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EXACT RESULTS ON TRACES OF SETS

MINGZE LI, JIE MA, AND MINGYUAN RONG

Abstract. For non-negative integers n, m, a and b, we write (n,m) → (a, b) if for every family

F ⊆ 2[n] with |F| > m there is an a-element set T ⊆ [n] such that
∣

∣F|T

∣

∣ > b, where F|T = {F ∩ T :

F ∈ F}. A longstanding problem in extremal set theory asks to determine m(s) = limn→+∞
m(n,s)

n
,

where m(n, s) denotes the maximum integer m such that (n,m) → (n− 1, m− s) holds for non-

negatives n and s. In this paper, we establish the exact value of m(2d−1 − c) for all 1 6 c 6 d

whenever d > 50, thereby solving an open problem posed by Piga and Schülke. To be precise, we

show that

m(n, 2d−1 − c) =

{

2d−c
d

n for 1 6 c 6 d− 1 and d | n
2d−d−0.5

d
n for c = d and 2d | n

holds for d > 50. Furthermore, we provide a proof that confirms a conjecture of Frankl and

Watanabe from 1994, demonstrating that m(11) = 5.3.

1. Introduction

Let V be a set with n elements and let F be a family of subsets of V . For a subset T of V , the

trace of F on T is defined by F|T = {F ∩T : F ∈ F}. For positive integers n, m, a, and b, we write

(n,m) → (a, b)

and we say (n,m) arrows (a, b), if for every family F ⊆ 2V with |F| > m and |V | = n there is an

a-element set T ⊆ V such that
∣

∣F|T

∣

∣ > b.

1.1. Background. Early investigations into this arrowing relation focus on determining the min-

imum number M(n) such that for all m > M(n), (n,m) → (a, b) holds for fixed integers a and b.

Answering a conjecture by Erdős [5], Sauer [10], Shelah and Perles [11], and Vapnik and Červonenkis

[12,13] independently proved the now-called Sauer-Shelah lemma, which states that (n,m) → (s, 2s)

holds whenever m >
∑s−1

i=0

(n
i

)

. Bondy and Lovász conjectured and Frankl [2] demonstrated that

(n,m) → (3, 7) holds when m > ⌊n
2

4 ⌋+n+1. The most recent result in this direction was obtained

by Frankl and Wang [4], who established an optimal bound on m for which (n,m) → (4, 13) holds.

Further information can be found in the book by Gerbner and Patkós [6].

Another intriguing problem that has captured considerable attention in relation to the arrowing

relation is the following one posed by Füredi and Pach [5].

Problem 1.1 (Füredi and Pach [5]). For a fixed non-negative integer s, find the largest m(s) such

that (n,m) → (n− 1,m− s) holds for all m 6 (m(s)− o(1))n.

An exact version of this problem can be found in the book by Frankl and Tokushige [3].

Problem 1.2 (Frankl and Tokushige [3], Problem 3.8). For any non-negative integers n and s,

determine or estimate the maximum value m = m(n, s) such that (n,m) → (n− 1,m− s).

It can be verified that m(s) is well-defined, and in fact it satisfies m(s) = limn→+∞
m(n,s)

n (see

e.g. [16]). Hence, in order to determine m(s), it is sufficient to determine m(n, s) for an infinite

sequence of integers n.
1
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The investigation of Problem 1.1 initially focused on determining m(s) for small values of s.

Bondy [1] established that m(0) = 1, while Bollobás [8] determined m(1) = 3
2 . Further progress

was made by Frankl [2], who found that m(2) = 2 and m(3) = 7
3 . Watanabe [14] extended these

results by determining m(4) = 17
6 , m(5) = 13

4 , and m(6) = 7
2 . Continuing the exploration, Frankl

and Watanabe [16] proved m(9) = 65
14 , while Watanabe [15] subsequently determined m(10) = 5

and m(13) = 29
5 . A very recent result of Piga and Schülke [9] implies that m(12) = 28

5 .

Based on the developments outlined above, the values of m(s) are known for all s 6 16, except

for s = 11. In 1994, Frankl and Watanabe [16] proposed the following conjecture (expressed in a

different but equivalent notation).

Conjecture 1.3 (Frankl and Watanabe [16], Conjecture 3). m(11) = 5.3.

After the initial investigations, subsequent explorations of this problem shift towards determining

m(n, s) for values of s given by s = 2d−1 − c with c > 0. The results of these explorations can be

summarized in the following theorem.

Theorem 1.4. Let d, n ∈ N. Then the following hold:

(i) For d > 2, d | n and 2 | n, m(n, 2d−1 − 0) = 2d−1
d n+ n

2 .

(ii) For d > 2 and d | n, m(n, 2d−1 − 1) = 2d−1
d n.

(iii) For d > 3 and d | n, m(n, 2d−1 − 2) = 2d−2
d n.

(iv) For d > 4 and d | n, m(n, 2d−1 − 3) = 2d−3
d n.

(v) For d > 5 and d | n, m(n, 2d−1 − 4) = 2d−4
d n.

To provide proper attribution, it should be noted that Frankl [2] proved (ii), while Frankl and

Watanabe [16] proved (i) and (iii). Recently, Piga and Schülke [9] demonstrated (iv) and (v).

Additionally, Piga and Schülke established a more general result, stated as follows.

Theorem 1.5 (Piga and Schülke [9]). Let d, c, n ∈ N with c 6 d
4 . If d | n, then

m(n, 2d−1 − c) =
2d − c

d
n, which implies that m(2d−1 − c) =

2d − c

d
.

Piga and Schülke [9] raised an intriguing problem regarding the optimal upper bound for c in

Theorem 1.5.

Problem 1.6 (Piga and Schülke [9]). For fixed d, find the maximum integer c0(d) such that for

every 1 6 c 6 c0(d), it holds that

m(2d−1 − c) =
2d − c

d
.

In fact, they also provided a construction (see Construction 2.4) which shows m(2d−1 − d) 6
2d−d− 1

2
d . Consequently, it implies that the maximum c0(d) in Problem 1.6 satisfies c0(d) 6 d− 1.

1.2. Our results. In this paper, we address the aforementioned problems by introducing some

novel concepts and utilizing advanced techniques. We begin by presenting our first result, which

confirms Conjecture 1.3 posed by Frankl and Watanabe [16].

Theorem 1.7. For n ∈ N with 10 | n,

m(n, 11) = m(n, 25−1 − 5) =
25 − 5− 1

2

5
n = 5.3n.

Therefore m(11) = 5.3.
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Our second result determines the exact values of m(2d−1 − c) for all 1 6 c 6 d when d > 50.

Moreover, it extends the statement of Theorem 1.5 to the optimal range of c.

Theorem 1.8. Let d, n ∈ N with d > 50. Then the following hold:

• For 2d | n, we have

m(n, 2d−1 − d) =
2d − d− 1

2

d
n, which implies that m(2d−1 − d) =

2d − d− 1
2

d
.

• For all 1 6 c 6 d− 1 and d | n, we have

m(n, 2d−1 − c) =
2d − c

d
n, which implies that m(2d−1 − c) =

2d − c

d
.

We point out that in the first case that c = d, essentially we can characterize all extremal

families (see the statement of Theorem 3.1 and the explanations before Subsection 5.1). As a

corollary, Theorem 1.8 provides a precise answer to Problem 1.6 for d > 50.

Corollary 1.9. For d > 50, it holds that c0(d) = d− 1.

Structure of the paper. This paper is organized as follows. Section 2 provides the necessary

preliminaries, including the introduction of notations, concepts, constructions, and several useful

lemmas. In Section 3, we provide a detailed proof of Theorem 1.7. Section 4 presents a reduction

that demonstrates how to derive Theorem 1.8 from Theorem 4.9. Section 5 is dedicated to the

proof of Theorem 4.9. Lastly, in Section 6, we discuss some open problems.

Acknowledgement. J. M. was supported in part by National Key Research and Development Pro-

gram of China 2023YFA1010201 and National Natural Science Foundation of China grant 12125106.

2. Preliminaries

2.1. Notation and hereditary family. In this paper, we adopt the standard notation. We define

[n] as the set {1, 2, . . . , n}, and [n]0 as the set {0, 1, 2, . . . , n}. Additionally, we denote N as the

set of non-negative integers and N+ as the set of positive integers. Unless otherwise specified, all

logarithms are base 2.

The problems we discuss here can be formulated using both the languages of set theory and

hypergraph theory. Therefore, we will treat the family F ⊆ 2V and the hypergraph (V,F) as

interchangeable without distinction. Let V be a finite set. For a family F ⊆ 2V and x ∈ V , we

define the link F(x) of x to be F(x) = {F \{x} : x ∈ F ∈ F}. We define the degree of x in F to be

dF (x) = |F(x)| and the minimum degree of F to be δ(F) = min{dF (x) : x ∈ V }. The neighborhood

of x means N(x) =
⋃

x∈F∈F F . Note that if x is non-isolated (i.e., dF (x) > 1), then x ∈ N(x). For

F ′ ⊆ F , F \ F ′ denotes the subfamily obtained from F by deleting every set F ∈ F ′.

A family F is hereditary if for every F ′ ⊆ F ∈ F , it holds that F ′ ∈ F . A classic result of Frankl

[2] implies that for fixed a and m, the minimum of max
T∈(Va)

∣

∣F|T

∣

∣ over all families F ⊆ 2V of size

m is achieved by hereditary families. Thus, the problems on arrow relation considered in this paper

can be reduced to hereditary families. We can summarize this as the following lemma.

Lemma 2.1 ([2]). The following statements are equivalent for positive integers n, m, a and b:

• (n,m) → (a, b).

