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Weak rainbow saturation numbers of graphs

Xihe Li∗ Jie Ma∗† Tianying Xie∗

Abstract

For a fixed graph H , we say that an edge-colored graph G is weakly H-rainbow
saturated if there exists an ordering e1, e2, . . . , em of E

(

G
)

such that, for any
list c1, c2, . . . , cm of pairwise distinct colors from N, the non-edges ei in color
ci can be added to G, one at a time, so that every added edge creates a new
rainbow copy of H . The weak rainbow saturation number of H , denoted by
rwsat(n,H), is the minimum number of edges in a weaklyH-rainbow saturated
graph on n vertices. In this paper, we show that for any non-empty graph

H , the limit limn→∞

rwsat(n,H)
n

exists. This answers a question of Behague,
Johnston, Letzter, Morrison and Ogden [SIAM J. Discrete Math. (2023)]. We
also provide lower and upper bounds on this limit, and in particular, we show
that this limit is nonzero if and only if H contains no pendant edges.

AMS Subject Classification (2020): 05C15, 05C35

1 Introduction

Typical extremal graph theory problems ask for the maximum or minimum value of parameters
of graphs with certain properties. A classical example falling within this framework is the
Turán problem which asks, for a fixed graph H, what is the maximum number of edges in
an H-free1 graph on n vertices. Another classical problem is the saturation problem which
was initiated by Zykov [30] in the 1940s and first studied by Erdős, Hajnal and Moon [11]
in the 1960s. For a fixed graph H, a graph G is called H-saturated if G is H-free but
adding any non-edge to G creates a copy of H. The saturation number sat(n,H) is the
smallest number of edges in an H-saturated graph on n vertices. Erdős, Hajnal and Moon
[11] proved that sat(n,Kt) =

(n
2

)

−
(n−t+2

2

)

, and this was generalized to the hypergraph
setting by Bollobás [5] using the well-known set-pairs inequality. A graph G is called weakly
H-saturated if there exists an ordering e1, e2, . . . , em of the non-edges of G such that for
each i ∈ [m], the graph Gi := G + {e1, . . . , ei} contains a copy of H containing ei as an
edge. The weak saturation number wsat(n,H) is the smallest number of edges in a weakly
H-saturated graph on n vertices. In [6], Bollobás conjectured that wsat(n,Kt) = sat(n,Kt).
This conjecture was confirmed by Kalai [19] using exterior algebra, and reproved by Alon [2]
using the skewed version of the Bollobás set-pairs inequality. Moreover, Alon [2] proved that

the limit limn→∞
wsat(n,H)

n exists for every non-empty graph H. The hypergraph version of
Alon’s result was conjectured by Tuza [29] in 1992 and proved by Shapira and Tyomkyn [25]

very recently. In 1986, Tuza [27, 28] conjectured that the limit limn→∞
sat(n,H)

n exists for every
graph H, and this conjecture still remains open; see [10, Section 14] for more information.

∗School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China.
†Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.
1Given two graphs G and H , we say that G is H-free if G contains no subgraph isomorphic to H .
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The edge-coloring version of the saturation problem was raised by Hanson and Toft [17] in
1987. For a graph G, we refer to a mapping c : E(G) → N as an edge-coloring of G. A graph
with an edge-coloring is called monochromatic if all edges are colored the same. Hanson and
Toft [17] focused on the saturation problem of monochromatic cliques. A graph with an edge-
coloring is called rainbow if all edges are colored differently. The study of rainbow colored
graphs can be traced back to the Latin square decomposition problem initiated by Euler in
the 1780s. In combinatorics, many classical problems can be transferred to the problem of
finding certain rainbow substructures in edge-colored graphs, such as Ringel’s conjecture [23],
the Ryser-Brualdi-Stein conjecture [24] and the Caccetta-Häggkvist conjecture [1]. In the
last two decades, rainbow generalizations of Turán-type problems [18, 20] and Ramsey-type
problems [14, 22, 26] became an active research area. The rainbow generalization of saturation
problems was first studied by Barrus, Ferrara, Vandenbussche and Wenger [3] in 2017. They
considered saturation problems of rainbow subgraphs in an edge-colored host graph with a
bounded number of colors.

For a fixed graph H, we say that an edge-colored graph G is H-rainbow saturated if G does
not contain a rainbow copy of H, but the addition of any non-edge in any color from N creates
a rainbow copy of H. Girão, Lewis and Popielarz [16] defined the rainbow saturation number
of H, denoted by rsat(n,H), to be the minimum number of edges in an H-rainbow saturated
graph on n vertices. Girão, Lewis and Popielarz [16] conjectured that the rainbow saturation
number of any non-empty graph is at most linear in n. Recently, Behague, Johnston, Letzter,
Morrison and Ogden [4] confirmed this conjecture. For more related works, we refer the
interested reader to [7, 8, 9, 21]. For a fixed graph H, we say that an edge-colored graph
G is weakly H-rainbow saturated if there exists an ordering e1, e2, . . . , em of E

(

G
)

such that,
for any list c1, c2, . . . , cm of pairwise distinct colors from N, the non-edges ei in color ci can
be added to G, one at a time, so that every added edge creates a new rainbow copy of H.
Behague et al. [4] defined the weak rainbow saturation number of H, denoted by rwsat(n,H),
to be the minimum number of edges in a weakly H-rainbow saturated graph on n vertices.2

As pointed out in [4, Section 6], in the definition of the weak rainbow saturation number,
we require the collection of added edges to receive pairwise distinct colors, so in particular, we
exclude the possibility that all added edges have the same color, in which case the previously
added edges do not contribute to making new rainbow copies and the problem reduces to the
standard rainbow saturation number. Moreover, note that c1, c2, . . . , cm are colors from N,
so some of them might be used within the original edges of G. Furthermore, for a weakly
H-rainbow saturated graph G, we do not require G itself to be rainbow H-free.

By the definitions, we have wsat(n,H) ≤ rwsat(n,H) ≤ rsat(n,H). Hence, the above
mentioned result of Behague et al. [4] on rsat(n,H) implies that rwsat(n,H) = O(n) for any
non-empty graph H. Extending the result of Alon [2], Behague et al. posed the following
question.

Question 1.1 ([4]). For any non-empty graph H, does the limit limn→∞
rwsat(n,H)

n exist?

