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A property on monochromatic copies of graphs containing a triangle

Hao Chen Jie Ma

Abstract

A graph H is called common and respectively, strongly common if the number of monochro-

matic copies of H in a 2-edge-coloring φ of a large clique is asymptotically minimised by the

random coloring with an equal proportion of each color and respectively, by the random coloring

with the same proportion of each color as in φ. A well-known theorem of Jagger, Št’ov́ıček and

Thomason states that every graph containing a K4 is not common. Here we prove an analogous

result that every graph containing a K3 and with at least four edges is not strongly common.

1 Introduction

A graph H is said to be common if the number of monochromatic copies of H in a 2-edge-coloring

of a large clique is asymptotically minimised by the uniformly random 2-edge-coloring. This can be

viewed as a quantitative extension of Ramsey’s Theorem and has been received extensive attention in

the literature. The classic formula of Goodman [13] shows that K3 is common. Erdős [9] conjectured

that all complete graphs are common and this conjecture was extended to all graphs by Burr and

Rosta [2]. Both conjectures fail to be true, as Sidorenko [28] proved that a triangle plus a pendant

edge is not common and Thomason [33] proved that Kt is not common for any t ≥ 4. Jagger,

Št’ov́ıček and Thomason [17] further showed that every graph containing a K4 as a subgraph is not

common. We direct interested readers to [1, 10, 14, 15, 17, 19, 21, 22, 27, 28, 31, 33] for many

interesting results on this topic and to [7, 8, 12, 20] for generalizations.

A graph H is strongly common if the number of monochromatic copies of H in a 2-edge-coloring

φ of a large clique is asymptotically minimised by the random coloring with the same proportion

of each color as in φ. Extending the notion of common graphs, this natural definition was recently

formalized by Behague, Morrison and Noel in [1]. A famous conjecture of Sidorenko [29] asserts that

for any bipartite graph H, the number of copies of H in a graph G is asymptotically minimised by

the random graph with the same edge density as G. It is evident to see that any bipartite graph

satisfying Sidorenko’s conjecture is strongly common (see [3, 4, 5, 6, 11, 16, 23, 24, 25, 29, 30, 32]

for advances on Sidorenko’s conjecture). For non-bipartite graphs, the authors of [1] proved that the

triangle and the five-cycle are strongly common, and they made a conjecture that all odd cycles are

strongly common which was proved by Kim and Lee [18] very recently. The authors of [1] also raised

the problem of classifying strongly common graphs. Towards an understanding of this problem, we
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prove the following result. For a graph H, we say a graph G properly contains H if H is a subgraph

of G and e(H) < e(G).

Theorem 1. Any graph properly containing a triangle is not strongly common.

This can be viewed as an analogy of the result of Jagger, Št’ov́ıček and Thomason that every

graph containing a K4 is not common. Behague, Morrison and Noel commented in [1] that they

were unaware of any graph which is common but not strongly common. This was addressed in one of

the results in the recent paper of Lee and Noel [22], where they found many non-bipartite common

graphs which are not strongly common (including the disjoint union of two triangles). Let us mention

a recent beautiful result of Grzesik, Lee, Lidický and Volec [14] which says that any triangle-tree is

common.1 Together with this result, we now see a rich family of such graphs in the following.

Corollary 2. Any triangle-tree (except the triangle itself) is common but not strongly common.

The rest of the paper is organized as follows. In Section 2, we give out some preliminaries used

later. In Section 3, we build up some key lemmas on a special kernel called Up. In Section 4, we

prove Theorem 1. In Section 5, we conclude this paper with a question and some remarks.

2 Preliminaries

Let G be a graph with the vertex set V (G) and the edge set E(G). Denote the numbers of vertices

and edges of G by v(G) and e(G), respectively. For a subset A ⊆ V (G), we write G[A] for the

subgraph of G induced by A. We write [k] for the set {1, 2, ..., k} for k ∈ Z+.

In this paper, all integrations are taken with respect to the Lebesgue measure and when we use

the notion of measure we always mean Lebesgue measure. For a measurable set S, we let µ(S) be

its Lebesgue measure. A kernel is a measurable and bounded function U : [0, 1]2 → R such that

U(x, y) = U(y, x) for every (x, y) ∈ [0, 1]2.

Definition 3. Let H be a graph. For a kernel U , the homomorphism density from H to U is defined

as

tH(U) =

∫

[0,1]v(H)

∏

ij∈E(H)

U(xi, xj)

v(H)
∏

i=1

dxi.

