
On the number of triangles in K4-free graphs

Jialin He∗ Jie Ma† Yan Wang‡ Chunlei Zu§

Abstract

Erdős asked whether for any n-vertex graph G, the parameter p∗(G) = min
∑

i≥1(|V (Gi)| − 1)

is at most ⌊n2/4⌋, where the minimum is taken over all edge decompositions of G into edge-disjoint

cliques Gi. In a restricted case (also conjectured independently by Erdős), Győri and Keszegh

[Combinatorica, 37(6) (2017), 1113–1124] proved that p∗(G) ≤ ⌊n2/4⌋ for all K4-free graphs G.

Motivated by their proof approach, they conjectured that for any n-vertex K4-free graph G with

e edges, and any greedy partition P of G of size r, the number of triangles in G is at least

r(e − r(n − r)). If true, this would imply a stronger bound on p∗(G). In this paper, we disprove

their conjecture by constructing infinitely many counterexamples with arbitrarily large gap. We

further establish a corrected tight lower bound on the number of triangles in such graphs, which

would recover the conjectured bound once some small counterexamples we identify are excluded.

1 Introduction

The Turán graph Tn,k−1 denotes the complete balanced (k − 1)-partite graph on n vertices, and let

tn,k−1 be its number of edges. A graph is Kk-free if it contains no copy of the clique Kk as a subgraph.

The celebrated Turán’s theorem [12], a cornerstone of extremal graph theory, states that the Turán

graph Tn,k−1 is the unique n-vertex Kk-free graph with the maximum number of edges. Exploring

various interpretations and extensions of Turán’s theorem has long been one of the central themes in

extremal graph theory. An early result along this line, due to Erdős, Goodman, and Pósa [5], shows

that the edge set of every n-vertex graph can be decomposed into at most tn,2 edge-disjoint triangles

K3 and individual edges. Later, this was generalized by Bollobás [2], who proved that for all k ≥ 3,

the edge set of every n-vertex graph can be decomposed into at most tn,k−1 edge-disjoint cliques Kk

and individual edges. It is clear that this result extends Turán’s theorem. Another problem closely

related to our study is the determination of the parameter

p(G) = min
∑
i≥1

|V (Gi)|
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for any graph G, where the minimum is taken over all edge decompositions of G into edge-disjoint

cliques Gi for i ≥ 1. Chung [3], Győri and Kostochka [8], and Kahn [11] independently proved that

p(G) ≤ 2tn,2, with equality if and only if G is the complete balanced bipartite graph Tn,2.

Erdős (see [13]) later proposed to study the following enhanced variant of p(G):

p∗(G) = min
∑
i≥1

(
|V (Gi)| − 1

)
for any graph G, where the minimum is taken over all edge decompositions of G into edge-disjoint

cliques Gi for i ≥ 1. Clearly, p∗(G) < p(G) holds for every graph G. Erdős posed the following

challenging problem (see Problem 43 in [13] and Conjecture 3 in [6]): Does every n-vertex graph

G satisfy p∗(G) ≤ tn,2? Recently, the first author, together with Balogh, Krueger, Nguyen, and

Wigal [1], proved an asymptotic version of this problem, showing that p∗(G) ≤ (1 + o(1))tn,2 holds

for every n-vertex graph G, where o(1) → 0 as n → ∞. A restricted case of Erdős’ problem was

considered by Győri [6], who estimated p∗(G) for K4-free graphs. It turns out that this restricted

version is equivalent to a problem of bounding edge-disjoint triangles in K4-free graphs, which was

independently conjectured by Erdős (see [10]) and later resolved by Győri and Keszegh [7] in the

following theorem.

Theorem 1.1 (Győri and Keszegh [7]). Every K4-free graph with n vertices and tn,2 + m edges

contains at least m edge-disjoint triangles.

A crucial concept in their proof [7] is the following special partition of vertex-disjoint cliques. We

call it greedy because it can be obtained by iteratively applying the following greedy procedure: at

each step, select a largest clique in the remaining graph and then delete the vertices of this clique.

Definition 1.2. A greedy partition P of a graph G is a partition of V (G) into disjoint cliques Ti for

i ≥ 1 such that |Ti| ≥ |Ti+1| for each i ≥ 1 and, for each ℓ ≥ 1, the union of cliques with size at most

ℓ induces a Kℓ+1-free subgraph. The size r(P ) of P denotes the number of cliques in this partition.

Throughout, let t(G) denote the number of triangles in a graph G, and let te(G) denote the

maximum number of edge-disjoint triangles in G.1 A useful lemma of Huang and Shi [9] relates these

parameters via greedy partitions: for any K4-free graph G and any greedy partition P of G, we have

te(G) ≥ t(G)/r(P ). (1)

Győri and Keszegh [7] employed an approach based on greedy partitions to show

t(G) ≥ r(P )
(
e(G)− tn,2

)
(2)

for any n-vertex graph G, without requiring K4-freeness. Combined with (1), this immediately implies

Theorem 1.1. To explain the proof of (2) in more detail, for any greedy partition P in an n-vertex

graph G with e edges, we define r := r(P ), t := t(G), and

g(G,P ) := r(e− r(n− r))− t.

1When the graph G is clear from context, we simply write t and te.
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Using symmetrization arguments, they [7] showed that it suffices to verify (2) for complete multi-

partite graphs G. Since g(G,P ) ≤ 0 for any complete multipartite graph G (see [7, Lemma 8]), it

follows that t
r ≥ e− r(n− r) ≥ e− tn,2 for such graphs, which establishes (2) in full.

Motivated by this approach, Győri and Keszegh [7] proposed the following stronger conjecture.

Conjecture 1.3 (Győri and Keszegh [7], Conjecture 2). Let G be an n-vertex K4-free graph with e

edges, and let P be any greedy partition of G of size r := r(P ). Then

t(G) ≥ r
(
e− r(n− r)

)
, or equivalently, g(G,P ) ≤ 0,

and consequently, te(G) ≥ e− r(n− r).

In this paper, we first disprove Conjecture 1.3 by constructing infinitely many counterexamples in

a strong sense: for some K4-free graphs G and greedy partitions P , the quantity g(G,P ) is postive

and can be arbitrarily large.

Theorem 1.4. For any positive integer λ, there exists an n-vertex K4-free graph G with e edges and

a greedy partition P of size r such that t(G) ≤ r
(
e− r(n− r)

)
− λ.

