
Principles of Plasma Diagnostics

Plasma physics is currently one of the most active subdisciplines of
physics. Measurements of the parameters of laboratory plasmas, termed
plasma diagnostics, are based on a wide variety of characteristic plasma
phenomena. Understanding these phenomena allows standard techniques
to be applied and interpreted correctly and also forms the basis of
innovation. This book provides a detailed derivation and discussion
of the principles of plasma physics upon which diagnostics are based.
These include magnetic measurements, electric probes, refractive index,
radiation emission and scattering, and ionic processes.

The second edition of Principles of Plasma Diagnostics brings this clas-
sic text completely up to date. It gathers together a body of knowledge
previously scattered throughout the scientific literature. The text main-
tains its first-principles development of the required concepts, so it is
accessible to students and researchers with little plasma physics back-
ground. Nevertheless, even seasoned plasma physicists should appreciate
the work as a valuable reference and find insight in the lucid development
of the fundamentals as they apply to diagnostics.

Most of the examples of diagnostics in action are taken from fusion
research but the focus on principles will make it useful to all experimental
and theoretical plasma physicists, including those interested in space and
astrophysical applications as well as laboratory plasmas.
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son is a Fellow of the American Physical Society and the Institute of
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Preface to the first edition

The practice of plasma diagnostics is a vast and diverse subject, far
beyond the span of a single volume, such as this, to cover in all its detail.
Therefore, some limitations on the objectives adopted here have to be
accepted. The title Principles of Plasma Diagnostics refers to the fact that
the physical principles used for plasma measurements are to be our main
concern. In brief, this book seeks to give a treatment of the fundamental
physics of plasma diagnostics, and thus to provide a sound conceptual
foundation upon which to base any more detailed study of applications.
I hope, therefore, to bring the reader to the point where he or she may,
with confidence and understanding, study the details of any diagnostic
discussed in the literature.

Most journal articles and reviews on plasma diagnostics tend, of ne-
cessity, to begin from a mere citing of the required equations governing
the principles employed. For all but the experienced specialist, this means
that the reader must accept the equations without much justification or
else pursue a deeper understanding through references to original pa-
pers. One of my main objectives here is to overcome this difficulty by a
systematic presentation from first principles. Therefore, if in some cases
it may seem that the development stops just as we approach the point
of practicality, I can only plead that, in bringing the reader to the point
of being able comfortably to understand the basis of any application, I
have fulfilled a major part of my task.

Some justification of the fact that I provide very little detailed discus-
sion of instruments and techniques may be appropriate, since they are
by no means uninteresting or irrelevant.

First, to describe the various experimental technologies in a way ac-
cessible to the uninitiated, at anything other than a pure "cookbook"
level, would require so much space as to be overwhelming for a single
volume. Second, instruments and technology are not really unique to the
plasma field, in most cases, even though the needs of plasma diagnostics
are sometimes the driving force behind their development. Third, the
technology is developing so rapidly that any extensive treatment tends
to become outdated almost immediately. Fourth, there are several re-
cent journal article reviews and specialist book series that emphasize
instrumentation.

My philosophy, then, is to include only sufficient description of the
technology to provide a fundamental understanding of the applications,
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rather than a detailed analysis of the instruments themselves. Only when
the plasma is virtually part of the instrumental configuration, such as in
an interferometer, is more detailed discussion given. As compensation,
brief summaries of some of the present technological capabilities are
given in an appendix.

By concentrating on the physical principles, my intention has been to
produce a book of interest to plasma physicists as a whole, whatever
the area of their major specialization. However, it is necessary in a work
such as this to have a fairly clear perspective. Otherwise, one is forever
qualifying statements in a way that ought to be implicit. My perspective
is that of laboratory plasma diagnostics. What is more, most of the
examples are taken from controlled fusion research applications, partly
because fusion is the area in which by far the most study of plasma
diagnostics has been done. I trust, nevertheless, that the material may be
useful also to experimentalists and theoreticians in other plasma fields,
such as space or astrophysical research, since it is a discussion mostly of
general principles, applicable to these very different plasmas as well as
those in the laboratory.

The level of the treatment may perhaps best be described as inter-
mediate graduate. This means that a good basic undergraduate physics
background should be sufficient to enable the reader to follow the ma-
terial, even though the approach may be more demanding than in an
undergraduate text. Very little detailed prior knowledge of plasma physics
is assumed; therefore, researchers entering the plasma field should find
most of the material accessible. There is, however, no pretence at a
systematic introduction to plasma physics, and the presumption is that
basic plasma physics concepts, at least, are familiar. The more senior
researcher I hope will also find useful material here for reference and to
gain a broader perspective, although length restrictions prevent discus-
sion of many important practical details.

The literature and references cited are intended to serve two limited
purposes: to provide representative examples of the principles in action
and to provide starting points for more detailed study of the scientific
literature in any specialized area. There is no attempt to provide exhaus-
tive references and I apologize to anyone who feels their own work to
have been unjustly omitted.

I also thank all my teachers, friends, students, and colleagues who have
provided information, figures, criticism, suggestions, corrections, and so
on. Like all of science, plasma research is a cooperative enterprise, and so
the material here represents an overview of the work of a large number
of people over many years. Special thanks also go to my colleagues
at MIT who have taken time to read sections of the manuscript and
make suggestions for improvements, especially Bruce Lipschultz, Earl
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Marmar, Steve McCool, Jim Terry, Reich Watterson, and Steve Wolfe.
The shortcomings of the book are mine, though! Thanks to Cathy Lydon
for managing so much difficult word processing.

Thank you, Fran, for making it all possible by your constant support
and love.



Preface to the second edition

Plasma diagnostics has grown in accomplishment and importance in the
sixteen years since the first edition of this book was written. The fusion
research field has reached the threshold of energy breakeven, and of
committing to a burning plasma experiment. But more important per-
haps, the accuracy and comprehensiveness of measurements on major
magnetic plasma confinement devices now give us unprecedented infor-
mation on plasma behaviour. Plasmas have gained in importance in
industrial processes and of course in electronic manufacturing; so the
economic necessity of monitoring them accurately has become increas-
ingly evident. Astrophysical and space plasma diagnosis has continued
to be the basis of investigations of a host of phenomena from black hole
accretion to planetary magnetospheres.

In preparing a second edition, my objective was to retain the original
emphasis on the physical principles upon which plasma measurements
are based, and to maintain an accessible teaching style. Both of these
aspects have proven attractive to students and researchers. Also, the
examples are still predominantly drawn from my own field of fusion
research, but some discussion of the broader applications is included.
It became increasingly pressing in recent years that the book should
be updated to include the latest techniques and applications. It has
thus been impossible to avoid some expansion of the length, because of
the substantial additional material. A few obsolete sections have been
removed, but I have endeavored to keep as much of the first edition
as possible, bringing the topics up to date by discussions of the recent
developments and modern references.

Although the expansion makes the book more useful as a comprehen-
sive reference, it undoubtedly makes its use as a teaching text somewhat
more difficult. Selection of material has to be more ruthless in skip-
ping sections, particularly those that explore the details of specialized
applications. I find that it is now inadvisable to attempt to teach more
than about half the material in a term. I have nevertheless been encour-
aged by the experience of a number of teachers and students who have
found the previous edition to be a valuable breadth reference for courses
introducing plasma physics, as well as for more specialized contexts.

I have changed my convention for expressing spectral densities to
use cyclic frequency, and changed my Fourier transform convention
accordingly. This is explained at the end of Appendix 1. It means that
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there are a number of factor In changes in equations relative to the first
edition.

I am grateful for the hospitality of the Australian National University
Plasma Research Laboratory, where much of the writing of the second
edition was done, to my students over the years who helped me see the
places that were unclear, as well as finding many typographical errors, to
my colleagues who provided figures, advice and critiques, and always to
my wife, Fran, for her endless support.

Cambridge, Massachusetts, August 2001.





Plasma diagnostics

1.1 Introduction
During the past few decades, plasma physics has become estab-

lished as a major research field. As a result, the field includes a very
substantial body of knowledge covering a wide variety of branches, from
the most theoretical to the most practical, comparable to any other sub-
discipline of physics. As with any other science, progress has been made
most effectively when an early quantitative confrontation between the-
ory and experiment has been possible. This confrontation places strong
demands upon theory to do calculations in realistic configurations and
circumstances, but it also requires that the properties of plasmas be
measured experimentally as completely and accurately as possible. For
this reason much of the effort in experimental plasma physics is de-
voted to devising, developing, and proving techniques for diagnosing the
properties of plasmas: plasma diagnostics.

A major driving force behind the research on plasmas has been, and
still is, the prospect of generating economically significant amounts of
power from controlled thermonuclear fusion. Fusion has its own imper-
atives of temperature, density, confinement, and so on, which provide a
stimulating and relevant environment in which plasma research is con-
ducted. Moreover, the vitally important diagnosis of fusion plasmas poses
problems that are often enhanced by the nature of the fusion goal. For
example, the high temperatures sought for fusion frequently eliminate
the possibility of internal diagnosis by material probes.

The overall objective of plasma diagnostics is to deduce information
about the state of the plasma from practical observations of physical
processes and their effects. This usually requires a rather elaborate chain
of deduction based on an understanding of the physical processes in-
volved. In more mundane situations the same is true of other diagnostic
measurements; for example, a mercury/glass thermometer relies on the
physical process of thermal expansion of mercury, which determines the
height of the mercury column observed. However, since plasmas have
properties that are often rather different from the more familiar states of
matter met in everyday life, the train of reasoning is sometimes more spe-
cialized and may seem more obscure, especially since plasma diagnostics
are rarely routine.

What is required, then, for an understanding of the principles of
plasma diagnostics is a thorough knowledge of plasma physics. For that
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reason, the reader with a good basic background in plasma physics will
find this book easier than someone with little background. It would
be inappropriate to attempt to provide a broad introduction to plasma
physics in a work such as this, not least because many excellent texts
exist to which reference can be made. (A brief bibliography is given
at the end of this and other chapters.) However, the intent here is to
develop, essentially from first principles, those aspects of plasma physics
that are necessary to diagnostics, and to include those areas of general
physics (for example, electromagnetic theory) that are also important in
plasma diagnostics. Therefore, a good basic physics background should
be sufficient to enable the reader to follow the material.

To reach useful and accurate results requires rather complete quan-
titative mathematical analysis; more so sometimes, than in a general
text where a qualitative treatment is sufficient. When the mathematical
analysis required here is not too difficult or lengthy it is given, though
occasionally with some details left as an exercise. If the results are
expressible in reasonably compact analytic form they are given fairly
completely for reference. Using these results does not absolutely re-
quire that the reader follow every step of the mathematics (although
it may help); so if, at first reading, you feel in danger of getting
bogged down in mathematics, plunge on to the end and see how it
all works out.

Some diagnostics require substantial amounts of data (for example
atomic data) that are not easily expressed analytically. Such data are
mostly not included here except in the form of examples and where it
needs to be invoked for general understanding. Therefore, reference must
be made to the specialized literature and tables for detailed information.
On various occasions, simple heuristic physical arguments are used to
obtain rough estimates in order to understand the dominant processes.
These are not intended to be a substitute for the detailed results, often
obtained through painstaking efforts over years of research. Therefore,
care should be exercised in applying these estimates when accurate cal-
culations are essential.

1.2 Plasma properties
At its simplest, a plasma is a gaseous assembly of electrons, ions,

and neutral molecules residing in electric and magnetic fields. We shall
regard the electromagnetic fields as an essential ingredient of the plasma.
Indeed, since the plasma particles usually generate or at least modify
these fields we can regard them as properties of the plasma. A complete
classical description of a plasma, then, would consist of a specification
of the fields and the position and velocity of all the particles throughout
the volume of interest.
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Naturally, as with any discussion of gaseous media, such a descrip-
tion is an inaccessible and rather fruitless ideal and we must appeal to
the concepts and methods of statistical mechanics to provide a useful
description. Thus, we suppose that at each position x, in an element of
volume d3x, there are on average a number / ; (x, \)d3\d3x of particles of
type j that have velocity in the element d3\ at v. Then / ; is the distribu-
tion function of particles of type j . It may, of course, vary as a function
of time t and space x. A complete statistical description of our plasma
is thus provided by a knowledge of fj(x9y9t) for all appropriate x, v,
and t together with the electromagnetic fields ensemble averaged over all
possible realizations of the particle distributions.

To determine completely the distribution functions is still a task be-
yond our practical capabilities in most circumstances, although certain
diagnostics can, in principle, determine fj at a given position and time.
Therefore, it is usually necessary to restrict our ambitions still further. We
would like to be able to determine fj, but instead we aim to determine a
few of the most important facts about fj.

1.2.1 Moments of the distribution function
Consider a situation homogeneous in space and constant in time

so that for a single species of particles the distribution is only a function
of velocity /(v). The /cth moment of the distribution is defined as

Mk = J f(y)(y)kd\ (1.2.1)

where in general M is a tensor of order k. If we know Mk for all k = 0 to oo,
that determines /(v) completely. However, knowledge of only the lower
order moments is often sufficient to provide us with the information
we need because the equations of motion of a plasma can often be
written with sufficient accuracy as moment equations involving only low
order moments and closed (i.e., truncated) by using phenomenological
transport coefficients.

Because of their importance, the lower order moments are called by
specific names reflecting their physical significance. Order k = 0 is a
scalar moment,

M°= [ f(y)d3v = n, (1.2.2)

which is simply the particle density (number of particles per unit volume).
Order k — 1 is a vector moment that is usually normalized by n,

1M1 = - [ f(\)\d\ = V. (1.2.3)
n n J

This is simply the mean particle velocity.
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The second order moment usually appears in the form

m f(v - V)(v - V)/(v)d3v - m[M2 - nYY] = p (1.2.4)

and is the pressure tensor.
Because p is symmetric, there exists a coordinate system in which it

is diagonal [see, e.g., Morse and Feshbach (1953)]. In this coordinate
system p is said to be "referred to principal axes". When a magnetic
field is present, because of the gyration of the plasma particles about
the field, the distribution function usually acquires rotational symmetry
about the field direction. As a result, the field direction becomes one of
the principal axes (usually taken as the z axis) and the pressure tensor
has the form

(1.2.5)

If the distribution function is fully isotropic then the two components of
the pressure tensor become equal, p± = P\\ = p, and one can define the
temperature (in energy units) as

T=p/n. (1.2.6)

If p± =fc P\\ one can similarly define perpendicular and parallel temper-
atures 7j_, T||. If the distribution is Maxwellian then these definitions
will yield the temperature of the Maxwellian distribution. Otherwise, for
nonthermal distributions one can regard the definitions as providing the
effective temperature.

The third order moment is usually written as

p±
0
0

0
p±
0

0
0
Pll

= m / (v —V ) ( v - V ) ( v - V ) / ( v ) A (1.2.7)

a third order tensor (of which the explicit expansion is rather cumbersome
in dyadic notation) called the heat flux tensor.

These are then the quantities upon which we shall focus in our dis-
cussions of diagnostic measurements: the density, velocity, pressure and
temperature, and, less importantly from the viewpoint of direct measure-
ment, heat flux. In a situation that is inhomogeneous we shall sometimes
be able to deduce these properties as a function of space and some-
times have to be content with spatial averages, much as we have had
to content ourselves with averages over the velocity distribution (i.e., the
moments).

Of course, these moments and our treatment of them so far are
precisely what appears in a development of the kinetic theory of gases
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[see, e.g., Chapman and Cowling (1970)] in relating the microscopic state
of the gas to its macroscopically observable fluid-like parameters. In the
case of a normal gas of neutral molecules, it seems intuitively obvious
that measurements will focus on these parameters and that, for example,
we shall determine the density of gas by measuring its mass, the pressure
by measuring the force it exerts, and so on. In a plasma the low order
moments of the distribution are very rarely measured in such familiar
ways, but they nevertheless provide the fundamental parameters that
define the state of the plasma insofar as it can be described in simple
fluid terms.