In this paper, we fully resolve this question by proving the following theorem.

Theorem 1.2. For any non-empty graph H, the limit limn→∞
rwsat(n,H)

n exists.

In the special case thatH is a complete graph, Behague et al. [4] proved that rwsat(n,Kt) ≤
(t + 2

√
2t)n + ct for t ≥ 3, where ct is a constant depending only on t. They asked whether

2In the case that there exists no H-rainbow saturated (resp., weakly H-rainbow saturated) graph on n

vertices, we define rsat(n,H) := |E(Kn)| (resp., rwsat(n,H) := |E(Kn)|).
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rwsat(n,Kt) ≤ tn + O(1) holds for every integer t ≥ 3 and sufficiently large n. This ques-
tion was solved by Chakraborti, Hendrey, Lund and Tompkins [9] recently by showing that
rwsat(n,Kt) ≤ (t − 1)n + O(1) holds for every integer t ≥ 3. Our second result extends this
result form complete graphs to general graphs. In particular, our result implies that the limit
limn→∞

rwsat(n,H)
n is nonzero if and only if H contains no pendant edges. An edge is pendant

if one of its endpoints has degree 1. For any graph H and vertex v ∈ V (H), let NH(v) be
the neighborhood of v in H, and let dH(v) := |NH(v)| be the degree of v. Let δ(H) be the
minimum degree of H and let δ′(H) := min{dH(v) : v ∈ V (H), dH (v) 6= 0}.
Theorem 1.3. Let H be a non-empty graph. Then the following statements hold.

(i) If H contains a pendant edge, then limn→∞
rwsat(n,H)

n = 0.

(ii) If H contains no pendant edge, then 1
2δ

′(H) ≤ limn→∞
rwsat(n,H)

n ≤ δ′(H).

The remainder of this paper is organized as follows. In the next section, we introduce some
additional terminology and notation, and prove some lemmas that will be used in our proofs
of the main results. In Section 3, we will complete our proof of Theorem 1.2, and establish
Theorem 1.3 in a more precise form. Finally, we conclude the paper with some remarks and
open problems in Section 4.

2 Preliminaries

We begin with some additional terminology and notation. Given an edge-colored graph G
and an edge e ∈ E(G), we use cG(e) to denote the color assigned on e. Given two disjoint
vertex subsets U, V ⊆ V (G), let EG(U, V ) := {uv ∈ E(G) : u ∈ U, v ∈ V }. If U consists
of a single vertex u, we simply write EG({u}, V ) as EG(u, V ). The subscript G in cG(e),
EG(U, V ), NG(v) and dG(v) will be omitted if G is clear from the context. For a vertex
subset U ⊆ V (G), we use G[U ] to denote the edge-colored induced subgraph of G, that is,
V (G[U ]) = U , E(G[U ]) = {e ∈ E(G) : e ⊆ U}, and each edge in G[U ] receives the same color
as it receives in G. For a vertex subset V ⊆ V (G), let G− V := G[V (G) \ V ]. Given a set E
of non-edges (resp., edges) of G, let G + E (resp., G − E) be the graph obtained form G by
adding (resp., deleting) all the edges in E. If E consists of a single edge e, we simply write
G + {e} and G − {e} as G + e and G − e, respectively. Given two vertex-disjoint graphs G
and H, we use G∪H to denote the disjoint union of G and H, that is, the graph with vertex
set V (G∪H) = V (G)∪ V (H) and edge set E(G∪H) = E(G)∪E(H). We use nG to denote
the disjoint union of n copies of G.

Next, we state and prove several lemmas.

Lemma 2.1. Let n ≥ m ≥ 2 be two positive integers. Then the following statements hold.

(i) For any constant c with 0 ≤ c ≤ n−3
6 , every n-vertex graph with at most cn edges

contains an independent set of size ⌈ n
2c+1⌉.

(ii) Every subgraph of Km,n with at least m(n− 1) edges contains K⌊m

2
⌋,⌊n

2
⌋ as a subgraph.

Proof. (i) Let G be an n-vertex graph with |E(G)| ≤ cn. Then the number of edges in the
complement G of G satisfies

∣

∣E
(

G
)∣

∣ ≥
(

n

2

)

−cn =
n− 2c− 1

n
·n

2

2
=

(

1− 1

n/(2c+ 1)

)

n2

2
>

(

1− 1

⌈n/(2c+ 1)⌉ − 1

)

n2

2
.
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By Turán’s Theorem, G contains a complete subgraph of order ⌈ n
2c+1⌉, and thus G contains

an independent set of size ⌈ n
2c+1⌉.

(ii) Let G be a subgraph of Km,n with bipartition (A,B) such that |A| = m, |B| = n
and |E(G)| ≥ m(n − 1). Let A′ := {v ∈ A : d(v) ≤ n − 2} and A′′ = A \ A′. Then
|A′| ≤ 1

2 (mn−m(n − 1)) = m
2 and |A′′| ≥ m− |A′| ≥ m

2 . Take an arbitrary subset A∗ ⊂ A′′

with |A∗| = ⌊m2 ⌋. Note that every vertex v ∈ A∗ has at least n − 1 neighbors in B. Hence,
there exists a subset B∗ ⊆ B with |B∗| ≥ n− |A∗| ≥ n− m

2 ≥ n − n
2 = n

2 such that A∗ ∪B∗

induces a complete bipartite subgraph of G. The result follows.

Given a family F of graphs, let ex(n,F ) be the Turán number of F , that is, the maximum
number of edges in an n-vertex graph that contains no members of F . For any graph H,
let f(H) be the smallest integer n such that for each N ∈ {n − 1, n} we have ex(N,H ) ≤
(N
2

)

−2N−2, where H := {H−{u, v} : uv ∈ E(H)}. Note that |V (H)|−1 ≤ f(H) ≤ 5|V (H)|
(for the upper bound, see the proof of Corollary 2.3 below).

Lemma 2.2. Let H be a graph with E(H) 6= ∅, F be a complete graph of order f(H)+2, and
u, v be two distinct vertices of F . We color the edges of F such that F − {u, v} is rainbow,
and all the edges between {u, v} and V (F ) \ {u, v} form a rainbow copy of K2,n−2. Then no
matter what color is assigned on uv, there is a rainbow copy of H containing the edge uv.