Our proof of Theorem 1.4 begins by constructing four special graphs F1, F2, F3, and F4 (all defined

in Section 2, each formed from at most three cliques). The first two are minimal counterexamples to

Conjecture 1.3, while the “3-blow-up” of F3 and F4 yield additional counterexamples. We then perform

certain operations on these graphs to generate infinitely many larger, non-isomorphic counterexamples.

Our second contribution is to establish a corrected lower bound on the number of triangles in

K4-free graphs, using a new approach that is distinct from the method of Győri and Keszegh [7]. To

state the result, we first introduce some notation. Let P = {T1, T2, . . . , Tr} be any greedy partition

of G of size r. For indices 1 ≤ i < j < k ≤ r, we say that a triple (i, j, k) is P -bad if the induced

subgraph G[Ti∪Tj ∪Tk] is isomorphic to one of F1, F2, F3, or F4. We then define ω(P ) to be the total

number of P -bad triples. The following result shows that the lower bound on the number of triangles

in Conjecture 1.3 can be corrected for all K4-free graphs by subtracting ω(P ).

Theorem 1.5. Let G be an n-vertex K4-free graph with e edges, and let P be any greedy partition of

G of size r. Then

t(G) ≥ r
(
e− r(n− r)

)
− ω(P ).

In particular, if G contains none of the induced subgraphs F1, F2, F3, or F4, the conclusion of Con-

jecture 1.3 holds.

The rest of the paper is organized as follows. We prove Theorem 1.4 in Section 2. The proof of

Theorem 1.5 will be presented in Section 3. In Section 4, we give some concluding remarks.

2 Proof of Theorem 1.4: Counterexamples to Conjecture 1.3

In this section, we prove Theorem 1.4 by constructing infinitely many counterexamples to Conjec-

ture 1.3. The constructions are divided into two types, presented in the following two subsections.
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Figure 1: Counterexamples F1 (left) and F2 (right) to Conjecture 1.3.

2.1 Counterexamples of Type I

We define two graphs F1 and F2 as follows. Let T1 = {a, b, c}, T2 = {d, e, f}, and T3 = {g, h, i} be

three disjoint triangles.

- The graph F1: Let V (F1) = T1 ∪ T2 ∪ T3 and E(F1) consists of 4 edges between T1 and T2, 4

edges between T2 and T3, and 5 edges between T1 and T3 (see Figure 1, on left).

We see P1 = {T1, T2, T3} defines a greedy partition of F1. It is also easy to see that v(F1) = 9, e(F1) =

22, r(P1) = 3. Thus this yields

12 = r(P1)(e(F1)− r(P1)(v(F1)− r(P1))) > t(F1) = 11.2

Since any 4 vertices induce at most 2 triangles, F1 is K4-free.

- The graph F2: Let V (F2) = T1 ∪ T2 ∪ T3 and E(F2) consists of 5 edges between T1 and T2, 5

edges between T2 and T3, and 4 edges between T1 and T3 (see Figure 1, on right).

We see P2 = {T1, T2, T3} defines a greedy partition of F2. It is also easy to see that v(F2) = 9, e(F2) =

23, r(P2) = 3. Thus this yields

15 = r(P2)(e(F2)− r(P2)(v(F2)− r(P2))) > t(F2) = 14.3

Since any 4 vertices induce at most 2 triangles, F2 is also K4-free.

Proof of Theorem 1.4 (Type I). We will construct infinitely many counterexamples by blowing up F1

and F2. For a positive integer vector k = (k1, k2, k3) ∈ Z3
+, for i ∈ {1, 2} and j ∈ {1, 2, 3}, the k-blow-

up of Fi, denoted by Fk
i , is the graph obtained by replacing every vertex v of Tj with kj different

vertices where a copy of u is adjacent to a copy of v in Fk
i if and only if u is adjacent to v in Fi (see

Figure 2 for Fk
1 ). Note that the blow-up graph Fk

i is also K4-free. We denote the kj copies of Tj by

T
(1)
j , . . . , T

(kj)
j for j ∈ {1, 2, 3}. We see that Pk

i = {T (1)
1 , . . . , T

(k1)
1 , T

(1)
2 , . . . , T

(k2)
2 , T

(1)
3 , . . . , T

(k3)
3 } is

2There are 11 triangles in F1: abc, ace, ach, aef, bci, bgi, chi, def, efg, fgi, ghi.
3There are 14 triangles in F2: abc, abf, abh, acd, adf, bgh, cde, cdi, def, deg, dfi, dgi, egh, ghi.
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Figure 2: Graph Fk
1 with the greedy partition Pk

1 .

a greedy partition of Fk
i for i ∈ {1, 2}. It is not hard to see that v(Fk

1 ) = 3(k1 + k2 + k3), e(F
k
1 ) =

3(k21 + k22 + k23) + 4k1k2 + 5k1k3 + 4k2k3, r(P
k
1 ) = k1 + k2 + k3 and t(Fk

1 ) = k31 + k32 + k33 + k21k2 +

2k21k3 + k22k1 + k22k3 + 2k23k1 + k23k2. Thus this yields

t(Fk
1 )− r(Pk

1 )(e(F
k
1 )− r(Pk

1 )(v(F
k
1 )− r(Pk

1 ))) = −k1k2k3 < 0.

Similarly, it is also not hard to see that v(Fk
2 ) = 3(k1+k2+k3), e(F

k
2 ) = 3(k21 +k22 +k23)+5k1k2+

4k1k3+5k2k3, r(P
k
2 ) = k1+ k2+ k3 and t(Fk

2 ) = k31 + k32 + k33 +2k21k2+ k21k3+2k22k1+2k22k3+ k23k1+

2k23k2 + k1k2k3. Thus this yields

t(Fk
2 )− r(Pk

2 )(e(F
k
2 )− r(Pk

2 )(v(F
k
2 )− r(Pk

2 ))) = −k1k2k3 < 0.

Therefore the graphs Fk
1 with greedy partition Pk

1 and Fk
2 with greedy partition Pk

2 are counterexam-

ples to Conjecture 1.3. Moreover, as n = 3(k1 + k2 + k3), the discrepancy r(e− r(n− r))− t = k1k2k3

approaches infinity as n → ∞, which completes the proof of Theorem 1.4.