In order for the low order moments to be sufficient to describe the
plasma, it is necessary for the plasma to be close to local thermodynamic
equilibrium so that locally the distribution function fj is approximately
Maxwellian. If this restriction holds then local measurement of density,
velocity, pressure, etc., together with the electromagnetic fields, is sufficient
to tell us essentially everything we need to know about the plasma. If
the plasma is not close to thermal equilibrium (and there are many cases
when it is not), then the moments still provide valuable information, but
a complete description requires us to return to the distribution function,
in this case non-Maxwellian.

1.2.2 Multiple species
So far we have considered only a single particle species, but in

practice plasmas have usually at least two species, electrons and ions.
More often than not, it is necessary to consider also neutral molecules
and various types of different impurity ions. Moments can be taken
for each species separately, of course, giving rise to possibly different
densities, temperatures, etc. for each species. This results in a multiple-
fluid description. The charged species, electrons and ions, are strongly
coupled together in some aspects by electromagnetic forces. This coupling
reduces the independence of the moments.

Consider a case where the plasma consists of just two species, electrons
and ions, of charge — e and Ze. The charge density is e(—n e+Zrii), where
subscripts e and i refer to electrons and ions (we shall also use subscript
0 to denote neutrals). If ne were different from Znt then a space charge
would exist and the corresponding electric field would tend to oppose
the buildup of this charge. The effects of such electric fields are so strong
that for most plasmas there can never be much imbalance in the electron
and ion charge densities, that is, ne — Zn\ is always much less than ne.
This is the condition of so-called quasineutrality: ne « Znt, consisting
of a relationship between the zero order moments of the distribution of
electrons and ions.
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Mean velocity

Pressure
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Heat flux

nJ
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Tj = pj/n
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Table 1.1. The moments of the distribution for fluid plasma description.

Multiple species
Order Quantity Symbol combinations

0 Density n. Charge density (~ 0)

1

2

3

The relationship between the mean velocities involves the electric cur-
rent rather than charge. The total current is

j = mZeVt - nee\e « nee(\i - Ye), (1.2.8)

which shows that the first order moments are related via the electromag-
netic fields, since j is related to E and B through Ampere's law.

The pressures and temperatures of the different species generally are
not strongly coupled. The collisional processes that cause energy transfer
between the species are often slow compared to other energy trans-
port mechanisms. Thus the electron and ion temperatures are generally
thought of as distinct quantities to be measured. However, it is often
convenient for some purposes to treat a plasma as if it were a single con-
ducting fluid, in which case the quantity of interest is the total pressure
given by the sum of electron and ion (and possibly neutral) pressures.
In the single-fluid description a single velocity, generally the mass flow
velocity

V = \ (nemeYe + mmiVil (1.2.9)
neme + ntnii

the current j , and a single density, generally the mass density neme + rctm,,
together with the pressure and electromagnetic fields complete the plasma
description.

Table 1.1 summarizes the low order moments with which we shall be
most concerned.

1.3 Categories of diagnostics
There are several different ways to group diagnostics when study-

ing them. First, we might group them by the plasma parameter measured.
Thus, we might consider separately ways of measuring density, tempera-
ture, and so on. This has a certain logical appeal but suffers the drawback
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that many diagnostics measure more than one parameter or a combi-
nation of parameters so that this grouping tends to lead to an artificial
and repetitive division of material, a single diagnostic appearing under
several different headings.

A second possible categorization is by experimental technique: that
which can be learned using a certain measuring instrument, for example
a certain detector or spectrometer. Such a division is more appropriate
if the treatment emphasizes the details of technique, which we do not.

The treatment we shall adopt categorizes diagnostics by the physical
process or property of the plasma that is directly measured; for example,
the refractive index of the plasma, the electromagnetic waves emitted by
free electrons, and so on. This differs from the first option in treating
together the various plasma parameters that measurement of a specific
physical process allows us to estimate, and from the second in treating
together measurements of a specific process even by widely differing
techniques, though sometimes separating measurements made with the
same instruments.

None of these options, of course, provides an ideal universal solution;
however, our choice seems most suitable for concentrating on an under-
standing of the underlying physical principles of the processes that enable
us to make plasma measurements. Even having made this decision as to
the guiding principle of categorizing the diagnostics, a certain degree of
arbitrariness remains in dividing up the material, but we shall deal in the
succeeding chapters with the following main topics:

Magnetic measurements (Chapter 2). Measurements made by sensing
directly the magnetic fields in various places inside and outside the plasma
using coils and probes of various types.

Plasma particle flux measurements (Chapter 3). Measurements based
on directly sensing the flux of plasma particles using probes of various
types in contact with the plasma.

Plasma refractive index (Chapter 4). Diagnostics based on measurement
of the plasma's refractive index for electromagnetic waves of appropriate
frequency by transmission of such waves through the plasma.

Electromagnetic emission from free electrons (Chapter 5). The deduction
of plasma properties from observation of radiation emitted by free elec-
trons including cyclotron (synchrotron) emission, bremsstrahlung, and
Cerenkov processes.

Electromagnetic emission from bound electrons (Chapter 6). Diagnostics
using observation of the line radiation from atoms and ions that are not
fully ionized.

Scattering of electromagnetic waves (Chapter 7). Measurements of the
radiation scattered by plasma particles when subjected to incident radi-
ation.
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Table 1.2. The plasma parameters that can be diagnosed using measurements of
different properties. The book section describing the diagnostic principle is
indicated numerically. Bold indicates a main or very important technique. Italic
indicates a rare or less reliable application.

Property measured

Magnetic measurements
Plasma particle flux
Refractive index
Emission of EM waves
by free electrons

Cyclotron
Bremsstrahlung
Cerenkov

Line radiation
EM wave scattering
Neutral atoms

Fast neutrals
Neutral beams
Pellets

Ions & reactions
Neutrons
Ions

fe fi

3.4.2 3.4.2

5.2.8
5.3.9
5.2.9

7.2.3

8.1.5

8.5.2

9.2.1

ne

3.2.5
4.2,5

5.2
5.3.6
5.2.9
6.4.3
7.2.3

Parameter diagnosed

nt

5.3.6

6.5.1
7.3

8.4.1

9.1.4

nQ vi i e

2.1.4
3.3.4 3.2.5

5.2
5.3.5

6.5.1 6.5.2 6.5.1
7.2.3

8.1.6
8.3

Tt

3.4.2

6.5.2
7.3

8.1.3
8.3

9.1

p E B

2.2 2.3 2.1-3
3.2.5

4.4

6.6.2
7.4

8.4.2
8.5.2

9.2.4 9.2.4

Neutral atom diagnostics (Chapter 8). Measurements of escaping neu-
trals, for example from charge-exchange reactions, and applications of
neutral beams and pellets.

Fast ions and fusion products (Chapter 9). Measurements based on
nuclear reaction products or injected energetic ions.

Which of these processes provides information upon which plasma
parameter depends to some extent upon the ingenuity of the application.
There are, however, some uses that may be regarded as reasonably well
established (even if not necessarily widely used). For those techniques that
have been extensively explored, either theoretically or experimentally, the
matrix in Table 1.2 is intended to indicate which parameter is measurable
by which process.

Of course, not all process measurements are possible with all plasmas.
An example already mentioned is that most hot fusion plasmas cannot be
diagnosed internally with material probes, so that direct flux of plasma
particles cannot be measured. Another is that cold plasmas may have
negligible nuclear reactions. Similarly, the quality of information may
vary from plasma to plasma. Nevertheless, the matrix provides a guiding



Further reading 9

framework that broadly indicates the applicability of various types of
measurement.

Further reading
Numerous texts on basic plasma physics exist. Some of the more

comprehensive include:

Goldston, R. J. and Rutherford, P. H. (1995). Introduction to Plasma Physics. Bristol: IOP
Publishing.

Hazeltine, R. D. and Waelbroeck, F. L. (1998). The Framework of Plasma Physics.
Reading, Mass: Perseus Books.

Boyd, T. J. M. and Sanderson, J. J. (1969). Plasma Dynamics. London: Nelson.
Clemmow, P. C. and Dougherty, J. P. (1969). Electrodynamics of Particles and Plasmas.

Reading, Mass.: Addison-Wesley.
Krall, N. A. and Trivelpiece, A. W. (1973). Principles of Plasma Physics. New York:

McGraw-Hill.
Schmidt, G. (1979). Physics of High Temperature Plasmas. 2nd ed. New York: Academic.

The following are treatments specifically of general plasma diagnostics:

Huddlestone, R. H. and Leonard, S. L. (1965). Plasma Diagnostic Techniques. New York:
Academic. An excellent, though rather old, collection of research reviews emphasizing
techniques.

Lochte-Holtgreven, W. (1968). Plasma Diagnostics. Amsterdam: North-Holland. A
collection of reviews with more emphasis on spectroscopic methods.

Podgornyi, I. M. (1971). Topics in Plasma Diagnostics. New York: Plenum.
Tolok, V. T. (1971). Recent Advances in Plasma Diagnostics, New York: Consultants

Bureau. A less useful collection of Russian papers.
Lovberg, R. H. and Griem, H. R. (1971). Methods of Experimental Physics. Vols. 9A and

9B. New York: Academic.
Sindoni, E. and Wharton, C, eds. (1978). Diagnostics for Fusion Experiments, Proc. Int.

School of Plasma Physics, Varenna. London: Pergamon.
Stott, P. E. et al., eds. (1982 and succeeding years). Diagnostics for Fusion Reactor

Conditions, Proc. Int. School of Plasma Physics, Varenna. Brussels: Commission of
E.E.C

Auciello, O. and Flamm, D. L., eds. (1989) Plasma Diagnostics. New York: Academic.

Some general plasma physics books have sections on diagnostics. One
of the more extensive is in:

Miyamoto, K. (1980). Plasma Physics for Nuclear Fusion. English edition. Cambridge,
Mass.: MIT.

In addition to countless specialized articles there are some general
reviews of plasma diagnostics in scientific journals, for example:

Equipe, T. F. R. (1978). Tokamak plasma diagnostics. Nucl. Fusion 18:647.
Luhmann, N. C. and Peebles, W. A. (1984). Instrumentation for magnetically confined

fusion plasma diagnostics. Rev. Sci. Instrum. 55:279. Both of these tend to emphasize
techniques.
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One of the most concentrated places to obtain details of plasma
diagnostic techniques is in the proceedings of the biannual High Tem-
perature Plasma Diagnostics conference. These are published in the
Review of Scientific Instruments with the following volume/number/
(year): 72/1/(2001), 70/1/(1999), 68/1/(1997), 66/1/(1995), 63/10/(1992),
61/10/(1990).
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In very many plasma experiments the main parameters of the
experiment consist of the magnitude of currents and magnetic and elec-
tric fields inside and outside the plasma volume. Reliable measurement
of these parameters is basic to performing and understanding the experi-
ments. Moreover, in many cases, measurements of these global quantities
can give considerable information about the microscopic properties of
the plasma such as temperature, density, and composition. It is therefore
logical to begin our consideration of the topic of plasma diagnostics by
consideration of electric and magnetic techniques. These may not seem
quite so exciting or to involve such interesting areas of physics as the
more exotic techniques but they are extremely productive and practical
in routine use.

2.1 Magnetic field measurements
2.1.1 The magnetic coil

The simplest way to measure the magnetic field in the vicinity
of a point in space is to use a small coil of wire. Such a magnetic
coil, illustrated in Fig. 2.1, may be considered the archetype of magnetic
measurements. In a uniform magnetic field, varying with time B(t), the
voltage induced in the coil is

V = NAB, (2.1.1)

where N is the number of turns in the coil of area A and the dot denotes
time derivative. As indicated in the figure, because one is normally
interested in B rather than B, an analog integrating circuit, such as the
(somewhat schematic) one shown, is generally used to obtain a signal
proportional to the field

where RC is the time constant of the integrator.
It is instructive to adopt a rather more formal approach to calculating

the voltage appearing at the output of a magnetic coil, even though
this may seem unnecessary for such a simple case as Fig. 2.1. This is
because we shall be concerned later with more complicated situations
in which it may not be so self-evident how to obtain the solution. This
general method is based simply on application of the integral form
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Coil

Integrator

Fig. 2.1. Typical magnetic coil and integrating circuit.

of Faraday's law (the Maxwell equation relating electric field and the
magnetic field time derivative) to an appropriately chosen closed contour
C. The equation is

I Edl = - /fi-ds, (2.1.3)
Jc Js

where S is a surface spanning the contour C.
In the case of a coil we choose the contour to lie within the conducting

material of the coil itself, as illustrated in Fig. 2.2. To the ends of the coil
are attached some kind of electronics, for example, an integrator or an
oscilloscope that may have some nontrivial impedance. It is the voltage
across the coil ends that this electronics senses.

In the most general case we must take into account the measuring
electronics' impedance, but to begin with let us assume this to be so
large that the coil can be taken as an open circuit. There is then no
current flowing in the coil (ignoring any capacitive effects) so, within the
electrically conducting material of the coil, the electric field must be zero.
The contour integral of the electric field may then be written as

(f E-d\= [ E • dl + / E • dl = 0 + F = - / B • ds, (2.1.4)
JC ./coil ./ends JS

the two integral parts here being around the coil and across the ends.
Naturally this has given us essentially the result we had before

[Eq. (2.1.1)] except that it is now more explicit that we measure only
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Coil

13

Contour C

Fig. 2.2. Contour to be used in Faraday's law to calculate the output voltage of
a coil.

the component of B normal to the plane of the coil and that, if B is
nonuniform, it is the mean value over the surface that appears. The
surface integral strictly spans the space between the leads to the coil as
well. This space is kept as small as possible and usually the leads are
twisted in order to make this contribution negligible.

It is worth commenting that Eq. (2.1.4) shows that we could equally
interpret a coil as measuring the inductive electric field via the equality
of the first and third quantities. From this viewpoint the effect of the
wire is to convert the inductive electric field, which would have appeared
as a nonzero integral around the coil part if we had chosen our contour
just outside the coil, into an electrostatic field giving rise to the voltage V
across the coil ends. Thus, as we shall see, we often use magnetic coils to
measure electric fields. The designation magnetic measurements remains
appropriate, though, because these electric fields are always inductive.

If current flows in the coil, because of finite impedance in the mea-
surement electronics, then there may be some finite electric field within
the coil (i.e., some potential drop) due to its resistivity. Also there may
be some modification of the field at the coil due to currents flowing in it
(i.e., its self-inductance). Exercises 2.1 and 2.2 explore these probabilities.

2.1.2 Hall effect and Faraday effect measurements
The most serious handicap of magnetic coils in measuring the

magnetic field is that they respond to the rate of change of field B,
not the field itself. For steady fields this means that a magnetic coil
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I

Fig. 2.3. Schematic illustration of the operation of a Hall probe.

becomes ineffective unless it can be physically moved within the field in
a controlled way, a process that is usually very cumbersome. For these
time invariant fields it therefore becomes attractive to use a different
physical process to sense the magnetic field: the Hall effect.

The Hall effect is, in essence, a plasma phenomenon, though for practi-
cal measurements the plasma used is virtually always a solid state plasma
within a semiconductor. Figure 2.3 illustrates how a Hall probe works. A
slab of semiconductor resides within the field B. A current (j) is passed
through it and the current carriers (electrons or holes, depending on the
semiconductor) experience a Lorentz force, due to their motion, tending
to deviate them perpendicular to j and B. The resulting charge buildup
on the faces of the slab gives rise to an additional electric field that
cancels the magnetic force. This additional field is sensed by electrodes
on the semiconductor faces.