Proof. The result holds trivially if |V (H)| ≤ 2, so we may assume that |V (H)| ≥ 3 in the
following argument. SinceE({u, v}, V (F )\{u, v}) forms a rainbow subgraph, we can remove at
most one vertex from V (F )\{u, v} to get a subset V ⊆ V (F )\{u, v} such that f(H)−1 ≤ |V | ≤
f(H) and E({u, v}, V ) contains no edges of the color c(uv). Let F ′ be the subgraph of F [V ]
consisting of all its edges using colors from N\({c(e) : e ∈ E({u, v}, V )}∪{c(uv)}). Since F −
{u, v} is rainbow and f(H)−1 ≤ |V | ≤ f(H), we have |E(F ′)| ≥

(

|V |
2

)

−2|V |−1 > ex(|V |,H ).
This implies that F ′ contains a copy H∗ of H − {x, y} for some edge xy ∈ E(H). Note that
H∗ is rainbow and contains no edges using colors from {c(e) : e ∈ E({u, v}, V )} ∪ {c(uv)}.
This implies that F [V (H∗) ∪ {u, v}] contains a rainbow copy of H containing the edge uv.
The result follows.

Corollary 2.3. Let H be a graph with E(H) 6= ∅, F be a copy of Kn with n ≥ 5|V (H)|, and
u, v be two distinct vertices of F . We color the edges of F such that F − {u, v} is rainbow,
and all the edges between {u, v} and V (F ) \ {u, v} form a rainbow copy of K2,n−2. Then no
matter what color is assigned on uv, there is a rainbow copy of H containing the edge uv.

Proof. We first show that f(H) ≤ 5|V (H)|. To this end, let G be a graph on N ≥ 5|V (H)|−1
vertices with |E(G)| =

(N
2

)

− 2N − 2. Then |E
(

G
)

| = 2N +2. Applying Lemma 2.1 (i) with

c = 2N+2
N to G, we can find an independent set U of G with |U | ≥ N

2c+1 ≥ |V (H)| − 2. This
implies that G[U ] is a complete subgraph on at least |V (H)| − 2 vertices, so G contains some
graph H∗ ∈ H . This implies that f(H) ≤ 5|V (H)|. Let V ⊆ V (F ) \ {u, v} with |V | = f(H).
The result follows by applying Lemma 2.2 to F [V ∪ {u, v}].

Recall that for a weakly H-rainbow saturated graph G, we do not require G itself to be
rainbow H-free. We have the following result on weakly rainbow saturated graphs.

Lemma 2.4. For any graph H, integer n, and weakly H-rainbow saturated graph G on n
vertices, we can recolor the edges of G such that the resulting edge-colored graph G′ is rainbow
and G′ is still weakly H-rainbow saturated.
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Proof. Since G is a weakly H-rainbow saturated graph, there exists an ordering e1, e2, . . . , em
of E

(

G
)

such that, for any list c1, c2, . . . , cm of pairwise distinct colors from N, the non-edges
ei in color ci can be added to G, one at a time, so that every added edge creates a new rainbow
copy of H. Now we consider the rainbow graph G′. For an arbitrarily fixed list c′1, c

′
2, . . . , c

′
m

of pairwise distinct colors from N, we wish to show that the non-edges ei in color c′i can be
added to G′, one at a time, so that every added edge creates a new rainbow copy of H.

Let G′
0 := G′, and for each i ∈ [m] let G′

i := G′ + {e1, . . . , ei} with c(ek) = c′k for
every k ∈ [i]. Suppose for some j ∈ [m], the non-edges ei (for each i < j) in color c′i can
be added to G′

i−1 so that every added edge creates a new rainbow copy of H, but adding
ej in color c′j to G′

j−1 does not create any new rainbow copy of H. Since G is weakly H-
rainbow saturated, the addition of ej creates at least one copy of H. Let A be the set of all
underlying copies3 of H in G + {e1, . . . , ej} containing ej . Then for any A ∈ A, A is a copy
of H but A is not a rainbow subgraph of G′

j . Since G′ is rainbow and c′1, . . . , c
′
j are pairwise

distinct, there exists at most one edge e′i in G′ with cG′(e′i) = c′i for each i ∈ [j]. For each
i ∈ [j], let Ai := {A ∈ A : G′ contains a unique edge e′i with cG′(e′i) = c′i and ei, e

′
i ∈ E(A)}.

Let i1, . . . , it be all the indices such that Aiℓ 6= ∅ for each ℓ ∈ [t]. Note that Ai1 , . . . ,Ait

form a partition of A. Then for any list c1, c2, . . . , cm of pairwise distinct colors from N with
ciℓ = cG(e

′
iℓ
) for each ℓ ∈ [t], we cannot add the non-edges ei in color ci to G, one at a time,

so that every added edge creates a new rainbow copy of H. This contradiction completes the
proof of Lemma 2.4.

We shall also use the following version of Fekete’s Subadditive Lemma.

Lemma 2.5 ([15]). Let c and t be two positive constants. For any sequence {an}n∈N with
am+n ≤ am + an + c for every m,n ≥ t, the limit limn→∞

an
n exists.

3 Proofs of Theorems 1.2 and 1.3

We first present our proof of Theorem 1.2. Our proof is inspired by the work of Alon in [2].

Proof of Theorem 1.2 Let t = max{⌈c(H)⌉, |V (H)|, 3}, where c(H) is a constant such that
rsat(n,H) ≤ c(H)n (guaranteed by the result of [4]). Then rwsat(n,H) ≤ rsat(n,H) ≤ tn.
We shall show that for every m1,m2 ≥ t10,

rwsat(m1 +m2,H) ≤ rwsat(m1,H) + rwsat(m2,H) + t14. (1)

For each i ∈ [2], let Gi be a weakly H-rainbow saturated graph on mi ≥ t12 vertices with
|E(Gi)| = rwsat(mi,H). By Lemma 2.4, we may further assume that G1 and G2 are two
disjoint rainbow graphs and they have no common colors, i.e., G1 ∪G2 is rainbow. For each
i ∈ [2], let Xi := {v ∈ V (Gi) : dGi

(v) ≥ mi

4 }. Note that |Xi| ≤ 2|E(Gi)|
mi/4

≤ 2tmi

mi/4
= 8t for each

i ∈ [2]. By Lemma 2.1 (i), for each i ∈ [2], Gi contains an independent set of size at least
mi

2t+1 > t6 + 8t, so we may assume that Ai ⊆ V (Gi) \ Xi is an independent set of Gi with

|Ai| = t6. Let G be the (m1 +m2)-vertex graph obtained from G1 ∪ G2 by adding all edges
between X1 ∪A1 and X2 ∪A2, and we color the new edges such that G is rainbow. Note that
|E(G)| = |E(G1)| + |E(G2)| + |X1 ∪ A1||X2 ∪ A2| ≤ rwsat(m1,H) + rwsat(m2,H) + t14. In
order to prove Inequality (1), it suffices to show that G is weakly H-rainbow saturated.

