths between some
specified vertices.

Theorem 2.2 (Fan [9]). Let x,y be two distinct vertices in a 2-connected
graph G. Suppose that the average degree of the vertices other than x and
y in G is r, then the longest (x,y)-path in G has length at least r, with
equality if and only if r is an integer and G∈{J,J−xy}, where J denotes
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the union of some cliques Kr+1 which pairwise share the same vertices x
and y.

One can derive the following lemma from Theorem 2 of [9] (choosing
k=2). 6

Lemma 2.3 (Theorem 2, [9]). Let G be a 2-connected graph, C be a
longest cycle of length c in G, and H a component of G−C which is 2-
connected. If the average degree of the vertices of H in G is r, then c≥2r,
with equality only if H is a clique Kr−1 in which every vertex has the same
two neighbors on C.

The following lemma studies some properties of a strong attachment.

Lemma 2.4 (Lemma 1, [9]). Let G be a graph, C be a cycle in G, and
R a component of G−C. Let T = {u1,u2, . . . ,ut} be a maximum strong
attachment of R to C, S=NC(R)\T , t= |T | and s= |S|. Then,
(i) Every vertex in S is joined to only one vertex in R.

(ii) For each 1≤ i≤ t, suppose that NC(R)∩V (C[ui,ui+1])={a0,a1, . . . ,ap},
where a0=ui, ap=ui+1, and aj ’s are in a cyclic order on C.

Then there is a subscript m such that NR(aj) =NR(a0) for 0≤ j ≤m and
NR(aj)=NR(ap) for m+1≤j≤p.
(iii) If C is a longest cycle in G of length c and t ≥ 2, then

c≥
∑t

i=1 d
∗
R(ui,ui+1)+2s.

Lastly, we bound the clique number on a long cycle by some parameters
related to a strong attachment.

Lemma 2.5. Let G be a 2-connected graph, C a locally maximal cycle in
G, and R a component of G−C. Let T be a strong attachment of R to C.
Let t= |T |, q= |NC(R)\T | and ω be the clique number of G[C]. If for any
x,x′∈T , the longest (x,R,x′)-path is of length at least d, where d≥2, then
the following hold:

(i) ω≤|C|−(d−1)(t−1);

(ii) If T is a maximum strong attachment, then ω≤|C|−(d−1)(t−1)−q.

Proof. We write C = x1x2 · · ·xcx1 and view x1,x2, . . . ,xc appearing on C
in the clockwise order. (All subscripts are taken under modulo c in this
proof.) For x,y ∈ V (C), by C[x,y] we denote the segment of C from x

6 The original statement of Theorem 2 in [9] requires that “C is locally longest with
respect to H and H is locally 2-connected to C”, which can be implied if C is a longest
cycle in G and both G and H are 2-connected as in Lemma 2.3.
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to y in the clockwise order. Let T = {u1,u2, . . . ,ut} and uj := xij , where
1≤ i1<.. .<it≤c. Let W be a maximum clique in G[C].

We first prove (i). Since d∗R(uj ,uj+1)≥ d and C is locally maximal, we
see that C[uj ,uj+1] is a path of length at least d. For each j, let Aj =
V (C[xij+1,xij+d d−1

2
e]) and Bj =V (C[xij+1−b d−1

2
c,xij+1−1]). So Aj and Bj are

disjoint. Let A=∪jAj and B=∪kBk. We claim that for any j 6=k, there are
no edges between Aj and Ak. Suppose this was not the case. Then there exist

1≤`,`′≤dd−12 e such that e :=xij+`xik+`′ ∈E(G). Let P be a (uj ,R,uk)-path
of length at least d. Then C[xik+`′ ,xij ]∪P ∪C[xij+`,xik ]∪{e} forms a cycle,

say C ′. We see that |C ′|≥|C|+(d+1)−(`+`′)≥|C|+(d+1)−2dd−12 e> |C| and
|E(C ′)∩E(C,G−C)|≤2, a contradiction to that C is locally maximal, proving
the claim. The claim shows that the maximum clique W can intersect with
at most one Aj , so |V (W )∩A|≤dd−12 e. Similarly, there are no edges between

Bj and Bk for any j 6= k, and thus |V (W )∩B| ≤ bd−12 c. As A and B are
disjoint, we have |A∪B|=(d−1)t. Now we prove (i) by showing

ω = |V (W ) \ (A ∪B)|+ |V (W ) ∩ (A ∪B)|
≤ |V (C) \ (A ∪B)|+ |V (W ) ∩ (A ∪B)|
≤ |V (C)| − |A ∪B|+ |V (W ) ∩A|+ |V (W ) ∩B|
≤ c− (d− 1)(t− 1).

To prove (ii), we need a refined argument for (i). For any 1≤ j ≤ t, let
NC(R)∩V (C[uj ,uj+1]) = {a0,a1, . . . ,ap}, where a0 =uj , ap =uj+1, and a`’s
for 0 ≤ ` ≤ p appear on C in the clockwise order. By Lemma 2.4, there
is a subscript m such that NR(a`) = NR(uj) for 0 ≤ ` ≤m and NR(a`) =
NR(uj+1) for m+1≤ `≤ p. Consider the segment Cj :=C[am,am+1]. Since
NR(am) =NR(uj) and NR(am+1) =NR(uj+1), we see that d∗R(am,am+1) =
d∗R(uj ,uj+1) ≥ d. So Cj is a path of length at least d. Similarly as in the

proof of (i), let Aj be the set of the first dd−12 e vertices on Cj (starting from

am but not including am), and let Bj be the set of the last bd−12 c vertices
on Cj (not including am+1). Also let A=∪jAj and B=∪jBj . So A and B
are disjoint. Similarly, we can show that W intersects with at most one Aj .

Thus, |V (W )∩A| ≤ dd−12 e, with equality if and only if V (W )∩A=Aj for

some j. Also |V (W )∩B|≤bd−12 c.
We consider (NC(R))+. First we show (NC(R))+ is stable. Otherwise,

there exist x,y ∈ NC(R) with x+y+ ∈ E(G); let P be any (x,R,y)-path,
which has length at least 2, then (C−{xx+,yy+})∪P ∪{x+y+} is a cycle
contradicting that C is locally maximal. We point out that (NC(R))+ is
disjoint from B, and it intersects with each Aj in exactly one vertex a+m
(i.e., the first vertex after am in Cj). Let D := (NC(R))+ \ (A∪B), where
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|D|= |NC(R)|− t= q. We claim that |V (W )∩ (A∪D)| ≤ dd−12 e. Since D is
stable, W intersects with D in at most one vertex. If V (W )∩D = ∅, then
this claim follows from that |V (W )∩A| ≤ dd−12 e. So we may assume that

V (W )∩D = {x} and |V (W )∩A|= dd−12 e. By the above analysis, we then
have V (W )∩A=Aj for some j. In particular, the vertex a+m ∈Aj is in W .
But then there are two vertices x,a+m in V (W )∩(NC(R))+, a contradiction.
This proves the claim. Combining the above bounds, we have

ω ≤ |V (C) \ (A ∪B ∪D)|+ |V (W ) ∩ (A ∪B ∪D)|
≤ |V (C)| − |A ∪B ∪D|+ (d− 1) ≤ c− (d− 1)(t− 1)− q.

This finishes the proof of Lemma 2.5.

2.3. Lemmas on closures

In this subsection, we prove some lemmas on C-closures.

Lemma 2.6. Let G be a graph on n vertices. Then for any x,y∈V (G), the
longest (x,y)-path in the (n+ 1)-closure of G has the same length as the
longest (x,y)-path in G.

Proof. It suffices to prove the following: for two nonadjacent vertices u,v in
G with dG(u)+dG(v)≥n+1 and for any x,y∈V (G), there exists a longest
(x,y)-path P in G′ :=G+{uv} satisfying that E(P )⊆E(G). Suppose this is
not true. Then any longest (x,y)-path P in G′ must contain the new edge uv.
Assume that x,u,v,y lie on P in this order. First we observe that there is no
common neighbor of u and v in V (G)−V (P ), as otherwise one can find an
(x,y)-path longer than P in G′. Let P1 :=P [x,u] and P2 :=P [v,y]. We claim
that there are no vertices a∈NG(u)∩V (P1) and b∈NG(v)∩V (P1) such that
b=a+ (we view P from x to y). Suppose such a,b exist. Then b∈V (P1)\{u}.
By Posa’s rotation technique, (P−{ab,uv})∪{au,bv} is a longest (x,y)-path
in G′, however all its edges are from E(G), a contradiction. This shows that
(NG(u)∩V (P1))

+∩(NG(v)∩V (P1))=∅. So |NG(u)∩V (P1)|+|NG(v)∩V (P1)|≤
|V (P1)|. Similarly, we have |NG(u) ∩ V (P2)|+ |NG(v) ∩ V (P2)| ≤ |V (P2)|.
Combining the above bounds, it follows that dG(u) + dG(v) ≤ |V (G)| = n,
contradicting that dG(u)+dG(v)≥n+1. This proves the lemma.

Lemma 2.7. Let G be a graph and C be a locally maximal cycle of G.
Then C is also a locally maximal cycle of the C-closure of G.

Proof. Let G denote the C-closure of G. We point out that G−C=G−C
and E(C,G−C) = E(C,G−C). Suppose this is not true. Then there is a
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cycle D in G such that |D|> |C| and |E(D)∩E(C,G−C)|≤2; and subject
to this, we choose D such that |D| is maximum. It is fair to assume that
|E(D)∩E(C,G−C)|=2 (as otherwise E(D)∩E(C,G−C)=∅, implying that
D⊆G−C). Let xy,x′y′ be the two edges in the intersection, where x,x′ ∈
V (C). Then D consists of two internally disjoint (x,x′)-paths P1 and P2,
where P1 is an (x,G−C,x′)-path and P2 is an (x,x′)-path in G[C]. Note that
P1 is in G, and by the maximality of D, P2 is a longest (x,x′)-path in G[C].
By Lemma 2.6, there exists an (x,x′)-path P3 in G[C] with |P2|= |P3|. Set
C ′ :=P1∪P3. Then C ′ is a cycle in G of length |C ′|= |P1|+|P3|= |P1|+|P2|=
|D|> |C|. Furthermore, |E(C ′)∩E(C,G−C)|= |E(D)∩E(C,G−C)| ≤ 2,
which contradicts the fact that C is locally maximal in G. This completes
the proof.

Lemma 2.8. Let G be a 2-connected graph on n vertices and C be a locally
maximal cycle in G of length c, where c≤n−1. Let G denote the C-closure
of G. Then G[C] is non-Hamiltonian-connected.

Proof. Suppose for a contradiction that G[C] is Hamiltonian-connected. As
c≤ n−1, there is a component R in G−C. Since G is 2-connected, there
exist two distinct vertices x,x′∈NC(R). Let P1 be an (x,R,x′)-path. Since
G[C] is Hamiltonian-connected, there is an (x,x′)-path P2 in G[C], which
passes through all vertices in V (C). Then C ′ :=P1∪P2 is a cycle in G which
is longer than C and |E(C ′)∩E(C,G−C)|≤2. This contradicts Lemma 2.7
that C is locally maximal in G. This proves the lemma.

We need a theorem of Chvátal [5] on the degree sequences of non-
Hamiltonian graphs.

Theorem 2.9 (Chvátal [5]). Let G be a graph with degree sequence d1≤
d2≤ . . .≤dn and n≥3. If G is non-Hamiltonian, then there is some integer
s<n/2 such that ds≤s and dn−s<n−s.

We can get a corollary of Chvátal’s theorem on non-Hamiltonian-
connected graphs.

Lemma 2.10. Let G be a non-Hamiltonian-connected graph on n vertices
with minimum degree at least 2. Then there exists a set of s−1 vertices in
G of degree at most s, where 2≤s≤bn2 c.

Proof. Since G is non-Hamiltonian-connected, there exist x,y∈V (G) such
that there is no Hamiltonian path from x to y in G. Let G′ be obtained from
G by adding a new vertex z and two edges xz,yz. Clearly, G′ is not Hamil-
tonian. Let d1≤d2≤ . . .≤dn+1 be the degree sequence of G′. Since δ(G)≥2,
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we have d1=2, which denotes the degree of z in G′. By Theorem 2.9, there
is some integer s< n+1

2 such that ds≤ s and dn+1−s<n+ 1−s. As d1 = 2,
we see that 2≤ s≤ bn2 c. If we let f1 ≤ f2 ≤ . . .≤ fn be the degree sequence
of G, then each fi corresponds to the vertex associated with di+1 and thus
fi≤di+1. This shows that fs−1≤ds≤s, proving the lemma.