The combination of Hall probe and accompanying electronics, some-
times called a Gaussmeter (or Teslameter - S.I. units!), thus gives a way
of measuring (with appreciable accuracy when appropriately calibrated)
a local value of magnetic field. Nevertheless in many, if not most, experi-
ments with magnetically confined plasmas the majority of measurements
are made with coils rather than Hall probes. This is because Hall probes
are inherently more complex, because they tend to be sensitive to stray
pickup in the electrically noisy environment of a plasma experiment, and
because they become nonlinear at high magnetic fields; also the majority
of high power experiments are pulsed; so integrators can be used with
coils. By contrast, plasma experiments on space craft usually deal with
far smaller field magnitudes, and with very slowly varying fields and so
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Fig. 2.4. The Rogowski coil.

they use what are called magnetometers, based on Hall-effect or other dc
mechanisms.

A third physical process that has attracted interest for magnetic mea-
surements is the Faraday effect of magnetic field upon light propagating
in an optical fiber. This offers, in principle, a measurement based upon
polarization rotation proportional to the longitudinal magnetic field. It
avoids the integration problem and lends itself naturally to the construc-
tion of the equivalent of a Rogowski coil (see Section 2.1.3). It suffers
from numerous practical difficulties associated with nonideal optical be-
havior of the fibers due to residual strains created in the manufacturing
process. However, these difficulties can be overcome [see, for example,
Chandler et a\. (1986)]. It may be that this method will find practical
application in the future.

2.1.3 Rogowski coils
Many different kinds of magnetic coil configuration can be used.

One which is very widely used is the Rogowski coil. This is a solenoidal
coil whose ends are brought around together to form a torus as illustrated
in Fig. 2.4. Consider a coil of uniform cross sectional area A, with constant
turns per unit length n. Provided the magnetic field varies little over one
turn spacing, that is, if

\VB\/B<n, (2.1.5)

the total flux linkage by the coil can be written as an integral rather than
a sum over individual turns:

AB'dl, (2.1.6)
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Fig. 2.5. Equivalent geometry for the integral form of flux through a Rogowski
coil.

where dl is the line element along the solenoidal axis as illustrated in
Fig. 2.5. Note that it is important to have the return wire back down
the coil as shown in Fig. 2.4 or else to "back wind" the coil; otherwise,
Eq. (2.1.6) also includes a term arising from the flux passing through the
torus center. Now we note that the order of integration may be changed
in Eq. (2.1.6) and that Ampere's law is quite generally

d\ = fil, (2.1.7)

where / is the total current encircled by / and fi is the magnetic perme-
ability of the medium in the solenoid. Thus

<D - nAfil (2.1.8)

and the voltage out of the Rogowski coil is

V = O = nAfd, (2.1.9)

which again is usually integrated electronically to give a signal propor-
tional to / .

The Rogowski coil thus provides a direct measurement of the total
current flowing through its center. Note particularly that it is independent
of the distribution of that current within the loop provided that Eq. (2.1.5)
is satisfied. This principle is used in many different types of electrical
circuits since it has the merit of requiring no circuit contact at all with
the current being measured. The typical situation in plasma diagnostics
in which it is used is to measure the total current flowing in the plasma,
particularly for toroidal plasmas such as tokamak or pinch. For this
purpose the Rogowski coil links the toroidal plasma as illustrated in
Fig. 2.6.
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Transformer
core

Voltage
loop

Fig. 2.6. Typical use of a Rogowski coil and a voltage loop to measure current
and voltage in a toroidal plasma.

2.1.4 Ohmic power and conductivity
In a toroidal experiment the plasma current is driven by a

voltage induced by transformer action, the plasma being the secondary.
The toroidal loop voltage is usually measured by a so-called voltage
loop, which is simply a single wire encircling the machine in the toroidal
direction as illustrated in Fig. 2.6. If the plasma current is not varying
with time, then the resistance of the plasma is evidently V^/I^, where
F<£ and 1$ are the toroidal loop voltage and plasma current, respectively.
In the following discussion much of what is said applies equally as well
to linear plasmas as to toroidal ones. It is inconvenient to maintain
a terminological distinction. So it should be noted that to apply the
concepts to a linear plasma, where appropriate, one need only identify the
toroidal ((/>) direction as the axial (z) direction of a linear system. Thus, for
example, the voltage and current between the ends of a linear discharge
Vz and Iz give the resistance of the plasma. These parallel applications will
henceforth remain implicit. The plasma resistance is important because
it determines the ohmic heating input to the plasma and also because it
may be used to estimate electron temperature. However, before moving
on to these matters we must consider the more general situation in which
the currents are not constant and the inductance makes a significant
contribution.

We write Poynting's theorem as applied to a volume V bounded by
the toroidal surface dV (generally outside the plasma) on which the
measuring loops lie:
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I E-i + -^- |-(B2)d3x = - - / (EAB)-dS, (2.1.10)
Jv 2/̂ o ot fio Jdv

where j is the current density and dS is the outward pointing surface
element. The first term is the total ohmic dissipation within the volume,
the second is the rate of change of stored magnetic field energy (SQE2/2
is negligible), and the right-hand side is the Poynting flux, which is the
rate of input of energy from the external circuits. The Poynting flux may
be written as V^I^ + Vole, where 9 refers to the poloidal direction and
Io = Bf/ylnR/fio is the total poloidal current linking the torus, R and
a being the major and minor radii of dV. In the case (usually valid
for tokamaks) where dB^/dt and hence VQ are negligible, the energy
equation (2.1.10) may be written as

P =

where the inductance,

2
ed\ (2.1.12)

is determined by the distribution of the (toroidal) current density j ^ .
If the toroidal field terms are not negligible (e.g., for a pinch plasma),
the full energy equation (2.1.10) must be retained, but in either case
one often has an estimate of the effective inductance L from other
knowledge of the field profiles. If that is so, the inductive corrections
may be estimated and the ohmic power P deduced. A word of caution
should be mentioned concerning the treatment of the plasma in terms
of lumped circuit parameters such as L. When inductive corrections
are important, very often the effective inductance is changing as well
as the current; therefore, the full derivative must be retained. Also,
for a distributed current such as flows in a typical plasma, more than
one effective inductance can be defined. The inductance we introduced in
Eq. (2.1.12) is the energy inductance, which is different from, for example,
the stored flux inductance defined by <P = LI. When any doubt arises,
it is always best to return to the appropriate integral form of Maxwell's
equations to be sure of using the correct definition.

Regardless of whether the plasma is effectively steady (so that its
resistance is V^/I^) or varying (so that inductive stored magnetic energy
must be accounted for), we normally wish to relate global quantities such
as resistance or ohmic power to the local plasma properties; in particular,
the resistivity or, equivalently, the conductivity. In order to determine the
conductivity of the plasma, Ohm's law is used, usually in the form
j = crE because the anisotropy of conductivity is usually irrelevant for
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these estimates. Then if we know, from V^ and 1$ measurements, the
power

P = [ f/adV, (2.1.13)
Jv

we can deduce a typical value of G. For example, a simple way to define
a kind of averaged conductivity G is to write the plasma conductance as

(2.1.14)
2nR P V V4> 8t

where a and R are the minor and major radii of the plasma, respectively.
Of course, if we have additional information about the spatial variation of
j and G it may be possible to deduce a local value of G (see Exercise 2.3).
Otherwise, we shall have to be content with some average value such as
is given by Eq. (2.1.14).

The usefulness of having a measurement of G, apart from determining
the ohmic heating power density, is that it gives us an estimate of the
electron temperature. This estimate is based on the equation for the
conductivity of a fully ionized plasma,

G = 1.9 x 10* T\ A Q"1 m"1, (2.1.15)
Zo lnA

where Te is the electron temperature in electron volts, ZG is the resis-
tance anomaly determined by the ion charge, and In A is the Coulomb
logarithm. It would take us too far out of our way to derive this expres-
sion (called the Spitzer conductivity) properly, but we can gain a general
understanding of its form from the following considerations.

The conductivity is determined by a balance between the acceleration
of charge carriers (electrons primarily) in an applied electric field and
their deceleration by collisions. In a plasma in which neutral collisions
can be ignored, the collisions of interest are Coulomb collisions with the
ions. These are discussed in more detail in Chapter 5; for now we simply
note that an electron of velocity v colliding with an ion of charge Ze will
be scattered through 90° if its kinetic energy is equal to half the potential
energy at a distance equal to the impact parameter in the Coulomb field.
If the electron has impact parameter b90 for 90° scattering, this means

mev2 = -^—. (2.1.16)

If we suppose a collision to occur if an electron approaches an ion within
the impact parameter of a 90° collision and not otherwise, the resulting
estimate for the collision frequency (i.e., number of collisions per unit
time) is
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VeiKViTzbioCC-Zj-. (2.1.17)

The conductivity will then be given by substituting in this expression a
typical thermal electron velocity (oc Te

1/2) and writing
2 T3/2

a « ^£f_ oc i ± ^ . (2.1.18)
meve; Z

This rough estimate of how the conductivity scales agrees with the
accurate expression (2.1.15) in giving o as independent of ne. This is
because the increase of collision frequency with ne is exactly compensated
by the increase in the number of charge carriers. There are two important
corrections to a in the accurate expression. The first is the Coulomb
logarithm In A, which accounts for the fact that glancing collisions are
important and in fact increase the collision frequency substantially above
our crude estimate. The quantity A is approximately the ratio of the
Debye length (see Chapter 3) to 690, and In A is a very slowly varying
function of plasma parameters, typically ~ 15 for hot plasma experiments.
A convenient approximate expression for A, valid when Te > 10 eV, is

In A = 31-ln(nl/2/Te)9 (2.1.19)

where Te is in electron volts (and ne in m~3). The second correction is
that Za and Z are not exactly the same (nor is ZG equal to Zeff, discussed
in Chapter 5) except in hydrogen plasmas when ZG = Z = 1. The reason
is that the coefficient of Eq. (2.1.15) includes corrections for electron-
electron collisions, which are important for small Z. These make the
conductivity scale not exactly proportional to 1/Z. Figure 2.7 shows how
ZG, the resistivity anomaly, varies with the ion charge Z. This and other
details of the proper derivation of plasma conductivity were originally
worked out by Spitzer (1962) and others.

Knowledge of a, ZG, and In A allows us to deduce Te. The most
common approach is to take an appropriate value for In A, take ZG = 1
for hydrogenic plasmas, and then deduce a temperature from Eq. (2.1.15)
using the measured value of a. This temperature is then called the
conductivity temperature TG. Uncertainties in ZG due to the presence
of unknown quantities of impurities often make TG a relatively poor
quantitative measure of Te. Nevertheless, TG is still useful as a first
estimate of temperature particularly because it can be deduced from the
relatively simple measurements of the gross parameters /^, V^ etc., of
the plasma.

2.2 Magnetohydrodynamic equilibrium
The electric current flowing in a plasma can give us an estimate

of electron temperature via the conductivity, as we have seen. However,
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Fig. 2.7. The resistivity anomaly, Za, as a function of ion charge Z. The Lorentz
gas value is what is obtained from a calculation ignoring electron-electron
collisions. The Spitzer value is the correct one when these are included.

in many plasmas, notably those that are magnetically confined, a more
powerful diagnostic is available, based on the role played by the current
in balancing the plasma pressure. The pressure can thus be investigated
using magnetic measurements. In a sense, we can speak of this method
as a way of determining the plasma pressure by measuring the force it
exerts on the magnetic field by which it is contained.

We adopt a single-fluid description of the plasma and suppose, for the
moment, that the pressure is isotropic. The condition for the plasma to
be in equilibrium is then that the sum of kinetic pressure force density
and electromagnetic force density should be zero:

-Vp+ jAB = 0. (2.2.1)

Ampere's law and straightforward vector manipulation allow us to write
this also as

-V P + — + —

or equivalently

V - T = 0, where T = ( p + ^ ] 1 - —
14)

B2

(2.2.2)

(2.2.3)

is the Maxwell stress tensor.
To solve this equilibrium equation in general geometries is an extremely

difficult task. However, many plasmas have approximate cylindrical sym-
metry and it is then possible to obtain convenient results by appropriate
Fourier analysis. In a cylindrical polar coordinate system (r,9,z) appro-
priate to a truly cylindrical plasma or, for example, a large aspect ratio
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torus in which r is the minor radius and z = Rcj), we express components
of the field at radius r as a sum of poloidal Fourier harmonics:

C °°
B(9) = - y + ] P Cm cos m# + Sm sin m0, (2.2.4)

m = l

w h e r e

1 Z*271

Cm = - B(9)cosm9d9,
K JO

Sm = - f B(9)sinm9d9. (2.2.5)
rc Jo

(See Appendix 1 for a brief review of Fourier analysis.)
Insofar as the plasma is approximately cylindrical, the higher Fourier

components will be smaller. Thus, we regard Eq. (2.2.4) as a perturbation
expansion for B in which the zeroth order is independent of 9, the first
order is proportional to the cosine or sine of 9, and so on. One can
thus, by equating appropriate orders in the equilibrium equation, obtain
a solution as a perturbation expansion. For the purposes of pressure
diagnosis it is the zeroth and first order terms that are most useful. It is
to these we now turn explicitly.

2.2.1 Diamagnetism (m = 0 term)
For the purposes of the zeroth order we can suppose the fields

all to be cylindrically symmetric. The only component of the equilibrium
equation of interest is then the radial one:

i ^ ^ = 0 (2.2.6)
dr dr fi0 r dr

(again 0 is the axial coordinate equivalent to z). Multiplying this equation
by r2 and integrating from 0 to a, one obtains (see Exercise 2.4)

l < 3 > , (2.2.7)

where ( ) indicates average over the plasma cross section, the subscript a
means quantities evaluated at r = a, and we have assumed pa = 0. This is
an expression for the ratio of kinetic pressure to (poloidal) magnetic field
pressure, the plasma beta /?#. In its present form the equation is not very
useful because it is not clear how to measure (Bfy, but if B^ varies only
weakly across the plasma, which will be the case if ^ = 2fio(p)/B^ < 1
and BQ < B^ (as occurs in tokamaks, stellarators, and some mirror
machines but not, for example, in a reversed field pinch), then
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Fig. 2.8. The flux loop.

B\a - - (B+))

and so

B9a

(2.2.8)

(2.2.9)

In this equation B$a and BQQ may be measured by magnetic coils outside
the plasma at r = a (or by less direct techniques), while (B^) is propor-
tional to the total magnetic flux in the toroidal direction and so may be
measured by a poloidal loop around the plasma as shown in Fig. 2.8.
Such a loop measures VQ SO it might be called a poloidal voltage loop,
but because, when integrated, it measures toroidal flux, it is more often
called a flux loop.

If 1^ (and hence Be) is negligible, Eq. (2.2.9) should be written

Since jS ,̂ the ratio of kinetic pressure to toroidal magnetic field pressure,
is always positive by definition, it is clear that in this case the mean (B^)
must be less than the edge field B^a. Thus the plasma acts to decrease the
magnetic field within it. The plasma is then said to be diamagnetic and,
as a recognition of this, the flux loop is sometimes called a diamagnetic
loop. It is possible to demonstrate the diamagnetic nature of the plasma
by consideration of the effective magnetic dipole moments of electrons
and ions gyrating around the field lines. This approach is equivalent
to the magnetohydrodynamic (MHD) equilibrium calculation we have
done but is much more cumbersome to evaluate in nontrivial geometries,
which is why we adopt the MHD model. In cases where the pressure is
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anisotropic, the preceding derivation is still valid provided we interpret p
as the perpendicular pressure p±, which acts in the r direction.

Equation (2.2.9) shows that when 1$ is not negligible the plasma may
have (B^) greater than B$a, that is, it may be paramagnetic. This is due
to the extra pinching force of the poloidal field. In general, the plasma is
diamagnetic or paramagnetic according to whether fig is greater or less
than 1. However, the measurement of (p) from B§a — (B^) is called the
diamagnetic measurement in recognition that the plasma kinetic pressure
always acts to decrease the field.