3For an edge-colored graph F , the underlying copy of F is an uncolored graph consisting of the vertex set
V (F ) and edge set E(F ).
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Let a, b and s be the number of non-edges of G1, G2 and G, respectively. Then s =
a+ b+m1m2 − |X1 ∪A1||X2 ∪A2|. We shall show that there exists an ordering e1, e2, . . . , es
of non-edges of G such that, for any list c1, c2, . . . , cs of pairwise distinct colors from N, the
non-edges ei in color ci can be added to G, one at a time, so that every added edge creates
a new rainbow copy of H. Since G1 and G2 are weakly H-rainbow saturated, there exists an
ordering e1, e2, . . . , ea of non-edges of G1 and an ordering ea+1, ea+2, . . . , ea+b of non-edges of
G2 such that, the non-edges ei in color ci can be added to G, one at a time, so that every
added edge creates a new rainbow copy of H. Let G(1) = G+{e1, e2, . . . , ea+b} with c(ei) = ci
for each i ∈ [a+ b].

We next consider the non-edges between V (G1) and V (G2). For each i ∈ [2], let Bi := {v ∈
V (Gi)\(Xi∪Ai) : |NGi

(v)∩Ai| ≥ t5} and Ci := V (Gi)\(Xi∪Ai∪Bi). Note that for each i ∈ [2],

we have |Bi| ≤ |E(Gi)|
t5

≤ tmi

t5
= mi

t4
and |Ci| ≥ mi−|Xi|− |Ai|− |Bi| ≥ 2mi

3 . Roughly speaking,
we will consider the remaining non-edges in the following ordering: EG(C1 ∪ A1, C2 ∪ A2),
EG(B1,X2 ∪ A2 ∪ C2) ∪ EG(B2,X1 ∪ A1 ∪ C1), EG(B1, B2), EG(C1,X2) ∪ EG(C2,X1); see
Figure 1. For convenience, we introduce one more notion. Assume that G∗ is the edge-colored
graph obtained fromG by adding certain non-edges e1, e2, . . . , eℓ with c(ei) = ci for each i ∈ [ℓ].
For a subset E∗ of non-edges of G∗, we say that E∗ is nice to G∗ if there exists an ordering
eℓ+1, eℓ+2, . . . , eℓ+|E∗| of the non-edges in E∗ such that, the non-edges eℓ+i in color cℓ+i can
be added to G∗, one at a time, so that every added edge creates a new rainbow copy of H.

X1

A1

B1

C1

G1

X2

A2

B2

C2

G2

Itemization Sets of non-edges Claims

Step 1
EG(C1, A2)

Claim 3.1EG(C2, A1)
Step 2 EG(C1, C2)

Step 3
EG(B1,X2 ∪A2)

Claim 3.2
EG(B2,X1 ∪A1)

Step 4
EG(B1, C2)
EG(B2, C1)

Step 5 EG(B1, B2) Claim 3.3

Step 6
EG(C1,X2) Claim 3.4
EG(C2,X1)

Figure 1: An illustration of the non-edges (represented by dashed lines) of G(1), and the rough
ordering of the remaining non-edges that we wish to add to G(1).

Claim 3.1. EG(C1 ∪A1, C2 ∪A2) is nice to G(1).

Proof. For an arbitrarily fixed vertex u ∈ C1, there exists a set S ⊆ A1 with |S| ≥ |A1| −
t5 ≥ t5 such that G1 contains no edges between u and S. Note that in G(1), the sub-
set S ∪ {u} induces a rainbow complete subgraph with colors from {c1, c2, . . . , ca}, and
the edges between S and A2 forms a rainbow complete bipartite subgraph. Let G′ be
the bipartite subgraph of G with bipartition (S,A2) and E(G′) = {v1v2 : v1 ∈ S, v2 ∈
A2, c(v1v2) is not a color on edges between u and S}. Since G is rainbow, we have |E(G′)| ≥
|S||A2| − |S|. By Lemma 2.1 (ii), there exist subsets S′ ⊆ S and A′ ⊆ A2 with |S′| = t4

and |A′| = t5 such that G′[S′ ∪ A′] is a complete bipartite subgraph. This implies that the
edges between S′ and A′ ∪ {u} form a rainbow complete bipartite subgraph. For any vertex

6



x ∈ A′, by Corollary 2.3 (with F = G(1)[S′ ∪ {u, x}] + ux), the addition of the non-edge
ux in any color to G(1) creates a new rainbow copy of H. By symmetry, for any ordering
ea+b+1, . . . , ea+b+t5 of the non-edges between u and A′, the non-edges ea+b+i in color ca+b+i

can be added to G(1), one at a time, so that every added edge creates a new rainbow copy of
H. Let G(2,1) = G(1) + {ea+b+1, . . . , ea+b+t5} with c(ea+b+i) = ca+b+i for each i ∈

[

t5
]

.