The next lemma (in particular, its special case when δ= 1) will play an
important role in the proof of Theorem 4.1. We establish a general version
for possible studies in future. Its proof is analogous to Lemma 6 in [12].

Lemma 2.11. LetGc be a graph on c vertices with minimum degree at least
2. Further suppose that Gc is (c+1)-closed and non-Hamiltonian-connected
with

e(Gc) > h
(
c+ 1,

⌊ c
2

⌋
− p
)

for some integer p ≥ 0.

Then one of the following holds:

(i) Gc contains a subset S of s− 1 vertices of degree at most s, where
2≤s≤b c2c−p−1, such that Gc−S is a clique; or

(ii) Gc contains a subset T of t− 1 vertices of degree at most t, where
b c2c−p+1≤ t≤b c2c.

Proof. Suppose neither (i) nor (ii) holds. Since Gc is non-Hamiltonian-
connected, by Lemma 2.10, there exists some 2 ≤ s ≤ b c2c such that Gc
contains s−1 vertices of degree at most s. Subject to this, we choose s to
be maximal, and let S be the set of all vertices in Gc with degree at most
s. If b c2c − p+ 1 ≤ s ≤ b c2c, then (ii) holds. If s = b c2c − p, then e(Gc) ≤
(s−1)s+

(
c−s+1

2

)
=h(c+1,s)=h(c+1,b c2c−p), a contradiction. So we may

assume that 2≤ s≤b c2c−p−1. Moreover, by the maximality of s, we have
|S|=s−1.

Next, we will show that Gc−S is a clique. Suppose that there are non-
adjacent vertices u,v∈V (Gc)−S. Without loss of generality, assume that u
is the one with the maximal degree among all vertices in V (Gc)−S, each of
which is not adjacent to every vertex in V (Gc)−S. Let S′ :=V (G)−N(u)−{u}
and s′ := |S′|+1=c−d(u). For any w∈S′, since wu /∈E(Gc) and Gc is (c+1)-
closed, we have d(w)≤c−d(u)=s′. So S′ is a set of s′−1 vertices of degree
at most s′. Since v /∈S, by the maximality of S, it follows that d(v)>s. So
s<d(v)≤s′. By the maximality of s, we get that s′≥b c2c+1. As s′=c−d(u),
we get d(u)≤b c2c. We then claim that any vertex x∈S′ has degree at most
b c2c. Indeed, if x∈S, then d(x)≤s≤b c2c−p−1; otherwise x∈S′\S, then by
the choice of u, d(x)≤ d(u)≤ b c2c. Now observe that S′ is a set of at least
b c2c vertices of degree at most b c2c, so (ii) holds, a contradiction. This shows
that Gc−S is a clique and thus (i) holds. This proves the lemma.
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We remark that if p=0, then only (i) occurs in Lemma 2.11.

3. Stability on a theorem of Bondy

In this section, we prove a stability result on a classic theorem due to Bondy
[2]. We restate the statement here for the convenience of the readers.

Theorem 1.12. Let G be a 2-connected graph on n vertices and C be a
longest cycle in G of length c, where 10≤c≤n−1. If e(G−C)+e(G−C,C)>(⌊

c
2

⌋
−1
)

(n−c), then either G⊆Wn,b c
2
c,c or c is odd and G is a subgraph of

a member of Xn,c∪Yn,c.

To prove Theorem 1.12, a crucial step is to find a vertex in G−C with
b c2c neighbors in C (see Theorem 3.1); this will be done in Subsection 3.1.
As we shall see later (somehow surprisingly), the existence of such a vertex
can give a lot of structural information of the graph G. We then complete
the proof of Theorem 1.12 in Subsection 3.2.

3.1. A vertex with large degree

In this subsection, we prove the following result.

Theorem 3.1. Let G be a 2-connected graph on n vertices and C be a
longest cycle in G of length c, where 10≤c≤n−1. If e(G−C)+e(G−C,C)>
(b c2c−1)(n−c), then there exists an isolated vertex u in G−C with dC(u)=
b c2c.

Just as in the original theorem of Bondy, we also can drop off the con-
nectivity condition. A more general statement is as follows.

Theorem 3.2. Let G be a graph on n vertices and C be a longest cycle in
G of length c, where 4≤c≤n−1. If e(G−C)+e(G−C,C)>(b c2c−1)(n−c),
then one of the following holds:

(a) c∈{6,7,9};
(b) there exists a vertex u∈V (G−C) with dC(u)=b c2c;
(c) there exists a cycle C ′ in G satisfying that |V (C∩C ′)|≤1 and

– if V (C∩C ′)=∅, then |C ′|≥2b c2c−3,
– if |V (C∩C ′)|=1, then |C ′|≥2b c2c−1.

Proof. We prove the theorem by contradiction. Suppose that there exists an
n-vertex non-Hamiltonian graph G and a longest cycle C in G of length c≥4
such that e(G−C)+e(G−C,C)>(b c2c−1)(n−c) and none of (a),(b) and (c)
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holds. We choose such a counterexample G that c is minimum and subject
to this, the order n is minimum. Throughout this proof, let H :=G−C and
so

e(H) + e(H,C) >
(⌊ c

2

⌋
− 1
)

(n− c).(1)

Claim 1. c≥5 and n≥c+2.

Proof. Assume that c = 4. Then by (1) we have e(H) + e(H,C) > n− 4.
Suppose that there is a cycle C ′ in G−E(C). So |C ′|=3 or 4. If |V (C ′∩C)|≤1,
then clearly (c) holds; otherwise |V (C ′∩C)| ≥ 2, then there exists either a
cycle longer than C or a vertex in H with two neighbors in C (thus (b) holds),
a contradiction. So there is no cycle in G−E(C). Consider any component
R in H, which must be a tree. If dC(R)≥2, then either there is a vertex in
R with two neighbors in C, or we can find a longer cycle, a contradiction.
Thus dC(R)≤ 1 and as G−E(C) has no cycles, e(R,C)≤ 1. This implies
that e(R) + e(R,C)≤ |R|. Summing over all components R in H, we have
e(H)+e(H,C)≤

∑
|R|=n−4, a contradiction. This proves that c≥5.

Now suppose that n= c+1. Let V (H)={u}. By (1), dC(u)≥b c2c. Since
C is a longest cycle in G, we must have dC(u)=b c2c. This proves Claim 1.

Claim 2. For any vertex v∈V (H), dG(v)≥b c2c.

Proof. Suppose for a contradiction that there exists a vertex u ∈ V (H)
with dG(u)≤ b c2c−1. Set G′ :=G−u. So C remains a longest cycle in G′.
By Claim 1, n≥ c+ 2, implying that G′ is non-Hamiltonian. We also have
e(G′−C)+e(G′−C,C) = e(H)+e(H,C)−dG(u)> (b c2c−1)(n− c−1). By
the choice of G, one of (a), (b) and (c) holds in G′. It is obvious to see that
the same case also holds in G. This proves the claim.

Claim 3. H is connected.

Proof. Suppose that H is not connected. Then by averaging, there exists a
component R in H such that e(G[R])+e(G[R],C)>(b c2c−1)·|R|. It is clear
that G[R∪C] is non-Hamiltonian. Then by the choice of G, one of (a),(b)
and (c) holds in G[R∪C], which also holds in G, a contradiction. This proves
Claim 3.

Claim 4. G is 2-connected.

Proof. Suppose that G is not 2-connected. Then there exists an end-block7

B of G such that |V (B∩C)|≤ 1. Let b be the unique cut-vertex of G with

7 A block B in a graph G is a maximal connected subgraph of G such that there exists
no cut-vertex of B. An end-block in G is a block in G containing at most one cut-vertex
of G.
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b∈V (B) (if it exists). By Claim 2, every vertex in V (B), except the vertex b,
has degree at least b c2c in B. By Theorem 2.1, we have c(B)≥min{|B|,2b c2c}.
If |B|≥2b c2c−1, then c(B)≥2b c2c−1, a contradiction to (c). Hence we may
assume that |B|≤2b c2c−2.

Let H1 :=G−(B−b). Clearly C is still a longest cycle in H1. We claim that
H1 is not Hamiltonian. Indeed, otherwise C must be a Hamiltonian cycle

of H1 and thus we have H =B− b. So (|B|−1)|B|
2 ≥ e(B) = e(H)+e(H,C)>

(b c2c− 1)(n− c) = (b c2c− 1)(|B| − 1), which implies that |B| ≥ 2b c2c− 1, a
contradiction.

Note that we have e(H1) = e(G)− e(B). So e(H1−C) + e(H1−C,C) =

e(H1)−e(G[C])=e(G−C)+e(G−C,C)−e(B)>(b c2c−1)(n−c)−|B|(|B|−1)2 . Since
|B|≤2b c2c−2, it follows that e(H1−C)+e(H1−C,C)>(b c2c−1)(|V (H1)|−c).
By the choice of G, one of (a), (b) and (c) holds in H1, which also holds in
G. This proves Claim 4.

Claim 5. |V (H)|≥3.

Proof. Otherwise, in view of Claims 1 and 3, we may assume that H is
just an edge v1v2. So we have e(H,C)≥2(b c2c−1). Let T ={u1,u2, . . . ,ut}⊂
NC(H) be a maximum strong attachment of H to C. Let S :=NC(H)\T ,
t= |T | and s= |S|. For any ui,ui+1 ∈T , the (ui,H,ui+1)-path is of at least
length 3. By Lemma 2.4, we have e(H,C)≤2t+s and c≥3t+2s≥ 3

2e(H,C)≥
3(b c2c−1). From this, we can derive a contradiction if c≥8 is even or c≥11
is odd. Thus, c∈{5,6,7,9}. It only needs to consider c=5, as otherwise (a)
holds. In case of c= 5, we have e(H,C)≥ 2 and as G is 2-connected, there
are two independent edges in (H,C), which would lead to a cycle of length
at least 6, a contradiction. This proves Claim 5.

Claim 6. H is 2-connected.

Proof. Suppose that H is not 2-connected. As |V (H)|≥ 3, there exist two
end-blocks B1,B2 of H. Let bi be the unique cut-vertex of H with bi∈V (Bi)
for i ∈ {1,2}. Since G is 2-connected, there exists a vertex v2 ∈ V (B2− b2)
with a neighbor u2∈V (C).

First assume that B1 is an edge, say v1b1. By Claim 2, we have dC(v1)≥
b c2c−1. If dC(v1)≥b c2c, then (b) holds, a contradiction. Thus, dC(v1)=b c2c−1.
Notice that there is a (v1,v2)-path inH of length at least 2. If u2 is the unique
neighbor of v1 on C, then we have c=5 and there exists a cycle in G[H∪{u2}]
of length at least 4, a contradiction to (c). Hence, we may assume that
NC(v1)\{u2} 6=∅. Let w1,w2, . . . ,wt be the neighbors of v1 on C which appear
in a cyclic order, where t=dC(v1)=b c2c−1. For any wi∈NC(v1)\{u2}, since
there exists a (wi,H,u2)-path of length at least 4, any (wi,u2)-segment of C
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has length at least 4. So we have c≥8 and thus t≥3. Let wi,wj∈NC(v1)\{u2}
be two vertices such that u2 is contained in a (wi,wj)-segment P of C and
subject to this, P is minimal. Since P is a union of a (wi,u2)-segment and a
(wj ,u2)-segment of C, we get that |P |≥8. There are at least t−2=b c2c−3
segments between two consecutive w`,w`+1 in C−E(P ), each of which has
length at least 2. So c = |C| ≥ |P |+ 2(b c2c− 3) ≥ 8 + 2(b c2c− 3) ≥ c+ 1, a
contradiction.

Now suppose that |V (B1)|≥3. So B1 is 2-connected. Let d := c(B1) and
r := |B1|−1. By the Erdős–Gallai theorem (Theorem 1.1), we have e(B1)≤ dr

2 .
If d≥2b c2c−3, then (c) holds. So we have d≤2b c2c−4.

We claim that e(B1−b1,C)>(b c2c−1− d
2)r. Suppose for a contradiction

that e(B1−b1,C)≤(b c2c−1−d2)r. Consider G1 :=G−(B1−b1). Since e(B1)≤ dr
2 ,

e(H)=e(B1)+e(G1−C) and e(H,C)=e(B1−b1,C)+e(G1−C,C), we have

e(G1 − C) + e(G1 − C,C) = e(H) + e(H,C)− e(B1)− e(B1 − b1, C)

>
(⌊ c

2

⌋
− 1
)
· (n− r − c)

=
(⌊ c

2

⌋
− 1
)
· (|V (G1)| − c).