The measurement of the diamagnetic effect is an important mea-
surement of total plasma kinetic energy W because energy density is
proportional to p and so (p) oc W. However, on tokamaks, for example,
it is in practice quite a difficult measurement to achieve because, although
fie ~ 1, typical tokamaks have Boa/B^a ~ 10"1, so that the diamagnetic
effect gives only a very small fractional change in B^. To obtain for
example 20% accuracy in measuring /?# when it is of order unity requires
(Bfa — (B^/Bfa to be measured accurately to about 1 part in 103, and
clearly, even better accuracy than that is desirable. Despite this exacting
requirement, using delicate subtraction techniques, reliable diamagnetic
measurements of plasma energy have been achieved on many tokamaks.
An example of the results possible is shown in Fig. 2.9.

The striking fact is that the external magnetic measurements of the
diamagnetic effect and the plasma resistance are sufficient to calculate
the energy confinement time i£ of a quasistationary ohmically heated
plasma. This arises from the relationship

W 3
" (2.2.11)

(where Rp is the plasma resistance P = I^RP\ which may be demonstrated
directly from the definitions of/?#, W, and P (see Exercise 2.5). This shows
that fie and Rp are sufficient to determine the energy confinement time
TE. Figure 2.9 includes this parameter.

2.2.2 Position and asymmetry measurements (m—\)
Measurement of the m = \ components of the magnetic field

serves primarily to determine the position of a current carrying plasma.
Consider the situation, illustrated in Fig. 2.10, of a straight plasma with
cylindrical symmetry about an axis at position x = A < a, y = 0. We
suppose the azimuthal field (BQ) to be measured at radius r = a. The
field there (due to the plasma alone, any applied external field being
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Fig. 2.9. Measurement of the evolution with time of fa and hence i£ as measured
by diamagnetism on the small tokamak LT-3 (Hutchinson, 1976a). Two different
discharges are shown.

Fig. 2.10. Measurement of the position of a cylindrical current carrying plasma
from field asymmetry.
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subtracted off) is

B (0) = MM
2?ra [sin2 0 + (cos 0 - A/a)2] V2

(2.2.12)^ A +
2na \ a

to first order in A/a. Thus the cosine Fourier component of the field
measures the horizontal displacement; specifically

A = 2a(Ci/C0). (2.2.13)

In just the same way the sine component Si/Co would give any vertical
displacement.

It is relatively straightforward to perform the measurement of the
m = 1 (and higher) components of the poloidal magnetic field. The
earliest such measurements used a kind of Rogowski coil but with an
effective winding density that varies like cosmO or sinmO. That gives
an output directly proportional to the (time derivative of the) required
Fourier component. Today, because large-scale data-acquisition is rou-
tine, the more common approach is to use a set of discrete coils ranged
around the plasma at different values of 6. By using an appropriate
weighted sum of the signals from these coils, discrete approximations to
the Fourier integrals can be synthesized. These types of measurement are
routinely used in tokamaks, for example, to monitor, and hence control
by feedback, the plasma position, although for the noncircular cross sec-
tions of modern experiments a more general approach is necessary, to be
described shortly.

In toroidal plasmas, although the sine component still gives the vertical
position in just the same way as for a cylinder, the cosine component and
the horizontal position are related in a more complicated way. The reason
for this is that even if the magnetic surfaces (in which the field lines lie)
are circular in cross section, they are not necessarily concentric circles,
but generally show an outward shift of the inner surfaces relative to the
outer ones, as illustrated in Fig. 2.11. To calculate this effect requires a
solution of the m = 1 component of the MHD equilibrium. We shall
follow approximately the original derivation of Shafranov (1963), whose
name has become attached to the relative displacement of the magnetic
surfaces: the Shafranov shift.

We wish to solve the MHD equilibrium for a toroidal plasma with
circular poloidal cross section. To do this we consider a thin toroidal
"slice" of plasma of angle d<fi, having a major radius Ro, as shown in
Fig. 2.12. We take the fields, etc., to be given just by their first two
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Fig. 2.11. The Shafranov shift of magnetic surface makes them not concentric in
a poloidal cross section.

Fig. 2.12. The "slice" of plasma whose equilibrium is to be calculated.

Fourier harmonics:

B(f) = B^o + jfyi cos 0,
Be = Boo + Bei cos 9,
By = By\ COS 9,

P = Po + Pi cos 9. (2.2.14)

Ignoring higher Fourier modes amounts to an expansion in inverse aspect
ratio:
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Sine components are zero by symmetry (for zero vertical displacement).
We set the total force in the major radial direction acting on this plasma
slice to zero for equilibrium. In terms of the stress tensor this may be
written

I T-dS = 0, (2.2.16)
s

where S is the surface of the slice. Thus the total force is composed of the
total stress integrated over the surface of the slice. The surface consists
of two disks and a round outer surface. The stress in general consists of
normal (pressure-like) stress and tangential (or shear) stress. However,
one can show by evaluation that the tangential stress integrated over
the surfaces is zero to the order of approximation we are employing.
Therefore, we shall concentrate only upon the normal stress.

The force in the R direction on the circular disk faces is

Fx =d(j) f TH2nr' dr' = # /
Jo Jo

' , Beo Blo
Po + ^

2nr' ir\

(2.2.17)

the cosine components averaging to zero. The R direction force on the
outer round surface is

r2n r B2 B2~\
F2 = - d<t>R\p + r-\cos0rd09 (2.2.18)

Jo L 2/4) /*oj
where R is the major radius of the surface at angle 9, that is, R =
jRo+r cos 9. Substituting for R and for B in terms of the expansion (2.2.14),
we perform the 9 integral and retain only the terms of lowest order in
r/R; then

F2 = -d<\>% \ROV I pi + —(B40B41  + BeoBe{)\ + r2 | p 0 + ^ 1 •

(2.2.19)

The equilibrium F\ + F2 = 0 then becomes

(P) + ^ « ^ 2 o > " (Blo)) - —  ( P I + - ( % ) % + BeoBei)}

= 0, (2.2.20)

where ( ) denotes, as before, an average over the poloidal cross section
(fln/dr'/Tir2).
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We now choose our coordinate system so that RQ is measured to the
center of a magnetic surface of minor radius r. This means that the
outer rounded surface, on which the quantities in Eq. (2.2.20) are to be
evaluated, is a magnetic surface, and implies that quite generally p is
constant and B^ oc 1/R on the surface (see Exercise 2.6). Hence,

pi = 0, % = —JTBW, (2.2.21)

and the equilibrium can be rewritten

)/ 60 00/ 00 /^ ,-* r)ry\

w ~ ^ • ( ]

The final term on the right-hand side of this equation we have already
evaluated. It is the diamagnetic term [Eq. (2.2.7)] and is equal to (p) —
p — Bla/2fiQ. We therefore substitute for it and rearrange slightly to get
the form

(2.2.23)

where £\ is a nondimensional form of the energy inductance of the
poloidal field

tx = (B2
eo)/B2

o. (2.2.24)

From a practical viewpoint, the measurement of BQ\ is virtually always
done outside the plasma, where p = 0, so that we can write Eq. (2.2.23)
in its most common form:

(2.2.25)

The m = 1 component of the magnetic field outside the plasma thus
provides a measurement of the combination fa + ^-/2 via the asymmetry
factor A. (This is not the same A as in the Coulomb logarithm.)

If fa is known from the diamagnetic measurement, for example, then
measurement of A gives a value of /;, the plasma inductance. This is
determined by the radial distribution of toroidal current density within
the plasma and so A gives information essentially about the "width of
the current channel". If, on the other hand, /*• is sufficiently well known
from other measurements, we have two measurements of fa, one from
diamagnetism and one from A: call them /?dia and fi\. The potential value
of these two measurements is to diagnose any anisotropy of the pressure.

Although the preceding analysis assumed isotropic pressure, we could
perfectly well have performed our equilibrium calculation with an aniso-
tropic pressure tensor. In doing so we should have arrived at the same
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results except that the pressure average (p) from the force on the circular
disks would be (p<^), whilst that from the diamagnetism is (prr)- For a
tokamak, in which B^ >> Be, these would be essentially (p||) and (p±),
respectively. Recall that the (p) in Eq. (2.2.23) came half from the pressure
on the disks and half from the diamagnetism. Hence

fea = Po±, PA = \(Pe± + ton). (2.2.26)
Thus it is possible in principle to distinguish (p±) and (p||) by comparison
of diamagnetic and asymmetry measurements if /; is known.

Because of the asymmetry of BQ even on a magnetic surface in a
toroidal machine, the measurement of BQ\ alone is not sufficient to deter-
mine both the horizontal position and the A factor unless the measure-
ment surface coincides with a magnetic surface. This is rarely guaranteed
a priori, so that a further measurement is necessary. Generally, the mea-
surement used is the m—\  component of Br. In a sense, the combination
of BQ\ and Br\ is sufficient to determine the position of the outer magnetic
surface and its asymmetry factor A. Detailed discussion of these points
may be found, for example, in Mukhovatov and Shafranov (1971).

The higher Fourier components naturally give information about the
shape of the plasma. For example, m = 2 components measure the
elliptical distortion, m = 3 components measure the triangularity, and
so on. These factors are important in specially shaped plasmas in their
own right. They may also be related to the MHD equilibrium to provide
additional diagnostic information. This information tends to be less
universally useful than that which the m = 0, 1 components give and to
require numerical solutions of the equilibria for its interpretation.

2.2.3 Strongly shaped plasmas
Many plasmas do not have simple approximately circular cross

sections as the previous section assumed. In that case more general
computational techniques are necessary to relate the measurements of
magnetic fields and fluxes outside the plasma to internal parameters.

In geometries in which there is an ignorable coordinate, such as for a
toroidally symmetric plasma like a tokamak, the magnetic fields can be
expressed as the gradient of scalars. In particular, the poloidal field of
an axisymmetric toroidal plasma can be written

Bp = -(^AVxp)/2nR, (2.2.27)

where e^ is the unit vector in the toroidal direction and Bp includes both
radial and azimuthal parts of the field (Br and BQ) of our earlier analysis.
The poloidal flux xp can be regarded as the total magnetic flux through
a surface spanning the circular contour R = constant, z = constant
(using cylindrical polar coordinates R,(j),z). Now it is possible, quite
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straightforwardly in many cases, to measure the poloidal flux directly
using magnetic measurements, in much the same way that the toroidal
flux is measured. Integrating the signal from what we have previously
called a voltage loop gives directly the poloidal flux. Therefore, we could
just as well have called it a (poloidal) flux loop.

Most of the measured flux through such a loop will tend to be the
transformer flux used to drive the plasma current. Therefore, a single loop
does not give much information about the plasma position. However, if
we have a number of loops ranged around the perimeter of the plasma,
then the difference in the flux measured by the different loops does give
us that information. To put the point more mathematically, loops ranged
around outside the plasma give the boundary conditions for a solution
of the differential equation governing xp in the inner region. As a simple
example, if the flux values are all the same at the loops, then the loops
all lie on a single magnetic flux surface, and thereby give us the shape of
the flux surface in that region of space.

In actual fact, the flux alone is not sufficient to prescribe the boundary
conditions fully. From an idealized viewpoint, in order to solve the
equation in a closed region with bounding surface S, we may require not
just the value of xp but also its derivative normal to the boundary n • Vxp
everywhere on S. Thus if we regard the flux loops as giving us xp essentially
everywhere on the boundary (by interpolation provided there are enough
loops), we also need h • Wxp at a similar number of positions. But n • Vxp is
equal to 2nR times the tangential component of Bp. So usually one uses
magnetic coils ranged around the periphery, much as we discussed for a
circular plasma, to give this second condition on S. Figure 2.13 illustrates
the sort of configuration used to give the information on the magnetic
flux and its derivative, the tangential magnetic field.

For axisymmetric configurations such as tokamaks, the flux function
can be shown from Maxwell's equations to satisfy the equation:

A> = -inR^U (2.2.28)

with the elliptic operator A* given by

|) g
[Often, for convenience, a notation which defines xp to be the flux divided
by 2TT, or flux per radian is used. Then the factor 2TT is absent from
equations (2.2.27), (2.2.28), and (2.2.30). When reading other literature,
one should be alert to which convention is being used.] Within the plasma,
equilibrium force balance requires that the toroidal current density is
given by
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x Poloidal
Field Coils

Fig. 2.13. External poloidal magnetic field measurements on a noncircular plasma
typically consist of a combination of flux loops and field coils arranged around
the plasma.

2TT dp F dF\
(2.2.30)

where p(xp)9 the plasma pressure, and F(xp) = RB^ are two free functions
that, together with boundary conditions, define the equilibrium. The
flux equation with this expression substituted for j ^ is called the Grad-
Shafranov equation.

Normally, in the absence of internal magnetic measurements, the aim
of the magnetic diagnostics is to reconstruct as much information as
possible about the flux function in a region enclosing the plasma, from
measurements round the boundary. In many cases this boundary is
actually the vacuum vessel wall, although it need not be.

Vacuum fields. The simplest possible situation to consider first
is when the toroidal current density is negligible. Naturally this is not
representative of a tokamak plasma at full current. However it is never-
theless an important situation in tokamak operation, representing the
problem of diagnosing the magnetic configuration during plasma for-
mation. This problem is important because proper plasma formation
requires a carefully controlled field "null" for ionization of the gas and
subsequent current ramp. Particularly in tokamaks with thick conducting
structures it is important to measure the field configuration. In this case
we need to treat the "homogeneous Grad-Shafranov equation", i.e., the
elliptical problem Eq. (2.2.28) with zero right-hand side. Since, by pre-
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sumption, the equation A*t/? = 0 is satisfied everywhere within a closed
two-dimensional (R,z) region, standard analysis of elliptic equations tells
us that knowledge of \p (alone) everywhere on the boundary is sufficient
to define the solution. Actually we do not have a mathematically contin-
uous measurement of \p on the boundary, but the flux loops give us a
discrete set of points at which we know \p. If this set is sufficiently dense
(and typically 15 to 30 flux loops is enough) we can obtain adequate
accuracy by simple interpolation.

What is particularly convenient about this problem is that it is com-
pletely linear. Consequently one does not need to solve the differential
equation for every new case of interest. Instead, the full solution is a
linear superposition of the solutions corresponding to (for example) unit
flux in the ith loop and zero in all the others. Thus, if \pi(R,z) is this
solution, then the full solution when the fluxes at the N flux loops are xpt
is

N

We can therefore precalculate the solutions over some mesh (Rj,Zk) and
obtain our required solution for any set of measurements by a simple
matrix multiplication.

In Fig. 2.14 is given an example of such a vacuum flux reconstruction.
This illustrates the fact that the region over which the solution is obtained
can be quite irregular. Experience with these reconstructions shows that
they can be surprisingly accurate. In Alcator C-Mod, for example, it
has been found that the inner flux can be reconstructed in practice to a
precision of approximately 10~3 Wb out of a total flux of approximately
1.6 Wb (in the case of Fig. 2.14).

External field reconstruction. When there is toroidal current den-
sity in the region over which the reconstruction is to occur, such as during
the main part of a tokamak pulse, the problem becomes mathematically
more difficult. There are actually two further levels of sophistication
in the magnetic reconstruction problem. The first is to reconstruct the
flux in the region outside the plasma itself (but inside the measurement
surface), where there is no current. One can think of this problem as
similar to the vacuum reconstruction except that the reconstruction takes
place in a doubly connected region between the measurement surface and
another inner surface (roughly the plasma surface). The mathematical
problem differs in that we do not have measurements of the flux on
the inner surface. Therefore insufficient information to solve the problem
is provided by the flux loops alone. However, we can also measure the
poloidal field at the measurement surface, which gives us 2nR times the
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Fig. 2.14. Reconstructed poloidal vacuum flux contours (10 3 Wb apart) at
plasma initiation in the tokamak Alcator C-Mod. The measurements are 26 flux
loops whose positions are indicated by the points at the inner surface of the
irregularly shaped vacuum vessel (Hutchinson et al, 1994).

normal derivative of the flux: e^.(n A Bp) = inRn.Vxp. So we have both
the flux and its derivative on the measurement surface. In principle this
is sufficient information to reconstruct the solution to the homogeneous
elliptical equation in the current-free region. However, the problem turns
out to be very ill conditioned because small uncertainties in the bound-
ary conditions are amplified exponentially as the solution propagates
inward.