For any vertex y ∈ A2 \ A′, note that G(2,1)[A′ ∪ {u, y}] is a rainbow subgraph with
colors from {c1, c2, . . . , ca+b+t5}. Thus adding the non-edge uy in any color to G(2,1) creates
a new rainbow copy of H. By symmetry, this in fact shows that there exists an ordering
ea+b+1, . . . , ea+b+t6 |C1∪C2| of the non-edges in EG(C1, A2) ∪ EG(C2, A1) such that, the non-

edges ea+b+i in color ca+b+i can be added to G(1), one at a time, so that every added edge
creates a new rainbow copy of H. Let G(2,2) = G(1) + {ea+b+1, . . . , ea+b+t6|C1∪C2|} with

c(ea+b+i) = ca+b+i for each i ∈
[

t6|C1 ∪ C2|
]

.
Let v1v2 be an arbitrarily fixed non-edge with v1 ∈ C1 and v2 ∈ C2. Note that there exists

a set S′′ ⊆ A1 with |S′′| ≥ |A1| − t5 ≥ t5 such that G1 contains no edges between v1 and S′′.
Then G(2,2)[S′′∪{v1, v2}] is a rainbow subgraph with colors from {c1, c2, . . . , cs}. Thus adding
the non-edge v1v2 in any color to G(2,2) creates a new rainbow copy of H. Since v1v2 is chosen
arbitrarily, we know that there exists an ordering ea+b+t6|C1∪C2|+1, . . . , ea+b+t6 |C1∪C2|+|C1||C2| of
the non-edges in EG(C1, C2) such that, the non-edges ea+b+t6|C1∪C2|+i in color ca+b+t6|C1∪C2|+i

can be added to G(2,2), one at a time, so that every added edge creates a new rainbow copy
of H. This completes the proof of Claim 3.1.

Let q1 = |EG(C1 ∪ A1, C2 ∪ A2)| = t6|C1 ∪ C2| + |C1||C2|. By Claim 3.1, there exists an
ordering ea+b+1, . . . , ea+b+q1 of the non-edges in EG(C1∪A1, C2∪A2) such that, the non-edges
ea+b+i in color ca+b+i can be added to G(1), one at a time, so that every added edge creates a
new rainbow copy of H. Let G(2) = G(1) + {ea+b+1, . . . , ea+b+q1} with c(ea+b+i) = ca+b+i for
each i ∈ [q1].

Claim 3.2. EG(B1,X2 ∪A2 ∪ C2) ∪ EG(B2,X1 ∪A1 ∪ C1) is nice to G(2).

Proof. Let (v, z) be an arbitrarily fixed pair of vertices with v ∈ B1 and z ∈ X2 ∪ A2. Let
T ⊆ NG1(v) ∩ A1 with |T | = t5. Note that in G(2) + vz, the vertex set T ∪ {v, z} induces a
complete subgraph. Moreover, the edges between T and {v, z} forms a rainbow K2,t5 , and T
induces a rainbow complete subgraph with colors from {c1, c2, . . . , ca}. By Corollary 2.3 (with
F = G(2)[T ∪{v, z}]+ vz), after adding vz in any color, there is a new rainbow copy of H. By
symmetry, the same statement holds for every pair of vertices (v, z) with (v, z) ∈ B1×(X2∪A2)
or (v, z) ∈ B2 × (X1 ∪ A1). Let q = |EG(B1,X2 ∪ A2) ∪ EG(B2,X1 ∪ A1)| = |B1||X2 ∪A2|+
|B2||X1 ∪ A1|. Then there exists an ordering ea+b+q1+1, . . . , ea+b+q1+q of the non-edges in
EG(B1,X2 ∪A2)∪EG(B2,X1 ∪A1) such that, the non-edges ea+b+q1+i in color ca+b+q1+i can
be added to G(2), one at a time, so that every added edge creates a new rainbow copy of H.
Let G(3,1) = G(2) + {ea+b+q1+1, . . . , ea+b+q1+q} with c(ea+b+q1+i) = ca+b+q1+i for each i ∈ [q].

Let (u, x) be an arbitrarily fixed pair of vertices with u ∈ C1 and x ∈ B2. Note that
there exists a set S ⊆ A1 with |S| ≥ |A1| − t5 ≥ t5 such that G1 contains no edges between u
and S. Then G(3,1)[S ∪ {u, x}] is a rainbow subgraph with colors from {c1, c2, . . . , ca+b+q1+q}.
Thus adding the non-edge ux in any color to G(3,1) creates a new rainbow copy of H. By
symmetry, the same statement holds for every pair of vertices (u, x) with (u, x) ∈ C1 ×B2 or
(u, x) ∈ C2 ×B1. This completes the proof of Claim 3.2.

Let q2 = |EG(B1,X2 ∪ A2 ∪ C2) ∪ EG(B2,X1 ∪ A1 ∪ C1)|. By Claim 3.2, there exists an
ordering ea+b+q1+1, . . . , ea+b+q1+q2 of the non-edges in EG(B1,X2 ∪ A2 ∪ C2) ∪ EG(B2,X1 ∪
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A1 ∪ C1) such that, the non-edges ea+b+q1+i in color ca+b+q1+i can be added to G(2), one
at a time, so that every added edge creates a new rainbow copy of H. Let G(3) = G(2) +
{ea+b+q1+1, . . . , ea+b+q1+q2} with c(ea+b+q1+i) = ca+b+q1+i for each i ∈ [q2].

Claim 3.3. EG(B1, B2) is nice to G(3).

Proof. Let w be an arbitrarily fixed vertex of B1. Since w /∈ X1, there exists a subset C ′ ⊆ C1

such that G contains no edges between w and C ′ and |C ′| ≥ |C1| − m1
4 ≥ 2m1

3 − m1
4 > m1

3 .
Note that |E(G1[C

′])| ≤ |E(G1)| ≤ tm1 ≤ 3t|C ′|. Applying Lemma 2.1 (i) (with c = 3t) to

G1[C
′], we have that G1 contains an independent set C ′′ ⊆ C ′ of size at least |C′|

6t+1 ≥ t4. Note

that for any vertex w′ ∈ B2, the subset C ′′ ∪ {w,w′} induces a rainbow subgraph of G(4).
Thus after adding ww′ in any color, there is a new rainbow copy of H. Since w and w′ are
chosen arbitrarily, the result follows.

Let q3 = |B1||B2|. By Claim 3.3, there exists an ordering ea+b+q1+q2+1, . . . , ea+b+q1+q2+q3

of the non-edges between B1 andB2 such that, the non-edges ea+b+q1+q2+i in color ca+b+q1+q2+i

can be added to G(3), one at a time, so that every added edge creates a new rainbow copy of
H. Let G(4) = G(3) + {ea+b+q1+q2+1, . . . , ea+b+q1+q2+q3} with c(ea+b+q1+q2+i) = ca+b+q1+q2+i

for each i ∈ [q3].