As G1 is not Hamiltonian (because |G1|> |C|), by the choice of G, we see
that one of (a),(b) and (c) holds in G1 and thus in G, a contradiction.

Therefore by averaging, there exists a vertex v1 ∈ V (B1− b1) with t :=
dC(v1)≥b c2c−

d
2 . As we have d≤2b c2c−4, it follows that t≥b c2c−

d
2≥2. Let

w1,w2, . . . ,wt be the neighbors of v1 on C which appear in a cyclic order.
Since c(B1)=d and B1 is 2-connected, B1 contains a (v1, b1)-path of length
at least dd2e. So for each w` ∈NC(v1)\{u2}, there exists a (w`,H,u2)-path

of length at least dd2e+3, which in turn implies that any (w`,u2)-segment of

C has length at least dd2e+3. This shows that if t=2 (and thus d
2 +2≥b c2c),

then c≥2(dd2e+3)≥2(b c2c+1)≥c+1, a contradiction. So we have t≥3. Let
wi,wj∈NC(v1)\{u2} be two vertices such that u2 is contained in a (wi,wj)-
segment P of C and subject to this, P is minimal. Since P is a union of a
(wi,u2)-segment and a (wj ,u2)-segment of C, we have |P |≥2(dd2e+3). Also
there are at least t−2 segments between two consecutive w`,w`+1 in C−E(P ),
each of which has length at least 2. So c≥2(t−2)+2(dd2e+3)≥2b c2c+2≥c+1,
a contradiction. This proves Claim 6.

We now distinguish between the parities of c. First assume that c is
even. By Claim 2, the average degree of H in G is at least c

2 . By Lemma 2.3,
either |C|≥c+1, or H is a complete graph K c

2
−1 in which every vertex has

the same two neighbors on C. Thus, the latter case occurs. Then we have( c
2
−1
2

)
+c−2=e(H)+e(H,C)> ( c2−1)(n−c)=( c2−1)2, which implies that
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2<c<8. As c≥5 is even, we have c=6. However, in this case H becomes a
K2, a contradiction to Claim 5.

In what follows we consider the case that c is odd. Set p := |NC(H)|. By
Claims 2 and 6, every vertex v ∈ V (H) has at least µ := max{b c2c− p,2}
neighbors in H. Let T ={u1, . . . ,ut} be a maximum attachment of H to C,
and S := NC(H) \T , where t ≥ 2, s := |S| and p = s+ t. By Theorem 2.2,
there exists a (ui,H,ui+1)-path of length at least µ+ 2. If t ≥ 3, then by
Lemma 2.4, we have

c ≥ t(µ+ 2) + 2s = (t− 2)µ+ 2(µ+ s+ t) ≥ 2 + 2
⌊ c

2

⌋
≥ c+ 1,

a contradiction. Now we only need to consider the case t=2.
Let T ={u1,u2} and v1u1,v2u2 be two independent edges for some v1,v2∈

V (H). By Lemma 2.4, every vertex in S has a unique neighbor in H, which
is either v1 or v2. This shows that for any u∈V (H)\{v1,v2}, dH(u)≥ c−1

2 −2.

By Theorem 2.2, there is a (v1,v2)-path in H of length `≥ c−1
2 −2. So we

have a (u1,H,u2)-path of length `+ 2. If |S| ≥ 1 or ` ≥ c−1
2 − 1, then by

Lemma 2.4, c= |C| ≥ 2(`+ 2) + 2|S| ≥ c+ 1, a contradiction. So S = ∅ and
`= c−1

2 −2. This implies that every u∈V (H)\{v1,v2} has dH(u) = c−1
2 −2

and thus is adjacent to both of u1,u2.
As S = ∅, it also holds that δ(H) ≥ c−1

2 − 2. Since H is 2-connected,
Dirac’s theorem [6] shows that c(H) ≥ min{|H|,2δ(H)} ≥ min{|H|, c− 5}.
If c(H)≥ c−4, then (c) holds. So we have 3≤ c(H)≤ c−5 (note that this
shows c≥ 8). This implies that either c(H) = c− 5, or c(H) = |H| ≤ c− 6.

If the latter case holds, then e(H) + e(H,C) ≤ (n−c)(n−c−1)
2 + 2(n− c) ≤

(n−c)(c−7)
2 +2(n−c)= c−3

2 (n−c), a contradiction to (1). So we have c(H)=
|H| = c− 5. Recall that u1,u2 are adjacent to all vertices in H −{v1,v2}
and u1v1,u2v2 ∈E(G). There exist two consecutive vertices on the longest
cycle in H as the neighbors of u1,u2. Using these, we can then find a cycle of
length at least d c2e+2+(c−6)≥c+1 (as c≥8 is odd). This final contradiction
completes the proof of Theorem 3.2.

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. By Theorem 3.2, one of its three cases holds.
Since c≥ 10, (a) does not hold. Suppose that (c) holds, i.e., there exists a
cycle C ′ with |V (C∩C ′)|≤1. Since G is 2-connected, there exist two disjoint
paths P1,P2 from x1,x2∈V (C) to y1,y2∈V (C ′), respectively; moreover, in
the case of |V (C ∩C ′)|= 1, the path P2 can be chosen so that P2 consists
of the single vertex in V (C∩C ′). One can then find a cycle D in the union
C∪C ′∪P1∪P2 satisfying that |D|≥d c2e+d|C

′|/2e+|P1|+|P2|. If V (C∩C ′)=∅,
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then |D|≥d c2e+(b c2c−1)+2=c+1, a contradiction; otherwise |V (C∩C ′)|=1,
then |D| ≥ d c2e+ b c2c+ 1 = c+ 1, also a contradiction. This shows that (c)
does not hold. Hence, (b) holds, i.e., there exists a vertex u∈V (G−C) with
dC(u)=b c2c. It remains to show that u is an isolated vertex in G−C. Suppose
this is not the case. Then u is contained in a component R of G−C with
|R| ≥ 2. Since G is 2-connected, there exists a vertex v ∈ V (R−u) with a
neighbor in V (C). Using this, one can easily find a cycle of length at least
c+1. This finishes the proof of Theorem 3.1.

3.2. Proof of Theorem 1.12

To prove Theorem 1.12, in view of Theorem 3.1, it suffices to show the
following lemma.

Lemma 3.3. Let G be a 2-connected non-Hamiltonian graph on n vertices
and C be a longest cycle in G of length c. Suppose that there exists an
isolated vertex u in G−C with dC(u)=b c2c.
– If c is even, then G⊆Wn,b c

2
c,c.

– If c ≥ 9 is odd, then G ⊆Wn,b c
2
c,c or G is a subgraph of a member of

Xn,c∪Yn,c.

Proof. Throughout this proof, let N :=NC(u).
We first consider the case that c is even. Let C =x1x2 · · ·xcx1. We may

assume that N = {x1,x3, . . . ,xc−1}. Consider any component R in G−C
with u /∈V (R). As G is 2-connected, |NC(R)|≥2. We also have that C−N
consists of isolated vertices and |NC(R) \N | ≤ 1 (otherwise one can easily
find a cycle longer than C using Posa’s rotation technique). Suppose that
there exist some vertices say x2∈NC(R)\N and xi∈NC(R)∩N . We assume
that i /∈{1,3} (as otherwise there is a cycle longer than C). There exists an
(x2,R,xi)-path P of length at least 2, then P∪(C−xi+1−x2x3)∪{ux3,uxi+2}
forms a cycle of length at least c+1, a contradiction. Thus NC(R)⊆N . If
|R|≥2, then there exist distinct xi,xj∈NC(R)∩N and an (xi,R,xj)-path Q
of length at least 3. One can find a longer cycle easily if the distance between
xi and xj on C is two; otherwise, Q∪ (C −{xi+1,xj+1})∪ {uxi+2,uxj+2}
forms a cycle longer than C. This shows that |R|=1 and NC(R)⊆N for any
component R in G−C. Therefore, indeed G is a subgraph of Wn, c

2
,c when c

is even.
From now on we assume that c ≥ 9 is odd. Let c := 2α + 1

and C = x1x2 . . .x2α+1x1, where α ≥ 4. We may assume that
N =NC(u) = {x1,x3, . . . ,x2α−1}. First we observe an easy fact that C−N
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consists of a unique edge x2αx2α+1 and isolated vertices. Next we determine
the structures of all components R in G−C.

Claim. Any component R in G−C is of one of the following three types:

(i) |R|=1 and NC(R)⊆NC(u);

(ii) |R|=1 and NC(R)={x2α−1,x2α+1} or NC(R)={x1,x2α};
(iii) R is an induced star, which is {x1,x2α−1}-feasible.8

Proof of Claim. First assume that there are two vertices a,b in
NC(R) \N . Then there exists an (a,R,b)-path P of length at least 2. If
{a,b}={x2α,x2α+1}, then (C−x2αx2α+1)∪P forms a cycle of length at least
c+1. Otherwise, we have either a+, b+ ∈N or a−, b− ∈N . We may assume
the former case occurs. Then P∪(C−{aa+, bb+})∪{ua+,ub+} forms a cycle
of length at least c+1, a contradiction.

Now assume that NC(R) ⊆ N . If |R| = 1, then R is of type (i).
So |R| ≥ 2. As G is 2-connected, there exist x2i−1,x2j−1 ∈ NC(R)
and an (x2i−1,R,x2j−1)-path P of length at least 3. Suppose that
{x2i−1,x2j−1} 6= {x1,x2α−1}. If the distance between x2i−1 and x2j−1
on C is two, then it is easy to find a cycle of length at least c + 1;
otherwise, since α ≥ 4, without loss of generality we may assume
that 1 ≤ 2j − 1 < 2j + 1 < 2i − 1 < 2i + 1 ≤ 2α − 1, then
P ∪ (C−{x2j ,x2i})∪{ux2j+1,ux2i+1} forms a cycle of length at least c+1,
a contradiction. This shows that NC(R) = {x1,x2α−1}. If there exists an
(x1,R,x2α−1)-path P of length at least 4, then (C−{x2α,x2α+1})∪P is a
cycle of length at least c+1. Hence, all (x1,R,x2α−1)-paths in G[R∪NC(R)]
are of length 3. This forces R to be an induced star, and moreover, if |R|≥3,
then all leaves of R are only adjacent to the same vertex in {x1,x2α−1}. So
R is of type (iii).

It remains to consider that |NC(R)\N |= 1. As G is 2-connected, there
exists some x2j−1 ∈NC(R)∩N . Let P be an (x2j−1,R,NC(R)\N)-path of
length at least 2. Let us first consider that 2≤j≤α−1. If NC(R)\N={x2i},
where 1≤ i≤ α, then we may assume that x2j−1 and x2i are not adjacent
(as otherwise there is a longer cycle). By symmetry, we may also assume
2j− 1 < 2i− 1 < 2i. Thus we have 1 ≤ 2j− 3 < 2j− 1 < 2i− 1 < 2i ≤ 2α.
Then P ∪ (C − x2j−2 − x2i−1x2i) ∪ {x2j−3u,ux2i−1} forms a cycle of
length at least c + 1, a contradiction. So, NC(R) \N = {x2α+1}. Then,
(C−x2j−x2α+1x1)∪P∪{x1u,ux2j+1} is a cycle of length at least c+1, again
a contradiction. Hence, we have that j∈{1,α}. By symmetry, we may just
consider j = 1. In this case, x1 ∈NC(R)∩N (so clearly x2,x2α+1 /∈NC(R))
and we claim that NC(R) \N = {x2α}. Suppose for a contradiction that

8 Recall the definition of {a,b}-feasible from Subsection 1.2
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NC(R)\N={x2i} for 2≤ i≤α−1. Then (C−x2−x2ix2i+1)∪P∪{x3u,ux2i+1}
forms a cycle of length at least c+ 1, a contradiction. This shows that
NC(R) = {x1,x2α}. If |R|≥ 2, then P can be chosen to be a path of length
at least 3 and the cycle P ∪ (C−x2α+1) contradicts the maximality of C.
Therefore, |R|= 1 and NC(R) = {x1,x2α}. So R is of type (ii). This proves
the claim.

We show that all components R in G−C of type (ii) have the same two
neighbors in C (sayNC(R)={x1,x2α}). Otherwise there are two components
in G−C of type (ii), say R1 = {v1} and R2 = {v2}, such that NC(v1) =
{x2α−1,x2α+1} and NC(v2) = {x1,x2α}, then G[V (C)∪{v1,v2}] contains a
cycle of length c+2, a contradiction.