It is necessary, therefore, to use some kind of fitting process in the
reconstruction so as to limit the propagation of errors. Various options
exist for this process. The simplest, developing from the initial work of
Wootton (1979), is to model the plasma current as a set of filaments and
construct the solution as a superposition of a field due to currents outside
the solution domain, which is a vacuum-solution in the plasma region,
plus the field due to the plasma model. Other techniques have been
explored, such as expansion in toroidal eigenfunctions (e.g., Kuznetzov
and Naboka, 1981), and Green function methods related to an inner
current surface (e.g., Feneberg et al. 1984), but in all approaches the idea
is to limit the high poloidal harmonic content of the reconstructions,
which suffer most from the error propagation problem, assuming that a
smooth solution is the required one.
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In any case, provided the fitting is formulated in an appropriate way
(as a least squares problem), the outer region solution depends linearly,
again, on the measurements (xpi and B\),

\p(RJ9zk) = Y, CjkiWi + ^2DjklBi. (2.2.31)
i I

Therefore the reconstructions can be computed very quickly by matrix
multiplication, once the coefficients corresponding to individual compo-
nents (Cjkt and Dju) have been precalculated. What is more, this lin-
earized approach can be implemented directly and robustly in real-time
control systems, providing feedback control of the position and shape of
the outermost flux surface, which is naturally important for confinement
experiments (Hutchinson et al., 1996).

Equilibrium reconstruction. The final category of reconstruction
technique uses the full Grad-Shafranov equation. In contrast to the
previous two techniques (which just obtain solutions to the homogenous
problem) this method can therefore reconstruct the flux over the entire
region including the plasma. It uses the fact that the plasma itself is
in MHD equilibrium (in addition to Maxwell's equations which are
all that the vacuum region solutions use). Since the Grad-Shafranov
solution depends on the unknown functions p(\p) and F(xp) we clearly
require some method of estimating these functions from the external
magnetic data. This is normally done by representing the functions in
some analytic form with just a few free parameters. Then one determines
the combination of parameters and externally produced fields that best
fits the magnetic measurements. It turns out that in typical cases, from
magnetic measurements alone, one can determine reliably only roughly
two parameters of the plasma profile functions. These can be thought
of as being some kind of average pressure and some kind of current
profile width. (The total current can be determined by a Rogowski coil
of course.) Thus for shaped plasmas fig and lt can be separately estimated
from the external measurements.

The full reconstruction is usually performed by iteratively solving the
Grad-Shafranov equation while minimizing the error between the actual
and reconstructed flux and field measurements, by adjustment of the
profile functions (Lao et al, 1985). The profiles are tied to the fractional
flux between the magnetic axis and the last closed flux surface (i.e., the
separatrix or limiter surface where the plasma is usually supposed to
become cold enough that its current can be ignored). And this surface is
determined by the global solution. The problem is nonlinear and nonlocal.
For that reason the full reconstruction requires solution of the elliptic
equations for each equilibrium and so is inherently much slower than the
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Fig. 2.15. Reconstructed equilibrium using the "EFIT" code, after Lao et al.
(1990). The solid lines are the reconstruction using only the magnetic measure-
ments. On the left are the current and pressure profiles on the midplane. The
right shows the shape of the flux surfaces in a poloidal plane. The dashed lines
show a more accurate reconstruction in which the pressure profile is constrained
by knowledge gained from other diagnostics.

vacuum region reconstruction. Nevertheless, real-time implementations
have recently been developed for control purposes, taking advantage
of the fact that the equilibrium changes only slowly from instant to
instant, so the previous time-step's equilibrium is usually an excellent
approximation for the initial guess for the next iterative solution (Ferron
et al, 1998).

A major advantage of the full reconstruction is that additional diag-
nostic information, e.g., the kinetic pressure on the magnetic axis, or
internal measurements of the magnetic field, if available, can readily be
incorporated into the reconstruction, and indeed even relatively sparse
additional internal information can dramatically improve the accuracy of
the reconstruction. Fig. 2.15 shows an example from the DIII-D tokamak.

The importance of accurate flux-surface reconstruction for magneti-
cally confined plasmas can hardly be over-estimated because many
plasma parameters tend to be constant on flux surfaces (because of rapid
transport parallel to the field) and are only measured at one poloidal
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position. Therefore to construct a complete two-dimensional picture of
the spatial profiles of those parameters requires one to map the flux
surfaces accurately in space, regarding the flux surfaces as coinciding
with contours of constant parameter value.

For inherently three-dimensional configurations, such as stellarators,
the magnetic field cannot be described in terms of a flux function, and
magnetic equilibrium reconstruction is much more difficult, requiring the
fitting of three-dimensional solutions of the MHD equilibrium equations
to the magnetic measurements. A partly compensating factor is that such
confinement configurations usually have much less of their fields pro-
duced by internal plasma currents, compared with external coil currents.
Therefore vacuum-field solutions are more relevant to the equilibrium
than is the case for tokamaks.

2.3 Internal magnetic probe measurements
2.3.1 Field measurements

In order to measure the magnetic field inside the plasma, it is
sometimes possible to use internal magnetic probes. The major restric-
tions upon the use of such insertable probes are that in energetic plasmas
either the heat flux from the plasma may be so great as to damage the
probe or else the perturbation of the plasma by the probe may be so
severe as to change the whole character of the plasma being probed.
Despite these difficulties, magnetic probes have proven extremely valu-
able in many circumstances. An example of the type of probe construc-
tion used is shown in Fig. 2.16. Individual coils, sometimes in large
numbers, are usually mounted inside a vacuum-tight nonconducting
jacket. These can then provide a direct measurement of the evolution
of appropriate components of the magnetic field with excellent time
resolution.

A typical experimental situation is pictured in Fig. 2.17, where a cylin-
drical or approximately cylindrical plasma is probed along a diameter,
thus providing a radial profile of the relevant field components. As an
example of the sort of information to be obtained, Fig. 2.18 shows
the magnetic field profile evolution measured in the initial stages of a
tokamak discharge. Each magnetic field profile is obtained by fitting a
smooth polynomial curve to points obtained from individual probe traces
at the appropriate time. For clarity, points are plotted only for five time
slices; they show scatter, which gives an estimate of the measurement
uncertainty. For tokamaks the BQ component illustrated is the impor-
tant component in the quasicylindrical approximation, B^ being almost
uniform.
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Fig. 2.16. Typical internal magnetic probe construction.
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Fig. 2.17. Typical probe insertion geometry.

In other types of plasma, for example when B^ ~ BQ, B^ may vary
substantially and so be of greater importance. Figure 2.19 shows profiles
obtained in a reversed field pinch (RFP), which gets its name from the
reversal of the toroidal field in the outer regions, clearly seen in these
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Fig. 2.18. Poloidal magnetic field evolution measured with internal magnetic
probe (Hutchinson 1976b).

measurements. The radial component Br provides information on the
shift of the plasma (assumed approximately cylindrical) perpendicular to
the probe.

An important question that arises in all internal probing measurements
is: how does the probe perturb the plasma? In the case of magnetic
probes, provided the discharge as a whole is not qualitatively altered by
inserting the probe, the degree of perturbation of the measurement due
to the probe tends to be fairly small. The reason for this is that magnetic
fields are generated by currents throughout the plasma, not just locally
near the probe. In other words, the field at the probe is obtained by
an integral of the Biot-Savart law over all the relevant space. Therefore,
even though the perturbation to the local current density due to the probe
is large - an insulating jacket prevents all current from flowing through
it, j = 0 - the local magnetic field may be scarcely perturbed at all. Of
course this argument only applies to large-scale fields. Components of
the field whose spatial structure has a scale size of the order of the probe
size or smaller will be strongly perturbed, because they arise from local
small-scale current structure. Thus current and field structure can only
be diagnosed down to a scale of the order of the probe size. This gives
a strong incentive to construct the probes with as small a diameter as
possible.
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Fig. 2.19. Magnetic field profiles in a reversed field pinch, (a) The toroidal (0) and
poloidal (9) fields are of the same order of magnitude, (b) The horizontal shift
of the magnetic surfaces S is deduced from the much smaller radial component
[after Brotherton-Ratcliffe and Hutchinson (1984)].

2.3.2 Current density
From complete measurements of B(r) one can deduce the cur-

rent from Ampere's law (neglecting displacement current since this is
essentially a magnetostatic situation)

VAB = ^ o j . (2.3.1)

In most experiments it is impractical to obtain measurements of B(r)
sufficiently complete to allow direct evaluation of j without additional
information. Instead, in many situations, symmetries or approximate sym-
metries exist that allow a more limited data set to suffice. In other words,
we do not have to measure all the components of B everywhere in space.
The most common case is when the plasma is cyhndrically symmetric
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Fig. 2.20. Toroidal current density evolution derived from the measurements of
Fig. 2.18.

(or approximately so). Then measurements along a single radial line are
sufficient and one can write the components of the current as

JO =

1W dr
1 d

d

(2.3.2)

(2.3.3)

By fitting a curve to measurements of Be, Bw at a number of radial
positions we obtain a function that can be differentiated to give the
current. It should be noted, though, that the process of differentiation
naturally tends to enhance any errors present in the measurement so
that the quality of current measurements tends to be worse than that
of field measurements. Nevertheless, the accuracy achievable with care-
fully calibrated magnetic probes is quite adequate to give current density.
Figure 2.20 shows the toroidal current-density evolution from the mea-
surements of Fig. 2.18. These are in the early stages of a tokamak
discharge in which a hollow "skin" current profile is formed.

2.3.3 Electric field
We have already mentioned the importance of inductive effects in

situations where the plasma currents are not stationary. Internal magnetic
probe measurements enable these effects to be measured rather directly.
The basis for this is Faraday's law in the integral form
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Fig. 2.21. Electric field geometry for Faraday's law.

E • dl= - / B
Js

ds, (2.3.4)

where S is a surface with boundary C. Applying this relation to the
cylindrical situation shown in Fig. 2.21 we obtain

E^(r) = E^(a)- f Bedr,
Jr

rEe(r) = aEe(a) + f B<t>rdr = - [ B^rdr.
Jr JO

(2.3.5)

(2.3.6)

Thus we can obtain the local electric field from a combination of mag-
netic probe measurements and edge electric field (e.g., loop voltage). For
example, in a tokamak, for which only the first equation (2.3.5) is par-
ticularly important, the internal electric field has been measured during
a disruptive instability in which rapid redistribution of current occurs.
The current profile evolution is shown in Fig. 2.22 and the corresponding
electric field in Fig. 2.23. The measurements indicate that during the dis-
ruption the electric field in the plasma center is extremely high, perhaps
ten times the quiescent level; at the same time the electric field at the
edge is actually reversed. These fields are important for understanding
such disruptions, which are a major concern in tokamak research. The
MHD instabilities that trigger disruptions are sensitive to the magnetic
field distributions themselves and the field profile shapes determine, in
general, whether or not the configuration is stable. Thus internal mea-
surements of magnetic field are fundamental to the investigation of both
the causes and the consequences of MHD instabilities.

It is worth noting that when we have the internal current density and
the electric field, deduced from magnetic measurements, then the local
conductivity of the plasma can be deduced immediately. In situations
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Fig. 2.22. Current density evolution during a disruptive instability [after Hutchin-
son (1976c)].

where the plasma may be expected to obey a Spitzer-type of Ohm's
law, we can then deduce a local conductivity temperature and obtain its
spatial profile. This avoids the averaging inherent in the use of simply the
total conductance for a conductivity estimate but does not avoid all the
problems associated with resistance anomalies due, for example, to im-
purities. In the disruptive instability measurements illustrated previously,
such an approach fails because during the disruption the simple Ohm's
law does not apply: for example, the effective conductivity at the plasma
edge is negative. However, the conductivity temperature can be obtained
just before and just after the disruption. It has a shape approximately
proportional to the | power of j , since E is approximately uniform.

2.3.4 Pressure
As a further illustration of the information to be gained from

magnetic probe measurements, consider again the MHD equilibrium
equation in the cylinder:

Up JDfj) (Wfj)

dr uo dr |
Be d(rBe) = Q

r/io drdr no dr r/io dr

which may also be integrated to give

l

(2.3.7)

(2.3.8)
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Fig. 2.23. Toroidal electric field evolution for the case of Fig. 2.22.

As is evident from this equation, knowing the profiles of BQ and B^
enables one then to deduce the internal pressure profile by taking r2 = a
and assuming p(a) = 0. The difficulty with this procedure is that in
most magnetically confined plasmas the plasma /? is small (< 10%). This
means that, in order to deduce the plasma pressure, the field profiles must
be measured with very high accuracy, requiring considerable attention
to calibration and alignment (see Exercise 2.8). In some experiments
sufficient accuracy has been achieved. Figure 2.24 shows an example of
a pressure profile deduced from the RFP magnetic fields of Fig. 2.19,
and plotted normalized to the central magnetic pressure. Notice that the
cumulative uncertainty in the plasma center, indicated by the error bar,
is rather large. The uncertainty varies approximately linearly to zero at
the plasma edge because of the integration process.

2.3.5 Two- and three-dimensional measurements
Although it is essentially impossible to use internal probes to

measure simultaneously the field throughout a plasma (because the num-
ber of positions required would lead to filling up the whole plasma with
probes), it is possible to build up a virtually complete picture of the field,
provided the plasma under study is either steady or reproducible. What
is required is to make the measurements serially, moving the probe from
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Fig. 2.24. Pressure profile deduced from the magnetic field measurements of
Fig. 2.19.

place to place. This eventually allows one to reconstruct the entire field
profile with an accuracy limited by the reproducibility of the plasma.

Perhaps the most useful additional information that can be gained
from such a two- or three-dimensional reconstruction is a plot of the
magnetic surfaces and, assuming a flux function exists, the magnetic flux.
Restricting our discussion to the two-dimensional case for definiteness,
the transverse flux at any point can be obtained by integrating the
magnetic field along a line

xp(x) = > A z) • dl. (2.3.9)

Here xp is the flux per unit length along the symmetry direction z.
[Equation (2.3.5) is essentially the time derivative of this equation.] This
quantity can be obtained for any point x from measurements along a
single line, provided the flux is known at the reference point x0. It could
therefore be obtained by a single multicoil probe. Then the flux along all
possible different lines can be obtained on a shot-to-shot basis by moving
the probe.

From complete magnetic measurements of this type, contour plots of
the magnetic flux surfaces can be constructed that show the instantaneous
shape of the plasma. From such information, all the other quantities
discussed earlier (j, E, possibly p, etc.) can be obtained by generalizations
of the analysis presented. In Fig. 2.25 an example of flux contours
reconstructed from magnetic probe measurements is shown.

2.4 Fluctuations
So far we have discussed mostly the measurements of quasi-

stationary equilibrium values of the various parameters measurable via
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2cm

Fig. 2.25. Two-dimensional reconstruction of flux surfaces by shot-to-shot inter-
nal magnetic measurements in a shaped toroidal plasma [after Lipschultz et al.
(1980)].

magnetic diagnostics. However, because magnetic measurements are con-
tinuous in time, they can also provide information on the rapidly changing
or fluctuating components of such parameters. These arise, for example,
from various forms of instability that can occur in magnetized plasmas.

2.4.1 External measurements
In a doubly periodic system, such as a torus, any field may be

expressed in the form of a sum of helical Fourier modes exp i(mO + ncj)),
m and n being the poloidal and toroidal mode numbers. The n = 0
components we have already discussed. They relate to radial equilibrium
(m = 0), position (m = 1), and shape (m > 2). For n =fc 0 the modes
represent helical distortions of the plasma that are generally undesired
instabilities, except, of course, for machines such as stellarators in which
helical fields are deliberately imposed. The poloidal mode structure of
such perturbations may be determined by coils at the plasma edge in
the same way as for the n = 0 modes. In addition, the toroidal mode
structure may be determined from coils ranged around the torus in 0.