2.2 Counterexamples of Type II

We define two graphs F3 and F4 as follows. Let T1 = {a, b, c}, T2 = {d, e, f}, and T3 = {g, h, i} be

three disjoint triangles.

- The graph F3: Let V (F3) = T1 ∪ T2 ∪ T3 and E(F3) consists of 5 edges between T1 and T2, 5

edges between T2 and T3, and 3 edges between T1 and T3 (see Figure 3, on left).

It is easy to see that v(F3) = 9, e(F3) = 22 and t(F3) = 13.4 Since any 4 vertices induce at most 2

4There are 13 triangles in F3: abc, abf, abh, acd, adf, bgh, cde, def, deg, dfi, dgi, egh, ghi.
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triangles, F3 is K4-free.

Let T ′
1 = {a, b, c} and T ′

3 = {f, g, h} be two disjoint triangles and T ′
2 = {d, e} be an edge.

- The graph F4: Let V (F4) = T ′
1 ∪ T ′

2 ∪ T ′
3 and E(F4) consists of 3 edges between T ′

1 and T ′
2, 3

edges between T ′
2 and T ′

3, and 5 edges between T ′
1 and T ′

3 (see Figure 3, on right).

It is easy to see that v(F4) = 8, e(F4) = 18 and t(F4) = 10.5 Since any 4 vertices induce at most 2

triangles, F4 is also K4-free.
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2

T ′
3

Figure 3: Graphs F3 (left) and F4 (right).

Proof of Theorem 1.4 (Type II). While F3 and F4 are not counterexamples to Conjecture 1.3, some

blow-ups of these graphs are. Indeed, by a similar proof of Theorem 1.4 (Type I), for a posi-

tive integer vector k = (k1, k2, k3) ∈ Z3
+, for j ∈ {1, 2, 3}, we define Fk

3 (respectively, Fk
4 ) to

be the graph obtained by replacing every vertex v of Tj (respectively, T ′
j) with kj different ver-

tices. We denote the kj copies of Tj by T
(1)
j , . . . , T

(kj)
j for j ∈ {1, 2, 3}. We see that Pk

3 =

{T (1)
1 , . . . , T

(k1)
1 , T

(1)
2 , . . . , T

(k2)
2 , T

(1)
3 , . . . , T

(k3)
3 } is a greedy partition of Fk

3 . It is not hard to see that

v(Fk
3 ) = 3(k1 + k2 + k3), e(F

k
3 ) = 3(k21 + k22 + k23) + 5k1k2 + 3k1k3 + 5k2k3, r(P

k
3 ) = k1 + k2 + k3, and

t(Fk
3 ) = k31 + k32 + k33 + 2k21k2 + k21k3 + 2k22k1 + 2k22k3 + k23k1 + 2k23k2. Thus this yields

t(Fk
3 )− r(Pk

3 )(e(F
k
3 )− r(Pk

3 )(v(F
k
3 )− r(Pk

3 ))) = k1k3(k1 − k2 + k3).

Thus for infinitely many (k1, k2, k3) satisfying the inequality k1 + k3 < k2, the graph Fk
3 with greedy

partition Pk
3 is a counterexample to Conjecture 1.3. Moreover, as n = 3(k1+k2+k3), the discrepancy

r(e− r(n− r))− t = k1k3(k2 − k1 − k3) may approach infinity as n → ∞.

Similarly, we denote the kj copies of T ′
j by T

′(1)
j , . . . , T

′(kj)
j for j ∈ {1, 2, 3}. We see that Pk

4 =

{T
′(1)
1 , . . . , T

′(k1)
1 , T

′(1)
2 , . . . , T

′(k2)
2 , T

′(1)
3 , . . . , T

′(k3)
3 } defines a greedy partition of Fk

4 . It is not hard to

see that v(Fk
4 ) = 3k1+2k2+3k3, e(F

k
4 ) = 3k21+k22+3k23+3k1k2+5k1k3+3k2k3, r(P

k
4 ) = k1+k2+k3,

and t(Fk
4 ) = k31 + k33 + k21k2 + 2k21k3 + k22k1 + k22k3 + 2k23k1 + k23k2. Thus this yields

t(Fk
4 )− r(Pk

4 )(e(F
k
4 )− r(Pk

4 )(v(F
k
4 )− r(Pk

4 ))) = k2(k1k2 − k1k3 + k2k3).

5There are 10 triangles in F4: abc, acd, acg, ade, bch, bfh, cgh, def, efh, fgh.
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Thus for infinitely many (k1, k2, k3) satisfying the inequality k1k2 + k2k3 < k1k3, the graph Fk
4 with

greedy partition Pk
4 is a counterexample to Conjecture 1.3. Moreover, as n = 3k1 + 2k2 + 3k3, the

discrepancy r(e − r(n − r)) − t = k2(k1k3 − k1k2 − k2k3) may approach infinity as n → ∞, which

completes the proof of Theorem 1.4.

3 Proof of Theorem 1.5

In this section, we first reduce the proof of Theorem 1.5 to a key lemma (Lemma 3.2) in Subsection 3.1,

and then prove Lemma 3.2 in Subsection 3.2. A proof outline of Theorem 1.5 is also provided in

Subsection 3.1.

Throughout the rest of this section, let G be an n-vertex K4-free graph with e edges, and let

P = {T1, ..., Tr} be a greedy partition of G of size r. Since G is K4-free, each Ti has size 3, 2 or 1. Let

a, b, c be the number of cliques of size 3, 2 and 1, respectively. Thus r = a+ b+ c, and n = 3a+2b+ c.

• For 1 ≤ i < j ≤ r, we define

eij = e(G[Ti ∪ Tj ]) and tij = the number of triangles in G[Ti ∪ Tj ].

• For 1 ≤ i < j < k ≤ r, we define

eijk = e(G[Ti ∪ Tj ∪ Tk]) and tijk = the number of triangles in G[Ti ∪ Tj ∪ Tk].

3.1 Completing the Proof, Assuming Lemma 3.2

Our proof strategy of Theorem 1.5 employs double counting technique to analyze the contribution of

triangles. Specifically, by double counting the number of triangles that contribute to tijk, we can write

t as a sum of these tijk terms and a term related to tij (see equation (3)). Next, in Lemma 3.2, we

analyze how tij affects tijk locally, then apply the induction to extend the effect to the whole graph,

and thus obtain the desired lower bound on the number of triangles.