If all components in G−C are of type (i), then as N+ is independent, we
have G⊆Wn,b c

2
c,c. So there exists at least one component in G−C of type

(ii) or (iii).

Suppose that there is no component in G−C of type (iii). Then there
exists some component in G−C, say {v}, of type (ii). So we can assume
NC(v) = {x1,x2α}. We show that NG(x2α+1) = {x1,x2α}. To see this, con-
sider C ′ := (C−{x1x2α+1,x2α+1x2α})∪{x1v,vx2α}, which also is a longest
cycle in G. Then x2α+1 is contained in a component R′ in G − C ′. As
NC′(R

′) ⊇ {x1,x2α}, by the Claim, R′ must be of type (ii) and thus we
have NG(x2α+1) = {x1,x2α}. Let J1 (resp. J2) be the set of all vertices in
components in G−C of type (i) (resp. type (ii)). Now set A :=N , B :=N+∪J1
and X := {x2α+1}∪J2. Then both B and X are stable and for any w∈X,
NG(w) = {x1,x2α}. This shows that G is a subgraph of some graph from
Xn,c.

Now we assume that there exists some component R in G−C of type
(iii). Let J1,J2,J3 be the sets of all vertices in components in G−C of type
(i), (ii), (iii), respectively. Set A := N , B := {x2,x4, . . . ,x2α−2} ∪ J1, and
Y := {x2α,x2α+1}∪J2 ∪J3. Clearly, B is stable. Since every vertex v ∈ J2
satisfies NC(v) = {x1,x2α}, we see that G[{x2α,x2α+1}∪J2] induces a star,
say S, with the center x2α. If we can show that S is {x1,x2α−1}-feasible,
then G is a subgraph of some graph from Yn,c (note that G[Y ] has at least
two stars). To show this, we note that there exists an edge xy in R such
that C ′ :=(C−{x2α,x2α+1})∪{x1x,xy,yx2α−1} is a longest cycle in G. Then
S =G[{x2α,x2α+1}∪J2] is contained in a component R′ in G−C ′. By the
Claim, R′ must be of type (iii), i.e., R′ (and thus S) is {x1,x2α−1}-feasible.
This proves Lemma 3.3.

We have completed the proof of Theorem 1.12.
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4. Stability from many edges spanned in a long cycle

In this section, we prove the following strengthened version of Theorem 1.13,
where the longest cycle in Theorem 1.13 is generalized to a locally maximal
cycle.

Recall that h(n,k)=
(
n−k
2

)
+k(k−1).

Theorem 4.1. Let G be a 2-connected graph on n vertices with δ(G)≥ k
and C be a locally maximal cycle in G of length c ∈ [6,n− 1]. If e(G) >
max

{
f(n,k+1, c),f

(
n,
⌊
c
2

⌋
−1, c

)}
and e(G[C])>h(c+1,b c2c−1), then either

G⊆Wn,b c
2
c,c, or G∈{Wn,k,c, Zn,k,c}, where G is the C-closure of G.

We will reduce Theorem 4.1 to the following three lemmas, which are
needed when dealing with the two situations arising from Lemma 2.11.

Lemma 4.2. Let Gc be a Hamiltonian graph on c ≥ 6 vertices. Fur-
ther suppose that Gc is (c+1)-closed and non-Hamiltonian-connected with
e(Gc)>h(c+1,b c2c−1). If there exist b c2c−1 vertices of degree at most b c2c
in Gc, then Gc=Wc,b c

2
c,c.

Lemma 4.3. Let G be a 2-connected graph on n vertices and C be
a locally maximal cycle in G of length c ≤ n − 1. Suppose that
e(G) > max

{
f(n,k+1, c),f

(
n,
⌊
c
2

⌋
−1, c

)}
. If G[C] contains a subset S of

s− 1 vertices of degree at most s in G[C] for some integer 2≤ s≤ b c2c− 1
such that G[C]−S is a clique, then 2≤s≤k and the clique number of G[C]
is at least c−k+1.

Lemma 4.4. Let G be a 2-connected graph on n vertices with δ(G)≥k and
C be a locally maximal cycle in G of length c≤n−1. If the clique number
of G[C] is at least c−k+1, then G∈{Wn,k,c, Zn,k,c}.

This reduction will be done in Subsection 4.1. We then prove these lem-
mas in Subsections 4.2, 4.3 and 4.4, respectively.

4.1. Reducing Theorem 4.1 to the lemmas

Proof of Theorem 4.1. (Assuming Lemmas 4.2, 4.3 and 4.4.) Let G,C
be as in Theorem 4.1. Let G be the C-closure of G. Since G ⊆ G, we see
that G is 2-connected with δ(G)≥ k and e(G)≥ e(G). By Lemma 2.7, we
see that the cycle C remains a locally maximal cycle of length c in G. By
Lemma 2.8, G[C] is non-Hamiltonian-connected. It is also clear that G[C]
is (c+1)-closed and e(G[C])≥e(G[C])>h(c+1,b c2c−1).

Applying Lemma 2.11 (with δ = 1) to G[C], we see that one of the
following holds:
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(i) G[C] contains a subset of b c2c−1 vertices of degree at most b c2c in G[C],
or

(ii) G[C] contains a subset S of s−1 vertices of degree at most s in G[C]
for some 2≤s≤b c2c−2 such that G[C]−S is a clique.

Suppose that (i) holds. Then by Lemma 4.2 (applied to G[C]), we have
G[C] = Wc,b c

2
c,c. Let B ⊆ V (C) consist of all vertices of degree c− 1 in

G[C]. We observe that for any two vertices x,y ∈V (C), if {x,y}*B, then
there is a Hamiltonian path from x to y in G[C]. Thus, for any component
R in G−C, if NC(R) * B, then there is a cycle C ′ longer than C with
|E(C ′)∩E(C,G−C)|≤2, a contradiction. So, we have NC(R)⊆B. Further-
more, for any {x,y} ⊆B, there is an (x,y)-path of length at least c− 2 in
G[C]. If |V (R)|≥2, as G is 2-connected, we can find a cycle C ′ longer than
C with |E(C ′)∩E(C,G−C)| ≤ 2, a contradiction. Hence, for any compo-
nent R in G−C, we have |V (R)| = 1 and NC(R) ⊆ B. This implies that
G⊆G⊆Wn,b c

2
c,c.

So we may assume that (ii) holds. By Lemma 4.3 (applied to G and C),
we get that the clique number of G[C] is at least c−k+1. By Lemma 4.4,
this shows that G∈{Wn,k,c, Zn,k,c}, completing the proof of Theorem 4.1.

4.2. Proof of Lemma 4.2

Proof. Throughout this proof, define α :=
⌊
c
2

⌋
, e :=e(Gc), A :={u∈V (Gc) :

d(u)≤α}, and B :=V (Gc)\A. Since Gc is (c+1)-closed, B induces a clique.
Let V (Gc) = {u1,u2, . . . ,uc} and f1≤ f2≤ . . .≤ fc be the degree sequence of
Gc such that d(ui)=fi for every 1≤ i≤c. There are α−1 vertices of degree
at most α in Gc, in other words, we have fα−1≤α.

We establish some facts to be used later. The first two facts are straight-
forward.

Fact 1. If Gc has t vertices of degree at most r, then e(Gc)≤ tr+
(
c−t
2

)
.

Fact 2. We have

h
(

1 + c,
⌊ c

2

⌋
− 1
)

=
1

2

⌈ c
2

⌉2
+

3

2

⌈ c
2

⌉
+
⌊ c

2

⌋2
− 3

⌊ c
2

⌋
+ 3

=

{
3c2

8 −
3c
4 + 3 if c is even

3α2

2 −
α
2 + 5 if c is odd.

Fact 3. fα−1=α and fc−α≤c−α. Thus, when c is even, we have f c
2

= c
2 .
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Proof. Suppose for a contradiction that fα−1 ≤ α− 1. By Facts 1 and 2,

we have the following: if c is even, then e≤ ( c2 −1)2 +
( c

2
+1
2

)
= 3c2

8 −
3c
4 +1<

h(1+c,b c2c−1)<e, a contradiction; if c is odd, then e≤(b c2c−1)2+
(d c

2
e+1
2

)
=

3α2

2 −
α
2 +2<h(1+c,b c2c−1)<e, also a contradiction. Thus, fα−1=α.

Suppose that fc−α≥c−α+1. First assume that c is even. As fα=fc−α≥
α+1, we have d(uα)+d(uα−1)≥ c+1, so uα−1 is adjacent to all vertices in
{uα,uα+1, . . . ,uc}. This implies that d(uα−1)=fα−1≥α+1, a contradiction.
Now consider that c is odd. As fα+1≥α+2, uα−1 is adjacent to all vertices in
{uα+1,uα+2, . . . ,u2α+1}, thus fα−1 =d(uα−1)≥α+1, again a contradiction.
This finishes the proof.

Fact 4. For every vertex u∈V (Gc), either d(u)=c−1 or 2≤d(u)≤c−3.

Proof. Suppose for a contradiction that there exists a vertex u with d(u)=
c−2. Then there exists a vertex v not adjacent to u. As Gc is (c+1)-closed,
we have d(u) + d(v) ≤ c, implying that d(v) ≤ 2. Since Gc is Hamiltonian,

d(v) = 2. When c is even, we have e≤ 2 +
∑ c

2
j=2 fj + e(G[{u c

2
+1, . . . ,uc}])≤

2+( c2−1) c2 +
( c

2
2

)
= 3c2

8 −
3c
4 +2<h(1+c,b c2c−1)<e, a contradiction. If c is

odd, then e≤2+
∑α+1

j=2 fj+e(G[{uα+2, . . . ,uc}])≤2+(α−2)α+2(α+1)+
(
α
2

)
=

3α2

2 −
α
2 +4<e, a contradiction. This proves Fact 4.

Fact 5. If it exists, let u∈B be the vertex such that d(u) :=c−i is maximum
over all vertices in B with degree at most c−2, where 3≤ i≤ c−α−1. If

|B|≥ i, then e(Gc)≤ i2− i
2(|B|+α+2)+ α

2 (c+1)+ |B|2 (c−α).

Proof. Since B induces a clique, all i−1 non-neighbors of u are in A. Let A′

be the subset of A consisting of such i−1 vertices. Since Gc is (c+1)-closed,
every vertex x ∈ A′ has 2≤ d(x)≤ i. Choose a fixed vertex x ∈ A′ and let
B′⊆B be the set of all non-neighbors of x in B. Then |B′|≥|B|−i, and for
any y∈B′, we have d(y)≤c−d(x)≤c−2. By Fact 4, we see that any y∈B′
has degree at most c−3, therefore, by the choice of u, d(y)≤ d(u) = c− i.
Now we get that

e(Gc) =
1

2

c∑
i=1

fi =
1

2

∑
v∈A′

d(v) +
∑

v∈A\A′
d(v) +

∑
v∈B′

d(v) +
∑

v∈B\B′
d(v)


≤ 1

2

(
(i− 1)i+ (|A| − i+ 1)α+ |B′|(c− i) + (|B| − |B′|)(c− 1)

)
≤ i2 − i(|B|+ α+ 2)/2 + α(c+ 1)/2 + |B|(c− α)/2,

where the last inequality holds because |A|=c−|B| and |B′|≥|B|− i.
We divide the rest of the proof into two cases depending on the parity of c.
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Case 1. c is even.

In this case, we have f c
2
−1 = f c

2
= c

2 . First we claim that f c
2
+2 ≥ c

2 + 1.

Otherwise, f c
2
+2 = c

2 , then |A| ≥ c
2 + 2 and |B| ≤ c

2 − 2. This implies that

e= 1
2

∑c
j=1 fj≤

1
2(( c2 +2) c2 +( c2−2)(c−1))= 3c2

8 −
3c
4 +1<h(1+c,b c2c−1)<e,

a contradiction.
Next we show that f c

2
+1≥ c

2+1. Suppose not. Then we have f c
2
+1= c

2 and

|B|= c
2−1. Suppose there exists some vertex in B with degree at most c−2.