In general, the modes of greatest interest and importance are those
whose perturbation structure lies along the direction of the magnetic field
lines somewhere inside the plasma. They are then said to be resonant at
that point, and if they possess a field component perpendicular to the
equilibrium magnetic surfaces, they will cause the field topology to change
there by the formation of magnetic islands as illustrated in Fig. 2.26. For
tokamaks, for example, this implies m/n ~ 1 to 3, while for reversed
field pinches m/n ~ —0.2 to +0.1. The modes that become unstable most
readily in many situations and that are most easily measured are those
with long wavelength and hence low m and n.
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Island
Fig. 2.26. A magnetic island structure forms in the poloidal cross section of the
magnetic surfaces when a resonant field perturbation is present.

Fig. 2.27. A sequence of instabilities with decreasing m number [after Granetz,
Hutchinson, and Overskei (1979)].

As an example of the type of phenomena observed, Fig. 2.27 shows a
sequence of instabilities of decreasing m that appears in the beginning
of a tokamak discharge. Each time a helical mode (n = 1) appears,
perturbations of the loop voltage occur, indicating changes of the plasma
inductance due to current profile modifications caused by the instability.
The edge magnetic coils give the mode number m of the instability. In
this example BQ polar plots are made in which the radial distance from
the circle is proportional to BQ at that angle 9. This gives a graphic
representation of the "shape" of the perturbation (though not really the
actual shape of the plasma).

The form of the field perturbation measured by external coils is con-
strained by Maxwell's equations and the fact that the current density is
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zero outside the plasma. To illustrate these constraints let us consider
a cylindrical plasma (approximately a toroidal plasma with large aspect
ratio) in which the cylindrically symmetric equilibrium field B is per-
turbed by a single helical mode. Writing the field perturbation as b, the
equations we need are

V . b = ^ + ^ + ! ^ = 0 , (2.4.1)
dr r R

(V A b) • f = ^ % - jbe = 0. (2.4.2)

From the second of these we can immediately relate the direction of the
field perturbation to the mode helicity

be mR

What this equation says is that the tangential field perturbation points
parallel to the helical coordinate mO + ncj) or, equivalently, perpendicu-
lar to the ignorable direction of the helix. For configurations such as
the tokamak, in which m/n is typically of order 1 or larger, the field
perturbation is almost all be (because r/R <C 1);^^ is much smaller in
magnitude. For this reason, most fluctuation measurements in tokamaks
concentrate on measuring be and rarely bother with b^. (Arrays of coils
in a single poloidal plane measuring be are often called Mirnov coils on
tokamaks after an influential early user.) When m/n is small, however (as
in, e.g., the reversed field pinch), measurement of b^ is also important.
In this case, if a single mode can be discerned, it is possible to infer
the helicity (m/n) of the perturbation from measurements of be and b^
simultaneously at one position using Eq. (2.4.3). This ability is sometimes
helpful when insufficient probes are available at different 0 or 6 positions
to deduce m or n directly.

From a purely conceptual viewpoint, the use of external coils in the
diagnosis of fluctuations differs little from their use in diagnosing the
steady equilibria. From a practical viewpoint, however, there are several
matters that are of much greater significance for fluctuations. Perhaps
the most important of these is the question of magnetic field penetration
into the structures of the experiment. Most modern magnetically con-
fined plasmas are formed in vacuum vessels with metallic - and hence
electrically conducting - walls. These walls have a certain time constant,
say T, for the penetration of magnetic fields through them, owing to the
eddy currents induced by a time-varying magnetic field. The effect is to
allow magnetic fields changing slower than T to penetrate with minimal
attenuation, but fields changing faster than x are attenuated. Now it is
much more convenient to implement magnetic measurements using coils
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that are outside the vacuum vessel than to have to overcome the various
technical difficulties, associated with vacuum compatibility of the coils
and their leads, involved in siting the coils inside the vacuum. Therefore,
in many cases, the measurement of magnetic fluctuations is made outside
the vacuum vessel, even though the high-frequency components of the
fields are then subject to the attenuation just mentioned. It turns out that
there is a reasonably satisfactory way of compensating for the attenua-
tion problem, and that is to measure the unintegrated signal out of the
coil rather than integrating it to get B. This works fairly well because
the effect of the attenuation, when the walls are thin, is to integrate the
high-frequency components.

Consider a situation in which the magnetic field is Fourier analyzed
into its different frequency (co) components. For a wall of thickness w
and conductivity a the penetration time constant for fields with spatial
scale length L is approximately

T = jdoaLw. (2.4.4)

Notice that different perturbation modes will have different L so that x
will generally depend on the mode under discussion. This is a cause of
some awkwardness in the interpretation when more than one helical mode
is of interest, but we shall ignore this problem in our brief discussion.
Usually L will be of the order of the minor radius r. The penetration of
transverse fields through the wall may then be expressed as a relationship
between the field just inside the wall (B[) and that just outside (Be), in
the form

Be = B,—^—.  (2.4.5)
1 + ICOT

In writing this equation we are supposing that the external field is
changing in response to internal perturbations; also, we are begging a
number of important questions, such as the influence of other nearby
conducting structures, which can really only be accounted for by a
detailed electromagnetic analysis on a case-by-case basis. Nevertheless,
this equation will generally represent the response reasonably well within
certain frequency limits. What the equation says is that low frequencies
(COT <C 1) experience no attenuation, but high frequencies (COT >> 1) are
attenuated by the factor ~ l/icoz, that is, they are integrated.

The upper frequency limit for the applicability of Eq. (2.4.5) is set by
the requirement that the wall should be able to be taken as thin. In
other words, there is a second penetration time constant TW « ^ow2/2,
and for fields changing more rapidly than this (i.e., COTW > 1), the finite
thickness of the wall becomes important. Thus, the upper frequency limit
of Eq. (2.4.5) is ~ 1/TW, above which the external field will fall off with
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Fig. 2.28. The frequency response of a magnetic coil outside a conducting wall.

frequency, increasingly more rapidly than Eq. (2.4.5) indicates. Figure 2.28
illustrates the frequency response of probes outside a conducting wall.

Very often the wall structures are complex and anisotropic, so a rather
careful analysis of the penetration effects is necessary to obtain accurate
quantitative results. The situation most often encountered is qualitatively
that the slow evolution of the equilibrium is substantially slower than
T, so that we need not worry about penetration problems in equilib-
rium measurements, but fluctuations due to instabilities, etc., are faster
than T and so are integrated. In such a situation, observing the uninte-
grated magnetic coil signal has the advantageous effect of suppressing
the equilibrium signal but retaining the perturbation. When the very
high-frequency perturbations co > 1/TW are of interest, one is generally
forced to use coils inside the vacuum chamber.

So far we have been talking about tangential field perturbations be
and bff,. What of the normal or radial perturbations brl These are usually
of less use in fluctuation measurements, the reason being related to the
electromagnetic penetration problems just discussed. The boundary con-
ditions used in solving the field penetration problem depend on the wall
conductivity for the tangential components; for the radial component
the boundary condition is just that the field should be continuous. Thus
the normal field is the same just inside a thin wall as it is just outside.
This shows, incidentally, that there is no advantage in doing radial edge-
field measurements inside a closely fitting thin conducting vessel. What
is more, the boundary conditions have a strong effect on the perturba-
tions themselves. For high frequencies, co > 1/T, the effect is to enforce
br « 0 at the conducting wall. Therefore, the radial field perturbations
at high frequencies will generally tend to be rather small, for essentially
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the same reasons as the tangential components are smaller outside than
inside: because they are integrated. What is of possibly greater interest
concerning br is its radial derivative near the wall, dbr/dr. This is where
Eq. (2.4.1) comes in, since it shows that dbr/dr is directly related to be
and b^ through the divergence equation. In other words if we measure
be (and b^ if relevant), then for a single mode for which m and n are
known, dbr/dr may be deduced straight away.

2.4.2 Internal fluctuation measurements
Naturally, internal magnetic probing, particularly with multiple

simultaneous measurements, enables one to investigate the radial struc-
ture of magnetic fluctuations. In this respect it is complementary to edge
measurements, which give the poloidal and toroidal structure. It is usually
very difficult to measure the poloidal and toroidal structure internally
because too many probes are required. It is rare that fluctuations are re-
producible enough to allow reconstruction on a shot-to-shot basis; thus
simultaneous measurements are virtually essential.

The advantage of internal probing is that, unlike external coils, it is
much more sensitive to short scale-length perturbations arising as turbu-
lence. The reason for the insensitivity of edge coils to short wavelength
perturbations is easily understood. If the current in the region under
discussion has negligible perturbation (of the relevant wavelength), then
the field satisfies the equation

V2b - 0. (2.4.6)

This will certainly be satisfied in any vacuum region surrounding the
plasma. Treating the plasma as a slab, for the purpose of this discussion,
and the perturbation as having a tangential wavelength 2n/k, the solution
for b varies in the normal (radial) direction as exp(—kr). Thus if kr > 1,
the field outside the plasma arising from perturbations inside will be
exponentially small. Actually, in the plasma interior Eq. (2.4.6) will not
generally be well satisfied, and more complicated analysis of the MHD
instability structure is necessary. It turns out that the field usually falls
off at least as fast as implied by the vacuum equation, which confirms
that external coils are very insensitive to short wavelength perturbations.

The small-scale perturbations measured by internal probes are rarely
coherent. Therefore, the usual approach to their analysis is to use si-
multaneous measurements at adjacent positions to calculate statistical
correlation coefficients as a function of position, thus giving a measure
of correlation lengths and fluctuation scale lengths. In some cases this
enables the cause of the instabilities to be identified. However, this, like
all turbulence topics, is one of great complexity. The methods of analysis
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are far from universally established and their interpretation depends on
the specifics of the situation.

Further reading
Tokamaks and related magnetic confinement experiments are

currently probably the most important application of magnetic mea-
surements in the laboratory. A very valuable handbook describing such
experiments, including a number of the topics discussed here, is:

Wesson, J. (1997). Tokamaks (second edition). New York: Oxford University Press.

An introduction to "basic measurements" in plasmas including mag-
netic measurements is given by:
Leonard, S. L. (1965). In Plasma Diagnostic Techniques. R. H. Huddlestone and

S. L. Leonard, eds., p. 7. New York: Academic.

Insertable magnetic probe measurements including the important ques-
tions of plasma perturbation by the probe are covered by:
Lovberg, R. H. (1965). Plasma Diagnostic Techniques. R. H. Huddlestone and

S. L. Leonard, eds., p. 69. New York: Academic.
Botticher, W. (1968). In Plasma Diagnostics. W. Lochte-Holtgreven, ed., p. 617.

Amsterdam: North-Holland.

MHD equilibrium has been reviewed by various authors; for example:
Freidberg, J. P. (1982). Rev. Mod. Phys. 54:801.
Mukhovatov, V. S. and Shafranov, V. D. (1971). Nucl. Fusion 11:605.

A readable introduction to MHD equilibrium and stability is:

Bateman, G. (1978). MHD Instabilities. Cambridge, Mass.: MIT.

A more complete treatment of ideal MHD is:
Freidberg, J. P. (1987). Ideal Magnetohydrodynamics. New York: Plenum.

Exercises
2.1 Suppose we measure a magnetic field B(t) using a magnetic

coil with total resistance Rc whose ends are connected to measurement
electronics whose resistance is Re. If the coil has N turns of area A, what
is the voltage V measured between the ends of the coil?

2.2 When a current is allowed to flow in a measurement coil it changes
the magnetic field in its vicinity and thereby changes the measured voltage
by induction. (This effect was implicitly ignored in Exercise 2.1.) Show
that this leads to a full solution of the problem in Exercise 2.1 as
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where L is the self-inductance of the magnetic coil. Hence show that for
sufficiently rapidly changing fields the coil is self-integrating so that

V = B(ReNA/L)

and give the condition for "sufficiently rapidly changing".

2.3 In tokamaks, instabilities limit the maximum current density at
the center of the plasma to a value

where R is the major radius and g0 is a number that is approximately
equal to 1. Derive from this fact an expression for the central electron
temperature of a Z = 1 plasma (using the Spitzer conductivity) in terms
of toroidal loop voltage V^.

2.4 Perform the integrations to derive Eqs. (2.2.7) and (2.2.10).

2.5 Prove Eq. (2.2.11).

2.6 Prove that for a toroidally symmetric fluid satisfying the MHD
equilibrium [Eq. (2.2.1)] on a magnetic surface, p — constant and B^ oc
l/R.

2.7 Show that in a plasma whose magnetic surfaces are circular in
cross section, shifted from the chamber axis by a distance S (varying
with radius), measurement of the poloidal and radial components of the
internal magnetic field can give the value of S. Give an expression for S
in terms of Be, Br, and radius.

2.8 The two main types of error that can arise in probe measurements
(apart from interference, producing spurious signals) are (1) calibration
errors, that is, incorrect values of NA or electronic amplifier gains, etc.,
and (2) angular misalignment of the coils, so that the component of
field measured is in a slightly different direction from that intended.
Suppose one wishes to deduce the internal pressure profile from probe
measurements using Eq. (2.3.8). If the orders of magnitude of the angle
of misalignment a and the fractional calibration error <5 are the same,
and BQ < Bfa show that:

(a) When all errors are random the most important ones are those
arising from the first term in Eq. (2.3.8), giving rise to a fractional error
in p:

Ap _ 2^/25
P ~ fa
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(b) When all errors are systematic (the same for all positions) the most
important ones come from the second term, giving rise to

Ap 4a BQ

Here fi^ = 2fiop/B^ and (BQ/BQ) is an order of magnitude term only.2.9 An inexperienced diagnostician wishes to reconstruct the edge
(vacuum) flux surfaces in a long straight current-carrying plasma with
translational symmetry in the z-direction. He makes field and flux mea-
surements on a circular surface outside the plasma, r = a, and discovers
that the currents outside this surface are negligible. In this situation, he
knows that flux measurements alone are sufficient to define his problem,
together with the knowledge that the external currents are negligible.
He decides that the simplest way to do his reconstruction, given N flux
measurements, equally spaced in poloidal angle (0), on his measurement
surface, is to Fourier analyze in (0). He knows the Nyquist theorem, so
he keeps only the appropriate maximum number of terms of the cosine
Fourier series, i.e., half the number of measurements. This plasma has
reflectional symmetry that makes the sine terms zero. He then uses his
knowledge of how the Fourier components vary with r (which you should
give) to calculate the flux at radii inside the measurement surface.

Calculate the sensitivity of this scheme to errors in one of the xp
measurements in the specific case where the true solution has just the
m = 1 component. That is, what is the maximum fractional error in the
internally reconstructed xp when the error in the one ^-measurement is
a fraction e of the m = 1 amplitude? Evaluate this at r = 0.8a and
r = 0.5a (assuming there is no current outside this radius) if there are 20
xp -measurements. How much better would he do if he kept half as many
terms in the Fourier series?



Plasma particle flux

3.1 Preliminaries
Perhaps the most natural approach to diagnosing the particle

distribution functions within the plasma is to propose insertion of some
kind of probe that directly senses the particle fluxes. Indeed, this approach
was one of the earliest in plasma diagnostics, with which the name
of Irving Langmuir is most notably associated for his investigations
of the operation of the electric probe often known as the Langmuir
probe.

Just as with internal magnetic probes, the applicability of particle flux
probes is limited to plasmas that the probe itself can survive. This means
that frequently only the plasma edge is accessible, but the importance of
edge effects makes the prospects bright for continued use of such probes
even in fusion plasmas. In cooler plasmas, of course, the limitations are
less severe and more of the plasma is accessible.

In common also with magnetic probes, the often more important
question is: what is the effect of the probe on the plasma? Because of the
nonlocal nature of the source of the magnetic field (arising from possibly
distant currents), in many cases the local perturbation of the plasma by
a magnetic probe can be ignored. In contrast a particle flux measurement
is essentially local and as a result the local perturbation of the plasma
can almost never be ignored.