• For every n-set V and every hereditary family F ⊆ 2V with |F| = m, there exists T ⊆ V

with |T | = a such that |F|T | > b.
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A simple yet important observation is that for any hereditary family F ⊆ 2V and x ∈ V , we

have |F|V \{x}| = |F| − dF (x). By combining this observation with Lemma 2.1, we obtain a useful

proposition that will be frequently utilized.

Proposition 2.2. For positive integers n, m and s, the following statements are all equivalent:

• (n,m) → (n− 1,m− s).

• m 6 m(n, s).

• For any hereditary family F ⊆ 2[n] with |F| 6 m, there exists x0 ∈ [n] such that dF (x0) 6 s.

• For any hereditary family F ⊆ 2[n] with δ(F) > s+ 1, we have |F| > m+ 1.

2.2. Constructions. In this subsection, we provide constructions for two types of set families that

serve as upper bounds for Theorems 1.7 and 1.8. The first construction follows a natural approach.

Construction 2.3. Let d > 5, 1 6 c 6 d− 1 and n = dk, where k is a positive integer. Let V be a

set of size n, and let U1, ..., Uk form a partition of V into sets of size d. For every i ∈ [k], arbitrarily

pick a family Gi ⊆ 2Ui with |Gi| = c− 1. Define

F(n, d, c) :=
{

F ⊆ V : F ∈ 2Ui \ Gi for some i ∈ [k]
}

.

For this construction, it is easy to check that |F(n, d, c)| = n
d (2

d − c) + 1 and δ(F(n, d, c)) >

2d−1 − c+ 1. By Proposition 2.2, this implies that

m(n, 2d−1 − c) 6
2d − c

d
n for any d > 5, d | n and 1 6 c 6 d− 1.

In particular, we see that the upper bound of the second part of Theorem 1.8 holds.

The second construction was given in [9], which deals with the case when c = d.

Construction 2.4 ([9]). Let d > 5 and n = 2dk, where k is a positive integer. We define the

family F0(n, d) as follows. For i ∈ [2k], we set Ui = {1 + d(i − 1), 2 + d(i − 1), . . . , di}. Then

U1, ..., U2k provide a partition of [n] into sets of size d. Define F0(n, d) := G ∪ H ∪ I, where

G = {S ⊆ V : there exists some i ∈ [2k] such that S ⊆ Ui and |S| 6 d− 2}

H = {Ui \ {di} : for i ∈ [2k]}

I = {{di, d(i + 1)} : for i ∈ {1, 3, 5, ..., 2k − 1}} .

One can check that the number of edges of the family F0(n, d) is given by

|F0(n, d)| = |G|+ |H|+ |I| =

(

2d − d− 2

d
n+ 1

)

+
n

d
+

n

2d
=

2d − d− 1
2

d
n+ 1.

Moreover, every vertex in V has degree 2d−1 − d+ 1. By Proposition 2.2, this implies

m(n, 2d−1 − d) 6
2d − d− 1

2

d
n for any d > 5 and 2d | n.

Therefore, the upper bounds stated in Theorem 1.7 and the first part of Theorem 1.8 are satisfied.

2.3. Colexicographic order. For two finite sets A,B ⊆ N+, we say that A ≺col B or A precedes

B in the colexicographic order if max(A △ B) ∈ B. For m ∈ N, we define R(m) to be the family

containing the first m finite subsets of N+ according to the colexicographic order. In particular,

R(0) = ∅. The following theorem due to Katona [7] is a generalisation of the well-known Kruskal-

Katona theorem.
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Theorem 2.5 ([7]). Let f : N → R be a monotone non-increasing function and let F be a hereditary

family with |F| = m. Then
∑

F∈F

f(|F |) >
∑

R∈R(m)

f(|R|).

When applying Theorem 2.5 in our proofs, we often use F as the link of a vertex, and the

function f is commonly chosen as f(k) = 1
k+1 . For convenience, we define

W (m) :=
∑

R∈R(m)

1

|R|+ 1
.

Note that when m = 2d−1, we have the following expression

W (2d−1) =
∑

R⊆[d−1]

1

|R|+ 1
=

d−1
∑

i=0

(d−1
i

)

i+ 1
=

d−1
∑

i=0

( d
i+1

)

d
=

2d − 1

d
.

The following lemma can be found in [9]. For the sake of completeness, we give a proof.

Lemma 2.6 ([9]). Let d and c be positive integers with c 6 2d−2. Then we have

W (2d−1 − c) >
2d − 1

d
−

c

d− log c
.

Proof. Let c be any positive integer in [2d−2]. Then all sets in R(2d−1 − c) are contained in [d− 1].

For any A ⊆ [d − 1], write Ac as the complement [d − 1]\A. Sine A △ B = Ac △ Bc, we have

A ≺col B if and only if Bc ≺col A
c. Therefore, we have

2[d−1] \ R(2d−1 − c) = {[d− 1] \H : H ∈ R(c)}.(1)

Thus we can conclude that

W (2d−1 − c) =
2d − 1

d
−

∑

R∈R(c)

1

d− |R|
>

2d − 1

d
−

c

d− log c
,

where we use the property that any R ∈ R(c) satisfies |R| 6 log c. This finishes the proof. �

The original statement of the lemma below is also from [9]. However, as we require a slightly

modified version for upcoming proofs, we provide the proof along with necessary adjustments here.

Lemma 2.7 ([9]). Let d and c be positive integers with d > 4 and c 6 2d. Let V be an arbitrary

finite set with |V | > d. For any hereditary family H ⊆ 2V with |H| > 2d − c, we have
∑

H∈H

1

|H|+ 1
> W (2d − c).

Moreover, if there are e non-isolated vertices in H with e > d, then
∑

H∈H

1

|H|+ 1
> W (2d − c) +

1

6
(e− d).
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Proof. Let d, n, c and H be given as in the statement. By applying Theorem 2.5 with f(k) = 1
k+1

for k ∈ N, it is easy to get the first part of this lemma
∑

H∈H

1

|H|+ 1
>

∑

R∈R(2d−c)

1

|R|+ 1
= W (2d − c).

In order to prove the second part we need some preparation. For i ∈ N, let hi be the number of

i-element sets in H and ri be the number of i-element sets in R(2d − c). Note that we have r1 6 d

and ri = 0 for i > d. For any s ∈ [d]0, we set g(k) = 1 for k 6 s and g(k) = 0 for k > s. Then by

applying Theorem 2.5 with f = g, it yields that
∑

i∈[s]0

hi >
∑

i∈[s]0

ri.

Let H1, ...,H|H| be an enumeration of H such that |Hj | 6 |Hj+1| for any j ∈ [|H| − 1]. For any

i ∈ [d − 1], let φ(i) denote the number of edges of size at most i in the family R(2d − c), that is

φ(i) =
∑

j∈[i]0
rj . Let H0 = {H1} = {∅}. For any i ∈ [d − 1], we set Hi = {Hφ(i−1)+1, ...,Hφ(i)}.

Note that |Hi| = ri for i ∈ [d− 1]0. The inequality
∑

i∈[s]0
hi >

∑

i∈[s]0
ri implies that for H ∈ Hi,

where i ∈ [d − 1]0, we have |H| 6 i. Since r1 6 d, we know that Hi /∈ H1 for i > d + 1. On

the other hand, by assumption, there are e non-isolated vertices in H with e > d, so we have

|Hd+2| = ... = |He+1| = 1 but Hd+2, ...,He+1 are not in H1. Thus we have

∑

H∈H

1

|H|+ 1
>

∑

i∈[d−1]0

∑

H∈Hi

1

|H|+ 1
>

(

1

2
−

1

3

)

(e− d) +
∑

i∈[d−1]0

ri
i+ 1

= W (2d − c) +
1

6
(e− d),

finishing the proof. �

3. Proof of Theorem 1.7

In this section, we present the proof of Theorem 1.7, i.e., to show m(n, 11) = 5.3n for 10 | n.

By Construction 2.4, we have already seen that m(n, 11) 6 5.3n holds for 10 | n. It remains to

prove that m(n, 11) > 5.3n for 10 | n. Using Proposition 2.2, it suffices to show that for 10 | n, a

hereditary family F ⊆ 2[n] with δ(F) > 12 must satisfy |F| > 5.3n+1. We will prove the following

stronger statement, which holds for general n ∈ N+ and characterizes the unique extremal family.

Theorem 3.1. For any n ∈ N+, let V be an n-element set, and F ⊆ 2V be a hereditary family

with δ(F) > 12. If |F| 6 5.3n + 1, then we have 10 | n, |F| = 5.3n + 1 and F ∼= F0(n, 5).

Recall that for d > 5, the family F0(n, d) are given in Construction 2.4.

3.1. Preparetion. In this subsection, we establish the necessary notations and introduce a key

lemma for the proof of Theorem 3.1. Throughout the remaining of this section, let V be a set with

|V | = n, and F ⊆ 2V be a hereditary family with δ(F) > 12. We may further assume that F is

minimal in the sense that for any maximal set F ∈ F , δ(F \ {F}) 6 11.1

Now, we will prove the first lemma, which asserts that under the aforementioned condition, every

set F has size at most 4.

Lemma 3.2. Let V be a set with |V | = n, and F ⊆ 2V be a minimal hereditary family with

δ(F) > 12. Then every set F ∈ F satisfies |F | 6 4.

1A set F ∈ F is called maximal if there is no other set F ′ ∈ F with F ( F ′. It is evident that for a hereditary family
F and a maximal set F ∈ F , the subfamily F \ {F} remains hereditary.
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Proof. Suppose not. Then there exists a maximal set F0 ∈ F with |F0| > 5. Since F is hereditary,

for any x ∈ F0, we have dF (x) > 16 and dF\{F0}(x) > 15. Thus we can derive that F \ {F0} is still

a hereditary family with minimum degree at least 12, a contradiction. �

Next, we proceed to define a weight function u : V → R+ such that
∑

x∈V u(x) = |F|− 1. To do

so, we first present the following algorithm to define a positive weight ω(x, F ) for all pairs (x, F )

satisfying x ∈ F ∈ F . Given A ⊆ V , we define the degree of A in F as follows:

dF (A) = |{F ∈ F : A ⊆ F}|.