By Fact 5, there exists some 3≤ i≤ c
2 −1 such that e≤ i2− i

2(c+1)+ 3c2

8 ≤
3c2

8 −
3c
4 +3<e, a contradiction. To see why the second inequality holds, let

f(i) := i2− i
2(c+1); then we have f(i)≤max{f(3),f( c2−1)} and it is routine

to check that as c≥6, this is at most −3c
4 + 3

2 . Hence, we may assume that
every vertex in B has degree c−1. Let H be the spanning subgraph of Gc
consisting of all edges in E(B)∪(A,B). As e(H)=( c2+1)( c2−1)+

( c
2
−1
2

)
= 3c2

8 −
3c
4

and e > 3c2

8 −
3c
4 + 3, we see that E(A) has at least 4 edges. Observe that

every vertex in A has degree at most c/2 in Gc and is already adjacent to
the c/2−1 vertices in B. This shows that there exists a matching of size at
least 4 in A. One can check that the subgraph obtained from H by adding
a matching of size 3 in A is already Hamiltonian-connected. So is the host
graph Gc. But this is a contradiction. This proves that f c

2
+1≥ c

2+1 and thus

|A|= |B|= c
2 .

Lastly, we show that any vertex u ∈ B has degree c− 1. Suppose for a
contradiction that there exists a vertex u∈V (B) with d(u)≤c−2. By Fact 5,

there exists some 3≤ i≤ c
2−1 such that e≤ i2− i

2(c+2)+3c2

8 +c
4≤

3c2

8 −
3c
4 +3<e,

where the second inequality can be verified similarly as above for c≥ 6, a
contradiction.

Now, we see that B induces a clique K c
2

and (A,B) is complete bipartite.

As every vertex in A has degree at most c
2 , we see that E(A) contains no

edge. This shows Gc=Wc, c
2
,c, completing the proof of Case 1.

Case 2. c is odd.

Let H be the spanning subgraph of Gc consisting of all edges in
E(B)∪ (A,B). In this case, c = 2α+ 1, where α ≥ 3. By Facts 1 and 2,

we have 3α2

2 −
α
2 +5<e≤ (α−1)α+

(
α+2
2

)
= 3α2

2 + α
2 +1; by Fact 3, fα−1 =α

and fα+1≤α+1.
We show in a sequence of claims that fα = fα+1 = α+ 1. First we show

fα+3 ≥ α+ 1. Otherwise, fα+3 ≤ α. Then |A| ≥ α+ 3 and |B| ≤ α−2, from

which we derive a contradiction that e≤ 1
2((α+3)α)+(α−2)(2α)= 3α2−α

2 <e.



STABILITY RESULTS ON THE CIRCUMFERENCE OF A GRAPH 27

Next we show that fα+2≥α+1. Suppose not. Then fα−1 = fα = fα+1 =
fα+2 =α. So B= {uα+3, . . . ,u2α+1} and |B|=α−1. Suppose that there are
vertices in B with degree at most c− 2. Let u ∈ B be such a vertex with
maximum degree d(u)=c−i, where 3≤ i≤α. If 3≤ i≤α−1, then by Fact 5,

we have e≤ i2− i
2(2α+1)+(α2+α)+ α2−1

2 ≤ 3α2

2 −
α
2 +5<e, where the second

inequality holds since i2− i
2(2α+ 1) takes the maximum at i= 3 or α− 1.

This is a contradiction. So i=α, that is, d(u)=α+1. Then

e ≤ 1

2
((α+ 2)α+ (α+ 1) + (α− 2)(2α))

=
1

2
(3α2 − α+ 1) <

3α2

2
− α

2
+ 5 < e,

again a contradiction. Now we may assume that every vertex in B has degree
2α. So (A,B) is complete bipartite and thus every vertex in A has degree
α−1 in the subgraph H defined above. By the definition of A, every vertex
in A has degree at most α in Gc. This shows that E(A) must be a matching

(if not empty). Since e(H) =
(
α−1
2

)
+ (α− 1)(α+ 2) = 3α2

2 −
α
2 − 1 and e >

3α2

2 −
α
2 +5, we see that E(A) forms a matching of size at least 7. One can

check that the subgraph obtained from H by adding a matching of size 4
in A is Hamiltonian-connected, so the host graph Gc is also Hamiltonian-
connected, a contradiction. This proves fα+2≥α+1.

We also claim that fα+1 = α+ 1. Suppose not. Then we have fα−1 =
fα = fα+1 = α and B = {uα+2, . . . ,u2α+1}. So |B| = α. First suppose that
every vertex b∈B has degree c−1. Then the subgraph H is just a vertex-
disjoint union of a clique Kα and an independent set of size α+ 1, with a

complete bipartite subgraph between the two parts. So 3α2

2 + α
2 + 1 ≥ e ≥

e(H) = α(α+ 1) +
(
α
2

)
= 3α2

2 + α
2 , which implies that E(A) has at most

one edge. Thus, Gc = H or Wc,b c
2
c,c. But for the former case, Gc = H is

not Hamiltonian. Hence in this case, we prove Gc =Wc,b c
2
c,c. Now we may

assume that there are vertices in B of degree at most c−2. Let u∈B be such
a vertex with maximum degree d(u)= c− i, where 3≤ i≤α. If 3≤ i≤α−1,

by Fact 5, we have e ≤ i2− i(α+ 1) + 3
2(α2 +α) ≤ 3α2

2 −
α
2 + 5 < e, where

the second inequality holds since i2− i(α+ 1) takes the maximum at i= 3
or α− 1. So we must have i = α. This shows that for any b ∈ B, either
d(b) = 2α or d(b) =α+1. If there exist at least two vertices in B of degree

α+ 1, then e ≤ 1
2((α+ 1)α+ 2(α+ 1) + (α− 2)(2α)) = 3α2

2 −
α
2 + 1 < e, a

contradiction. So B contains α−1 vertices of degree 2α and a vertex, say u
of degree α+ 1. Every x ∈A has at least α−1 neighbors in B; this shows
that E(A) is a matching. Note that the vertex u has two neighbors in A. So
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e(H)=
(
α
2

)
+2+(α−1)(α+1)= 3α2

2 −
α
2 +1. This, together with e> 3α2

2 −
α
2 +5,

shows that E(A) is a matching of size at least 5. One can check that H plus
one additional edge in A is already Hamiltonian-connected. Therefore, Gc is
Hamiltonian-connected, a contradiction. This proves fα+1=α+1.

We now claim that fα=α+1. Suppose not. Then fα=α. As fα+1=α+1,
it follows that B = {uα+1, . . . ,u2α+1}. So |A| = α and |B| = α+ 1. Since
d(uα+1) = α+ 1 and B is a clique, uα+1 has only one neighbor in A, say
x. If every vertex in B \ {uα+1} has degree 2α, then d(x) ≥ |B| = α+ 1,
contradicting the fact that x∈A. Thus, there exist some vertices in B\{uα+1}
of degree at most 2α− 1. Among all such vertices, choose u ∈ B \ {uα+1}
such that d(u) = 2α− i is maximum. By Fact 4, we have 2 ≤ i ≤ α− 1.
Suppose that 2 ≤ i ≤ α− 2. By the similar argument as in Fact 5, there
exists A′=A\N(u) with |A′|= i such that d(x)≤ i+1 for any x∈A′; and
there also exists B′ ⊆ B with |B′| = α− i such that d(y) ≤ 2α− i for any
y ∈B′ (except the vertex uα+1). Notice that in this case, |B′|= α− i≥ 2.
So e ≤ 1

2(i(i+ 1) + (α− i)α+ (α+ 1) + (α− i− 1)(2α− i) + (i+ 1)(2α)) =

i2−(α−1)i+ 3α2+α+1
2 ≤ 3α2

2 −
α
2 +5<e, where the second inequality holds as

the maximum of i2−(α−1)i occurs at either i=2 or i=α−2. This shows that
for any u∈B\{uα+1}, d(u)=α+1 or 2α. If there are two vertices in B\{uα+1}
of degree α+1, then e≤ 1

2(α2+3(α+1)+(α−2)(2α))= 1
2(3α2−α+3)<e, a

contradiction. Hence, there exists only one vertex u∈B\{uα+1} with d(u)=
α+ 1. Then each of {uα+1,u} has a neighbor in A, say x,x′, respectively.
We see that x,x′ are distinct (as otherwise x=x′ is adjacent to all vertices
in B and then d(x) ≥ α+ 1). It is easy to see that x,x′ have degree α
in H, while all other vertices in A have degree α− 1 in H. So E(A) is a

matching (if not empty). Since e(H)=
(
α+1
2

)
+2+(α−1)α= 3α2

2 −
α
2 +2 and

e> 3α2

2 −
α
2 +5, E(A) is a matching of size at least 4. We can verify that H

plus any edge in A (which is independent of x,x′) is Hamiltonian-connected;
so Gc is Hamiltonian-connected as well, a contradiction. This proves that
fα=α+1. Note that |A|=α−1 and |B|=α+2.

Lastly, we claim that any vertex in B \{uα,uα+1} has degree 2α in Gc.
Suppose this is not true. Then there exists a vertex u∈B \{uα,uα+1} with
d(u) = 2α− i, where 2 ≤ i ≤ α− 1, and subject to this, we choose d(u)
to be maximum. Similarly as above, there is a subset A′ = A \N(u) with
|A′| = i such that each vertex in A′ is of degree at most i+ 1. Take any
x∈A′. Then, there exists B′⊆B \N(x) with |B′|= |B|− (i+1) =α− i+1
such that for any y ∈ B′, d(y) ≤ 2α − i. If 2 ≤ i ≤ α − 3, then
|B′| = α − i + 1 ≥ 2 and possibly uα,uα+1 are in B′, thus we have
e ≤ 1

2(i(i+ 1) + (α− 1− i)α+ 2(α+ 1) + (α− i− 1)(2α− i) + (i+ 1)(2α)) =
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i2− (α−1)i+ 3α2+α+2
2 ≤ 3α2

2 −
α
2 + 5< e, a contradiction. If i= α−2, then

d(u)=α+2, so e≤ 1
2(i(i+1)+(α−1−i)α+2(α+1)+(α+2)+(α−1)(2α))=

3α2

2 −
α
2 + 3 < e, also a contradiction. Hence, i must be α − 1. This

implies that every vertex in B \ {uα,uα+1} has degree 2α or α + 1. If
there are at least two vertices in B \ {uα,uα+1} of degree α + 1, then

e≤ 1
2((α−1)α+ 4(α+ 1) + (α−2)(2α)) = 3α2

2 −
α
2 + 2<e. So B has exactly

three vertices (uα,uα+1 and say u) of degree α+1, while other vertices in B
have degree 2α. Note that (A,B−{uα,uα+1,u}) forms a complete bipartite
Kα−1,α−1. This, together with the fact that B induces a clique, shows that
Gc is Hamiltonian-connected, finishing the proof of this claim.

Now we see that B induces a clique Kα+2, uα and uα+1 have no neighbors
in A, and (A,B−{uα,uα+1}) is complete bipartite. So every vertex in A has
α neighbors in B, which in turn shows that A is stable. We have proved that
Gc=Wc,b c

2
c,c. The proof of Lemma 4.2 is completed.

4.3. Proof of Lemma 4.3: an estimate of the clique number

Lemma 4.3. Let G be a 2-connected graph on n vertices and C
be a locally maximal cycle in G of length c ≤ n − 1. Suppose that
e(G) > max

{
f(n,k+1, c),f

(
n,
⌊
c
2

⌋
−1, c

)}
. If G[C] contains a subset S of

s− 1 vertices of degree at most s in G[C] for some integer 2≤ s≤ b c2c− 1
such that G[C]−S is a clique, then 2≤s≤k and the clique number of G[C]
is at least c−k+1.

To prove this, we will need some ingredient in the proof of [10] by Fan,
Lv and Wang. An important tool in [10] is an edge-switching technique,
which we introduce as follows. Let xy be an edge in a graph G and let
A⊂N(y)\ (N(x)∪{x}). The edge-switching graph of G with respect to A
(from y to x), denoted by G[y → x;A], is the graph obtained from G by
deleting all the edges yz, z∈A and adding all the edges xz, z∈A.

Lemma 4.5 (Lemma 2.4, [10]). Let G be a 2-connected graph, C a lo-
cally maximal cycle in G, and R a component in G−C. Then one of the
following holds:

(i) NR(x)=V (R) for every vertex x∈NC(R);

(ii) There exists a vertex y ∈NR(x) for some x∈NC(R) and a nonempty
set A⊆NR(y)\(NR(x)∪{x}) such that

G′ =

{
G[y → x;A] if G[y → x;A] is 2-connected,

G[y → x;A] + yx′ otherwise
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is 2-connected, where x′∈NC(R)\{x}, and C remains a locally maximal
cycle in G′.