Thus, the difficulty with measurements of direct plasma particle flux
is rarely in the measurements themselves; rather it is in establishing an
understanding of just how the probe perturbs the plasma locally and how
the local plasma parameters are then related to the unperturbed plasma
far from the probe.

The way in which the perturbation to plasma parameters primarily
occurs is through alterations of the electric potential and (hence) of
particle density and energy. The nature of this perturbation depends on
the potential of the probe and the electric current drawn by it. Indeed
for the simplest particle flux probes, Langmuir probes, the dependence of
the total current on probe potential is the main quantity measured. Most
of our effort is spent in determining the total probe current as a function
of probe potential. Even when more complicated particle analyzers than
the simple Langmuir probe are used, the details of what they observe
are usually affected by their overall electrical characteristics. Therefore,
a thorough understanding of the perturbative effects of the probe on the
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observed particle energies and currents is important in interpreting their
results.

3.1.1 Particle flux
In an isotropic, homogeneous plasma, elementary gas-kinetic

theory shows that the number of particles of a given species crossing unit
area per unit time (from one side only) is

T=\nv, (3.1.1)

where v is the mean particle speed (in this chapter, T refers to particle flux
density and J and / to particle and electric total currents, respectively).
Suppose that a probe is present in a thermal plasma of comparable
electron and ion temperatures. (We shall consider mostly only two species
of plasma particles in this chapter, of equal and opposite charge, the ions,
of course, being much heavier.) The mean ion speed will then be much
smaller than the mean electron speed so that the total electric current
from a probe of area A if the plasma were unperturbed would be
dominated by the electrons:

/ - -eA (\mvi - \neve) « \eAneve > 0. (3.1.2)

The probe would thus emit a net positive current. If, for example, the
probe were electrically insulated from other parts of the plasma device
(a "floating" probe), then it would rapidly charge up negatively until the
electrons were repelled and the net electrical current brought to zero. The
potential adopted by such a floating probe is called the floating potential,
which we denote Vf. Clearly it is different from the electric potential in
the plasma in the absence of any probe. This latter potential is called the
plasma potential (or space potential) and will be denoted Vp.

Figure 3.1 shows the variation of the total electric current / (flowing
out of the probe in this the usual sign convention) versus the potential
of the probe V in a typical Langmuir probe experiment. Note that no
zero is indicated on the voltage scale because initially we don't know
what the plasma potential is, with respect to (say) the walls of the plasma
chamber. Qualitatively, this probe shape arises as follows.

Roughly speaking, if the probe is at plasma potential then the pertur-
bations to the free ion and electron currents Eq. (3.1.2) will be small.
Thus, the space potential is approximately the point at which / « eJe,
the electron current. If the voltage is increased above this level, V > Vp,
in principle (and approximately in practice), the electron current cannot
increase any further. This is because the electron current is maximized
since all electrons arriving are collected. The ion current Jt decreases
because of repulsion of the ions, but it is already much less than the
electron current, so / is approximately constant. This region (A) is known
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Fig. 3.1. Electric probe characteristic showing how the probe current varies with
probe potential.

as electron saturation and I here is equal to the electron-saturation
current.

Decreasing the probe potential, V < Vp, the probe is now negative
with respect to the surrounding plasma and an increasing fraction of
impinging electrons is reflected from the negative potential (region B).
Eventually the potential is sufficient to reduce Je to a small fraction
of its saturation value. The total current is zero when Je = J\ at the
floating potential Vj. Decreasing the potential further, entering region
C, eventually only ions are collected at approximately the constant rate
given by Eq. (3.1.1) (with some important modifications to be discussed).
This is the ion-saturation current / = Isi.

In order to put these qualitative remarks on a sound quantitative
footing we must discuss the various ways in which the presence of the
probe perturbs the plasma and hence changes the currents from the
simple values just used.

3.1.2 Debye shielding
The effects of a potential-perturbing charge in a plasma are

generally much shorter-range than in a vacuum because the charges in
the plasma tend to redistribute themselves so as to shield the plasma
from the electric field the perturbing charge generates. The effect may
be deduced readily from Poisson's equation by assuming, for example,
that ions do not move but that electrons adopt a thermal equilibrium
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distribution in which the electron density is determined by the Boltzmann
factor

ne = naoexp(eV/Te). (3.1.3)
Te here is the electron temperature in energy units and n^ is the electron
density far from the perturbing charge where the potential V is taken as
zero. Poisson's equation is then

V2F = ZE = Zf(n. -ne) = Zf^ [i _ e x p (el\\ . (3.1.4)
SO £0 £0 L \TeJ\

If we suppose that eV <C Te, we can approximate Qxp(eV/Te) by 1 -b
eV /Te and obtain a Helmholtz type equation

V 2 F - - ^ F = 0, (3.1.5)

where

A D = ( ^ Y ' 2 (3.1.6,

is called the (electron) Debye length. The solutions of this equation show
exponential dependence upon distance far from the charge with XD the
characteristic length. For example, in one dimension the solutions are
V oc Qxp(±x/XD). As a general rule, therefore, one expects that the
perturbing effects of a charge will tend to penetrate into the plasma
a distance only of the order of the Debye length, always provided the
assumption of thermal equilibrium is valid for the electrons and ions.
(In general, of course, for a stationary charge, the ion density is also
perturbed and a similar treatment must be accorded to ions leading to a
shielding length shorter by the ratio [Ti/(Te + Tt)]1/2. We shall use the
term Debye length here to mean the electron Debye length, Eq. (3.1.6).)

Note that for laboratory plasmas, the Debye length is generally rather
short. For example, a 1 eV temperature plasma of density only 1017 m~3

has XD = 20 urn, so the Debye length is much smaller than typical probe
dimensions (say a, of order millimeters). Often the approximation XD < a
is strongly satisfied, and we shall consider mostly this limit.

3.1.3 Collisional effects
Probe behavior differs significantly between situations where

collisions can be ignored and those where they cannot. The effect of
collisions is generally to reduce the current to the probe because of the
necessity for particles to diffuse up to the probe rather than arriving by
free flight.

A general idea of the effect may be gained by treating the plasma
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around the probe as a continuum having diffusion coefficient D. Then if
no perturbation to the electric potential occurs or, at least, if the effects of
electric field on particle transport are ignored, and D is taken as constant,
the particle current density to a perfectly absorbing spherical probe (see
Exercise 3.1) is

r = 7 ^ * / y m , (3.1.7)
4 1-fva/4D

where n^ is the density far from the probe and a is the probe radius.
Note that the mean free path / and the diffusion coefficient are related
quite generally by

f=^-, (3.1.8)

so that the factor by which the current drawn is less than the random
current (ftoo /̂4) is (1 + 3a/4^)~~l, which for large a / / is approximately
4//3a.

Thus, roughly speaking, collisions are ignorable for a spherical probe
when £ > a, while at the opposite extreme, a > / , the current is reduced
by the ratio of mean free path to radius.

It may be noted, at this stage, that probes with "infinite" dimensions,
such as cylindrical or plane probes, do not lead to a well posed prob-
lem for diffusion-limited collection unless boundary conditions (closer
than infinity) or volumetric plasma source rate are included. The reason
for this is that the governing equation for diffusion without sources is
Laplace's equation, whose solutions [log(r) for cylinder, x for plane] are
not bounded at infinity in these geometries. Thus the finite length of
(say) a cylindrical probe will always be important in determining diffu-
sive collection and it is this length that should be compared with / in
deciding whether a collisionless treatment is justified.

It may be shown (see Exercise 3.2) that for a highly ionized plasma,
in which collisions with neutrals can be ignored, the mean free path is
given roughly by

f~(ntfD)XD, (3.1.9)

so that when the usual plasma condition that there be many particles
in a Debye sphere (n2?D > 1) is satisfied, then £ > XD. The region of
strong potential perturbation surrounding the probe is thus collisionless.
In plasmas with only a very low degree of ionization it is possible for
collisions with neutrals to be sufficient to cause the mean free path to be
shorter than XD, so that the sheath is collisional. We shall not discuss such
situations here. Our whole treatment can be collisionless if / > a. This
condition is not always satisfied but in many cases it is. In the example
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above (Te = 1 eV, n = 1017 m~3) the mean free path is / ~ 5 cm, so that
it is quite easy to use a probe small enough to be collisionless in such a
plasma.

We shall return later to cases in which collisions cannot be ignored,
but for now we proceed on the assumption that, in the vicinity of the
probe, the particles are collisionless.

3.2 Probes in collisionless plasmas without magnetic fields
3.2.1 Sheath analysis

When a solid probe is in contact with a plasma the potential
drop between the plasma and probe is mostly confined to a region
of the order of a few Debye lengths thickness surrounding the probe.
This is called the sheath. In the sheath, charge neutrality is violated
and the electric field is strong. Generally, the densities of electrons and
ions must be determined by self-consistently solving Poisson's equation
for the potential together with the equations of motion of the charged
particles and hence their densities. Understandably, rather complicated
equations are involved when the full orbit equations of a distribution
of particle energies around a probe of given shape are to be solved.
Solutions can be obtained (usually numerically) for the full problem.
However, we shall here restrict our treatment to rather more tractable
approximations, which nevertheless provide perfectly adequate accuracy
for most diagnostic purposes and, indeed, provide the formulas almost
always used in practice.

Consider, then, a thin sheath surrounding the probe; a planar approx-
imation is then adequate. First, we consider a probe that attracts ions
and repels electrons. This is the case of greatest interest, but strictly does
not cover cases where the probe is at greater than plasma potential.
Figure 3.2 shows schematically the form of the potential versus position.

The electron density we determine by the observation that at any
position x there is a full distribution of particles traveling toward the
probe, having arrived from large distances away (~ /) in the plasma.
The distribution traveling away from the probe, however, is depleted by
collection from the probe. Assuming the probe to absorb (or recombine)
all particles incident on it, the result is a complete removal of all particles
whose kinetic energy in the x direction exceeds the potential difference
between the probe and the point x. (Motions perpendicular to x are
irrelevant.) Only lower-energy electrons are reflected from the potential
barrier before they reach the probe. So, as illustrated in Fig. 3.3, the
distribution is cut off at the velocity vx = vc = (2e[V(x) - V(0)]/me)1/2.

The distribution function of particles at velocities not affected by this
cutoff is simply related to the distribution at large distances by the
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Fig. 3.2. Schematic diagram of the electric potential variation near the surface
of a negatively biased probe.

conservation of particles, that is, that the flux of particles of a certain
total energy is constant:

fx(vx)vx dvx = (3.2.1)

where subscripts refer to the position and / here is the distribution func-
tion in x component velocity. The relationship between corresponding
energies is

\mvl-eV = \ (3.2.2)

(taking V^ = 0 as our origin of potential). Hence, vx dvx = v^ dv^ and
the distribution functions are related by

fx(Vx) = /oo(^oo), (3.2.3)

which gives, for Maxwellian f^, a Maxwellian distribution also at x, but
corresponding to density less by the Boltzmann factor exp(eV/Te).

The actual density obtained by integrating / over all energies is less
because of the cutoff portion of the distribution function. However, if the
cutoff portion is small, that is, almost all electrons are reflected before
reaching the probe because V(x) — V(0) ^> Te/e, then this correction is
small and we can make the approximation

(3.2.4)



62 3 Plasma particle flux

Fig. 3.3. The electron distribution near a repelling probe. The cutoff above vc is
due to collection (rather than reflection) of electrons with higher energy.

which corresponds to the thermal equilibrium distribution. (The more
general formula, without making this approximation, is

ne(x) = nO

where

(3.2.6)

see Exercise 3.3.) In actual fact, the approximation n oc exp(eV/Te) will
be valid in any geometry provided almost all electrons are reflected. This
is the approximation we shall generally use.

The ion density must be calculated from the equation of motion;
this calculation is straightforward only when considerable simplifying
approximations are made. Let us start by supposing that the ion temper-
ature is considerably less than the electron temperature, small enough, in
fact, that we can suppose the ions to have zero energy at oo. Then we
can write the ion velocity immediately (ignoring collisions) as

N =
1/2

m J
(3.2.7)

and, of course, the ion particle current density is Ti = n^i.
The total ion current crossing a surface of area A around the probe is

constant (independent of position), that is, V • T}•= 0 in equilibrium. Call
this current J,:

= constant. (3.2.8)
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Therefore, provided the area A is known via the geometry, we have an
equation relating the ion density to the known ion velocity [Eq. (3.2.7)].

In general, then, Poisson's equation becomes

1721, ~ e r i - e \Ji ( ™i V /2 (eV
[mne] ( ; n o o e x p

e0 so [A \-2eVJ \ T
(3.2.9)

This equation, as implied by Fig. 3.2, splits up approximately into two
distinct regions. First, at large distances from the probe there is a plasma
region in which quasineutrality is satisfied:

rie — iti  < ne. (3.2.10)

In this region in Eq. (3.2.9) the V2F term may be neglected and the
governing equation is

(3.2.11)

Note, though, that the interesting solutions for V are not V = constant.
There is nonzero electric field in the plasma region. However, the electric
field will be very small here compared to its magnitude in the second
region. This second region includes a transition and a "sheath" that for
present purposes we treat together and call the sheath. When a distinction
between transition and sheath is required we shall denote by sheath that
portion of the volume in which the electron density is small enough to
be ignored in determining V.

For the sheath region (including the transition) V2 V cannot be ignored,
so we must use the full Poisson equation. Let us begin with this region
and suppose that at the plasma-sheath boundary (xs) the potential is Vs,
different from V^ (= 0) because of the fields in the plasma region. At this
boundary the solutions in the two regions must match and, because of
our supposition that XD <C a and hence that xs (which is generally several
times XD) is also much less than a, we can approximate the geometry as
planar, that is, take A constant.

Then, in the vicinity of the sheath,

m = nis ^ J , (3.2.12)

where subscript s denotes values at the plasma-sheath interface. But also,
considering the plasma solution,

nts = nes (= riooQxpieVs/Te)). (3.2.13)
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Thus Poisson's equation is

—e

£o

1/2 _
(3.2.14)

This equation is still not tractable analytically except in the region close
to xs, where we can make a Taylor expansion about V = Vs and retain
only the lowest order terms. This gives

[ f ] ( s ) (3.2.15)
If the square bracketed term here is negative then the solutions will
be monotonic (exponential in this region) and a smooth match will be
possible between the plasma and sheath. However, if it is positive the
solutions will be oscillatory (sinusoidal) and no sheath solution will be
possible.

Thus, there is a maximum sheath edge voltage for proper sheath
formation:

Vs < -Te/2e. (3.2.16)

Qualitatively, this condition, first explicitly derived by Bohm (1949), can
be understood thus. In the sheath region the ion density y\[ must exceed
the electron density since the sheath has positive charge; also the velocity
Vf is given by energy conservation. The current density n^ , therefore,
must exceed some minimum value in the sheath. At the plasma edge,
where nt is of course still finite, to provide this minimum current density,
a minimum velocity vt is required. Having |FS| > Te/2e provides this
minimum ion velocity.

Now we examine the solution in the plasma region. To establish
its behavior we differentiate the quasineutrality equation (3.2.11). The
resulting equation contains a term in dV/dx (where now we need make
no assumption about geometry; so that x could equally well be r in
cylindrical or spherical geometry). The coefficient of this term is

which is zero when V = —T e/2e. This shows that the plasma solution
has infinite derivative at this potential; therefore, the quasineutral ap-
proximation must break down, and a sheath form, at or before this
potential:

Vs > -Te/2e. (3.2.18)

Therefore, the only way to satisfy both sheath [Eq. (3.2.16)] and plasma
region [Eq. (3.2.18)] requirements is if
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Vs = -Te/2e. (3.2.19)

This potential is where the sheath edge always forms if the probe is suf-
ficiently negative. The question arises: what if F(0) > —T e/2e, that is, the
probe potential is only slightly negative? Of course, the approximation
that electrons remain Maxwellian is no longer a good one in this case,
but nevertheless the answer is clear: no sheath forms for F(0) > —T e/2e.
Probes near the plasma potential need not be surrounded by a sheath.
The plasma may be quasineutral right up to the probe surface.