In this notation, dF ({x}) = dF (x). Below is the algorithm for defining ω(x, F ).

Algorithm 3.3. Fix F ∈ F . If |F | 6= 3, we set ω(x, F ) = 1
|F | for every x ∈ F . If |F | = 3 and

F = {x, y, z}, we perform the following process:

(1). If there exists G ∈ F with |G| = 4 such that F ⊆ G, then we set ω(x, F ) = ω(y, F ) =

ω(z, F ) = 1
3 ; otherwise, go to the step (2).

(2). Without loss of generality, we assume that dF ({x, y}) 6 dF ({y, z}) 6 dF ({x, z}). If

dF ({x, y}) 6 dF ({y, z}) 6 4 < dF ({x, z}), then we set ω(x, F ) = ω(z, F ) = 7
20 and

ω(y, F ) = 6
20 . If dF ({x, y}) 6 4 < dF ({y, z}) 6 dF ({x, z}), then we set ω(x, F ) = ω(y, F ) =

7
20 and ω(z, F ) = 6

20 . Otherwise, we set ω(x, F ) = ω(y, F ) = ω(z, F ) = 1
3 .

It is evident that our definition of ω(x, F ) is well-defined, and for each F ∈ F , we have
∑

x∈F ω(x, F ) = 1. Now we define the weight of x as follows.

Definition 3.4. For each x ∈ V , let u(x) =
∑

x∈F∈F ω(x, F ).

It is easy to derive the following desired equation

|F| − 1 = |F \ {∅}| =
∑

∅6=F∈F

1 =
∑

∅6=F∈F

∑

x∈F

ω(x, F ) =
∑

x∈V

∑

x∈F∈F

ω(x, F ) =
∑

x∈V

u(x).(2)

With this in mind, the problem now can be reduced to estimate the weight u(x). To do so,

we will analyze the structure of the links of vertices. For convenience, we introduce the following

notation. For any x ∈ V , let fi(x) be the number of i-element sets in F(x). In particular, we have

f0(x) = 1. Note that for i > 4, by Lemma 3.2, we have fi(x) = 0 for any x ∈ V . Therefore, for any

x ∈ V we have dF (x) = |F(x)| = f0(x) + f1(x) + f2(x) + f3(x).

Next, we introduce a crucial concept called mini-weight vertices, which will play a significant

role in the proofs. An important property that will be demonstrated later (see Lemma 3.9) is that

a vertex is mini-weight if and only if its weight u(x) is less than 5.3.

Definition 3.5. We say that a vertex x ∈ V is mini-weight, if f1(x) = 4, f2(x) = 5, and f3(x) = 2.

Before delving deeper into the properties on mini-weight vertices, we first present the following

straightforward lemma. Let Q = {Q ∈ F : |Q| = 4} denote the set of all 4-element sets in F . For

x ∈ V , let Q(x) = {Q ∈ Q : x ∈ Q}. Note that |Q(x)| = f3(x).

Lemma 3.6. Let x ∈ V be a mini-weight vertex. Then we have

(1) |Q(x)| = 2.

(2) If Q(x) = {Q1, Q2}, then |Q1 ∩ Q2| = 3 and F(x) = {F \ {x} : x ∈ F ⊆ Qi for some i ∈

{1, 2}}.

(3) u(x) = 5.3− 2
15 .



EXACT RESULTS ON TRACES OF SETS 8

Proof. (1) It is easy to see that we have |Q(x)| = f3(x) = 2.

(2) Because Q1 ∪ Q2 ⊆ N(x), we have 5 6 |Q1 ∪ Q2| 6 |N(x)| = f1(x) + 1 = 5. Thus we have

|Q1∪Q2| = 5 and |Q1∩Q2| = 3. It is obvious that {F\{x} : x ∈ F ⊆ Qi for some i ∈ {1, 2}} ⊆ F(x)

because F(x) is a hereditary family. Since |F(x)| = f0(x)+f1(x)+f2(x)+f3(x) = 12 = |{F \{x} :

x ∈ F ⊆ Qi for some i ∈ {1, 2}}|, we derive that F(x) = {F \{x} : x ∈ F ⊆ Qi for some i ∈ {1, 2}}.

(3) Since F(x) = {F \{x} : x ∈ F ⊆ Qi for some i ∈ {1, 2}}, then we know that for any F ∈ F(x)

with |F | = 2, we have ω(x, F ∪{x}) = 1
3 . Thus we have u(x) = 1+4× 1

2+5× 1
3+2× 1

4 = 5.3− 2
15 . �

Corollary 3.7. Let Q ∈ Q. Then Q contains at most three mini-weight vertices.

Proof. If not, all vertices in Q is mini-weight. Pick x ∈ Q, by Lemma 3.6, we can assume Q(x) =

{Q,Q′} and |Q∩Q′| = 3. Assume y ∈ Q\Q′ and Q(y) = {Q,Q′′}, we also have |Q∩Q′′| = 3. Thus

we know that Q′ 6= Q′′ and Q ∩Q′ ∩Q′′ 6= ∅. Pick z ∈ Q ∩Q′ ∩Q′′ ⊆ Q, we know that f3(z) > 3,

so z can not be mini-weight. This is contradicted with assumption. �

In what follows, we aim to define a perturbation ε : V → R such that
∑

x∈V ε(x) = 0, and show

that u(x) > 5.3 + ε(x) holds for each x ∈ V . Note that this would imply that |F| > 5.3n + 1. For

x ∈ Q ∈ Q, let c(Q) = |{y ∈ Q : y is mini-weight}|. Then we define ε(x,Q) as follows:

ε(x,Q) =

{

− 1
15 , if x is mini-weight,
c(Q)

15(4−c(Q)) , if x is not mini-weight.

Definition 3.8. For any x ∈ V , we define ε(x) =
∑

Q∈Q(x) ε(x,Q).

Since c(Q) 6 3, our definition is well-defined. In particular, ε(x) = 0 if f3(x) = 0. Moreover, the

following fact shows that the sum of ε(x) over all x ∈ V indeed is zero:

∑

x∈V

ε(x) =
∑

Q∈Q

∑

x∈Q

ε(x,Q) =
∑

Q∈Q

(

−
c(Q)

15
+

c(Q)

15(4 − c(Q))
(4− c(Q))

)

= 0.(3)

Using (2) and (3), it is evident that if one can prove u(x) > 5.3+ε(x) for any x ∈ V , then it follows

that |F| > 5.3n + 1. However, determining the structure of the (unique) extremal family requires

additional efforts and considerations. All the crucial properties required for proving Theorem 3.1

will be demonstrated in the following key lemma.

Lemma 3.9 (key lemma). Let V be an n-element set and F ⊆ 2V be a minimal hereditary family

with δ(F) > 12. Then we have

(1) For any x ∈ V , we have u(x) > 5.3 + ε(x).

(2) u(x) < 5.3 if and only if x is mini-weight.

(3) If u(x) > 5.3, then u(x) > 5.3 + ε(x).

(4) If u(x) = 5.3, then either f1(x) = 5, f2(x) = 6, f3(x) = 0 or f1(x) = 4, f2(x) = 6, f3(x) = 1.

The proof of this lemma will be provided in the subsequent subsection.

3.2. Proof of Lemma 3.9. This subsection is devoted to the proof of Lemma 3.9. To accomplish

this, we need to carefully estimate the weight u(x) for each vertex x ∈ V based on the structure of

its link F(x). In the following two lemmas, we present two special cases that will play significant

roles in classifying the extremal families.

Lemma 3.10. Let V be an n-element set and F ⊆ 2V be a minimal hereditary family with δ(F) >

12. Let x ∈ V . If f3(x) = 0, then u(x) > 5.3. Moreover, the equality holds if and only if f1(x) = 5,

f2(x) = 6 and ω(x, F ∪ {x}) = 6
20 for any F ∈ F(x) with |F | = 2.
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Proof. Assume f3(x) = 0. We first claim that f1(x) > 5. Otherwise f1(x) 6 4, which leads to

f2(x) 6 6. Then dF (x) = f0(x) + f1(x) + f2(x) + f3(x) 6 11 which contradicts with δ(F) > 12.

Thus using Algorithm 3.3, we can derive that

u(x) > 1 +
f1(x)

2
+

6f2(x)

20
> 1 +

f1(x)

2
+

6(11 − f1(x))

20
> 1 +

5

2
+

6× 6

20
= 5.3.

It is clear that u(x) = 5.3 holds if and only if all equations hold in the above inequality, which

would imply the “moreover” part of the lemma. �

Lemma 3.11. Let V be an n-element set and F ⊆ 2V be a minimal hereditary family with δ(F) >

12. Let x ∈ V . Assume that f3(x) = 1 and f1(x) = 4. Then the following hold:

(1) Let Q = {x, y1, y2, y3} ∈ Q(x) and N(x) = {x, y1, y2, y3, z}. Then F(x) = 2{y1,y2,y3} ∪

{{z}, {yi, z} : i ∈ [3]}. In particular, N(x) ⊆ N(z) and N(x) ⊆ N(yi) for i ∈ [3].

(2) c(Q) = 0.

(3) u(x) = 5.3.

Proof. (1) Since f3(x) = 1, we have F(x) ⊆ 2{y1,y2,y3,z} \ {F ∪ {z} : F ⊆ {y1, y2, y3}, |F | > 2} =

2{y1,y2,y3}∪{{z}, {yi, z} : i ∈ [3]}. On the other hand, we have |F(x)| > 12 = |2{y1,y2,y3,z}\{F ∪{z} :

F ⊆ {y1, y2, y3}, |F | > 2}|. So we have F(x) = 2{y1,y2,y3} ∪ {{z}, {yi, z} : i ∈ [3]}.