We now prove Lemma 4.3. We point out that the graph G′ defined in
Lemma 4.5(ii) satisfies that e(G′)≥e(G) and G′[C]=G[C].

Proof. When applying Lemma 4.5(ii), we see that the cycle C remains
locally maximal in the resulting graph, which is 2-connected. So we may
repeatedly apply Lemma 4.5(ii). Note that as the set A is nonempty, each
time Lemma 4.5(ii) is applied, the number of edges not incident with C
strictly decreases. So this process will eventually stop (at some graph say
G∗); and when it stops, (i) must occur for any component R in G∗−C, i.e.,

every vertex x ∈ NG∗(R) ∩ V (C) is adjacent to all vertices in V (R) in G∗.

(2)

Let ω be the clique number of G[C]=G∗[C]. Then ω≥|V (C)\S|≥c−s+1.
Also we have that e(G)≤e(G∗) and e(G∗[C])=e(G[C])≤

(
c−s+1

2

)
+(s−1)s.

Let R1,R2, . . . ,Rt be all components of G∗−C. For any 1 ≤ i ≤ t, let
pi= |NG∗(Ri)∩V (C)|, and di be the length of the longest path between any
two vertices in NG∗(Ri)∩V (C) with all internal vertices in Ri. In view of (2),
we see that di−2 denotes the length of the longest path in Ri. By a theorem

of Erdős and Gallai (see [8, Theorem 2.6]), we have eG∗(Ri)≤ (di−2)|V (Ri)|
2 .

Let Rα be the component in G∗−C which attains the maximum of {di+2pi :
1≤ i≤ t}, and let p :=pα and d :=dα. Then

e(G) ≤ e(G∗) ≤ e(G∗[C]) +
∑
i

(
(di − 2)

2
|V (Ri)|+ pi · |V (Ri)|

)
≤
(
c− s+ 1

2

)
+ (s− 1)s+

d+ 2p− 2

2
(n− c).

Next we claim that d+2p≤2+2s. Suppose that d+2p≥3+2s. Consider
the component R :=Rα in G∗−C. If d= 2, then it follows p≥ s+ 1. Since
(NG∗(R)∩V (C))+ is an independent set in V (C) of size p (otherwise, it would
contradict that C is locally maximal in G∗), we have ω≤c−(p−1)≤c−s, a
contradiction to that ω≥c−s+1. Now we may assume d≥3. This shows that
|V (R)|≥2. Since G∗ is 2-connected, by (2), we see that NG∗(R)∩V (C) is a
strong attachment of R to C. By Lemma 2.5(i), ω≤c−(d−1)(p−1). As p≥2,
we have (d−12 −1)((p−1)−1)≥0, which implies that d−1

2 (p−1)≥ d−1
2 +(p−1)−1,

that is, (d−1)(p−1)≥d+2p−5. So ω≤c−(d−1)(p−1)≤c−(d+2p)+5≤
c−2s+2≤c−s, again a contradiction. This proves the claim.
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Combining the above bounds, we obtain that

e(G) ≤
(
c− s+ 1

2

)
+ (s− 1)s+

d+ 2p− 2

2
(n− c)

≤
(
c− s+ 1

2

)
+ s(n− c+ s− 1) = f(n, s, c).

If k+1≤ s≤b c2c−1, then by the monotonicity of the function f(n,k,c), it

holds that e(G)≤max
{
f(n,k+1, c),f

(
n,b c2c−1, c

)}
, a contradiction. Thus

we must have 2≤s≤k and then ω≥ c−s+1≥ c−k+1, finishing the proof
of Lemma 4.3.

4.4. Proof of Lemma 4.4

Lemma 4.4. Let G be a 2-connected graph on n vertices with δ(G)≥k and
C be a locally maximal cycle in G of length c≤n−1. If the clique number
of G[C] is at least c−k+1, then G∈{Wn,k,c, Zn,k,c}.

Proof. Consider any component R in G−C. Let T be a maximum strong
attachment of R to C and Q :=NC(R)\T . Let t := |T |, q := |Q| and ω be the
clique number of G[C]. So ω≥c−k+1. We define the triple ch(R) :=(t,q,ω)
to be the character of the component R; and we say a component R is
infeasible, if |NC(R)|≤k−1 and ch(R) 6=(2,0, c−k+1).

We now proceed by establishing a sequence of claims. An important step
for our proof is to show that in fact there is no infeasible component R in
G−C.

Claim 1. For any component R in G−C, both (NC(R))+ and (NC(R))−

are stable, and |NC(R)|≤k.

Proof. If (NC(R))+ contains an edge say x+y+, where x,y ∈NC(R), then
there exists an (x,R,y)-path P and C ′ := (C −{xx+,yy+})∪P ∪ {x+y+}
is a longer cycle than C with |E(C ′)∩E(C,G−C)| = 2, a contradiction.
So (NC(R))+ and (NC(R))− are stable. This implies that c− k+ 1 ≤ ω ≤
c−|NC(R)|+1, proving the claim.

Claim 2. For any infeasible component R in G−C with ch(R) = (t,q,ω),
we have |V (R)|≥2 and t≥2.
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Proof. Suppose that |V (R)| = 1, say V (R) = {x}. By Claim 1, we have
|NC(x)|≤k. But δ(G)≥k. This shows that |NC(x)|=k, a contradiction to
the definition of an infeasible component. So |V (R)|≥2. As G is 2-connected,
we have at least two independent edges between C and R, implying that
t≥2.

Claim 3. For any infeasible component R in G−C, 2≤|NC(R)|≤k−2.

Proof. Suppose not. Set N :=NC(R), then |N |=k−1. As G is 2-connected,
|N |≥2, implying that k≥3.

Suppose that ω≥c−k+2. Let W be a maximum clique of size ω≥c−k+2
in G[C] and I :=V (C)\W . By Claim 1, N+ is stable, so |W∩N+|≤1. By the
inclusion-exclusion principle, c−k+2≤|W |= |W ∪N+|+ |W ∩N+|−|N+|≤
c+1−(k−1). This shows that |W |=c−k+2, |W ∩N+|=1, and W ∪N+=
V (C), the last of which implies that I ⊆ N+. Similarly, we have I ⊆ N−.
Then I+ ∪ I− ⊆ N . So k− 1 = |N | ≥ |I+ ∪ I−| = |I+|+ |I−| − |I+ ∩ I−| =
2(k− 2)− |I+ ∩ I−|, implying that |I+ ∩ I−| ≥ k− 3. Let C = x1x2 · · ·xcx1.
Since |I|= k−2, it is not hard to see that I = {xi+1,xi+3, . . . ,xi+2k−5} for
some i. So N = I+ ∪ I− = {xi,xi+2, . . . ,xi+2k−4}. In this case, for any two
xj ,xj+2 ∈ N , every (xj ,R,xj+2)-path must be of length 2, implying that
NR(xj) =NR(xj+2) = {x} for some x ∈ V (R). So x is the unique neighbor
of NC(R) in R. Since δ(G) ≥ k and |NC(R)| = k− 1, x should have other
neighbors in R and thus R−{x} 6=∅. But we also have NC(R−{x}) ={x},
contradicting that G is 2-connected.

Now we may assume that ω=c−k+1. Recall the definitions of T,Q,t,q,
respectively. We have t+ q= |NC(R)|= k−1. Since |V (R)| ≥ 2, the longest
(x,R,y)-path for all x,y ∈ T is of length at least 3. By Lemma 2.5(ii), we
have ω≤c−2(t−1)−q=c−k−t+3. If t≥3, then ω≤c−k, a contradiction.
So t = 2. If q = 0, then ch(R) = (t,q,ω) = (2,0, c− k+ 1), a contradiction.
So we may assume that t = 2 and q ≥ 1. Let T = {x1,x2} and x1y1,x2y2
be two independent edges in E(R,C), where y1,y2 ∈ V (R). Suppose that
|V (R)|=2. Then V (R)={y1,y2}. Since δ(G)≥k, we have dC(y1)≥k−1 and
dC(y2)≥k−1. So N=NC(y1)=NC(y2) and every vertex in N belongs to T .
So q=0, a contradiction.

It remains to consider |V (R)|≥3. As q≥1, there exists some vertex w∈Q.
By Lemma 2.4, we may assume that y1 is the unique neighbor of w in R.
Then y1 also is the unique neighbor of x1 inR (as otherwise counting w,x1,x2
in, we would have t≥3). Since t=2, the maximum matching between (R,C)
has size two, so by König’s theorem [17], either {y1,y2} or {y1,x2} is a vertex
cover in (R,C). In the former case, let z=y2 and H=G[R]; and in the latter
case, let z= x2 and H =G[R∪{x2}]. As G is 2-connected and |V (H)| ≥ 3,
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H + y1z is 2-connected; and every vertex in H + y1z, except y1,z, has the
same degree as in G, which is at least k. Applying Theorem 2.2 to H+y1z,
there exists a (y1,z)-path in H+y1z of length at least k. Clearly, this path
also lies in H, which implies an (x1,R,x2)-path of length at least k+1. By
Lemma 2.5(ii) with t=2 and d=k+1, ω≤c−k−q≤c−k−1, a contradiction.
This proves Claim 3.

Note that Claim 3 also shows that if there exist infeasible components in
G−C, then k≥4.

Claim 4. For any infeasible component R in G−C, |V (R)|≥3 and R is not
2-connected.

Proof. If |V (R)| ≤ 2, then by Claim 3, any vertex u∈ V (R) has degree at
most 1+ |NC(R)|≤k−1 in G, a contradiction. So |V (R)|≥3.

Suppose for a contradiction that R is 2-connected. For any x,y∈V (G),
let Ixy be 1 if xy∈E(G) and 0 otherwise. Then for any u∈V (R), we have
dR(u)=dG(u)−dC(u)≥k−t−

∑
v∈Q Iuv. By Theorem 2.2, for any two vertices

y,y′∈V (R), there is a (y,y′)-path of length at least

` ≥
∑

u∈V (R)\{y,y′}(k − t−
∑

v∈Q Iuv)

|V (R)| − 2
≥ k − t− q

|V (R)| − 2
.

First we consider that |V (R)|= 3. In this case, R is a triangle, say V (R) =
{y1,y2,y3}. For any i, it follows from |NR(yi)|= 2 that NC(yi)≥ k−2. By
Claim 3, NC(yi)=NC(R) for each i and thus t= |NC(R)|=k−2 and q=0.
By Lemma 2.5, c−k+1≤ω≤c−3(k−3). So k≤4. Recall that k≥4. So we
have k=4, t=2, q=0 and ω=c−3. That is, ch(R)=(t,q,ω)=(2,0, c−3)=
(2,0, c−k+1), a contradiction.

Now we may assume that |V (R)| ≥ 4. In this case, following the above
inequality, we have ` ≥ k− t− q

2 ≥ k− t−
k−2−t

2 = k−t
2 + 1, where the last

inequality holds as t+q= |NC(R)|≤k−2. By Lemma 2.5(i),

c− k + 1 ≤ ω ≤ c− (`+ 1)(t− 1) ≤ c−
(
k − t

2
+ 2

)
(t− 1),

which implies that (k− t+4)(t−1)≤2(k−1), and thus

k(t− 3) ≤ (t− 4)(t− 1)− 2.

If t≥4, then k≤ (t−4)(t−1)−2
t−3 =(t−2)− 4

t−3≤k−2−q− 4
t−3≤k−2, a contradiction.

If t = 3, this becomes that 0 ≤ −4, which is impossible. Thus t = 2. Let
T = {x1,x2} and x1y1,x2y2 be two independent edges for y1,y2 ∈ V (R).
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Then any v ∈ V (R) \{y1,y2} has NC(v)⊆ {x1,x2}, so dR(v)≥ k− 2. Since
R is 2-connected, by Theorem 2.2, there is a (y1,y2)-path in R of length
at least k − 2. By Lemma 2.5(ii), ω ≤ c− (k − 1)− q ≤ c− k if q ≥ 1, a
contradiction. So we have q = 0 and ω = c− k+ 1. In this case, we have
ch(R)=(t,q,ω)=(2,0, c−k+1). This proves this claim.

Claim 5. Let R be an infeasible component in G−C and B an end-block
of R with the cut-vertex b. Let T :={v∈V (C) : |NB−b(v)|≥2} with t := |T |.
Then the following hold:

(i) B is 2-connected with |V (B)|≥5;

(ii) For any y ∈ V (B − b), there is a (y,b)-path in B of length at least
2
3(k− t+1);

(iii) For any y1,y2∈V (B−b), there is a (y1,y2)-path in B of length at least
7
12(k− t);

(iv) t≤2.