Claim 3.4. EG(C1,X2) ∪ EG(C2,X1) is nice to G(4).

Proof. Let C ′ ⊆ C1 be the set of vertices v such that there exists a vertex x ∈ A1 with
vx /∈ E(G) and cG(4)(vx) ∈ {c(e) : e ∈ EG(A1,X2)}. Let C ′′ = C1 \C ′. Since c1, c2, . . . , cs are
pairwise distinct colors, we have |C ′| ≤ |A1||X2| ≤ 8t7 and |C ′′| = |C1|−|C ′| ≥ 2m1

3 −8t7 ≥ m1
3 .

Let uy be an arbitrarily fixed non-edges with u ∈ C ′′ and y ∈ X2. Note that there exists
a set S ⊆ A1 with |S| ≥ |A1| − t5 ≥ t5 such that G1 contains no edges between u and S.
Note that in G(4) + uy, the vertex set S ∪ {u, y} induces a complete subgraph. Moreover,
the edges between S and {u, y} forms a rainbow K2,t5 , and S induces a rainbow complete

subgraph with colors from {c1, c2, . . . , ca}. By Corollary 2.3 (with F = G(4)[S ∪ {u, y}] + uy),
after adding uy in any color, there is a new rainbow copy of H. Since uy is chosen arbitrarily,
we know that there exists an ordering ea+b+q1+q2+q3+1, . . . , ea+b+q1+q2+q3+|C′′||X2| of the non-
edges in EG(C

′′,X2) such that, the non-edges ea+b+q1+q2+q3+i in color ca+b+q1+q2+q3+i can
be added to G(4), one at a time, so that every added edge creates a new rainbow copy of H.
Let G(5,1) = G(4) + {ea+b+q1+q2+q3+1, . . . , ea+b+q1+q2+q3+|C′′||X2|} with c(ea+b+q1+q2+q3+i) =
ca+b+q1+q2+q3+i for each i ∈ [|C ′′||X2|].

Let w be an arbitrarily fixed vertex of C ′. Since w /∈ X1, there exists a subset C ′′′ ⊆ C ′′

such that G contains no edges between w and C ′′′ and |C ′′′| ≥ |C ′′| − m1
4 ≥ m1

3 − m1
4 ≥ m1

12 .
Note that |E(G1[C

′′′])| ≤ |E(G1)| ≤ tm1 ≤ 12t|C ′′′|. Applying Lemma 2.1 (i) (with c = 12t)

to G1[C
′′′], we have that G1 contains an independent set C∗ ⊆ C ′′′ of size at least |C′′′|

24t+1 ≥ t3.
Note that for any vertex w′ ∈ X2, the subset C∗ ∪ {w,w′} induces a rainbow subgraph of
G(4). Thus after adding ww′ in any color, there is a new rainbow copy of H. Since w and
w′ are chosen arbitrarily, this holds for every non-edge between C ′ and X2. By symmetry,
this in fact implies that there exists an ordering ea+b+q1+q2+q3+1, . . . , es of the non-edges in
EG(C1,X2) ∪ EG(C2,X1) such that, the non-edges ea+b+q1+q2+q3+i in color ca+b+q1+q2+q3+i

can be added to G(4), one at a time, so that every added edge creates a new rainbow copy of
H. The proof of Claim 3.4 is complete.
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By Claim 3.4, G is weakly H-rainbow saturated, and thus Inequality (1) holds. By

Lemma 2.5, the limit limn→∞
rwsat(n,H)

n exists. This completes the proof of Theorem 1.2.
�

We next present our proof of Theorem 1.3 in the following more precise form, which
generalizes a result of Faudree, Gould and Jacobson [12] on weak saturation numbers, and a
result of Chakraborti, Hendrey, Lund and Tompkins [9] on weak rainbow saturation numbers
of complete graphs. Recall that for any graph H, f(H) is the smallest integer n such that for
each N ∈ {n−1, n} we have ex(N,H ) ≤

(N
2

)

−2N−2, where H := {H−{u, v} : uv ∈ E(H)}.

Theorem 3.1. Let H be a non-empty graph. Then the following statements hold.

(i) If H contains a pendant edge and n > f(H) + 1, then rwsat(n,H) ≤
(f(H)+1

2

)

.

(ii) If H contains no pendant edges and n > f(H) + δ′(H), then

1

2
δ′(H)n ≤ rwsat(n,H) ≤ δ′(H)(n − f(H)− δ′(H)) +

(

f(H) + δ′(H)

2

)

.

Proof. (i) We shall show that if H contains a pendant edge and n > f(H) + 1 ≥ |V (H)|,
then rwsat(n,H) ≤

(

f(H)+1
2

)

. Let G be an n-vertex graph consisting of a rainbow clique
of order f(H) + 1 and n − f(H) − 1 isolated vertices. It suffices to show that G is weakly
H-rainbow saturated. Let c1, c2, . . . , cm be an arbitrarily fixed list of pairwise distinct colors
from N, where m =

(n
2

)

−
(f(H)+1

2

)

. Let U ⊂ V (G) be the set of n− f(H)−1 isolated vertices,
V = V (G) \ U , and s = |U ||V | = (n− f(H)− 1)(f(H) + 1).

For any pair of vertices (u, v) ∈ U × V and any color c∗ ∈ N, there exists a subset
V ′ ⊆ V with v ∈ V ′ and |V ′| ≥ |V | − 1 = f(H) ≥ |V (H)| − 1 such that G[V ′] is a rainbow
clique and contains no edge of color c∗. Thus the addition of uv in color c∗ creates a new
rainbow copy of H (with uv being the pendant edge). By symmetry, this implies that for any
ordering e1, e2, . . . , es of the non-edges between U and V , the non-edges ei in color ci can be
added to G, one at a time, so that every added edge creates a new rainbow copy of H. Let
G′ = G+ {e1, e2, . . . , es} with c(ei) = ci for each i ∈ [s].