For i ∈ [3], let Mi(G;P ) be the number of triangles with three vertices lying in exactly i different

Tj ’s. Clearly, we have M1(G;P ) = a, and t(G) = M1(G;P ) + M2(G;P ) + M3(G;P ). By double

counting the number of triangles, we have

∑
1≤i<j<k≤r

tijk = M1(G;P ) ·
(
r − 1

2

)
+M2(G;P ) ·

(
r − 2

1

)
+M3(G;P )

= t(G) + (r − 3)M2(G;P ) +
a

2
(r − 1)(r − 2)− a,

which implies that

t(G) =
∑

1≤i<j<k≤r

tijk − (r − 3)M2(G;P )− a

2
(r − 1)(r − 2) + a. (3)

7



To lower bound the right-hand side of (3), we first estimateM2(G;P ). We define the pair deficiency

M0(G;P ) :=
∑

1≤i<j≤r

2(eij − 2(|Ti|+ |Tj | − 2))− a(r − 1). (4)

The following lemma states that M2(G;P ) is bounded below by the pair deficiency M0(G;P ).

Lemma 3.1. Let G be a K4-free graph with greedy partition P . Then we have M2(G;P ) ≥ M0(G;P ).

Proof. We first claim that for any 1 ≤ i < j ≤ r, we have tij ≥ 2(eij − 2(|Ti|+ |Tj | − 2)). Indeed, this

follows from case analysis of all possible sizes for Ti and Tj (which can only be 1, 2, or 3 vertices due

to the K4-free condition). We omit the detail.

Summing up all the tij ’s and by (4), we obtain that∑
1≤i<j≤r

tij ≥
∑

1≤i<j≤r

2 (eij − 2(|Ti|+ |Tj | − 2)) = M0(G;P ) + a(r − 1).

By the definition of the greedy partition, we know that G[Ta+1, ..., Tr] is triangle-free. By double

counting the number of triangles in G[Ti ∪ Tj ], we have∑
1≤i<j≤r

tij = M2(G;P ) + a(r − 1),

and this implies that M2(G;P ) ≥ M0(G;P ), which completes the proof of Lemma 3.1.

Next, we give a lower bound on the term
∑

1≤i<j<k≤r tijk in (3). We define the triple deficiency

motivated by the bound suggested in Conjecture 1.3

F0(G;P ) :=
∑

1≤i<j<k≤r

3(eijk − 3(|Ti|+ |Tj |+ |Tk| − 3)). (5)

We present our key lemma as follows and postpone the proof to Subsection 3.2.

Lemma 3.2. Let G be a K4-free graph and P be any greedy partition of G of size r. Let M2(G;P ) =

M0(G;P ) + C for some C ≥ 0, then we have
∑

1≤i<j<k≤r

tijk ≥ F0(G;P ) + (r − 2) · C − ω(P ).

Now we are ready to finish the proof of Theorem 1.5.

Proof of Theorem 1.5. By Lemma 3.1, we may assume that M2(G;P ) = M0(G;P ) + C for some

C ≥ 0. By Lemma 3.2, it follows that∑
1≤i<j<k≤r

tijk ≥ F0(G;P ) + (r − 2) · C − ω(P ). (6)

Combining (3) with (6), we have

t(G) ≥F0(G;P ) + (r − 2) · C − ω(P )− (r − 3)[M0(G;P ) + C]− a

2
(r − 1)(r − 2) + a

=F0(G;P )− (r − 3)M0(G;P )− a

2
(r − 1)(r − 2) + a− ω(P ) + C

=r(e− r(n− r))− ω(P ) + C ≥ r(e− r(n− r))− ω(P ), (7)

8



where the last equality holds by the definitions of M0(G;P ) and F0(G;P ) (see its justification in

Appendix A). This completes the proof of Theorem 1.5.

3.2 Proof of Lemma 3.2

In this subsection, we finish the proof of Lemma 3.2 by induction on r, the size of the greedy partition

P of G. First, we prove the base case for r ≤ 3 in the following claim.

Claim 3.3. Let G be a K4-free graph and P be any greedy partition of G of size r for some r ≤ 3.

Let M2(G;P ) = M0(G;P ) + C for some C ≥ 0, then we have∑
1≤i<j<k≤r

tijk ≥ F0(G;P ) + (r − 2) · C − ω(P ).

Proof. When r = 1 or 2, by definition, we have
∑

1≤i<j<k≤r tijk = F0(G;P ) = ω(P ) = 0, and we are

done. The verification of r = 3 involves detailed case analysis and computer assistance. We defer the

proof to Appendix B.

Now we are ready to finish the proof of Lemma 3.2.

Completing the proof of Lemma 3.2. By Claim 3.3, we may assume that the statement is true

for any K4-free graph with any greedy partition of size at most r−1 for some r ≥ 4. We now consider

a K4-free graph G with greedy partition P = {T1, ..., Tr} of size r.

Let a be the number of Ti’s in P of size 3. For ℓ ∈ [r], let Gℓ = G[V (G) \ Tℓ], Pℓ = P \ {Tℓ} (a

greedy partition of Gℓ of size r − 1), and let

M2(Gℓ, Tℓ) := M2(G;P )−M2(Gℓ;Pℓ).

By Lemma 3.1, suppose that M2(G;P ) = M0(G;P ) + C for some C ≥ 0. Then for ℓ ∈ [r],

M2(Gℓ;Pℓ) = M2(G;P )−M2(Gℓ, Tℓ) = M0(G;P ) + C −M2(Gℓ, Tℓ)

= M0(Gℓ;Pℓ) + [M0(G;P ) + C −M2(Gℓ, Tℓ)−M0(Gℓ;Pℓ)].

Let Cℓ := M0(G;P ) +C −M2(Gℓ, Tℓ)−M0(Gℓ;Pℓ). By Lemma 3.1 again, we have Cℓ ≥ 0 for ℓ ∈ [r].