(2) For any i ∈ [3], because f3(x) = 1, there is no 4-element set in F containing {x, yi, z}. Then

we know that for any i ∈ [3], yi is not mini-weight. So we have c(Q) = 0.

(3) For any i ∈ [3], since dF (x, yi) = 5 and dF (x, z) = 4, we have ω(x, {x, yi, z}) =
7
20 . Thus we

have u(x) = 1 + 4× 1
2 + 3× 7

20 + 3× 1
3 +

1
4 = 5.3. �

Now we are ready to give the proof of Lemma 3.9.

Proof of Lemma 3.9. Let V be an n-element set and F ⊆ 2V be a minimal hereditary family

with δ(F) > 12. Pick arbitrary x ∈ V . We will prove all four items of this lemma simultaneously

by analyzing all possible structures of the link F(x), i.e., the values of fi(x) for 0 6 i 6 3.

First, we assume that x is mini-weight. By Lemma 3.6 (1) and (3), we know that |Q(x)| = 2

and u(x) = 5.3 − 2
15 . Moreover, for any Q ∈ Q(x) we have ε(x,Q) = − 1

15 . Combining these facts,

we can derive easily that u(x) = 5.3 − 2
15 = 5.3 +

∑

Q∈Q(x) ε(x,Q) = 5.3 + ε(x). This confirms all

four items of this lemma in the case of mini-weight vertices.

Assume that f3(x) > 3. In this case, we will show that u(x) > 5.3 + ε(x) where ε(x) > 0.2

This is sufficient to establish all four items of this lemma in this particular case. Since f3(x) > 3,

then we have f1(x) > 4 and f2(x) > 6. Moreover, |
⋃

F∈F(x),|F |=3

(F
2

)

| > 6. If f1(x) > 5, then we

have u(x) > 1 + 5 × 1
2 + 6 × 1

3 + f3(x)
4 = 5.5 + f3(x)

4 > 5.3 + f3(x)
5 > 5.3 + ε(x). If f1(x) = 4, then

3 6 f3(x) 6 4. For any Q ∈ Q(x), we can take two different sets P1, P2 ∈ Q(x) \ {Q} such that

|Q ∩ P1 ∩ P2| = 1. Assume {z} = Q ∩ P1 ∩ P2. We have f3(z) > 3, so z is not mini-weight. This

shows that c(Q) 6 2 for any Q ∈ Q(x), thus implying that ε(x,Q) 6 1
15 and 0 6 ε(x) 6

f3(x)
15 .

Therefore, u(x) > 1 + 4× 1
2 + 6× 1

3 + f3(x)
4 = 5.3 + (f3(x)4 − 3

10) > 5.3 + f3(x)
15 > 5.3 + ε(x).

Assume that f3(x) = 0. Then ε(x) = 0. By Lemma 3.10, we see that u(x) > 5.3 = 5.3 + ε(x)

and u(x) = 5.3 only occurs when f1(x) = 5 and f2(x) = 6. Obviously in this case, if u(x) > 5.3,

then u(x) > 5.3 + ε(x). So all four items of this lemma hold in this case.

Assume that f3(x) = 1. Then f1(x) > 4. We now show that if f1(x) > 5, then u(x) > 5.3 + ε(x)

where ε(x) > 0. To see this, we first consider when f1(x) > 6, which would imply that u(x) >

2Here it is clear that x is not mini-weight and thus by definition, ε(x) > 0.
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1+6× 1
2+

6
20+3× 1

3+
1
4 = 5.55 > 5.3+ 1

5 > 5.3+ε(x). Now we may assume that f1(x) = 5 and thus

f2(x) > 5. If f2(x) > 6, then we have u(x) > 1+5× 1
2+3× 6

20+3× 1
3+

1
4 = 5.65 > 5.3+ 1

5 > 5.3+ε(x).

So we may assume that f1(x) = f2(x) = 5. Let Q ∈ Q(x) and R = N(x)\Q, then |R| = 2. We claim

that there exist y ∈ Q and z ∈ R, such that {y, z} ∈ F(x). Otherwise, f2(x) 6
(3
2

)

+
(2
2

)

= 4 < 5,

which is a contradiction. Thus, we can get {x, y, z} ∈ F with y ∈ Q and z ∈ R. Since f3(x) = 1,

there is no 4-element set in F containing {x, y, z}. By Lemma 3.6 (2), we know that y ∈ Q can not be

mini-weight, so c(Q) 6 2 and thus ε(x) 6 1
15 . Since dF ({x, y}) > 5 and dF ({x, z}) 6 3, we also have

ω(x, {x, y, z}) = 7
20 . Finally we have u(x) > 1+5× 1

2+
6
20+

7
20+3× 1

3+
1
4 = 5.4 > 5.3+ 1

15 > 5.3+ε(x).

Now consider that f3(x) = 1 and f1(x) = 4. Note that in this case, we can derive f2(x) = 6. By

Lemma 3.11 (2) and (3), we have ε(x) = 0 and u(x) = 5.3 = 5.3 + ε(x). So all four items of this

lemma hold.

From now on, we may assume that x is not a mini-weight vertex with f3(x) = 2. Clearly we

have f1(x) > 4. We make the following claim.

Claim 3.12. Assume that f3(x) = 2 and Q(x) = {Q1, Q2}. If x is not mini-weight and |Q1∩Q2| =

3, then c(Qi) 6 2 for i ∈ [2].

Proof of Claim 3.12. Assume that Q1 = {x, y1, y2, y3} and Q2 = {x, y2, y3, y4}. If there exists

i0 ∈ [2] such that c(Qi0) = 3 (say i0 = 1), then yj is mini-weight for j ∈ [3]. As y1 is mini-weight,

there exists Q′ ∈ Q(y1) such that |Q′∩Q1| = 3. Then Q′∩{y2, y3} 6= ∅, so we may assume y2 ∈ Q′.

Since Q′ 6= Q1, Q2, we have f3(y2) > 3. But y2 is also mini-weight, so f3(y2) = 2, a contradiction.

This shows that c(Qi) 6 2 for i ∈ [2]. �

Suppose that f3(x) = 2 and f1(x) > 5. In this case, we will show that u(x) > 5.3 + ε(x) where

ε(x) > 0. Assume that Q(x) = {Q1, Q2}. If |Q1 ∩Q2| = 3, by Claim 3.12, we see that c(Qi) 6 2

for i ∈ [2], which implies that ε(x) 6 2
15 . Then we have u(x) > 1 + 5× 1

2 + 5× 1
3 +

2
4 = 5.3 + 11

30 >

5.3 + 2
15 > 5.3 + ε(x). Now let |Q1 ∩ Q2| 6 2. Then clearly |

(Q1\{x}
2

)

∪
(Q2\{x}

2

)

| > 6, and in this

case, we can still derive that u(x) > 1 + 5× 1
2 + 6× 1

3 + 2
4 = 6 > 5.3 + 2

5 > 5.3 + ε(x).

It remains to consider the final case when f3(x) = 2 and f1(x) = 4. In this case, again we will

show that u(x) > 5.3+ε(x). Since x is not mini-weight, we can derive that f2(x) = 6. Assume that

Q(x) = {{x, y1, y2, y3}, {x, y2, y3, y4}}. This implies that {x, y1, y4} ∈ F . By Claim 3.12, we can

infer that ε(x) 6 2
15 . Hence, u(x) > 1+4× 1

2 +
6
20 +5× 1

3 +2× 1
4 = 5.3+ 1

6 > 5.3+ 2
15 > 5.3+ ε(x).

The discussion above encompasses all possible values of fi(x) for 0 6 i 6 3, where in each case,

we have established that all four items of Lemma 3.9 hold. �

3.3. Completing the proof of Theorem 3.1. In this subsection, we prove Theorem 3.1. Let V

be an n-element set and F ⊆ 2V be a minimal hereditary family with δ(F) > 12 and |F| 6 5.3n+1.

We want to show that 10 | n, |F| = 5.3n + 1 and F ∼= F0(n, 5).

By Lemma 3.9 (1), for any x ∈ V we have u(x) > 5.3 + ε(x). Using (2) and (3), we can get

|F| − 1 =
∑

x∈V

u(x) >
∑

x∈V

(5.3 + ε(x)) = 5.3n +
∑

x∈V

ε(x) = 5.3n.

Thus we derive that |F| = 5.3n + 1. Since |F| is an integer, we must have 10 | n.

In what follows, we proceed to show F ∼= F0(n, 5). We claim that u(x) = 5.3 for any x ∈ V . If

not, since
∑

x∈V u(x) = 5.3n, there exists some x′ ∈ V with u(x′) > 5.3. Then by Lemma 3.9 (3),

u(x′) > 5.3 + ε(x′), which leads to
∑

x∈V u(x) > 5.3n, a contradiction.



EXACT RESULTS ON TRACES OF SETS 11

Using Lemma 3.9 (4), we see f3(x) 6 1 holds for any x ∈ V . Thus every two distinct sets in Q

are disjoint. Let S := V \
⋃

Q∈QQ. Then we can get the following partition of V :

V = S ∪
⋃

Q∈Q

Q.

Let Q ∈ Q. Since u(x) = 5.3 and f3(x) = 1 for any x ∈ Q, by Lemma 3.11 (1), there exists a

set NQ ⊆ V with |NQ| = 5 such that N(x) = NQ for any x ∈ Q. Note that Q ⊆ NQ. We set sQ
to be the vertex in NQ \ Q. Then by Lemma 3.11 (1), we have F ∪ {sQ} ∈ F for any F ∈

(Q
2

)

.