Using this notation, we see (i.e., Lovász [26]) that a graph H is strongly common, if the inequality

tH(W ) + tH(1−W ) ≥ tK2(W )e(H) + tK2(1−W )e(H) (1)

holds for every kernel W : [0, 1]2 → [0, 1]. In what follows, we transform the above strongly common-

ality of graphs to a formulae which is easier to deal with (i.e., see Kim and Lee [18]). Let E+(H)

be the set of all spanning subgraphs F of H with positive even number of edges. For a kernel

1A triangle-tree is either a triangle or it is obtained from a triangle-tree by identifying a single vertex or an edge of

a new triangle with a vertex or an edge.
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W : [0, 1]2 → [0, 1], we define U := 2W − 1. So U is a kernel taking values in [−1, 1]. By standard

multilinear expansion, we have

tH(W ) + tH(1−W ) =
tH(1 + U) + tH(1− U)

2e(H)
= 21−e(H)



1 +
∑

F∈E+(H)

tF (U)



 . (2)

Similarly, we can expand tK2(W )e(H) + tK2(1−W )e(H) to obtain

tK2(W )e(H) + tK2(1−W )e(H) = 21−e(H)



1 +
∑

F∈E+(H)

tK2(U)e(F )



 . (3)

Thus to answer if (1) holds for H, we just need to determine the sign of the formula

∑

F∈E+(H)

(

tF (U)− tK2(U)e(F )
)

.

We summarize this as the following property.

Proposition 4. Let H be a graph. If
∑

F∈E+(H)

(

tF (U)− tK2(U)e(F )
)

≥ 0 holds for every kernel

U taking values in [−1, 1], then H is strongly common. On the other hand, if there exists a kernel

U taking values in [−1, 1] such that
∑

F∈E+(H)

(

tF (U)− tK2(U)e(F )
)

< 0, then H is not strongly

common.

3 The kernel Up

In this section we consider the following kernel Up and several propositions on its homomorphism

density tF (Up) which play important roles in the proofs. For p ∈ [0, 1], we define

Up(x, y) :=

{

2p− 1 if (x, y) ∈ [0, 1/2) × [0, 1/2) or [1/2, 1] × [1/2, 1];

− 1 if (x, y) ∈ [0, 1/2) × [1/2, 1] or [1/2, 1] × [0, 1/2).
(4)

The kernel Up can be viewed as a weighted complete graph whose vertex set is a disjoint union of

two subsets V1 and V2, where each of V1 and V2 induces a complete graph with edge-weight 2p − 1

for every edge, and all edges between V1 and V2 have edge-weight −1.

It is easy to see tK2(Up) = p− 1. Throughout this section, we let I1 = [0, 1/2) and I2 = [1/2, 1].

For a string S = s1s2...sv(H) ∈ {1, 2}v(H) , we define

BS = {(x1, x2, ..., xv(H)) : xk ∈ Isk , k = 1, 2, ..., v(H)}

to be the corresponding domain in [0, 1]v(H) determined by S. There are 2v(H) strings in total

(say S1, S2, ..., S2v(H)) and let B = {B1, B2, ..., B2v(H)} be the collection of all domains in [0, 1]v(H)

corresponding to strings Si for 1 ≤ i ≤ 2v(H). Note that for any i, j ∈ {1, 2}, if x, y are in the same

interval Ii and x′, y′ are in the same interval Ij as well, then by the definition of Up, we have Up(x, x
′) =

3



Up(y, y
′). Consider any Bk ∈ B. Then µ(Bk) = 1/2v(H) and for any tuple (x1, x2, ..., xv(H)) ∈ Bk,

the value hk :=
∏

ij∈E(H)Up(xi, xj) only depends on Bk. Thus, we have

tH(Up) =

∫

[0,1]v(H)

∏

ij∈E(H)

Up(xi, xj)

v(H)
∏

i=1

dxi =
1

2v(H)

2v(H)
∑

k=1

hk. (5)

Next we introduce two variants of tH(Up). For a, b ∈ V (H) and 1 ≤ i 6= j ≤ 2, we define

f i
a,b,H(p) =

∫

Ii×Ii





∫

[0,1]v(H)−2

∏

uv∈E(H)

Up(xu, xv)
∏

k∈V (H)\{a,b}

dxk



 dxadxb

and

gija,b,H(p) =

∫

Ii×Ij





∫

[0,1]v(H)−2

∏

uv∈E(H)

Up(xu, xv)
∏

k∈V (H)\{a,b}

dxk



 dxadxb.