Let Iℓ be the set of all triples (i, j, k) such that 1 ≤ i < j < k ≤ r and i, j, k ∈ [r] \ {ℓ}. By the

inductive hypothesis, we have∑
(i,j,k)∈Iℓ

tijk ≥ F0(Gℓ;Pℓ) + (r − 3) · Cℓ − ω(Pℓ). (8)

Summing up all ℓ ∈ [r], by (8) and the definition of Cℓ, we have∑
ℓ∈[r]

∑
(i,j,k)∈Iℓ

tijk ≥
∑
ℓ∈[r]

F0(Gℓ;Pℓ) + (r − 3) ·
∑
ℓ∈[r]

Cℓ −
∑
ℓ∈[r]

ω(Pℓ)

=X + (r − 3)

r(M0(G;P ) + C)−
∑
ℓ∈[r]

M2(Gℓ, Tℓ)− Y

−
∑
ℓ∈[r]

ω(Pℓ), (9)
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where X =
∑

ℓ∈[r] F0(Gℓ;Pℓ), and Y =
∑

ℓ∈[r]M0(Gℓ;Pℓ).

For the left-hand side of (9), by double counting the contribution of tijk, we have∑
ℓ∈[r]

∑
(i,j,k)∈Iℓ

tijk = (r − 3) ·
∑

1≤i<j<k≤r

tijk. (10)

Recall that F0(G;P ) =
∑

1≤i<j<k≤r 3(eijk − 3(|Ti|+ |Tj |+ |Tk| − 3)) (see (5)), for any triple 1 ≤ i <

j < k ≤ r, the term 3(eijk − 3(|Ti|+ |Tj |+ |Tk| − 3)) is counted r − 3 times in X. Consequently,

X = (r − 3) · F0(G;P ). (11)

Similarly, by the definition of M0(G;P ) =
∑

1≤i<j≤r 2(eij −2(|Ti|+ |Tj |−2))−a(r−1) (see (4)), each

term 2(eij − 2(|Ti|+ |Tj | − 2)) is counted r− 2 times in Y . Moreover, the term a(r− 2) appears r− a

times in Y (for ℓ ∈ [r] \ [a]), while the term (a− 1)(r − 2) appears a times in Y (for ℓ ∈ [a]). Thus,

Y = (r − 2)
∑

1≤i<j≤r

2(eij − 2(|Ti|+ |Tj | − 2))− a(r − 2)(r − a)− (a− 1)(r − 2)a

= (r − 2)
∑

1≤i<j≤r

2(eij − 2(|Ti|+ |Tj | − 2))− a(r − 1)(r − 2) = (r − 2) ·M0(G;P ). (12)

Finally, by double counting the number of triangles and induced subgraphs isomorphic to F1, F2, F3

or F4 contributing to M2(G;P ) and ω(P ), respectively, we have∑
ℓ∈[r]

M2(Gℓ, Tℓ) = 2M2(G;P ), and
∑
ℓ∈[r]

ω(Pℓ) = (r − 3) · ω(P ). (13)

Combining equations (10), (11), (12), and (13) with inequality (9), we obtain that

(r − 3)
∑

1≤i<j<k≤r

tijk ≥(r − 3) · F0(G;P ) + (r − 3) · [r(M0(G;P ) + C)− 2M2(G;P )−

(r − 2) ·M0(G;P )]− (r − 3) · ω(P ).

Since M2(G;P ) = M0(G;P ) + C, we conclude that∑
1≤i<j<k≤r

tijk ≥ F0(G;P ) + 2M0(G;P )− 2M2(G;P ) + rC − ω(P )

= F0(G;P ) + (r − 2) · C − ω(P ),

which completes the proof of Lemma 3.2.

4 Concluding Remarks

In this paper, we first disprove the assertion in Conjecture 1.3, proposed by Győri and Keszegh [7],

concerning the number t(G) of triangles in K4-free graphs G under size and greedy partition con-

straints. Second, we provide a corrected lower bound, showing that t(G) ≥ r(e − r(n − r)) − ω(P )

for any n-vertex K4-free graph G with e edges and any greedy partition P of size r. It would be

10



interesting to further improve this bound, particularly the term involving ω(P ).

We remark that the bound given by Theorem 1.5 can be tight for infinitely many K4-free graphs.

Let G be any complete 3-partite graph with parts X,Y and Z. Suppose that the sizes of X,Y and Z

are x, y and z, respectively and x ≥ y ≥ z. It is easy to see that the greedy partition P of G is unique,

which consists of z triangles, y − z edges and x − y isolated vertices. Thus we have n = x + y + z,

e = xy + xz + yz, r = r(P ) = x, and moreover it is easy to see that ω(P ) = 0. By Theorem 1.5, we

have xyz = t ≥ r(e − r(n − r)) = xyz, thus our theorem is tight for complete 3-partite graph. For

any positive integer vector k = (k1, k2, k3) ∈ Z3
+ and i ∈ {1, 2}, Theorem 1.5 is also tight for graphs

Fk
i that we constructed in Subsection 2.1, since the value ω(Pk

i ) = k1k2k3 exactly matches the gap

between t and r(e− r(n− r)).

Our second remark concerns the maximum of the quantity g(G,P ) as a function of n. Formally,

let g(n) = max(G,P ) g(G,P ), where the maximum is taken over all n-vertex K4-free graphs G and

all greedy partitions P of G. We claim that g(n) = Θ(n3). Indeed, for any greedy partition P of G

of size r, ω(P ) ≤
(
r
3

)
≤

(
n
3

)
. By Theorem 1.5, we have t ≥ r(e − r(n − r)) −

(
n
3

)
, which yields that

g(n) ≤
(
n
3

)
= O(n3). On the other hand, when 9 | n, let k = (n9 ,

n
9 ,

n
9 ). Consider the graph Fk

1 and its

greedy partition Pk
1 defined in Subsection 2.1 (when 9 ∤ n, just consider a suitable n-vertex subgraph

of Fk
1 for k = (⌈n9 ⌉, ⌈

n
9 ⌉, ⌈

n
9 ⌉)). It follows that r(Pk

1 )(e(F
k
1 ) − r(Pk

1 )(n − r(Pk
1 ))) − t(Pk

1 ) = k1k2k3,

which implies that g(n) = Ω(n3), as desired.