Now we claim that sQ ∈ S. If not, then there exists Q′ ∈ Q(sQ) with Q ∩Q′ = ∅, from which we

can derive that f1(sQ) > 7. This is a contradiction to Lemma 3.9 (4). So we have sQ ∈ S for any

Q ∈ Q. Then we can define a map ϕ : Q → S by letting ϕ(Q) = sQ.

Next we will prove that ϕ is bijective. First, we show ϕ is injective. Suppose for a contradiction

that there exist two different sets Q,Q′ ∈ Q with sQ = sQ′ . Then N(sQ) ⊇ Q∪Q′∪{sQ}, implying

that f1(sQ) > 8. Again, this contradicts Lemma 3.9 (4).

Now we show that ϕ is surjective. Let x ∈ S. We first claim that there exists some y0 ∈ N(x)

with f3(y0) = 1. If not, we have f3(y) = 0 for any y ∈ N(x). Take any 2-set {y, z} ∈ F(x). By

Lemma 3.10, we know that ω(x, {x, y, z}) = 6
20 . Thus we get ω(y, {x, y, z}) = 7

20 . By Lemma 3.10,

we have u(y) > 5.3, which contradicts that u(y) = 5.3. Thus, there exists some y0 ∈ N(x) with

f3(y0) = 1. We take Q0 ∈ Q(y0). Then x ∈ N(y0) = NQ0 , so we have x = sQ0 . This tells us that

ϕ is surjective. We have proved that ϕ is bijective.

Take any sQ ∈ S. Then we have N(sQ) ⊇ Q ∪ {sQ} and |N(sQ)| = 6. Since ϕ is a bijective

mapping, the unique vertex in N(sQ) \ (Q ∪ {sQ}) must also be in S. Let us denote this vertex

as sσ(Q). As a result, sQ and sσ(Q) are paired up. From the above analysis, we can conclude that

σ is a mapping from Q to itself, satisfying the properties that σ(Q) 6= Q and σ2(Q) = Q for any

Q ∈ Q. We observe that {sQ, sσ(Q)} ∈ F . Let

F0 = Q∪ {{sQ, sσ(Q)} : Q ∈ Q} ∪
⋃

Q∈Q

{F ⊆ V : F ⊆ Q ∪ {sQ} and |F | 6 3}.

Note that F0
∼= F0(n, 5). Our previous discussion implies that F ⊇ F0. Since we also have that

|F| = 5.3n+1 = |F0|, it follows that F = F0
∼= F0(n, 5), completing the proof of Theorem 3.1. �

4. Proof of Theorem 1.8: reducing to Theorem 4.9

In this section, we provide a proof of Theorem 1.8 by assuming Theorem 4.9. The upper bounds of

Theorem 1.8 have been established through Constructions 2.3 and 2.4. Now, we focus on proving

the corresponding lower bounds. To facilitate this, we first formalize an equivalent and unified

statement (i.e., Theorem 4.3) that encompasses both cases of Theorem 1.8.

We give the following definitions.

Definition 4.1. For d, c ∈ N with 1 6 c 6 d, let

Bc =

{

2d−c
d for 1 6 c 6 d− 1,

2d−d− 1
2

d for c = d.

Definition 4.2. For a hereditary family F ⊆ 2[n] and x ∈ [n], we define the weight of x in F as

ωF(x) =
∑

x∈F∈F

1

|F |
=

∑

H∈F(x)

1

|H|+ 1
.
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Our proof is based on a standard approach as outlined in Section 2 that involves utilizing the

concept of “weight” for vertices. We often omit the subscript of ωF(x) and just call it the weight

of x or ω(x). Note that we have
∑

x∈[n]

ωF(x) = |F \ {∅}| = |F| − 1.(4)

By utilizing the aforementioned definitions, explanations, and Proposition 2.2, we observe that

Theorem 1.8 can be equivalently stated as follows.

Theorem 4.3. Given n, d, c ∈ N with d > 50 and 1 6 c 6 d. For any hereditary family F ⊆ 2[n]

with δ(F) > 2d−1 − c+ 1, we have
∑

x∈[n]

ωF(x) > Bcn.

It is worth noting that when c = d, we can demonstrate that the only hereditary family F

satisfying |F|−1 =
∑

x∈[n] ωF (x) = Bcn = 2d−d−1/2
d n is the family F0(n, d) defined in Construction

2.4 (for detailed explanations, see the remarks before Subsection 5.1).

From now on, we always assume that F ⊆ 2[n] is a hereditary family with δ(F) > 2d−1 − c + 1

where d > 50 and c ∈ [d]. It suffices to prove the average weight in F is at least Bc.

Definition 4.4. A vertex x ∈ [n] is called good in F if |N(x)| > d+1 and bad in F if |N(x)| = d.

For any vertex x ∈ [n], we have |N(x)| > 1+⌈log(δ(F))⌉ > 1+⌈log(2d−1−c+1)⌉ = d. Therefore

every vertex is either good or bad in F .

The following lemma provides a lower bound on the weight of x ∈ [n] based on its size. Specifi-

cally, it shows that if x is good in F , then its weight ω(x) > Bc.

Lemma 4.5. Let n and d > 50 be two positive integers and let F ⊆ 2[n] be a hereditary family. Let

x ∈ [n] be a vertex with dF (x) > 2d−1 − c+ 1, where c ∈ [d]. Then the following hold:

(1) if |N(x)| = d, then ω(x) > Bc −
1
18 ; and

(2) if |N(x)| > d, then ω(x) > Bc −
1
18 + |N(x)|−d

6 > Bc.

Proof. Since |F(x)| = dF (x) > 2d−1 − c+ 1, by Lemma 2.7, we have

ω(x) =
∑

H∈F(x)

1

|H|+ 1
> W (2d−1 − c+ 1) +

1

6
(|N(x)| − d).

So in both cases, it is sufficient for us to prove that W (2d−1 − c + 1) > Bc −
1
18 for d > 50 and

c ∈ [d]. For convenience, we write Hc = 2[d−1] \ R(2d−1 − c+ 1). Then for any c ∈ [d],

Bc−W (2d−1− c+1) 6
2d − c

d
−W (2d−1− c+1) =

∑

H∈Hc

(

1

|H|+ 1
−

1

d

)

6
∑

H∈Hd

(

1

|H|+ 1
−

1

d

)

.

Using (1), we have Hd = {[d − 1] \H : H ∈ R(d− 1)}. Then it implies that

Bc −W (2d−1 − c+ 1) 6
∑

H∈Hd

(

1

|H|+ 1
−

1

d

)

6
∑

H∈R(d−1)

(

1

d− |H|
−

1

d

)

.

By the calculation in Appendix A, we can derive that whenever d > 50,

Bc −W (2d−1 − c+ 1) 6
∑

H∈R(d−1)

(

1

d− |H|
−

1

d

)

<
1

18
.
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This shows that for d > 50 and c ∈ [d], it holds that W (2d−1 − c+ 1) > Bc −
1
18 . �

Before we proceed further, let us introduce some additional definitions that play a crucial role

in the proof of Theorem 4.3.

Definition 4.6. Let P ⊆ [n] be a subset with |P | = d. We say that P is a pile of F if

• for any y ∈ P , we have P ⊆ N(y), and

• there exists z ∈ P such that P = N(z).

Definition 4.7.

• A pile P is an intersecting pile if it intersects another pile.

• A pile P is an isolated pile if it does not intersect any other piles.3

According to this definition, we can partition the vertex set [n] into three parts (also see (5) in

the proof of Theorem 4.3 below):

• The first part J consists of vertices that are not contained in any pile;

• The second part K consists of vertices that are contained in intersecting piles; and

• The third part consists of all remaining vertices that are contained in isolated piles.

Our approach for Theorem 4.3 proceeds to demonstrate that the average weight in each part is at

least Bc, respectively.

The upcoming lemma establishes a connection between bad vertices and piles. Combining this

lemma with Lemma 4.5, we can conclude that the average weight in the first part J is at least Bc.

Lemma 4.8. For d > 6, every bad vertex x is in exactly one pile, which is N(x). In particular,

this implies that every vertex in J is a good vertex in F .

Proof. Let x be a bad vertex in F . If x is contained in a pile P , then P ⊆ N(x) and d = |P | 6

|N(x)| = d, implying that P = N(x). So it suffices to prove that N(x) is a pile, that is, for all

y ∈ N(x), it holds that N(x) ⊆ N(y). Suppose this is not the case. Then there exists y ∈ N(x)

such that N(x) 6⊆ N(y). So there exists z ∈ N(x) \ {x, y} such that z 6∈ N(y). This implies that

{y, z} 6∈ F(x). Notice that F(x) is a hereditary family, so for any F ⊇ {y, z}, F /∈ F(x). Thus we

have dF (x) 6 2d−1 − 2d−3 < 2d−1 − d+ 1 6 δ(F) when d > 6. This is a contradiction.

The second conclusion follows directly from the definition of J . �

Remark. We would like to highlight that Lemma 4.8 is not applicable for d = 5. This distinction

is one of the reasons why we need separate proofs for Theorems 1.7 and 1.8.

The following result asserts that for any isolated pile P , the average weight in P is at least Bc.

Theorem 4.9. Let n, d, c ∈ N with d > 50 and 1 6 c 6 d. For any hereditary family F ⊆ 2[n] with

δ(F) > 2d−1 − c+ 1. If P ⊆ [n] is an isolated pile in F , then
∑

x∈P

ωF(x) > Bcd.

We will postpone the proof of this result in Section 5. Now assuming Theorem 4.9, we are ready

to present the proof of Theorem 4.3 (i.e., Theorem 1.8).