For any non-edge u1u2 within U , we consider the subgraph F = G′[V ∗ ∪ {u1, u2}] + u1u2,
where V ∗ is an arbitrary subset of V with |V ∗| = f(H). Note that F satisfies the hypothesis
of Lemma 2.2. Thus the addition of u1u2 in any color creates a new rainbow copy of H. By
symmetry, this implies that for any ordering es+1, es+2, . . . , em of the non-edges within U , the
non-edges es+i in color cs+i can be added to G′, one at a time, so that every added edge
creates a new rainbow copy of H. Therefore, G is weakly H-rainbow saturated, and thus
rwsat(n,H) ≤ |E(G)| =

(f(H)
2

)

.
(ii) For the lower bound, let G be a weakly H-rainbow saturated graph on n vertices. Then

there exists an ordering e1, e2, . . . , em of E
(

G
)

such that, for any list c1, c2, . . . , cm of pairwise
distinct colors from N, the non-edges ei in color ci can be added to G, one at a time, so that
every added edge creates a new rainbow copy of H. Since H contains no pendant edges and
E(H) 6= ∅, we have dH(u) = 0 or dH(u) ≥ 2 for every vertex u ∈ V (H), i.e., δ′(H) ≥ 2. This
implies that G contains no isolated vertices.

Suppose for a contradiction that |E(G)| < 1
2δ

′(H)n. Then G contains a vertex v with
d := dG(v) ≤ δ′(H) − 1. Let ei1 , . . . , ein−1−d

be all the non-edges of G containing v as an
end-vertex, where i1 < · · · < in−1−d. Let Gi1−1 = G+ {e1, . . . , ei1−1} and Gi1 = Gi1−1 + ei1 .
Then dGi1−1(v) = dG(v) ≤ δ′(H)−1 and dGi1

(v) = dG(v)+1 ≤ δ′(H). If ci1 is a color from the
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set of colors on edges incident with v in G, then the addition of ei1 in color ci1 to G′ does not
create any new rainbow copy of H, a contradiction. This implies that rwsat(n,H) ≥ 1

2δ
′(H)n.

For the upper bound, consider the following construction. Let A, B and C be three
pairwise disjoint sets of vertices with |A| = δ′(H), |B| = f(H) and |C| = n − f(H)− δ′(H).
Let G′ be a rainbow graph on vertex set A∪B ∪C whose edge set consists of all edges within
A∪B and all edges between A and C. Then |E(G′)| = δ′(H)(n−f(H)−δ′(H))+

(f(H)+δ′(H)
2

)

.
It suffices to show that G′ is weakly H-rainbow saturated.

Let c′1, c
′
2, . . . , c

′
t be an arbitrarily fixed list of pairwise distinct colors from N, where t =

(n
2

)

−|E(G′)|. Let xy be an arbitrary non-edge with x ∈ B and y ∈ C, and let G′′ be the edge-
colored graph obtained from G′ by adding xy in any color. Since G′ is rainbow, there exists
a subset X ⊆ A ∪B with x ∈ X and |X| ≥ |A ∪B| − 1 ≥ |V (H)| − 1 such that G′′[X ∪ {y}]
is rainbow, dG′′[X∪{y}](y) ≥ δ′(H), and dG′′[X∪{y}](z) = |X| for every z ∈ X. This implies
that adding xy in any color creates a new rainbow copy of H. By symmetry, this implies
that for any ordering e′1, e

′
2, . . . , e

′
|B||C| of the non-edges between B and C, the non-edges e′i

in color c′i can be added to G′, one at a time, so that every added edge creates a new rainbow
copy of H. Let G′′′ = G′ + {e′1, e′2, . . . , e′|B||C|} with c(e′i) = c′i for each i ∈ [|B||C|]. Next, we

consider the remaining non-edges, i.e., non-edges within C. Let w,w′ be two distinct vertices
of C, and let F = G′′′[B ∪ {w,w′}] + ww′. Then F satisfies the hypothesis of Lemma 2.2.
Thus the addition of ww′ in any color creates a new rainbow copy of H. By symmetry, this
implies that for any ordering e′|B||C|+1, e

′
|B||C|+2, . . . , e

′
t of the non-edges within C, the non-

edges e′|B||C|+i in color c′|B||C|+i can be added to G′′′, one at a time, so that every added

edge creates a new rainbow copy of H. Therefore, G′ is weakly H-rainbow saturated, and
thus rwsat(n,H) ≤ |E(G′)| = δ′(H)(n − f(H) − δ′(H)) +

(

f(H)+δ′(H)
2

)

. This completes the
proof.

Remark 3.2. In the case when H is a complete graph Kr (r ≥ 3), the upper bound given by
Theorem 3.1 (ii) can be improved to rwsat(n,Kr) ≤ (r − 1)(n− r) +

(r
2

)

. Indeed, in this case,
when we construct the graph G′, we may choose B to be a single vertex. Moreover, when we
add the non-edge ww′, we can find a rainbow copy of H within A ∪ {w,w′} (so we can avoid
the use of Lemma 2.2). This upper bound on rwsat(n,Kr) was first obtained by Chakraborti,
Hendrey, Lund and Tompkins [9].

4 Concluding remarks

In this paper, we prove that the limit limn→∞
rwsat(n,H)

n exists for any non-empty graph H.
We also show that this limit is nonzero if and only if H contains no pendant edges by proving
that if H contains no pendant edges and n > f(H) + δ′(H), then

1

2
δ′(H)n ≤ rwsat(n,H) ≤ δ′(H)(n − f(H)− δ′(H)) +

(

f(H) + δ′(H)

2

)

, (2)

where δ′(H) := min{dH(v) : v ∈ V (H), dH(v) 6= 0}.
For sufficiently large n, the lower bound in Inequality (2) cannot be improved to cn for

any c > 1
2(δ

′(H) + 1). To see this, let H be the graph obtained from 2Kt (t ≥ 3) by
adding a single edge between the two copies of Kt. Note that δ′(H) = t− 1. For sufficiently
large n, we write n = ⌊ n

t+1⌋(t + 1) + r, where 0 ≤ r ≤ t. Let G be a rainbow copy of
(rKt+2)∪ ((⌊ n

t+1⌋ − r)Kt+1). It is easy to check that G is weakly H-rainbow saturated. Thus
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rwsat(n,H) ≤ |E(G)| = t
2n+Θ(1) = 1

2(δ
′(H)+1)n+Θ(1). For sufficiently large n, the upper

bound in Inequality (2) cannot be improved to c′n for any c′ < δ′(H)− 1. For example, when
H = Kt (t ≥ 3), we have rwsat(n,H) ≥ wsat(n,H) =

(n
2

)

−
(n−t+2

2

)

= (t − 2)n − Θ(1) =
(δ′(H)− 1)n −Θ(1) (see [2, 19]). Given this, we pose the following two questions.