It is clear that by symmetric, f1
a,b,H = f2

a,b,H and g12a,b,H = g21a,b,H . For brevity, we let fa,b,H := f1
a,b,H =

f2
a,b,H and ga,b,H := g12a,b,H = g21a,b,H . Thus we have

tH(Up) = f1
a,b,H(p) + f2

a,b,H(p) + g12a,b,H(p) + g21a,b,H(p) = 2fa,b,H(p) + 2ga,b,H(p).

Also by the definition, we have that fa,b,H(0) = (−1)e(H)/4.

The following lemma is key for the proof of our main result. For a polynomial f(p) on the variable

p, we define [j]f as the coefficient of pj in f(p).

Lemma 5. Let H be a graph and a, b be two vertices with ab /∈ E(H). Write f = fa,b,H and

g = ga,b,H . Then for any j = 0, 1, ..., e(H), we have [j]f · [j]g ≥ 0. Moreover, [0]f = [0]g, [1]f = [1]g

and |[2]f | ≥ |[2]g|.

Proof. First note that 4·[0]f = 4fa,b,H(0) = (−1)e(H) = 4ga,b,H(0) = 4·[0]g, implying that [0]f = [0]g.

In this proof, we use xa and xb to express the first two variables in [0, 1]v(H) , which correspond to

the vertices a and b respectively.

Let Bf = {B1, B2, ..., B2v(H)−2} be the collection of domains in [0, 1]v(H) such that each Bk ∈ Bf

satisfies xa, xb ∈ I1. Let Bg = {B2v(H)−2+1, B2v(H)−2+2, ..., B2v(H)−1} be the collection of domains in

[0, 1]v(H) such that each Bk ∈ Bf satisfies xa ∈ I1 and xb ∈ I2. Without loss of generality, we may

assume the following. For any is ∈ {1, 2}, we write js ∈ {1, 2}\{is}. If Bk ∈ Bf has the form

Bk = I1 × I1 ×
∏2v(H)−2

s=1 Iis , then

• B2v(H)−2−k+1 ∈ Bf satisfies B2v(H)−2−k+1 = I1 × I1 ×
∏2v(H)−2

s=1 Ijs ,

• B2v(H)−2+k ∈ Bg satisfies B2v(H)−2+k = I1 × I2 ×
∏2v(H)−2

s=1 Iis , and

• B2v(H)−1−k+1 ∈ Bg satisfies B2v(H)−1−k+1 = I1 × I2 ×
∏2v(H)−2

s=1 Ijs .

Recall that hk :=
∏

ij∈E(H)Up(xi, xj) for any (xa, xb, x3, x4, ..., xv(H)) ∈ Bk. Then we have

4fa,b,H =

2v(H)−2
∑

k=1

1

2v(H)−2
hk and 4ga,b,H =

2v(H)−1
∑

k=2v(H)−2+1

1

2v(H)−2
hk. (6)
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Let H∗ be obtained from H by deleting the vertices a and b and for a given Bk, we define

h∗k =
∏

ij∈E(H∗)

Up(xi, xj) for any (xa, xb, x3, x4, ..., xv(H)) ∈ Bk.

Then we may assume that h∗k = (2p − 1)tk(−1)e(H
∗)−tk for some non-negative integer tk. Let A =

|N(a)|, B = |N(b)|, and C = |N(a) ∩ N(b)|. We further assume that there are α+ and α− vertices

in N(a)/(N(a) ∩N(b)) whose corresponding variables in Bk belong to I1 and I2, respectively; there

are β+ and β− vertices in N(b)/(N(a)∩N(b)) whose corresponding variables in Bk belong to I1 and

I2, respectively; and there are c+ and c− vertices in N(a) ∩N(b) whose corresponding variables in

Bk belong to I1 and I2, respectively. By these definitions, we have that A = α+ + α− + c+ + c−,

B = β+ + β− + c+ + c−, and C = c+ + c−. Since Bk ∈ Bf , we can rewrite

hk = h∗k · (2p − 1)α
++2c++β+

(−1)α
−+2c−+β−

= (2p− 1)tk+α++2c++β+
(−1)e(H

∗)−tk+α−+2c−+β−

.