3Piga and Schülke [9] employ a concept similar to our definition of piles, known as clusters. However, there are
important distinctions between the two. One notable difference is that their definition of clusters allows for the
presence of bad vertices outside of clusters. As a result, they need to redistribute at least 1

2
− c−1

d−c
>

1
6
weight to

these bad vertices, which ultimately leads to the bound c 6 d
4
. In contrast, our definition of piles ensures that there

are no bad vertices outside of piles (as shown in Lemma 4.8).
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Proof of Theorem 4.3 (assuming Theorem 4.9). Let n, d, c and F be given as in Theorem

4.3. Let P = {P ⊆ [n] : P is a pile} be the set of all piles. For x ∈ [n], let P(x) = {P ∈ P : x ∈ P}

be the set of piles containing x. In this notion, Lemma 4.8 says that every bad vertex z ∈ [n]

satisfies |P(z)| = 1. To get a partition of [n], we consider the following partition of P:

P1 = {P ∈ P : P is an isolated pile in F},

P2 = {P ∈ P : P is an intersecting pile in F}.

Note that we have P = P1 ∪ P2. Let J = {x ∈ [n] : P(x) = ∅} and K =
⋃

P∈P2
P Then we have

the following partition of [n]:

(5) [n] = J ∪K ∪ (
⋃

P∈P1

P ).

As Lemma 4.8 indicates, every vertex in J is good and by Lemma 4.5 (2), it has weight larger

than Bc. So we have

(6)
∑

x∈J

ω(x) >
∑

x∈J

Bc = Bc|J |.

Next, we prove that the average weight of vertices in K is more than Bc. We distinguish

between K1 = {x ∈ K : |P(x)| = 1} and K2 = K \ K1. By Lemma 4.5, every vertex z ∈ K1

satisfies ω(z) > Bc −
1
18 . So it is sufficient to prove that

∑

x∈K2
(ω(x)−Bc) >

∑

z∈K1

1
18 . We have

the following claim. For a pile P , let θP = |{z ∈ P : |P(z)| = 1}|.

Claim 4.10. Every vertex x ∈ K2 satisfies ω(x) > Bc +
1
18

∑

P∈P(x)
θP

d−θP
.

Proof of Claim 4.10. Assume that x ∈ [n] with |P(x)| > 2. Then we have |N(x)| >
∑

P∈P(x) θP +

maxQ∈P(x)(d− θQ) =
∑

P∈P(x) θP + d−minQ∈P(x) θQ. Then by Lemma 4.5 (2), we have

ω(x) > Bc −
1

18
+

1

6
(|N(x)| − d) > Bc −

1

18
+

1

6
(

∑

P∈P(x)

θP − min
Q∈P(x)

θQ) > Bc −
1

18
+

1

12

∑

P∈P(x)

θP .

Note that θP > 1 for any P ∈ P. So we have
∑

P∈P(x) θP > 2. Since − 1
18 + 1

12λ > 1
18λ for any

λ > 2, we can derive that

ω(x) > Bc −
1

18
+

1

12

∑

P∈P(x)

θP > Bc +
1

18

∑

P∈P(x)

θP > Bc +
1

18

∑

P∈P(x)

θP
d− θP

,

finishing the proof of this claim. �

Using Claim 4.10, it is straightforward to obtain the following inequality

∑

x∈K2

ω(x) >
∑

x∈K2



Bc +
1

18

∑

P∈P(x)

θP
d− θP



 = Bc|K2|+
1

18

∑

x∈K2

∑

P∈P(x)

θP
d− θP

= Bc|K2|+
1

18

∑

P∈P2

∑

x∈P∩K2

θP
d− θP

= Bc|K2|+
1

18

∑

P∈P2

θP .

Moreover, we have
∑

x∈K1
ω(x) >

∑

x∈K1

(

Bc −
1
18

)

= Bc|K1| −
1
18

∑

P∈P2
θP . Adding the above

two inequalities up, we can derive that

(7)
∑

x∈K

ω(x) =
∑

x∈K1

ω(x) +
∑

x∈K2

ω(x) > Bc(|K1|+ |K2|) = Bc|K|.
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Finally, putting (6), (7) and Theorem 4.9 all together, we can obtain that
∑

x∈[n]

ω(x) =
∑

x∈J

ω(x) +
∑

x∈K

ω(x) +
∑

P∈P1

∑

x∈P

ω(x) > Bc(|J |+ |K|+ d|P1|) = Bcn,

finishing the proof of Theorem 4.3. �

5. Proof of Theorem 4.9: average weight of isolated piles

Throughout this section, we let n, d, c ∈ N with d > 50 and c ∈ [d], F ⊆ 2[n] be a hereditary

family with δ(F) > 2d−1 − c+1, and P ⊆ [n] be an isolated pile in F . We will assume without loss

of generality that P = [d]. Our goal is to demonstrate that
∑

x∈[d] ωF(x) > Bcd. Before proceeding

with the proof, it is necessary to establish several definitions.

Recall that we assume P = [d]. Define G = F|[d] = {S ⊆ [d] | S ∈ F} be the projection of

the family F onto the pile P . Then G is also a hereditary family. For a set S ∈ F , we say it is

internal if S ∈ G, and external if S ∈ F \ G. Let x ∈ [d]. We define ωin(x) =
∑

x∈S∈G
1
|S| be the

internal weight of x, ωout(x) =
∑

x∈S∈F\G
1
|S| be the external weight of x. Clearly for any x ∈ [d],

ω(x) = ωin(x)+ωout(x). For any x ∈ [d], we denote the number of sets in G containing x by dG(x),

while the number of sets in F containing x is denoted by dF (x). Let

δ = 2d−1 − c+ 1

be a constant. So for any x ∈ [d], we have dF (x) > δ(F) > δ.

We assume |G| = 2d − t and let M = 2[d] \ G = {M1,M2, . . . ,Mt} be the family consisting of

all missing sets of G. Then G = 2[d] \ M = 2[d] \ {M1,M2, . . . ,Mt}. To enhance the readability

of the proof, we also define Ni = [d] \Mi and let N = {N1, N2, . . . , Nt}. By definition, it follows

that N is a hereditary family if and only if G is a hereditary family. So both families G and N are

hereditary families. Lastly, we note that for any x ∈ [d],

(8) dG(x) = d2[d](x)− dM(x) = 2d−1 − dM(x) = 2d−1 − t+ dN (x).

The following lemma collects essential technical information required for proving Theorem 4.9.

Lemma 5.1. Let n, d, c ∈ N with d > 50 and c ∈ [d], F ⊆ 2[n] be a hereditary family with

δ(F) > 2d−1 − c+ 1, and P ⊆ [n] be an isolated pile in F . Write P = [d]. If
∑

x∈[d]

ωF (x) < 2d − c,

then the following four statements hold:

• there are at most 7 good vertices in [d],

• t 6 d+ 4,

• for any i ∈ [t], |Ni| 6 3, and

• for every bad vertex x in [d], {x} ∈ N .

We will postpone the proof of this lemma in Subsection 5.1. Now we prove Theorem 4.9.

Proof of Theorem 4.9 (assuming Lemma 5.1). Suppose for a contradiction that there exists

an isolated pile P = [d] of F with
∑

x∈[d] ωF (x) < Bcd. Then we have
∑

x∈[d]

ωF (x) < Bcd 6 2d − c.
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By Lemma 5.1, there are at most 7 good vertices in [d], t 6 d + 4, |Ni| 6 3 for any i ∈ [t],

and for every bad vertex x in [d], {x} ∈ N . We may assume that all vertices in [d − 7] are bad

vertices. Therefore we have {∅} ∪ {{x} | x ∈ [d − 7]} ⊆ N . Then the family N has at most

|N | − (d − 7) − 1 = t − d + 6 6 10 sets of size greater than 1. As |Ni| 6 3 for any i ∈ [t], those

sets can cover at most 30 vertices. Thus there are at least d − 7 − 30 > 13 bad vertices that are

contained in exactly one set in N , which is the singleton set formed by itself. Assume x ∈ [d− 7]

is one of these bad vertices. Then 2d−1 − c+ 1 = δ 6 dF (x) = 2d−1 − (t− 1). Therefore t 6 c.

First consider when 1 6 c 6 d− 1. We have ∅ ∈ N and for every bad vertex x, {x} ∈ N . Since

|N | = t 6 c 6 d − 1, there are at most d − 2 bad vertices and thus at least 2 good vertices in [d].

For a good vertex x ∈ [d], it has at least one neighbor y /∈ [d], so {x, y} ∈ F \ G, implying that

(9) ωout(x) =
∑

x∈S∈F\G

1

|S|
>

1

2
.

It is easy to see
∑

x∈[d] ωin(x) = |G \ {∅}| = 2d − t− 1. Thus, we have

∑

x∈[d]

ω(x) =
∑

x∈[d]

ωin(x) +
∑

x∈[d]

ωout(x) > (2d − t− 1) + 2 ·
1

2
> 2d − c = Bcd,

a contradiction to our assumption.

Now we consider when c = d. Again we have ∅ ∈ N and for every bad vertex x, {x} ∈ N . Since

|N | = t 6 c = d, there are at most d− 1 bad vertices and at least 1 good vertex in [d]. Thus
∑

x∈[d]

ω(x) =
∑

x∈[d]

ωin(x) +
∑

x∈[d]

ωout(x) > |G \ {∅}|+
1

2
> (2d − t− 1) +

1

2
> 2d − d−

1

2
= Bcd,

a contradiction to our assumption. Thus we finish the proof of Theorem 4.9. �

We add a remark that in the case of c = d, the equality of Theorem 4.3 holds if and only if the

hereditary family F is isomorphic to F0(n, d) given in Construction 2.4. To see this, suppose that

we have the equation
∑

x∈[n] ωF(x) = Bcn in the proof of Theorem 4.3. Note that both inequalities

(6) and (7) are strict. So this forces that there is no vertices in J ∪ K, i.e., the vertex set of

F consists of isolated piles P ; moreover, for each isolated pile P we have
∑

x∈P ωF (x) = Bcd in

Theorem 4.9. In the above proof of Theorem 4.9, we see that this equality holds if and only if there

are d−1 bad vertices and one good vertex with exactly one external edge of size 2, where N consists

of the empty set and d− 1 singleton sets formed by those d− 1 bad vertices. By combining all the

aforementioned information, it becomes clear that F is isomorphic to F0(n, d) in Construction 2.4.