Question 4.1. Let H be a non-empty graph containing no pendant edges. Is it true that

rwsat(n,H) ≥
(

δ′(H)+1
2 − o(1)

)

n?

Question 4.2. For any integer t ≥ 3, does there exist a constant ct such that rwsat(n,Kt) =
(t− 1)n + ct?

It is also natural to ask for what graphs H, it holds rwsat(n,H) ≤ cn for some c < δ′(H)
and sufficiently large integers n. Our Theorem 3.1 (i) implies that this is the case when
δ′(H) = 1. We can also show that this holds for a large family of graphs H with δ′(H) = 2
(including all cycles of length at least 5). Let F be the family of graphs H containing an edge
uv with dH(u) = dH(v) = 2 such that uv is the middle edge of an induced subgraph P4 in H.
Note that for any H ∈ F , we have δ′(H) ∈ {1, 2}.

Proposition 4.3. For any graph H ∈ F with δ′(H) = 2, there exists a constant cH such
that rwsat(n,H) ≤ 3

2n+ cH .

Proof. Let h = |V (H)| and let P be the induced P4 of H as described in the definition of
F . We may assume that n ≥ h + 3 since we can choose cH to be a constant greater than
(

h+2
2

)

. Let k = ⌊n−h−1
2 ⌋ and t = n− 2k, so h+ 1 ≤ t ≤ h+ 2. Let G be a rainbow graph on

n vertices with V (G) = {v1, . . . , vt, x1, . . . , xk, y1, . . . , yk} and |E(H)| = {vivj : 1 ≤ i < j ≤
t} ∪ {v1xi, v1yi, xiyi : i ∈ [k]}. Note that |E(G)| =

(

t
2

)

+ 3k = 3
2n+ cH for some constant cH .

It suffices to show that G is weakly H-rainbow saturated.
Let c1, c2, . . . , cm be an arbitrarily fixed list of pairwise distinct colors from N , where

m =
(n
2

)

− |E(G)|. Let V = {v1, . . . , vt} and U = {x1, . . . , xk, y1, . . . , yk}. We first consider
the non-edges between V and U . By symmetry, we only consider the addition of v2x1 in some
color c∗ ∈ {c1, c2, . . . , cm}. Since G is rainbow, we can find a subset V ′ ⊆ V \ {v1, v2} with
|V ′| ≥ |V | − 3 ≥ h − 2 such that G[V ′ ∪ {v1, v2}] − v1v2 contains no edges of color c∗. If
cG(x1v1) 6= c∗, then the addition of v2x1 in color c∗ creates a rainbow copy of H in which
v2x1v1vi plays the role of the path P , where vi is a vertex of V ′. If cG(x1v1) = c∗, then the
addition of v2x1 in color c∗ creates a rainbow copy of H in which v2x1y1v1 plays the role
of the path P . Therefore, for any ordering e1, . . . , e2k(t−1) of the non-edges between V and
U , the non-edges ei in color ci can be added to G, one at a time, so that every added edge
creates a new rainbow copy of H. Let G′ = G+ {e1, e2, . . . , e2k(t−1)} with c(ei) = ci for each
i ∈ [2k(t− 1)]. We next consider the non-edges within U . By symmetry, we only consider the
addition of x1x2 in some color c∗∗ ∈ {c2k(t−1)+1, . . . , cm}. Since G is rainbow and c1, c2, . . . , cm
are pairwise distinct, we can find a subset V ′′ ⊆ V \ {v2, v3} with |V ′′| ≥ |V | − 5 ≥ h − 4
such that G′[V ′′ ∪ {v2, v3}]− v2v3 contains no edges of colors from {c∗∗, cG′(v2x1), cG′(v3x2)}.
Then the addition of x1x2 in color c∗∗ creates a rainbow copy of H in which v2x1x2v3 plays
the role of the path P . Therefore, for any ordering e2k(t−1)+1, . . . , em of the non-edges within
U , the non-edges e2k(t−1)+i in color c2k(t−1)+i can be added to G′, one at a time, so that every
added edge creates a new rainbow copy of H. This completes the proof.

Note that Proposition 4.3 also implies that for all cycles Cℓ with ℓ ≥ 5, we have rwsat(n,Cℓ) ≤
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3
2n + cℓ, where cℓ is a constant only depending on ℓ. This statement also holds for C4.

4 In
light of this, we propose the following question.

Question 4.4. For any integer ℓ ≥ 4, there is a constant cℓ such that rwsat(n,Cℓ) =
3
2n+ cℓ.
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conjecture, J. Graph Theory 92(4) (2019), 347–360.

[2] N. Alon, An extremal problem for sets with applications to graph theory, J. Combin.
Theory Ser. A 40(1) (1985), 82–89.

[3] M. D. Barrus, M. Ferrara, J. Vandenbussche, and P. S. Wenger, Colored saturation
parameters for rainbow subgraphs, J. Graph Theory 86(4) (2017), 375–386.

[4] N. Behague, T. Johnston, S. Letzter, N. Morrison, and S. Ogden, The rainbow saturation
number is linear, SIAM J. Discrete Math. (2023), accepted.

[5] B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hungar. 16 (1965), 447–452.

[6] B. Bollobás, Weakly k-saturated graphs, B. G. Teubner Verlagsgesellschaft, Leipzig,
(1968), 25–31.

[7] N. Bushaw, D. Johnston, and P. Rombach, Rainbow saturation, Graphs Combin. 38(5)
(2022), Paper No. 166, 12 pp.

[8] S. J. Cao, Y. D. Ma, and Z. Y. Taoqiu, A note on rainbow saturation number of paths.
Appl. Math. Comput. 378 (2020), 125204, 4 pp.

[9] D. Chakraborti, K. Hendrey, B. Lund, and C. Tompkins, Rainbow saturation for complete
graphs, SIAM J. Discrete Math. (2023), accepted.

[10] B. L. Currie, J. R. Faudree, R. J. Faudree, and J. R. Schmitt, A survey of minimum
saturated graphs, Electron. J. Combin. DS19, Dynamic Surveys, (2021), 98 pp.
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