Finally, it is worth noting that, although the counterexamples in Section 2 disprove the assertion of

Conjecture 1.3 on t(G), they do not violate the desired inequality te(G) ≥ e−r(n−r). As a consequence

of Theorem 1.5, when ω(P ) < r, applying the lemma of Huang and Shi [9] that te(G) ≥ t(G)/r(P ),

we see that the lower bound on te in Conjecture 1.3 holds. It remains an interesting open question

whether te(G) ≥ e− r(n− r) holds in general.
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Appendix A: Justification of the inequality (7)

Starting from inequality (7), it suffices to show that

F0(G;P )− (r − 3)M0(G;P )− a

2
(r − 1)(r − 2) + a = r(e− r(n− r)).

Since n = 3a+ 2b+ c and r = a+ b+ c, we have 3a+ b = n− r+ a. From the definition of M0(G;P )

in (4), we obtain that

M0(G;P ) =2
∑

1≤i<j≤r

eij − 4n(r − 1) + 8

(
r

2

)
− a(r − 1) = 2e+ 2(3a+ b)(r − 2)− (r − 1)(4n− 4r + a)

=2e+ 2(n− r + a)(r − 2)− (r − 1)(4n− 4r + a) = 2e− 2(n− r)r + a(r − 3). (14)

Similarly, by the definition of F0(G;P ) in (5), we have

F0(G;P ) =
∑

1≤i<j<k≤r

3(eijk − 3(|Ti|+ |Tj |+ |Tk| − 3)) = 3
∑

1≤i<j<k≤r

eijk − 9n

(
r − 1

2

)
+ 27

(
r

3

)

=3(e− 3a− b)(r − 2) + 3(3a+ b)

(
r − 1

2

)
− 9

2
(n− r)(r − 1)(r − 2)

=3e(r − 2)− 3(n− r + a)(r − 2) +
3

2
(n− r + a)(r − 1)(r − 2)− 9

2
(n− r)(r − 1)(r − 2)

=3e(r − 2)− 3(n− r)r(r − 2) +
3

2
a(r − 2)(r − 3). (15)

Combining (14) and (15), we obtain that

F0(G;P )− (r − 3)M0(G;P )− a

2
(r − 1)(r − 2) + a

=3e(r − 2)− 3(n− r)r(r − 2) +
3

2
a(r − 2)(r − 3)− (r − 3)[2e− 2(n− r)r + a(r − 3)]− a

2
r(r − 3)

=er − (n− r)r2 +
a

2
(r − 3)[3(r − 2)− 2(r − 3)− r] = r(e− r(n− r)),

which completes the proof of (7).
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Appendix B: Proof of Claim 3.3

Note that, for r = 3, we have F0(G;P ) = 3(e(G) − 3(v(G) − 3)). We point out that it is always the

case that ω(P ) ∈ {0, 1}. The claim reduces to proving

t(G) ≥ F0(G;P ) +M2(G;P )−M0(G;P )− ω(P ). (16)

Let P = {T1, T2, T3} and let a, b, c be the number of cliques of size 3, 2 and 1, respectively.

Suppose |T1| ≤ 2, i.e., a = 0. By the definition of greedy partition, we have t(G) = M2(G;P ) =

ω(P ) = 0, andM0(G;P ) =
∑

1≤i<j∈[3] 2(eij−2(|Ti|+|Tj |−2))−2a = 2(e+v(G)−3)−8v(G)+24. Thus

inequality (16) is equivalent to e(G)− 3v(G) + 9 ≤ 0, which holds by straightforward case analysis.

We verify the remaining subcases for r = 3 with |T1| = 3 (i.e., a ≥ 1) via computer assistance (see

the program below for details). For every K4-free graph with parameters (a, b, c) where a ≥ 1, our

program verifies whether or not the input graph satisfies the inequality

t(G) ≥ F0(G;P ) +M2(G;P )−M0(G;P ). (17)

If it satisfies, then evidently it satisfies (16); otherwise, the program identifies graphs that do not satisfy

this inequality (called Counterexamples to (17)), along with the parameters {t(G),M2(G;P ), e(G)}.
These are summarized in Table 1. Note that ω(P ) = 1 holds for all Counterexamples to (17). After

thorough calculations, inequality (16) holds for all Counterexamples to (17), thus Claim 3.3 holds and

we are done.

(a, b, c) M0(G;P ) F0(G;P ) Precise expression of Inequality (17)
Counterexamples to (17) and

parameters
{t(G),M2(G;P ), e(G)}

(3, 0, 0) 2e− 36 3e− 54 t(G) ≥ M2(G;P ) + e(G)− 18
F1 : {11, 8, 22}
F2 : {14, 10, 23}
F3 : {13, 10, 22}

(2, 1, 0) 2e− 30 3e− 45 t(G) ≥ M2(G;P ) + e(G)− 15 F4 : {10, 8, 18}

(2, 0, 1) 2e− 24 3e− 36 t(G) ≥ M2(G;P ) + e(G)− 12 ∅

(1, 2, 0) 2e− 24 3e− 36 t(G) ≥ M2(G;P ) + e(G)− 12 ∅

(1, 1, 1) 2e− 18 3e− 27 t(G) ≥ M2(G;P ) + e(G)− 9 ∅

(1, 0, 2) 2e− 12 3e− 18 t(G) ≥ M2(G;P ) + e(G)− 6 ∅

Table 1: All the subcases for r = 3 with |T1| = 3 in Claim 3.3.
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The program for r = 3 with |T1| = 3 in Claim 3.3.

1 import networkx as nx

2 import itertools

3 import os

4 import matplotlib.pyplot as plt

5

6 class GraphSolution:

7 # Initialize the graphs: we first fix the structure between two of {T_1,T_2,T_3} (self.isomorphism_list) and then traverse all the remaining edges

(self.possible_add_edge1/2).

8 # For different types, the difference between the inequalities is stored in self.constant, i.e., if t(G)<m_2(G)+e(G)-self.constant.

9 def __init__(self):

10 self.graph = None

11 self.isomorphism_list = []

12 self.possible_add_edge1 = []

13 self.possible_add_edge2 = []

14 self.constant = 0

15 self.ori_tri_list = [] # The number of triangles in {G[T_1],G[T_2]}, {G[T_1],G[T_3]}, and {G[T_2],G[T_3]}.

16 self.subgraphs = [] # The induced subgraphs on vertex sets T_1UT_2, T_1UT_3, and T_2UT_3.

17 self.save_root = ’./graph_result’

18

19 # Verify if the graph G is k_4-free by checking the number of edges of subgraphs induced on any 4 vertices of G.