On the other hand, in the case 1 6 c 6 d − 1, there are situations where multiple hereditary

families exist for which the equality in Theorem 4.3 holds.

5.1. Proof of Lemma 5.1. Let P = [d] be an isolated pile in a hereditary family F ⊆ 2[n] with

δ(F) > 2d−1 − c+ 1, where d > 50 and c ∈ [d]. Under the assumption that
∑

x∈[d] ωF (x) < 2d − c,

we want to verify the four conclusions of Lemma 5.1. First we establish several simple facts.

Lemma 5.2. Let P = [d] be an isolated pile. Then the following hold:

(a) t > c.

(b) t 6 2c− 2.

(c) For any x ∈ [d], dG(x) > 2d−1 − 2c+ 2.

(d) If x is a bad vertex, then {x} ∈ N .

(e) There are at most d
2 − 1 good vertices in [d].
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Proof. (a) Suppose for a contradiction that t 6 c− 1. By counting the weights in [d], we get
∑

x∈[d]

ω(x) >
∑

x∈[d]

ωin(x) = |G \ {∅}| = 2d − t− 1 > 2d − c

which is a contradiction. So we have t > c.

(b) By the definition of piles, there exists at least one bad vertex say x in [d]. Then |{S ∈ G |

x ∈ S}| = dG(x) = dF (x) > δ = 2d−1 − c+ 1. Since G is a hereditary family, it holds that

|{S ∈ G | x 6∈ S}| > |{S ∈ G | x ∈ S}| > 2d−1 − c+ 1.

Consequently, 2d − t = |G| = |{S ∈ G | x 6∈ S}|+ |{S ∈ G | x ∈ S}| > 2d − 2c+ 2. Thus t 6 2c− 2.

(c) Recall that G = 2[d] \ M. Using (8) and the above (b), we have dG(x) > d2[d](x) − |M| =

2d−1 − t > 2d−1 − 2c+ 2.

(d) If x is contained by every set in M, then dF (x) = dG(x) = d2[d](x) − |M| = 2d−1 − t 6

2d−1 − c < δ, a contradiction. So there exists one set in M not containing x. That is, there exists

one set in N containing x. Since N is a hereditary family, we have {x} ∈ N .

(e) Suppose not. Then using Lemma 4.5 and d > 50,
∑

x∈[d] ω(x) > (Bc −
1
18 ) · d+

1
6 · (

d
2 − 1) >

dBc +
1
2 > 2d − c, which is a contradiction. �

Before proceeding with the proof, we prove a lemma that allows us to control the external weight.

Lemma 5.3. For any vertex x ∈ [d], it holds that ωout(x) >
δ−dG(x)
3+log c .

Proof. If δ 6 dG(x) this is trivial. So we may assume δ > dG(x). This implies that x is a good

vertex and there are at least δ − dG(x) many sets S satisfying that x ∈ S ∈ F \ G. If all these sets

have size at most log c+ 3, then it follows that

ωout(x) =
∑

x∈S∈F\G

1

|S|
>

dF (x)− dG(x)

log c+ 3
>

δ − dG(x)

log c+ 3
,

as desired. Therefore we may assume there is a set Q such that x ∈ Q ∈ F \ G, |Q| > log c+3 and

there exists y ∈ Q \ [d]. We can choose a set Q′ with Q′ ⊆ Q \ {x, y} and |Q′| = ⌈log c⌉. Define

H = {{x, y} ∪ S | S ⊆ Q′}. Since F is hereditary, every set in H is contained in Q and contains

the vertex y, implying that H ⊆ F \ G. Therefore, we can derive

ωout(x) >
∑

S∈H

1

|S|
>

2⌈log c⌉

⌈log c⌉+ 2
>

(2d−1 − c+ 1)− (2d−1 − 2c+ 2)

log c+ 3
>

δ − dG(x)

log c+ 3
,

finishing the proof. �

Next, we define a sequence of integers to assist in upper bounding the size of Ni.

Definition 5.4. For any positive integer u, let fu be the unique integer such that

2fu − fu 6 u < 2fu+1 − (fu + 1).

Since max{fu, 2
fu/2} 6 2fu−fu, it is easy to derive that fu 6 u, fu 6 log(2u) and u 6 2fu+1−fu−2.

Lemma 5.5. Let u be the number of good vertices in [d]. Then for any i ∈ [t], we have |Ni| 6 fu.

Proof. By Lemma 5.2 (e), we have u 6 d
2 −1. Suppose for a contradiction that |Ni| > fu+1. Since

N is hereditary, there exists a set N ∈ N such that |N | = fu + 1 and 2N ⊆ N . Let M = [d] \N ,

then |M | = d − fu − 1 > d − u − 1 > d
2 > u + 1. There are u good vertices in total, so there

exists Q ⊆ M with |Q| = u + 1 such that Q contains all the good vertices in M . Then all the



EXACT RESULTS ON TRACES OF SETS 18

vertices in M \Q are bad vertices. By Lemma 5.2 (d), for any x ∈ M \ Q, {x} ∈ N . Therefore,

N ′ := 2N ∪ {{x} | x ∈ M \Q} is a subfamily of N with size

2fu+1 + (d− fu − 1)− (u+ 1) > 2fu+1 + (d− fu − 1)− (2fu+1 − fu − 2 + 1) > d.

Note that N ′ does not contain any vertex y ∈ Q. Hence there are at least d missing sets in M

containing y, implying that dG(y) 6 2d−1 − d < δ. Thus every y ∈ Q must be a good vertex. As a

result, there are at least |Q| = u+ 1 good vertices, a contradiction to our definition. �

The following lemma is the most technical part in our proof of Lemma 5.1.

Lemma 5.6. Let u be the number of good vertices in [d]. Then u 6 7.

Proof. Suppose for a contradiction that u > 8. By Lemma 5.5, |Ni| 6 fu for each i ∈ [t], which

implies that |Mi| > d− fu. Straightforward calculations yield the following bounds:

∑

x∈[d]

dG(x) =
∑

S∈G

|S| = d2d−1 −
t

∑

i=1

|Mi| 6 d2d−1 − t(d− fu), and

(10)
∑

x∈[d]

(δ − dG(x)) > d(2d−1 − c+ 1)− (d2d−1 − t(d− fu)) = (d− fu)t+ d− cd.

Since there are u good vertices in [d], using (9) we have
∑

x∈[d] ωout(x) >
u
2 , which implies that

0 >
∑

x∈[d]

ω(x)−(2d−c) >
∑

x∈[d]

ωin(x)+
∑

x∈[d]

ωout(x)−(2d−c) > (2d−t−1)+
u

2
−(2d−c) > c−t−1+

u

2
.

So t > c− 1 + u
2 . Note that u 6 d

2 − 1, thus fu 6 log(2u) 6 log d. Using Lemma 5.3 and (10),

0 >
∑

x∈[d]

ω(x)−(2d−c) >
∑

x∈[d]

ωin(x)+
∑

x∈[d]

ωout(x)−(2d−c) > (2d−t−1)+
(d− fu)t+ d− cd

log c+ 3
−(2d−c).

The partial derivative of the right-hand side with respect to t is −1 + d−fu
log c+3 > −1 + d−log d

log d+3 > 0.

Thus using the lower bound t > c− 1 + u
2 , we can further obtain that

0 >

(

2d −
(

c− 1 +
u

2

)

− 1
)

+
(d− fu)(c − 1 + u

2 ) + d− cd

log c+ 3
−(2d−c) = −

u

2
+
(d− fu)

u
2 − fu(c− 1)

log c+ 3
.

By simplifying this expression and using c 6 d, we obtain that

(11) 0 > (d− fu − log c− 3)−
2fu
u

(c− 1) > (d− fu − log d− 3)−
2fu
u

(d− 1).

If fu = 3 or 4, then the partial derivative of the right-hand side of (11) with respect to d is

1−
1

d ln 2
−

2fu
u

> min

{

1−
1

d ln 2
−

2× 3

8
, 1 −

1

d ln 2
−

2× 4

12

}

> 0,

where the second inequality uses the assumption u > 8 and the fact u > 12 when fu = 4, thus the

right-hand side of (11) is increasing as d grows. Using d > 50, we arrive the following contradiction

0 > (50 − fu − log 50− 3)−
98fu
u

> 49

(

1−
2fu
u

)

− (fu + 8)

> min

{

49

(

1−
2× 3

8

)

− (3 + 8), 49

(

1−
2× 4

12

)

− (4 + 8)

}

> 0.
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Now assume fu > 5. Using fu 6 log d and fu
u 6

fu
2fu−fu

6 5
27 , the inequality (11) implies that

0 > (d− 2 log d− 3)−
10

27
(d− 1) >

3

5
d− 2 log d− 3 > 0,

where the last inequality holds when d > 50. This contradiction completes Lemma 5.6. �

Finally, we are prepared to prove Lemma 5.1.

Proof of Lemma 5.1. By Lemma 5.6, there are u 6 7 good vertices in [d]. By Lemma 5.5, for

any i ∈ [t], we have |Ni| 6 fu 6 f7 = 3. Then using Lemma 5.3 and (10), we obtain

0 >
∑

x∈[d]

ω(x)−(2d−c) =
∑

x∈[d]

ωin(x)+
∑

x∈[d]

ωout(x)−(2d−c) > (2d−t−1)+
(d− 3)t+ d− cd

log c+ 3
−(2d−c).