Proof. Let Q :=NC(B−b)\T and q := |Q|. By Claim 3, we have t+q≤k−2.
(i). For any v ∈ V (B− b), dR(v) = dG(v)− dC(v) ≥ k− (k− 2) = 2. So

any end-block B of R is 2-connected and thus |V (B)| ≥ 3. Suppose that
|V (B)|∈{3,4}. First we claim that |NC(B−b)|≥2. If |V (B)|=3, then it is
clear, as k≥4 and every vertex in B−b has degree at most 2 in B, there are
at least 2 neighbors in V (C). For |V (B)|= 4, by the similar argument we
also see that |NC(B−b)|≥2, unless k=4 and B is a K4. In the latter case
(say NC(B− b) = {x} and k= 4), since G is 2-connected, there exists some
x′∈V (C)\{x} which has a neighbor in V (R−(B−b)); as B is a K4, there
exists an (x,R,x′)-path of length at least 5. By Lemma 2.5 (with d=5 and
the strong attachment {x,x′}), we have c− 3 = ω ≤ c− 4, a contradiction.
This proves that |NC(B−b)|≥2. By Claim 4, there exists another end-block
B0 of R. Let b0 be the cut-vertex of R with b0∈V (B0). As |NC(B−b)|≥2,
there exist y ∈ V (B− b) and y′ ∈ V (B0− b0) such that yx,y′x′ ∈E(G) are
independent edges, where x,x′∈V (C). As B and B0 are 2-connected, there
is a (y,y′)-path of length at least 4. By Lemma 2.5 (with d=6 and the strong
attachment {x,x′}), we have c−k+1≤ω≤c−5, which implies that k≥6.

Suppose |V (B)| = 3. Then obviously B is a triangle, say by1y2b. And
dC(yi) ≥ k− 2 for i = 1,2. On the other hand, dC(yi) ≤ |NC(R)| ≤ k− 2
for i= 1,2. Thus, y1,y2 both are adjacent to all vertices in NC(B− b). So
T =NC(B− b) and t= |T |= k− 2. There is a (y1,y2)-path in B of length
2. By Lemma 2.5 (with d= 4 and the strong attachment T ), as k ≥ 6, we
obtain ω≤c−3(k−3)≤c−k, a contradiction.

Suppose |V (B)|=4. Then B contains a cycle of length 4, say by1y2y3b. If
|NC(B−b)|≤k−3, then dB(yi) = 3 for i= 1,2,3, and this also implies that
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each of y1,y2,y3 is adjacent to all vertices in NC(B− b). So NC(B− b) is a
strong attachment of size k−3. Note that B is a K4. By Lemma 2.5 (with
d=5 and the strong attachment NC(B−b)), we have ω≤c−4(k−4)≤c−k,
where the last inequality holds as k≥6, a contradiction. So |NC(B−b)|≥k−2.
By Claim 3, NC(B−b)=NC(R) is of size k−2. We claim that NC(B−b) is
a strong attachment. If Q 6= ∅, choose x∈Q. Suppose that y1 is the unique
vertex in NB−b(x). Then by the degree condition, we see that y2 and y3
are adjacent to every other vertex in B and have the same neighborhood
NC(B−b)−{x} in C. So, NC(B−b) is also a strong attachment. If Q= ∅,
then NC(B− b) = T is clearly a strong attachment. This proves the claim.
By Lemma 2.5 (with d=4 and the strong attachment NC(B−b)), we have
ω≤c−3(k−3)≤c−k (since k≥6), a contradiction. This proves (i).

(ii). For x,y ∈ V (G), let Ixy = 1 if xy ∈ E(G) and 0 otherwise. Then
for any vertex u ∈ V (B− b), we have dB(u)≥ k− t−

∑
v∈Q Iuv. Since B is

2-connected, by Theorem 2.2, for any y ∈ V (B− b) there is a (y,b)-path of
length `yb, such that

`yb ≥
∑

u∈V (B−{y,b}) dB(u)

|B| − 2
≥ k − t− q

|B| − 2
≥ 2

3
(k − t+ 1),

where the last inequality holds because |B|≥5 and q≤k−t−2. This proves
(ii).

(iii). Recall that for any u ∈ V (B − b), dB(u) ≥ k − t−
∑

v∈Q Iuv. By

Theorem 2.2, for any distinct y,y′ ∈ V (B), there is a (y,y′)-path of length
`yy′ at least

∑
u∈V (B−{y,y′}) dB(u)

|B| − 2
=

(∑
u∈V (B−{y,y′,b}) dB(u)

)
+ dB(b)

|B| − 2

≥

(∑
u∈V (B−{y,y′,b})(k − t−

∑
v∈Q Ivu)

)
+ 2

|B| − 2

≥ (|B| − 3)(k − t)− q + 2

|B| − 2
≥ k − t− k − t+ q − 2

|B| − 2
.

On the other hand, |B|2− |B| ≥ 2e(B) ≥
∑

u∈B−b(k− t−
∑

v∈Q Ivu) + 2 =

(|B|−1)(k− t)− (q−2), which implies that |B|≥ k− t− q−2
|B|−1 . So, k−t−2

|B|−2 ≤
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1+ q−2
(|B|−1)(|B|−2) . Hence,

k − t+ q − 2

|B| − 2
≤ 1 +

q − 2

(|B| − 1)(|B| − 2)
+

q

|B| − 2

≤ 1 +
q − 2

12
+
q

3
= 1 +

5q − 2

12
≤ 5(k − t)

12
,

since |B|≥5 and q≤k− t−2. So lyy′≥k− t− k−t+q−2
|B|−2 ≥

7(k−t)
12 . This proves

(iii).
(iv). Suppose that t ≥ 3. Since T is a strong attachment, by (iii) and

Lemma 2.5, we have that

c− k + 1 ≤ ω ≤ c−
(

7(k − t)
12

+ 1

)
(t− 1),

which implies that (k−t)(7t−19)≤0. As t≥3, it follows k≤ t, a contradiction
to t≤k−2−q≤k−2. This proves (iv).

Claim 6. There is no infeasible component in G−C. In other words, any
component R in G−C has either |NC(R)|=k or ch(R)=(2,0, c−k+1).

Proof. Suppose that there exists an infeasible component R in G−C. By
Claim 4, R is not 2-connected, so there exist two end-blocks B1,B2 of R,
with cut-vertices b1, b2, respectively. By Claim 5, each Bi is 2-connected
and for any vertex y∈V (Bi−bi), there exists a (y,bi)-path in Bi of length

`ybi≥
2(k−t+1)

3 ≥ 2(k−1)
3 .

Suppose there exist distinct vertices x∈NC(B1−b1) and x′∈NC(B2−b2).
Then there exist y∈B1−b1 and y′∈B2−b2 such that xy,x′y′ are two inde-
pendent edges. So {x,x′} is a strong attachment of R to C; and moreover,

there exists an (x,R,x′)-path of length at least `yb1 + `y′b2 + 2≥ 4(k−1)
3 + 2.

By Lemma 2.5, as k≥ 4, we have c−k+1≤ω≤ c−
(
4
3(k−1)+1

)
≤ c−k, a

contradiction.
Therefore, we may assume that NC(B1−b1)=NC(B2−b2)={x} for some

vertex x∈V (C). Let y be a neighbor of x in B1−b1. Note that dB1(u)≥k−1
for any u ∈ B1− b1. By Theorem 2.2, there exists a (y,b1)-path of length
at least k − 1. Since G is 2-connected, there exists an edge x′y′ ∈ E(G)
with x′ ∈ V (C−x) and y′ ∈ V (R)− (B1− b1)∪ (B2− b2). Clearly {x,x′} is
a strong attachment of R to C and using the above (y,b1)-path, one can
easily find an (x,R,x′)-path of length at least k+1. By Lemma 2.5, we have
c−k+1≤ω≤c−k, a contradiction. This proves Claim 6.

In the remaining, we let C=x1x2 . . .xcx1 and take the index of xi under
modulo c. By Dirac’s theorem, c≥min{n,2k}. We also have c≤n−1. This
shows that c≥2k.
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Claim 7. Let R be a component in G−C with |NC(R)|= k. Then, there
exists i∈ [c] such that I := {xi+1,xi+3, . . . ,xi+2k−3} is a stable set, V (C)\I
is a clique of size c−k+ 1, and NC(R) = {xi,xi+2, . . . ,xi+2k−2}; moreover,
|V (R)|=1.

Proof. Let N := NC(R). Let W be a maximum clique in G[C] and I :=
V (C)\W . By Claim 1, N+ is stable and thus |W∩N+|≤1. By the inclusion-
exclusion principle, we have c−k+1≤|W |= |W∪N+|+|W∩N+|−|N+|≤c+1−k.
This shows that |W |=c−k+1, |W∩N+|=1, andW∪N+=V (C). In particular,
we have I ⊆N+. Similarly, one can show that I ⊆N−. Thus, I+∪ I−⊆N .
So k= |N |≥|I+∪I−|= |I+|+ |I−|−|I+∩I−|=2(k−1)−|I+∩I−|, implying
that |I+∩I−|≥k−2. Since |I|=k−1 (and c≥2k), it is not hard to see that
the indices of the vertices in I must form an arithmetic progression with
difference two, say I = {xi+1,xi+3, . . . ,xi+2k−3} for some i ∈ [c]. Also since
I+∪I−⊆N and |N |=k, it follows that NC(R)=N={xi,xi+2, . . . ,xi+2k−2}.

For any xj ,xj+2 in NC(R), since C is locally maximal, there exists some
vertex y ∈ V (R) such that NR(xj) =NR(xj+2) = {y}. This further implies
that y is the unique neighbor in R for every vertex in NC(R). If |V (R)|≥2,
then y is a cut-vertex of G, contradicting the fact that G is 2-connected.
Thus |V (R)|=1. This proves the claim.

Claim 8. Let R be a component in G−C with ch(R)=(2,0, c−k+1), and
T :=NC(R). Then there exists some integer i∈ [c] such that T ={xi,xi+c−k}
and W = G[{xi,xi+1, . . . ,xi+c−k}] is a clique of size c− k + 1; moreover,
G[R∪T ] is a clique of size k+1 and there are no edges between V (W )\T
and V (C)\V (W ).

Proof. Let T ={x,y} and W be a maximum clique in G[C] of size c−k+1.
First we show that the longest (x,y)-path in G[C] has length at least

c−k, with equality if and only if T = {xi,xi+c−k} for some integer i ∈ [c],
W =G[{xi,xi+1, . . . ,xi+c−k}], and there are no edges between V (W )\T and
V (C)\V (W ). We first observe that there are two disjoint subpaths of C, say
L1,L2 from x,y to V (W ), respectively. Let the other end of Li be ai. Then,
as W is a clique, there exists an (a1,a2)-path in W through all vertices of W ,
which, together with L1 and L2, gives an (x,y)-path in G[C] passing through
all vertices of W . Since |V (W )|=c−k+1, this (x,y)-path has length at least
c− k. Now suppose that the longest (x,y)-path has length exactly c− k.
Let P1,P2 be the two (x,y)-subpaths on C. If W intersects both P1−{x,y}
and P2−{x,y}, then we could find an (x,y)-path through all vertices of W
and thus it has length at least c−k+1, a contradiction. So we may assume
that V (W )⊆V (P1). This further shows that V (W )=V (P1). That is, there
exists i∈ [c] such that T ={xi,xi+c−k} and W =G[{xi,xi+1, . . . ,xi+c−k}]. In
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this case, if there is some edge uv with u∈V (W )\T and v∈V (C)\V (W ),
then one can easily find an (xi,xi+c−k)-path of length at least c−k+ 1, a
contradiction.

Next we show that the longest (x,y)-path in G[C] has length exactly
c−k and moreover, G[R∪T ] is a clique of size k+1. To see this, we notice
that since G is 2-connected, G[R∪T ]+xy is 2-connected and every vertex
in G[R∪T ]+xy, except x and y, has degree at least k. By Theorem 2.2, the
longest (x,y)-path P in G[R∪T ]+xy has length at least k, with equality if
and only if G[R∪T ]+xy is the union of some cliques Kk+1’s which pairwise
share the same vertices x and y. For our case, as the deletion of {x,y} only
results in one component R, the equality holds if and only if G[R∪T ]+xy is
a clique Kk+1. It is also clear that P lies in G[R∪T ]. Let P ′ be the longest
(x,y)-path in G[C], which is of length at least c−k. Then C ′ :=P ∪P ′ is a
cycle of length at least c with the property that |E(C ′)∩E(C,G−C)|= 2.
If C ′ has length at least c+1, it will contradict that C is locally maximal.
So C ′ must have length c, and thus the longest (x,y)-paths in G[R∪T ]+xy
and in G[C] are of lengths exactly k and c−k, respectively. This, together
with the last paragraph, imply that {x,y} = {xi,xi+c−k} for some i ∈ [c],
W =G[{xi,xi+1, . . . ,xi+c−k}] is a clique, and G[R∪T ]+xy is a clique Kk+1.
In particular, we see xy ∈E(G), so G[R∪T ] is a clique Kk+1. This proves
Claim 8.