As e(H) − e(H∗) = α+ + α− + β+ + β− + 2c+ + 2c−, the coefficient of pj in hk is

[j]hk =2j
(

tk + α+ + 2c+ + β+

j

)

(−1)(tk+α++2c++β+−j)+(e(H∗)−tk+α−+2c−+β−)

=2j
(

tk + α+ + 2c+ + β+

j

)

(−1)e(H)−j ,

Next consider B2v(H)−2−k+1 ∈ Bf . By symmetric, we have h∗
2v(H)−2−k+1

= h∗k and thus

h2v(H)−2−k+1 = h∗k · (2p − 1)α
−+2c−+β−

(−1)α
++2c++β+

= (2p− 1)tk+α−+2c−+β−

(−1)e(H
∗)−tk+α++2c++β+

.

Then the coefficient of pi in h2v(H)−2−k+1 is

[j]h2v(H)−2−k+1 = 2j
(

tk + α− + 2c− + β−

j

)

(−1)e(H)−j .

Consider B2v(H)−2+k ∈ Bg. Again we have h∗
2v(H)−2+k

= h∗k. So it follows that h2v(H)−2+k equals

h∗k · (2p − 1)α
++c++c−+β−

(−1)α
−+c−+c++β+

= (2p− 1)tk+α++c++c−+β−

(−1)e(H
∗)−tk+α−+c++c−+β+

and the coefficient of pj in h2v(H)−2+k is

[j]h2v(H)−2+k = 2j
(

tk + α+ + c+ + c− + β−

j

)

(−1)e(H)−j .

Finally consider B2v(H)−1−k+1 ∈ Bg. Since h∗
2v(H)−1−k+1

= h∗k, we have h2v(H)−1−k+1 equals

h∗k · (2p − 1)α
−+c−+c++β+

(−1)α
++c++c−+β−

= (2p− 1)tk+α−+c−+c++β+
(−1)e(H

∗)−tk+α++c++c−+β−

and the coefficient of pj in h2v(H)−1−k+1 is

[j]h2v(H)−1−k+1 = 2j
(

tk + α− + c+ + c− + β+

j

)

(−1)e(H)−j .

5



Using (6) we can get

4 · [j]f =
2v(H)−2
∑

k=1

[j]hk
2v(H)−2

=
2v(H)−3
∑

k=1

1

2v(H)−2

(

[j]hk + [j]h2v(H)−2−k+1

)

and

4 · [j]g =
2v(H)−2
∑

k=1

[j]h2v(H)−2+k

2v(H)−2
=

2v(H)−3
∑

k=1

1

2v(H)−2

(

[j]h2v(H)−2+k + [j]h2v(H)−1−k+1

)

.

By the above formulas of [j]hk (note that they all have the same parity), this implies that [j]f ·[j]g ≥ 0.

Moreover, we see that
∣

∣[j]f
∣

∣−
∣

∣[j]g
∣

∣ equals

1

2v(H)

2v(H)−3
∑

k=1

(

(∣

∣[j]hk
∣

∣+
∣

∣[j]h2v(H)−2−k+1

∣

∣

)

−
(∣

∣[j]h2v(H)−2+k

∣

∣+
∣

∣[j]h2v(H)−1−k+1

∣

∣

)

)

.

If we let j = 1, then for any k, the k-th term in the above formula vanishes as follows

1

2

(

(∣

∣[1]hk
∣

∣+
∣

∣[1]h2v(H)−2−k+1

∣

∣

)

−
(∣

∣[1]h2v(H)−2+k

∣

∣+
∣

∣[1]h2v(H)−1−k+1

∣

∣

)

)

=(tk + α+ + 2c+ + β+) + (tk + α− + 2c− + β−)

− (tk + α+ + c+ + c− + β−)− (tk + α− + c− + c+ + β+)

=0.

Since [j]f · [j]g ≥ 0 holds for any j, this shows that [1]f = [1]g.

It remains to consider the case when j = 2. In this case, for any k we have

1

4

(

(∣

∣[2]hk
∣

∣+
∣

∣[2]h2v(H)−2−k+1

∣

∣

)

−
(∣

∣[2]h2v(H)−2+k

∣

∣+
∣

∣[2]h2v(H)−1−k+1

∣

∣

)

)

=

(

tk + α+ + 2c+ + β+

2

)

+

(

tk + α− + 2c− + β−

2

)

−

(

tk + α+ + c+ + c− + β−

2

)

−

(

tk + α− + c− + c+ + β+

2

)

=(c+ − c− + α+ − α−)(c+ − c− + β+ − β−) = (2c+ + 2α+ −A)(2c+ + 2β+ −B).