Then using c 6 d, d > 50 and d
d−log d−6 6 5

3 , it can be deduced that

t 6
(c− 1)(d − log c− 3)

d− log c− 6
= c− 1 +

3(c − 1)

d− log c− 6
6 d− 1 +

3d

d− log d− 6
6 d+ 4.

Finally, by Lemma 5.2 (d), for any bad vertex x in [d], we have {x} ∈ N . �

6. Concluding remarks

In this paper, we investigate extremal problems regarding to the arrowing relation (n,m) → (a, b)

and primarily focus on determining the limiting constant m(2d−1 − c) for all 1 6 c 6 d. Through

the use of novel concepts and analysis, we prove a conjecture posed by Frankl and Watanabe [16]

by showing m(11) = 5.3. Furthermore, we provide the exact value of m(2d−1 − c) for all 1 6 c 6 d

when d > 50, thereby essentially resolving an open problem raised by Piga and Schülke [9].

We would like to discuss some natural questions for future study. It would be interesting to

reduce the bound d > 50 to d > 6 in Theorem 1.8. It is worth noting that by refining the condition

in the proof of Lemma 2.7 from c 6 2d to c 6 d, it is possible to improve the leading coefficient

from 1
6 to 1

2 − 1
d−log e . This refinement could potentially enhance the bound in Theorem 1.8 from

d > 50 to around d > 28. However, it is evident that closing the gap between d = 5 and d > 50

may require the introduction of some innovative ideas.

The ultimate question in this direction would be to determine m(s) for all s ∈ N, which is

equivalent to the question of

(12) determining m(2d−1 − c) for all 1 6 c 6 2d−2.

Currently, it seems beyond our reach to provide a complete solution. However, we will now discuss

a potential recursive method for determining m(2d−1 − c) for an infinite sequence of c > d+ 1.

Definition 6.1. Let n, s ∈ N. We call F an (n, s)-extremal family,4 if

(1) F ⊆ 2[n] is a hereditary family,

(2) |F| = m(s) · n+ 1, and

(3) for any x ∈ [n], dF (x) > s+ 1.

Using this notion, we see that each d-set Ui in Construction 2.3 provides an (d, 2d−1−c)-extremal

family for 1 6 c 6 d− 1, and each 2d-set U2i−1∪U2i in Construction 2.4 provides an (2d, 2d−1 − d)-

extremal family. We observe the following fact.

4This definition neither guarantees uniqueness nor existence. For a specified pair (n, s), there might be many distinct
(n, s)-extremal families, or there might not be any at all.
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Fact 6.2. Assume F is an (n, s)-extremal family. Write F c = [n] \ F for all F ⊆ [n]. Let

F∗ = 2[n] \ {F c | F ∈ F}. Then, the following hold:

• F∗ ⊆ 2[n] is a hereditary family,

• |F∗| = 2n − |F| = 2n − (m(s) · n+ 1), and

• For any x ∈ [n], dF∗(x) = 2n−1 − |F|+ dF (x) > 2n−1 −m(s) · n+ s.

Based on this fact, we propose the following question.

Question 6.3. Let n, s ∈ N satisfy that m(s) · n + 1 6 2n−3 and s 6 2
n
2
−1 − 1. If F is an

(n, s)-extremal family, determine whether F∗ is an (n, 2n−1 + s−m(s) · n− 1)-extremal family.

If this holds true, it would imply that for any n and s satisfying the conditions of Question 6.3,

it holds that

m(2n−1 + s−m(s) · n− 1) =
2n −m(s) · n− 2

n
.

In Appendix B, we provide two examples that assume the validity of Question 6.3. These examples

aim to shed some light on the general question of (12).

Finally, we would like to direct interested readers to the paper by Piga and Schülke [9], where

they discuss and formalize several intriguing open problems related to the arrowing relation.
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Appendix A. Proof of an inequality in Lemma 4.5

In this section, we will perform detailed calculations to establish the validity of the following

inequality for d > 50:

h(d) :=
∑

H∈R(d−1)

(

1

d− |H|
−

1

d

)

<
1

18
.

Proof. Since for any H ∈ R(d− 1), we have |H| 6 log(d− 1). So it is easy to see that

h(d) 6
∑

H∈R(d−1)

(

1

d− log(d− 1)
−

1

d

)

=
(d− 1) log(d− 1)

d(d− log(d− 1))
:= h1(d).

When d > 133, we can derive that

h′1(d) =
− log2(d− 1)− (d2 − 2d) log(d− 1) + d2

d2(d− log(d− 1))2
<

− log2(d− 1)− d2

2 log(d− 1) + d2

d2(d− log(d− 1))2
< 0

Since h1(133) <
1
18 , we can obtain that when d > 133,

h(d) 6 h1(d) 6 h1(133) <
1

18
.

When 50 6 d 6 64, we have R(49) ⊆ R(d− 1) ( 2[6], where

R(49) = 2[5] ∪ {F ∪ {6} : F ⊆ [4]} ∪ {{5, 6}}.

Thus in this case, we have

h(d) 6
∑

H∈R(49)

1

d− |H|
+

d− 50

d− 5
−

d− 1

d
= h2(d),

where

h2(d) =
2

d
+

6

d− 1
+

15

d− 2
+

16

d− 3
+

9

d− 4
−

43

d− 5
.

Using Jensen’s inequality, we have

h′2(d) =
43

(d− 5)2
−

(

2

d2
+

6

(d− 1)2
+

15

(d− 2)2
+

16

(d− 3)2
+

9

(d− 4)2

)

6
43

(d− 5)2
−

48

(d− 5
2 )

2
< 0.

Since h2(50) <
1
18 , we can derive that when 50 6 d 6 64, it holds that

h(d) 6 h2(d) 6 h2(50) <
1

18
.

Similarly, when 65 6 d 6 128, since 2[6] ⊆ R(d− 1) ( 2[7], we have

h(d) 6
∑

H⊆[6]

1

d− |H|
+

d− 65

d− 6
−

d− 1

d
= h3(d),

where

h3(d) =
2

d
+

6

d− 1
+

15

d− 2
+

20

d− 3
+

15

d− 4
+

6

d− 5
−

58

d− 6
.

Using Jensen’s inequality, we can derive the following

h′3(d) =
58

(d− 6)2
−

(

2

d2
+

6

(d− 1)2
+

15

(d− 2)2
+

20

(d− 3)2
+

15

(d− 4)2
+

6

(d− 5)2

)

6
58

(d− 6)2
−

64

(d− 93
32)

2
< 0.
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Therefore, since h3(68) <
1
18 , we have that when 68 6 d 6 128,

h(d) 6 h3(d) 6 h3(68) <
1

18
.

To complete the proof, we will now consider the remaining cases when 65 6 d 6 67 and 129 6 d 6

132. We will calculate the formula for each case and provide a list of them as follows:

h(65) =
1

65
+

6

64
+

15

63
+

20

62
+

15

61
+

6

60
+

1

59
−

64

65
≈ 0.048 <

1

18

h(66) =
1

66
+

7

65
+

15

64
+

20

63
+

15

62
+

6

61
+

1

60
−

65

66
≈ 0.047 <

1

18

h(67) =
1

67
+

7

66
+

16

65
+

20

64
+

15

63
+

6

62
+

1

61
−

66

67
≈ 0.046 <

1

18

h(129) =
1

129
+

7

128
+

21

127
+

35

126
+

35

125
+

21

124
+

7

123
+

1

122
−

128

129
≈ 0.028 <

1

18

h(130) =
1

130
+

8

129
+

21

128
+

35

127
+

35

126
+

21

125
+

7

124
+

1

123
−

129

130
≈ 0.027 <

1

18

h(131) =
1

131
+

8

130
+

22

129
+

35

128
+

35

127
+

21

126
+

7

125
+

1

124
−

130

131
≈ 0.027 <

1

18

h(132) =
1

132
+

8

131
+

23

130
+

35

129
+

35

128
+

21

127
+

7

126
+

1

125
−

131

132
≈ 0.027 <

1

18
.

In summary, we have demonstrated that for any d > 50, the inequality

h(d) =
∑

H∈R(d−1)

(

1

d− |H|
−

1

d

)

<
1

18

holds, as desired. �

Appendix B. Two examples assuming the validity of Question 6.3

Assuming Question 6.3 is valid, we would be able to determine m(2d−1 − c) for many values of

c > d + 1. Here, we present two explicit examples based on (n, s)-extremal hereditary families,

specifically focusing on the cases where s = 0 and s = 1. Assuming the validity of Question 6.3 in

these cases, one can determine infinitely many values of m(2d−1 − c) for c = d+ 1 and c = 3
2d.

Example B.1 (For s = 0). For d > 6, the following family

F = {∅} ∪ {{x} | x ∈ [d]}

is a (d, 0)-extremal family. Assume that Question 6.3 holds in this case. Then

F∗ = 2[d] \ {[d], {1}c, {2}c, . . . , {d}c}

becomes a (d, 2d−1 − d− 1)-extremal family, which implies m(2d−1− d− 1) = 2d−d−2
d for any d > 6.

Example B.2 (For s = 1). Let d > 8 and 2 | d. The following family

F = {∅} ∪ {{x} | x ∈ [d]} ∪ {{x, x + 1} | x ∈ [d] is odd}

is a (d, 1)-extremal family. Assume that Question 6.3 holds in this case. Then

F∗ = 2[d] \ {[d], {1}c, {2}c, . . . , {d}c, {1, 2}c, {3, 4}c, . . . , {d − 1, d}c}

is a (d, 2d−1 − 3
2d)-extremal family, which implies m(2d−1 − 3

2d) =
2d− 3

2
d−2

d for any even d > 8.
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