20 def is_k4_free(self, G=None):

21 if G is None:

22 G = self.graph

23 for nodes in itertools.combinations(G.nodes, 4):

24 subgraph = G.subgraph(nodes)

25 if subgraph.number_of_edges() == 6:

26 return False

27 return True

28

29 # Calculate m_2(G) by adding up m_2(G[T_1UT_2]), m_2(G[T_1UT_3]), and m_2(G[T_2UT_3]).

30 def triangle_nums_bt_tri(self, G=None):

31 if G is None:

32 G = self.graph

33 count = 0

34 for i, selected_nodes in enumerate(self.subgraphs):

35 subgraph = G.subgraph(selected_nodes)

36 triangle_count = sum(nx.triangles(subgraph).values()) // 3 - self.ori_tri_list[i]

37 count += triangle_count

38 return count

39

40 # Determine whether the graph is a new graph up to isomorphism.

41 def isomorphic_list(self, graph_list, new_graph):

42 i = 0

43 for _,graph in enumerate(graph_list):

44 GM = nx.isomorphism.GraphMatcher(graph,new_graph)

45 if GM.is_isomorphic():

46 break

47 else:

48 i += 1

49 if i == len(graph_list):

50 graph_list.append(new_graph)

51 else:

52 new_graph = None

53 return graph_list, new_graph

54

55 # Initialize graphs according to different types.

56 def initialize_graph(self, graph_type):

57 initializers = {

58 1: self._initial_graph_1,

59 2: self._initial_graph_2,

60 3: self._initial_graph_3,

61 4: self._initial_graph_4,

62 5: self._initial_graph_5,

63 6: self._initial_graph_6,

64 }

65 # Read graphs, and the structure between the two given cliques.

66 # Traverse all the remaining edges, and select different inequalities.

67 if graph_type in initializers:

68 self.graph, self.isomorphism_list, self.possible_add_edge1, self.possible_add_edge2, self.constant, self.ori_tri_list, self.subgraphs =

initializers[graph_type]()

69 else:

70 raise ValueError("Invalid graph type")

71

72 # Add edges and verify if the inequalities hold.

73 def forward(self):

74 os.makedirs(self.save_root, exist_ok=True)

75 graph_list = []

76

77 count = 0
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78 # Read subgraphs induced on the vertex set of the two fixed cliques (G_1).

79 for i, isomorphism in enumerate(self.isomorphism_list):

80 print(f’Starting to add {i+1} isomorphism’)

81 # Traverse all the subgraphs induced on the vertex set of one of the undetermined structure between two cliques (G_2).

82 for j in range(1, len(self.possible_add_edge1) + 1):

83 combinations1 = list(itertools.combinations(self.possible_add_edge1, j))

84 # Traverse all the subgraphs induced on the vertex set of the other undetermined structure between two cliques (G_3).

85 for k in range(1, len(self.possible_add_edge2) + 1):

86 combinations2 = list(itertools.combinations(self.possible_add_edge2, k))

87 for combo1 in combinations1:

88 for combo2 in combinations2:

89 G_new = self.graph.copy()

90 G_new.add_edges_from(isomorphism) # Add edges for subgraph G_1.

91 G_new.add_edges_from(combo1) # Add edges for subgraph G_2.

92 G_new.add_edges_from(combo2) # Add edges for subgraph G_3.

93 # Verify if the graph G is k_4-free

94 if self.is_k4_free(G_new):

95 num_edge = G_new.number_of_edges() # Calculate the number of edges of G.

96 triangle_count = sum(nx.triangles(G_new).values()) // 3 # Calculate the number of triangles of G.

97 m2_num = self.triangle_nums_bt_tri(G_new) # Calculate m_2(G).

98 # Verify if t(G)<m_2(G)+e(G)-self.constant

99 if triangle_count < m2_num + num_edge - self.constant:

100 graph_list, new_graph = self.isomorphic_list(graph_list, G_new) # Determine whether the graph is a new graph.

101 if new_graph is not None:

102 plt.figure(figsize=(8, 6))

103 pos = nx.spring_layout(G_new) # Select a layout algorithm

104 nx.draw(G_new, with_labels=True, node_color=’lightblue’, edge_color=’gray’)

105 filename = os.path.join(self.save_root, f’graph_edge={num_edge}_triangle={triangle_count}_m2={m2_num}_{count}.png’)

106 count += 1

107 plt.savefig(filename) # Save the graph.

108 plt.close()

109

110 # Type I (a=3, and T_1={1,2,3}, T_2={4,5,6}, T_3={7,8,9}).

111 def _initial_graph_1(self):

112 G = nx.Graph()

113 G.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8, 9])

114 G.add_edges_from([(1, 2), (1, 3), (2, 3), (4, 5), (4, 6), (5, 6), (7, 8), (7, 9), (8, 9)])

115 # Different K_4-free graphs on vertex set T_1UT_2.

116 isomorphism_list = [

117 [],

118 [(1,4)], [(1,4),(1,5)], [(1,4),(2,5)], [(1,4),(1,5),(3,5)], [(1,4),(1,5),(2,6)],

119 [(1,4),(2,5),(3,6)], [(1,4),(1,5),(2,5),(2,6)], [(1,4),(1,5),(3,5),(2,6)],

120 [(1,4),(1,5),(3,4),(2,6)],

121 [(1,4),(1,5),(3,4),(2,5),(2,6)],

122 [(1,4),(1,5),(3,4),(2,5),(2,6),(3,6)]

123 ]

124 # Add possible edges between T_1 and T_3.

125 possible_add_edge1 = list(set(itertools.combinations([1, 2, 3, 7, 8, 9], 2)) - set(G.edges))

126 # Add possible edges between T_2 and T_3.

127 possible_add_edge2 = list(set(itertools.combinations([4, 5, 6, 7, 8, 9], 2)) - set(G.edges))

128 # self_constant=18, i.e., check if t(G)<m_2(G)+e(G)-18

129 return G, isomorphism_list, possible_add_edge1, possible_add_edge2, 18, [2,2,2], [[1, 2, 3, 4, 5, 6], [1, 2, 3, 7, 8, 9], [4, 5, 6, 7, 8, 9]]

130

131 # Type II (a=2, b=1, and T_1={1,2,3}, T_2={4,5,6}, T_3={7,8}).