Claim 9. If there exists a component R in G−C with ch(R)=(2,0, c−k+1),
then G=Zn,k,c.

Proof. Let R be a component in G− C with ch(R) = (2,0, c− k + 1).
By Claim 8, we may assume that T := NC(R) = {x1,xc−k+1} and
W =G[{x1,x2, . . . ,xc−k+1}] is a clique.

Let A := V (C) \ V (W ). We first show that for every x ∈ A, NG(x) ⊆
A∪T . Suppose not. In view of Claim 8, we may assume that there exists
another component R′ in G− C which has a neighbor x in A (because
x has no neighbors in R or W \ T ). By Claim 6, either |NC(R′)| = k or
ch(R′)=(2,0, c−k−1). If |NC(R′)|=k, then by Claim 7, NC(R′) is a clique
with vertices {xi,xi+2, . . . ,xi+2k−2} for some i ∈ [c]. Since x ∈ NC(R′)∩A
and A only consists of k− 1 consecutive vertices on C, there must be y ∈
NC(R′)∩(V (W )\T ). So xy∈E(G), contradicting Claim 8. So assume that
ch(R′)=(2,0, c−k−1). Then NC(R′)={xj ,xj+(c−k)} for some j∈ [c], where
xj∈A. In this case, we also see that xjxj+(c−k) is an edge between V (W )\T
and A, a contradiction, finishing the proof.

Therefore, as δ(G) ≥ k and |A∪ T | = k+ 1, we also see that G[A∪ T ]
induces a Kk+1. Together with Claim 8, this shows that if R is a component
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in G−C with ch(R)=(2,0, c−k+1), then G[C] is a union of a clique Kk+1

and another clique Kc−k+1 which share the vertices in NC(R).
Now consider any component R0 in G−C other than R. We just proved

NC(R0)∩A = ∅, so NC(R0) ⊆ V (W ). By Claim 6, either |NC(R0)| = k or
ch(R0)=(2,0, c−k−1). Assume that |NC(R0)|=k. Let xi,xi+2, . . . ,xi+2k−2 be
the vertices of NC(R0) for some i, which are in V (W ). Then there exist two
vertices in (NC(R0))

+, which are also in V (W ), a contradiction to Claim
1 that (NC(R0))

+ is stable. So we have ch(R0) = (2,0, c− k− 1). By the
above paragraph, we must have NC(R0) = NC(R); moreover, by Claim 8,
G[R0 ∪NC(R0)] forms a clique Kk+1. This shows that G= Zn,k,c, proving
this claim.

Hence, by Claims 6, 7 and 9, we may assume that every vertex y in G−C
is an isolated vertex with |NC(y)|=k.

Claim 10. For any y,y′∈G−C, it holds that NC(y)=NC(y′).

Proof. Suppose that NC(y) 6= NC(y′). Then there exist distinct in-
dices i, j ∈ [c] such that NC(y) = {xi,xi+2, . . . ,xi+2k−2} and NC(y′) =
{xj ,xj+2, . . . ,xj+2k−2}. Also I := {xi+1,xi+3, . . . ,xi+2k−3} and I ′ :=
{xj+1,xj+3, . . . ,xj+2k−3} are independent. Moreover, W := V (C) \ I and
W ′ :=V (C)\I ′ are cliques. So |I ′∩W |≤1, implying that |I ′∩I|≥k−2.

First consider the case that c=2k. If k=2, then without loss of generality,
we may assume that NC(y) = {x1,x3}, NC(y′) = {x2,x4}, I = {x2}, and
W =x1x3x4x1 is a triangle. Then one can easily find a 5-cycle x2y

′x4x3x1x2,
contradicting that C is locally maximal. If k≥3, then I ′∩I 6=∅. This implies
that the indices of the vertices in I and in I ′ are of the same parity, so we
must have NC(y)=NC(y′), a contradiction.

Hence we may assume that c≥ 2k+ 1. In this case, as NC(y) 6=NC(y′),
we see that I 6= I ′. Since |I ′ ∩ I| ≥ k− 2, it holds that |I ′ ∩ I| = k− 2. If
k = 2, then xj+1 is in the clique W = V (C) \ {xi+1}. One of xj−1,xj+3

cannot be xi+1 (by symmetry, say xi+1 6=xj+3). So xj+1xj+3∈E(G). Then
(C−{xj+1,xj+2})∪xjy′∪y′xj+2∪xj+2xj+1∪xj+1xj+3 is a cycle which is longer
than C, a contradiction. Now let k≥3. Then without loss of generality, we
may assume that j= i+2. Since xi+1,xi+2k∈W ′, we have xi+2kxi+1∈E(G).
Let P be the unique subpath of C from xi+2 to xi+2k−2 which contains xi+3,
and let P ′=xi+2kxi+1∪xi+1xi∪xiy∪yxi+2∪P be a path from xi+2k to xi+2k−2.
Since A :=(V (C)\V (P ′))∪{xi+2k,xi+2k−2}=V (C)−{xi,xi+1, . . . ,xi+2k−3}⊆
W , there exists a path from xi+2k to xi+2k−2 and consisting of the vertices
in A, which, together with P ′, forms a cycle C ′ satisfying that |C ′| > |C|
and |E(C ′)∩E(C,G−C)| ≤ 2. This contradicts that C is locally maximal,
completing the proof of this claim.
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We now prove that G=Wn,k,c. By Claim 10, we may assume that for all
y∈G−C, NC(y)={x1,x3, . . . ,x2k−1}. By Claim 7, I={x2,x4, . . . ,x2k−2} is
an independent set and W := V (C) \ I is a clique of size c− k+ 1. There-
fore, to prove G = Wn,k,c, it remains to show that for every vertex x ∈ I,
NG(x)={x1,x3, . . . ,x2k−1}. Since δ(G)≥k, it suffices to show that any ver-
tex xi∈I cannot be adjacent to some vertex x in V (C)−{x1,x3, . . . ,x2k−1}.
Suppose for a contradiction that xix∈E(G), where i∈{2,4, . . . ,2k−2}. As
I is independent, such x must be in V (C)−{x1,x2, . . . ,x2k−1}. Let P,P ′

be two disjoint subpaths in the segment x1x2 · · ·x2k−1 of C from xi,xi+1

to x1,x2k−1, respectively. Then Q = xxi ∪ P ∪ x1y ∪ yxi+1 ∪ P ′ is a path
from x to x2k−1 and passing through some vertex y ∈ G−C. Note that
A :=(V (C)\V (Q))∪{x,x2k−1}=V (C)−{x1,x2, . . . ,x2k−2} is a subset of the
clique W . So there exists a path from x to x2k−1 and consisting of all vertices
in A. This path, together with Q, forms a cycle C ′, which is longer than C
and |E(C ′)∩E(C,G−C)| ≤ 2, a contradiction. The proof of Lemma 4.4 is
completed.

We now have finished the proof of Theorem 4.1 (and thus Theorem 1.13).

5. Proofs of Theorems 1.10 and 1.11

Theorem 1.10. Let G be a 2-connected graph on n vertices with δ(G)≥
k and let C be a longest cycle in G of length c ∈ [10,n− 1]. If e(G) >
max

{
f(n,k+1, c),f

(
n,
⌊
c
2

⌋
, c
)}

, then G=Wn,k,c or Zn,k,c, where G denotes
the C-closure of G.

Proof. We derive this from Theorem 1.9. By the discussion in
Subsection 2.1, f

(
n,
⌊
c
2

⌋
, c
)
≥ f

(
n,
⌊
c
2

⌋
−1, c

)
. So we have e(G) >

max
{
f(n,k+1, c),f

(
n,
⌊
c
2

⌋
−1, c

)}
. By Theorem 1.9, either G = Wn,k,c or

Zn,k,c, G ⊆Wn,b c
2
c,c, or G is a subgraph of a member of Xn,c ∪Yn,c (only

when k=2 and c is odd). If G⊆Wn,b c
2
c,c or G is a subgraph of a member of

Xn,c∪Yn,c, then it is easy to see that e(G)≤f
(
n,
⌊
c
2

⌋
, c
)
, a contradiction to

that e(G)>f
(
n,
⌊
c
2

⌋
, c
)
. So it must be that G=Wn,k,c or Zn,k,c.

The proof of Theorem 1.11 is more involved, as we are not guaranteed
to be able to use Theorem 1.9. This is because

max
{
f(n, k, c), f

(
n,
⌊ c

2

⌋
− 1, c

)}
≥ max

{
f(n, k + 1, c), f

(
n,
⌊ c

2

⌋
− 1, c

)}
holds only when b c2c−1≥k+1. In fact when c≤2k+3, this inequality can
be reversed.
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Theorem 1.11. Let G be a 2-connected graph on n vertices with δ(G)≥
k and let C be a longest cycle in G of length c ∈ [10,n− 1]. If e(G) >
max

{
f(n,k,c),f

(
n,
⌊
c
2

⌋
−1, c

)}
, then either G⊆Wn,b c

2
c,c, or k=2, c is odd

and G is a subgraph of a member of Xn,c∪Yn,c.

Proof. Since e(G)>f(n,b c2c−1, c)=(b c2c−1)(n−c)+h(c+1,b c2c−1), it holds
that either e(G−C)+e(G−C,C)>(b c2c−1)(n−c) or e(G[C])>h(c+1,b c2c−1).
If the former case occurs, then by Theorem 1.12, either G⊆Wn,b c

2
c,c, or c

is odd and G is a subgraph of a member of Xn,c∪Yn,c (if this occurs, then
k=2). So we may assume that e(G[C])>h(c+1,b c2c−1). It suffices to show
the following

Claim. Let G be a 2-connected graph on n vertices with δ(G) ≥ k
and C be a locally maximal cycle in G of length c ∈ [10,n − 1]. If
e(G)>max

{
f(n,k,c),f

(
n,
⌊
c
2

⌋
−1, c

)}
and e(G[C])>h(c+1,b c2c−1), then

G⊆Wn,b c
2
c,c.

The remaining proof is similar to the one of Theorem 4.1. Let G be the
C-closure of G. By Lemma 2.7, C remains a locally maximal cycle in G; and
by Lemma 2.8, G[C] is non-Hamiltonian-connected. Using Lemma 2.11, we
see that one of the following holds:

(i) G[C] contains a subset of b c2c−1 vertices of degree at most b c2c in G[C],
or

(ii) G[C] contains a subset S of s−1 vertices of degree at most s in G[C]
for some 2≤s≤b c2c−2 such that G[C]−S is a clique.

Suppose that (i) holds. Lemma 4.2 implies G[C] = Wc,b c
2
c,c. Following the

same arguments in Theorem 4.1, we have G⊆G⊆Wn,b c
2
c,c. Now assume that

(ii) holds. Since e(G)≥ e(G)>max
{
f(n,k,c),f

(
n,
⌊
c
2

⌋
−1, c

)}
, by using k

instead of k+1 in Lemma 4.3, we derive that the clique number of G[C] is
at least c−k+2. By Lemma 4.4, we have G∈{Wn,k,c, Zn,k,c}, but in each of
the two graphs, the corresponding clique number is c−k+1, a contradiction.
This proves the claim. Thus we have proved Theorem 1.11.

6. Concluding remarks

The approach used here seems to be applicable for the following problem
of Füredi, Kostochka and Verstraëte in [15]: for n ≥ 3c

2 , to describe the
structures of 2-connected n-vertex graphs with circumference at most c,
where c is even, and with at least f(n, c2 −2, c) edges. We also wonder if a



42 JIE MA, BO NING

general and clear stability result can hold for k-connected graphs G (or even
for 3-connected graphs with minimum-degree at least k) for which G has n
vertices, circumference c and e(G)>max{f(n,k+a,c),f(n,b c2c− b,c)} for
fixed integers a,b≥ 1. Finally, we would like to mention that some related
problems can be found in [13].

Acknowledgement. The first author would like to thank Alexandr V. Kos-
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