Note that this only depends on the values of α+, c+ and β+. Let K be the number of vertices which

are not adjacent to any of a, b. We also have 0 ≤ α+ ≤ A − C, 0 ≤ c+ ≤ C and 0 ≤ β+ ≤ B − C,

Summing over all k, by double counting we have that

∣

∣[2]f
∣

∣−
∣

∣[2]g
∣

∣

=
1

2v(H)

2v(H)−3
∑

k=1

(

(∣

∣[2]hk
∣

∣+
∣

∣[2]h2v(H)−2−k+1

∣

∣

)

−
(∣

∣[2]h2v(H)−2+k

∣

∣+
∣

∣[2]h2v(H)−1−k+1

∣

∣

)

)

=
2K

2v(H)+1

C
∑

c+=0

(

C

c+

) A−C
∑

α+=0

(

A− C

α+

) B−C
∑

β+=0

(

B − C

β+

)

· 4(2c+ + 2α+ −A)(2c+ + 2β+ −B).
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Therefore, we can further get that
∣

∣[2]f
∣

∣−
∣

∣[2]g
∣

∣ is equal to

2K

2v(H)−1

C
∑

c+=0

(

C

c+

)

(

A−C
∑

α+=0

(

A− C

α+

)

(2c+ + 2α+ −A)

)

·





B−C
∑

β+=0

(

B − C

β+

)

(2c+ + 2β+ −B)





=
2K

2v(H)−1

C
∑

c+=0

(

C

c+

)

(

1

2

A−C
∑

α+=0

(

A− C

α+

)

(

2c+ + 2α+ −A+ 2c+ + 2(A− C − α+)−A
)

)

·





1

2

B−C
∑

β+=0

(

B − C

β+

)

(

2c+ + 2β+ −B + 2c+ + 2(B − C − β+)−B
)





=
2K

2v(H)−1

C
∑

c+=0

(

C

c+

) A−C
∑

α+=0

(

A−C

α+

) B−C
∑

β+=0

(

B − C

β+

)

(2c+ − C)2

≥0.

This proves that
∣

∣[2]f
∣

∣ ≥
∣

∣[2]g
∣

∣, completing the proof.

It is easy to see that the proof of this lemma also yields the following corollary.

Corollary 6. Let H be a graph and a, b be two vertices with ab /∈ E(H). Then [2]fa,b,H = [2]ga,b,H
if and only if NH(a) ∩NH(b) = ∅.

Let H be a graph. Throughout the rest of the paper, for convenience we define

∆H(p) := tH(Up)− tK2(Up)
e(H) = tH(Up)− (p− 1)e(H).

Lemma 7. Let H be a graph and a, b be two vertices with ab /∈ E(H). If p2|∆H(p), then

p2
∣

∣

(

4fa,b,H(p)− (p− 1)e(H)
)

.

Proof. Note that tH(Up) = 2fa,b,H(p) + 2ga,b,H(p). By Lemma 5, [0]fa,b,H = [0]ga,b,H and [1]fa,b,H =

[1]ga,b,H . This implies that p2| (4fa,b,H(p)− tH(Up)). Since p2|∆H(p) and ∆H(p) = tH(Up) − (p −

1)e(H), it follows easily that p2|
(

4fa,b,H(p)− (p− 1)e(H)
)

.

Lemma 8. Let H be a graph and a, b be two vertices with ab /∈ E(H). Let H∗ be obtained from H

by adding the new edge ab. Then

tH∗(Up) = 4p · fa,b,H(p)− tH(Up) and ∆H∗(p) = p
(

4fa,b,H(p)− (p − 1)e(H)
)

−∆H(p).

Proof. By definition, we have tH∗(Up) = (2p − 1)
(

f1
a,b,H(p) + f2

a,b,H(p)
)

−
(

g12a,b,H(p) + g21a,b,H(p)
)

=

2(2p − 1)fa,b,H(p)− 2ga,b,H(p) = 4p · fa,b,H(p)− tH(Up). Then it holds that

∆H∗(p) = tH∗(Up)− (p− 1)e(H)+1 = 4p · fa,b,H(p)− tH(Up)− p(p− 1)e(H) + (p − 1)e(H)

= p
(

4fa,b,H(p)− (p− 1)e(H)
)

−∆H(p),

as desired.
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Using the above lemmas, we can show that ∆H(p) is always divisible by p3.