132 def _initial_graph_2(self):

133 G = nx.Graph()

134 G.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8])

135 G.add_edges_from([(1, 2), (1, 3), (2, 3), (4, 5), (4, 6), (5, 6), (7, 8)])

136 isomorphism_list = [

137 [],

138 [(1,4)], [(1,4),(1,5)], [(1,4),(2,5)], [(1,4),(1,5),(3,5)], [(1,4),(1,5),(2,6)],

139 [(1,4),(2,5),(3,6)], [(1,4),(1,5),(2,5),(2,6)], [(1,4),(1,5),(3,5),(2,6)],

140 [(1,4),(1,5),(3,4),(2,6)],

141 [(1,4),(1,5),(3,4),(2,5),(2,6)],

142 [(1,4),(1,5),(3,4),(2,5),(2,6),(3,6)]

143 ]

144 possible_add_edge1 = list(set(itertools.combinations([1, 2, 3, 7, 8], 2)) - set(G.edges))

145 possible_add_edge2 = list(set(itertools.combinations([4, 5, 6, 7, 8], 2)) - set(G.edges))

146 # self_constant=15, i.e., check if t(G)<m_2(G)+e(G)-15

147 return G, isomorphism_list, possible_add_edge1, possible_add_edge2, 15, [2,1,1], [[1, 2, 3, 4, 5, 6], [1, 2, 3, 7, 8], [4, 5, 6, 7, 8]]

148

149 # Type III (a=2, c=1, and T_1={1,2,3}, T_2={4,5,6}, T_3={7}).

150 def _initial_graph_3(self):

151 G = nx.Graph()

152 G.add_nodes_from([1, 2, 3, 4, 5, 6, 7])

153 G.add_edges_from([(1, 2), (1, 3), (2, 3), (4, 5), (4, 6), (5, 6)])

154 isomorphism_list = [

155 [],

156 [(1,4)], [(1,4),(1,5)], [(1,4),(2,5)], [(1,4),(1,5),(3,5)], [(1,4),(1,5),(2,6)],

157 [(1,4),(2,5),(3,6)], [(1,4),(1,5),(2,5),(2,6)], [(1,4),(1,5),(3,5),(2,6)],

158 [(1,4),(1,5),(3,4),(2,6)],
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159 [(1,4),(1,5),(3,4),(2,5),(2,6)],

160 [(1,4),(1,5),(3,4),(2,5),(2,6),(3,6)]

161 ]

162 possible_add_edge1 = list(set(itertools.combinations([1, 2, 3, 7], 2)) - set(G.edges))

163 possible_add_edge2 = list(set(itertools.combinations([4, 5, 6, 7], 2)) - set(G.edges))

164 # self_constant=12, i.e., check if t(G)<m_2(G)+e(G)-12.

165 return G, isomorphism_list, possible_add_edge1, possible_add_edge2, 12, [2,1,1], [[1, 2, 3, 4, 5, 6], [1, 2, 3, 7], [4, 5, 6, 7]]

166

167 # Type IV (a=1, b=2, and T_1={1,2,3}, T_2={4,5}, T_3={6,7}).

168 def _initial_graph_4(self):

169 G = nx.Graph()

170 G.add_nodes_from([1, 2, 3, 4, 5, 6, 7])

171 G.add_edges_from([(1, 2), (1, 3), (2, 3), (4, 5), (6, 7)])

172 # Different K_3-free graphs on vertex set T_2UT_3.

173 isomorphism_list = [[], [(4,6)], [(4,6),(5,7)]]

174 # Add possible edges between T_1 and T_2.

175 possible_add_edge1 = list(set(itertools.combinations([1, 2, 3, 4, 5], 2)) - set(G.edges))

176 # Add possible edges between T_1 and T_3.

177 possible_add_edge2 = list(set(itertools.combinations([1, 2, 3, 6, 7], 2)) - set(G.edges))

178 # self_constant=12, i.e., check if t(G)<m_2(G)+e(G)-12.

179 return G, isomorphism_list, possible_add_edge1, possible_add_edge2, 12, [1,1,0], [[1, 2, 3, 4, 5], [1, 2, 3, 6, 7], [4, 5, 6, 7]]

180

181 # Type V (a=1, b=1, c=1, and T_1={1,2,3}, T_2={4,5}, T_3={6}).

182 def _initial_graph_5(self):

183 G = nx.Graph()

184 G.add_nodes_from([1, 2, 3, 4, 5, 6])

185 G.add_edges_from([(1, 2), (1, 3), (2, 3), (4, 5)])

186 # Different K_3-free graphs on vertex set T_2UT_3.

187 isomorphism_list = [[], [(4,6)]]

188 possible_add_edge1 = list(set(itertools.combinations([1, 2, 3, 4, 5], 2)) - set(G.edges))

189 possible_add_edge2 = list(set(itertools.combinations([1, 2, 3, 6], 2)) - set(G.edges))

190 # self_constant=9, i.e., check if t(G)<m_2(G)+e(G)-9.

191 return G, isomorphism_list, possible_add_edge1, possible_add_edge2, 9, [1,1,0], [[1, 2, 3, 4, 5], [1, 2, 3, 6], [4, 5, 6]]

192

193 # Type VI (a=1, c=2, and T_1={1,2,3}, T_2={4}, T_3={5}).

194 def _initial_graph_6(self):

195 G = nx.Graph()

196 G.add_nodes_from([1, 2, 3, 4, 5])

197 G.add_edges_from([(1, 2), (1, 3), (2, 3)])

198 # Different K_2-free graphs on vertex set T_2UT_3.

199 isomorphism_list = [[]]

200 possible_add_edge1 = list(set(itertools.combinations([1, 2, 3, 4], 2)) - set(G.edges))

201 possible_add_edge2 = list(set(itertools.combinations([1, 2, 3, 5], 2)) - set(G.edges))

202 # self_constant=6, i.e., check if t(G)<m_2(G)+e(G)-6.

203 return G, isomorphism_list, possible_add_edge1, possible_add_edge2, 6, [1,1,0], [[1, 2, 3, 4], [1, 2, 3, 5], [4, 5]]

204

205 # Run all the types and output the counterexamples

206 graph_solution = GraphSolution()

207 for i in range(6,0,-1):

208 print(i)

209 graph_solution.initialize_graph(i)

210 graph_solution.forward()
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