Lemma 9. Let H be any graph. Then p3|∆H(p).

Proof. Fix the number n of vertices in H. We prove this lemma by induction on the number of edges

of H. If H is an n-vertex empty graph, the conclusion holds trivially. Assume it holds for all n-vertex

graphs with k edges. Now consider an n-vertex graph H with k+1 edges. Let ab ∈ E(H) and H− be

obtained from H by deleting ab. By Lemma 8, ∆H(p) = p
(

4fa,b,H−(p)− (p− 1)k
)

−∆H−(p). Using

induction onH−, we have p3|∆H−(p) and then by Lemma 7, we get that p3|p
(

4fa,b,H−(p)− (p − 1)k
)

.

Thus we obtain that p3|∆H(p), completing the proof.

Finally, we need the following lemma to indicate the sign of some coefficients in ∆H(p).

Lemma 10. Let H be a graph and a, b be two vertices with ab /∈ E(H). Then the coefficient of p2

in 4fa,b,H(p)− (p− 1)e(H) times (−1)e(H) is non-negative.

Proof. Let f = fa,b,H and g = ga,b,H . Then Lemma 9 states p3|
(

2f(p) + 2g(p) − (p− 1)e(H)
)

. So

2 · [2]f + 2 · [2]g =
(

e(H)
2

)

(−1)e(H). From Lemma 5 we see [2]f · [2]g ≥ 0 and |[2]f | ≥ |[2]g|. Thus if

e(H) is odd, then [2]f < 0, [2]g ≤ 0, and [2]f ≤ [2]g. This shows that 4 · [2]f −
(

e(H)
2

)

(−1)e(H) ≤

2 · [2]f +2 · [2]g−
(

e(H)
2

)

(−1)e(H) = 0. So the conclusion holds. If e(H) is even, we can derive [2]f > 0

and [2]f ≥ [2]g, which imply the same conclusion.

4 Proof of Theorem 1

In this section, we present the proof of Theorem 1. We begin with the following two lemmas.

Lemma 11. Let H be a graph which contains no triangles. Then p4|∆H(p).

Proof. Let (H0,H1, ...,Ht) be a sequence of graphs on the same vertex set V (H) such that E(H0) = ∅,

Hi is obtained from Hi−1 by adding an edge for each i ∈ [t], and Ht = H. We will prove p4|∆Hi
(p)

using induction on i. When i = 0, this holds trivially as ∆H0(p) = 0. Assume the result is true

for i. Let Hi+1 be obtained from Hi by adding a new edge ab. As H has no triangle, we must

have that NHi
(a) ∩NHi

(b) = ∅. By Lemma 5 and Corollary 6, we get that [j]fa,b,Hi
= [j]ga,b,Hi

for

each 0 ≤ j ≤ 2. By induction, we have p4|∆Hi
(p), where ∆Hi

(p) = 2fa,b,Hi
+ 2ga,b,Hi

− (p− 1)e(Hi).

Combining the above facts, we can conclude that p3|
(

4fa,b,Hi
−(p−1)e(Hi)

)

. By Lemma 8, ∆Hi+1(p) =

p
(

4fa,b,Hi
(p)− (p − 1)e(Hi)

)

−∆Hi
(p). Using p4|∆Hi

(p) again, we know that p4|∆Hi+1 . This proves

the lemma.

Lemma 12. Let H be a graph containing some triangle. If e(H) is odd, then the coefficient of p3

in ∆H(p) is positive; otherwise, the coefficient of p3 in ∆H(p) is negative.

Proof. Let (H0,H1, ...,Hs) be a sequence of graphs on the same vertex set V (H) such that H0 is a

maximal subgraph of H which does not contain triangles, Hi is obtained from Hi−1 by adding an

edge for each i ∈ [s], and Hs = H for some s ≥ 1. By Lemma 11, since H0 does not contain triangles,

it follows that p4|∆H0(p) and thus [j]∆H0 = 0 for 0 ≤ j ≤ 3.

To finish the proof, it suffices to show that for each i ∈ [s], the coefficient [3]∆Hi
has the same

parity as (−1)e(Hi)−1. We first prove for i = 1. Let ab ∈ E(H1)\E(H0). By Lemma 10, the

8



coefficient of p2 in 4fa,b,H0 − (p − 1)e(H0) either is 0 or has the same parity as (−1)e(H0). Sup-

pose for a contradiction that this coefficient is 0. So [2]fa,b,H0 = (−1)e(H0)
(

e(H0)
2

)

/4. Note that

∆H0(p) = 2fa,b,H0(p) + 2ga,b,H0(p) − (p − 1)e(H0) whose coefficient of p2 is also 0. This implies

[2]fa,b,H0 = (−1)e(H0)
(

e(H0)
2

)

/4 = [2]ga,b,H0 . However by the choice of H0, we see NH0(a)∩NH0(b) 6= ∅

and thus by Corollary 6, |[2]fa,b,H0 | > |[2]ga,b,H0 |, a contradiction. Therefore, the coefficient of p2

in 4fa,b,H0(p) − (p − 1)e(H0) has the same parity as (−1)e(H0). Using Lemma 8 that ∆H1(p) =

p
(

4fa,b,H0(p)− (p− 1)e(H0)
)

−∆H0(p) and the fact that [3]∆H0 = 0, we derive that indeed [3]∆H1

has the same parity as (−1)e(H0) = (−1)e(H1)−1.

Now we may assume that [3]∆Hi
has the same parity as (−1)e(Hi)−1 for some 1 ≤ i < s. We

consider [3]∆Hi+1 . Using Lemma 8, we have ∆Hi+1(p) = p
(

4fa,b,Hi
(p)− (p − 1)e(Hi)

)

−∆Hi
(p). By

Lemma 10, the coefficient of p2 in 4fa,b,Hi
(p) − (p − 1)e(Hi) either is 0 or has the same parity as

(−1)e(Hi). In either case, we see that [3]∆Hi+1 should have the same parity as (−1)e(Hi), which is

(−1)e(Hi+1)−1. Inductively, this completes the proof.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. LetH be a graph containing some triangle with e(H) ≥ 4. By Proposition 4,

we want to find a kernel Up such that
∑

F∈E+(H)

∆F (p) =
∑

F∈E+(H)

(

tF (Up)− tK2(Up)
e(F )

)

< 0.

Consider any graph F ∈ E+(H). By Lemma 9, we have p3|∆F (p), and by Lemmas 11 and 12,

since e(F ) is even, we always can get that [3]∆F ≤ 0. Since e(H) ≥ 4, there must exist some

F ∈ E+(H) which contains a triangle. Thus by Lemma 12, [3]∆F is strictly negative. Putting

the above all together, p3|
∑

F∈E+(H)∆F (p), and the coefficient of p3 in
∑

F∈E+(H)∆F (p) is strictly

negative. Therefore, we can take p > 0 to be small enough such that
∑

F∈E+(H)∆F (p) < 0 holds,

finishing the proof.

5 Concluding remarks

In this paper, we prove that any graph properly containing a triangle is not strongly common.

Towards the characterization of strongly common graphs, certain patterns (i.e., the coefficients in

∆H(p)) appearing in our proof lead us to the following question.

Question 13. Let k ≥ 1 and H be a graph of girth 2k + 1 with more than 2k + 1 edges. Is it true

that H is not strongly common?

If true, then the recent result of Kim and Lee [18] implies that the odd cycle C2k+1 is the only

connected graph of girth 2k + 1 which is strongly common. We believe Lemma 5 (and some similar

arguments in the proof) might be useful for this question.

Lastly, we would like to remark that Theorem 1 can be strengthened as the following: Any graph

properly containing a triangle is not locally strongly common. A graph H is locally strongly common

if for every kernel U , there exists ε0 > 0 such that

tH

(

1

2
+ εU

)

+ tH

(

1

2
− εU

)

≥ tK2

(

1

2
+ εU

)e(H)

+ tK2

(

1

2
− εU

)e(H)
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holds for every 0 < ε < ε0. Clearly if a graph H is strongly common, then it is locally strongly

common. Using the same expansion as in Section 2, this strengthened statement is equivalent to

prove that for any ε > 0, there exists a kernel U satisfying that

∑

F∈E+(H)

(

tF (εU)− tK2(εU)e(F )
)

=
∑

F∈E+(H)

εe(F )
(

tF (U)− tK2(U)e(F )
)

< 0.

It is not hard to see that the proof of Theorem 1 (straightforwardly) shows that such a kernel U can

be chosen to be the kernel Up for some sufficiently small p > 0.
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