Assuming that the probe is sufficiently negative for a sheath to form,
we are now in a position to obtain the ion current drawn by the probe.
This is simply equal to the ion current across the sheath surface:

eV1\(_2eV1\^Jt = Asnisvis = Asfior, exp ( ̂  ) ( )
\ T J \ nit )

(Note exp(—|)  = 0.61.) Here As denotes the area of the sheath surface
where V = Vs = —T e/2e. This equation is quite generally applicable,
provided the sheath is thin enough to be treated locally with a planar
approximation, and can be used with probes of essentially arbitrary shape
so long as As is known.

3.2.2 Sheath thickness
The only remaining unknown in Eq. (3.2.20) (often called the

Bohm formula) is the area of the sheath surface As. By presumption the
sheath thickness is small compared to the probe radius so that a first
approximation is to take As equal to the surface area of the probe, Ap say.
This will often provide sufficient accuracy, but in this approximation the
ion current is theoretically independent of probe potential - a situation
rarely exactly met in practice. When ion-saturation current is drawn, it
generally shows a slow increase in magnitude with increasingly negative
probe potential. In the context of the sheath analysis, the reason for this
increase is that the sheath thickness increases as the probe potential is
made more negative, resulting in an increase in As.

We can obtain an approximation to the sheath thickness by analyzing
it under the assumption that electron density is negligible. (This will only
work for sufficiently negative probes, but is satisfactory for most cases
where the ion current is significant.) Poisson's equation (3.2.9) is then
simply

V2F = —  J4
A \—
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which in the slab approximation is

d2V __ -e
i j —  A idxz 8Q -2eVJ

1/2
(3.2.22)

where F* = Jt/A = constant. This equation can now be integrated, after
multiplying by dV/dx, to give

E
(3.2.23)

In performing this integration we have put dV/dx equal to zero at the
sheath edge V = Vs. This ignores the transition region in which electron
density, strictly, may not be ignored. Provided the transition region is
not a large fraction of the total sheath, the error involved in this will
only be modest, and since we are in any case calculating the first order
correction to the ion current due to small (but finite) sheath thickness,
the approximation is acceptable.

Equation (3.2.23) may be integrated again giving

P280

1/4

(xs - x).

(3.2.24)

Here xs is the sheath edge position. This equation is related to the Child-
Langmuir law for space-charge limited current, once known to every
electronic engineer, but, since the virtual demise of the vacuum diode,
now of less widespread practical importance.

To determine the sheath thickness we set F? equal to the Bohm value
and V equal to Fo, the probe potential (again ignoring the transition
region questions), after which some rearrangement allows us to express
the equation in the form

x s = 2 [
[3 [exp(—1

1/4 1/2 1/2
-eVo\

T )

1/2

(3.2.25)

This equation, incidentally, confirms the previous statement that the
sheath is a few Debye lengths thick. The coefficient |[2/exp(—1)] 1/4 is
equal to 1.02. If we consider a probe near the floating potential then it
must be sufficiently negative to repel all but a fraction of order yj{me/mi)
of the electrons. In other words, the Boltzmann factor is ~ yj(me/mi),
which means that eVo/Te ~ ^ \n(me/nii). For hydrogen this is ~3.75 and
the sheath thickness at the floating potential is then ~ 4/1/).
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The dependence of ion-saturation current on voltage is determined by
the expansion of the sheath size. For a spherical probe,

(3.2.26)

while for a cylindrical probe,

As » Ap ( l + ^ ) , (3.2.27)

where xs is given by Eq. (3.2.25). These can be used in the Bohm formula
to give the ion current.

3.2.3 Exact solutions
Before proceeding, we should note that it is not necessary in prin-

ciple to adopt the approximations inherent in the sheath analysis. Allen,
Boyd, and Reynolds (1957) proceeded to solve the Poisson equation (3.2.9)
numerically to obtain the probe characteristics for a spherical probe
(A = 4nr2) with cold ions at oo. Their results confirm that the sheath
approximations are reasonably accurate.

If finite ion temperature is considered at infinity the problem is much
more complicated and ion orbits in specified geometry must be analyzed.
Bohm, Burhop, and Massey (1949) showed that, in spherical geometry,
if the ions are monoenergetic then a solution to the orbit problem can
be found. The result for ion energies 0.01 and 0.5 times Te is to obtain
coefficients 0.57 and 0.54, respectively, in Eq. (3.2.20) instead of 0.61. The
dependence of ion current upon ion temperature is thus extremely weak
for all Tt < Te. The reason for this, from the orbit viewpoint, is that
the increase in ion radial velocity over (—2eV s/Te)1^2 at the sheath edge,
due to ion thermal velocity, is offset by the energy taken up by angular
velocity due to conservation of angular momentum, rvg = constant. In
fact, the latter effect is slightly the greater so that ion current actually
decreases initially as the ion energy increases from zero.

An essentially rigorous formulation of the orbit problem was provided
in the work of Bernstein and Rabinowitz (1959). Unfortunately, even for
assumed monoenergetic ions, numerical integration is necessary and no
simple formulas for probe interpretation emerge. However, Lam (1965),
using this formulation, has performed a complicated boundary layer
analysis of the equations in order to obtain approximate solutions for
the case of small XD/a. His results, presented in graphical form, enable
a ready interpretation by hand using the so-called Lam diagram. All
these analyses confirm the weak dependence of ion current on Tt for
Tt < Te, and therefore the Bohm formula is usually appropriate and
widely used.
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Fig. 3.4. Comparison of the approximate sheath analysis with "exact" numerical
results of Laframboise (1966) for a spherical probe.

Exact numerical solutions with Maxwellian ion distribution far from
the probe have been calculated by Laframboise (1966), providing the
ion and electron currents for arbitrary Tt/Te and XD/a. In Fig. 3.4 we
compare the results of our approximate treatment [Eq. (3.2.26)] with some
of his results at two values of ID/a. The agreement is quite good. Such
a comparison shows that our approximate treatment will be perfectly
adequate for most situations in which the sheath is reasonably thin, since
probe measurements are rarely more accurate than ~ 10% anyway.

3.2.4 Orbit-limited collection
When the Debye length is greater than the probe radius, our

sheath approximations do not work. This regime is dominated by the
orbital effects that have to be correctly taken into account. Figure 3.5
illustrates the situation. Probe interpretation is rather more difficult in
this regime, but it is not always possible to avoid it. The use of an
extremely fine wire collector is an approach often used to minimize
plasma perturbation in tenuous plasmas. It requires cylindrical analysis
in the large Debye length limit.

The conservation of energy and angular momentum for a colhsionless
particle orbit with impact parameter b immediately leads to a relationship
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Fig. 3.5. Particle orbits around a probe.

between the potential Vc and the radius rc of the position of closest
approach of the particle to the center of the probe. At this position, the
radial component of the velocity is zero and so

= mrcve = mrc
\ - q(Vc - (3.2.28)

where q and m are the particle's charge and mass, and the equation
applies equally to ions or electrons. In a cylindrical geometry the velocity
parallel to the axis is invariant and this expression refers to the velocity
perpendicular to the axis. If rc is less than the probe radius, a, then the
particle will be collected; otherwise not. If we replace rc with a and Vc
with the probe potential VQ in this equation, we obtain a condition on
the impact parameter, b, for the particle to be collected,

(3.2.29)

Although this condition is necessary for collisionless particle collection,
it is not always sufficient. There may be a position where Eq. (3.2.28)
is satisfied at radius greater than the probe radius, in which case the
particle will approach only to that radius, and not reach the probe
surface. Whether or not there is such an intermediate "potential barrier"
depends on detailed solution of the coupled orbit equations and Poisson's
equation. However, roughly speaking, potential barriers are avoided, and
the condition is sufficient as well as necessary for collection provided the
sheath radius is larger than the impact parameter. If this is so for all
relevant particle energies, then the collection current is independent of
the solution for the potential surrounding the probe, and the situation is
referred to as "orbit limited" collection. In this regime, compact formulas
are obtained as follows.

Integrating over a Maxwellian distribution at infinity, the collection
current density at an attracting cylindrical probe surface is (Mott-Smith
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and Langmuir, 1926) (see Exercise 3.8)

as 77 —• 00, (3.2.30)

where n = |g(Fo —  Foo)|/T is the potential of the probe normalized to
temperature. (The corresponding limit for current density to a spherical
probe is T -> \n^v{\ + *l)>)

For large values of the probe bias voltage, n, the T-dependences of v
and ffj cancel, yielding for the collection current density to a cylindrical
probe

(3.2.31)
m

The attracted current, whether ion or electron, does not saturate. In-
stead it increases as the square root of the bias voltage, independent of
the species temperature. For spherical geometry the current density is
proportional to VQ — V^ and depends on T.

3.2.5 Interpretation of the characteristic
Generally the more useful parts of the probe characteristic are

those near the floating potential where the current is small. By operat-
ing in this region the possibly large electron-saturation currents, which
may adversely affect either the probe or the plasma, are avoided. In
the electron-saturation region the current is approximately equal to the
random electron current across the probe area. The deviations from this
value may be investigated in much the same way as for ions, but we shall
not pursue this investigation here.

For our purposes, therefore, the electron current to the probe can be
taken as being given by the thermal equilibrium value since most electrons
are repelled. This is the random current reduced by the Boltzmann factor

Te = inaoVeQxpieVo/Te). (3.2.32)

The ion current is given by the Bohm value so that the total electrical
current drawn from the probe is

/ =
1
- I — -  1 exp I —-  1 exp2 \nmej \ Te J Ap

(3.2.33)
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where we have used the fact that for a Maxwellian distribution

/ 2 T \ 1 / 2

v = 2 I — ) . (3.2.34)
\nmj

The area ratio As/Ap is approximately unity, given by Eq. (3.2.26) or
(3.2.27).

This equation for the probe characteristic, which is valid for Tt < Te
and XD <C a, shows negligible dependence upon ion temperature apart
from slight changes in the term exp(—^),  so that the characteristic cannot
be used to determine T*.

The floating potential can immediately be obtained by setting 7 = 0
so that

HK^) ] <3-235)
(the difference between As and Ap is irrelevant here because it appears
only inside the logarithm). It might seem easy, therefore, to deduce Te
from the floating potential. Unfortunately, the problem is that we do
not, in general, have a good measurement of the plasma potential Vp,
which is the reference point of voltage (i.e., Foo) in our treatment. Vp
may be estimated as the voltage at which electron saturation is reached.
This then gives an estimate of Te from Vf —  Vp, but usually not a very
accurate one.

A more satisfactory approach is to use the slope of the characteristic

Ul!) + % (3.2.36)

where Isi = —eJ\ is the ion-saturation current. (We had put subscript 0
on V in this equation to remind us that it is the probe potential, but
from now on we drop this, leaving it understood.) Taking a point where
dISi/dV (which arises from dAs/dV) may be ignored compared to dl/dV,
one then has

Te = e{l-lsi) j ~ . (3.2.37)

These quantities can be obtained numerically from the characteristic, for
example by fitting a line to In |/ —I Si\ versus V, or read graphically as
illustrated in Fig. 3.6.

Once Te has been determined in this way, the density may be de-
termined from the ion-saturation current using the primitive form of
Bohm's formula (taking As = Ap). If the Debye length 1D, based on Te
and n thus deduced, is significant compared to a, then the effective area
may be corrected using Eq. (3.2.26) or (3.2.27) with this value of XD. This
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Fig. 3.6. Graphical analysis of a probe characteristic.

provides a corrected value of n (and hence hD). The process may be iter-
ated if desired, but the accuracy of our approximations, or indeed probe
measurements generally, rarely warrants more than this first correction.

The density deduced, n^ is the electron (and ion if singly charged)
density at large distances. If the ions are not singly charged but have
charge Ze, the sheath potential Vs is unchanged; the ion electric current
is increased by Z1//2 over the Bohm value obtained using the electron
density. The density deduced by using the Bohm formula will then
be equal to the electron density provided m\ is replaced by rrii/Z (see
Exercise 3.4). More generally, the quantity we have written as (Te/rrii)1^2

is physically the ion sound speed, which for a mixture of different cold
ion species j \ of charge Zj and mass m7, is obtained by replacing m; with
^mjitj/ne.

Finally, returning to the question of the plasma potential, because of
the uncertainties involved in determining Vp from the electron saturation
"knee" in the characteristic, the most satisfactory way to obtain it is to
use the floating potential and the electron temperature determined from
the slope [Eq. (3.2.37)]. Then the difference between Vp and Vf is given
by Eq. (3.2.35), which we regard not as a means of determining Te but as
a means of determining Vp - the reference of potential in our analysis.

3.3 The effects of a magnetic field
3.3.1 General effects

All the analysis thus far has tacitly assumed that no magnetic
field is present, so that the particle dynamics are determined only by
the electric field. Many situations arise where probes are to be used in
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a magnetized plasma, so we need to know how this magnetic field will
affect the results.

The main effect of the field is to cause the electrons and ions to move
no longer in straight lines but to orbit around the magnetic field lines in
helical orbits with transverse radius p = mv/eB. This radius is called the
Larmor or gyro radius. The particle motion across the magnetic field is
thus greatly restricted although the motion along the field is essentially
as before.

The importance of the magnetic field effects is obviously determined
by the ratio of p to the typical dimension a of the probe. If p > a, then
the previous treatment should apply.

Clearly the electron Larmor radius is smaller than the ion radius
(for comparable Te and Tt) by the factor y/(me/mi). As a result, the
electrons are more strongly affected than the ions. The first thing that
happens to the probe characteristic when a magnetic field is present is
that the electron-saturation current is decreased since the electron flow
is impeded. This will be most immediately evident as a reduction in the
ratio of electron- to ion-saturation currents.

In many cases, even though the electron current is impeded because
pe < a, the ion Larmor radius remains larger than the probe. In such
a situation, if the probe is significantly negative so that most electrons
are reflected, then the electron density will be governed, as before, by the
thermal Boltzmann factor

ne = ftoo exp(eF/Te). (3.3.1)

The ions, being relatively unaffected (for pi >• a) by the magnetic field,
satisfy the same equations as before. So the ion current, which depends
only on ne and ion dynamics, is just as before. The electron current will
also maintain its exponential dependence on Fo so that analysis of the
current slope will again provide Te. In summary, if pt > a and most of
the electrons are repelled, the previously discussed interpretation of the
probe characteristic should provide accurate results.

When the magnetic field is sufficiently strong that the ion Larmor
radius is smaller than the probe size, pt < a, considerable modifications
to the ion collection occur and it is no longer possible to formulate a
completely collisionless theory.

To understand this we note that for pt < a the particle flows, in the
absence of collisions, are effectively one dimensional along the magnetic
field. Now consider the quasineutral equation that we supposed to hold
outside the sheath:

eV
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In a three- or two-dimensional situation (e.g., a sphere or cylinder with
no magnetic field), A is a function of position, so that the solution
of this equation for V gives a potential varying with position, and
in fact tending to zero within a distance of the order of the probe
radius (see Exercise 3.6). However, when A is a plane (one-dimensional
flow) it is independent of position and Jt/A = constant. The solution
of the equation is then V = constant and no well behaved solution
satisfying V = 0 at large distances and V — —T e/2e at the sheath edge is
possible. The result is that the quasineutral "presheath" region expands
until plasma-source or collisional terms become significant, allowing a
solution to be obtained; hence the comment that no collisionless theory
is possible in the one-dimensional strong magnetic field case.

As a practical matter, despite the theoretical difficulties, the usual
approach to probe interpretation in a strong magnetic field is to take the
electrons to be governed by the Boltzmann factor as before, when V is
negative, so that the temperature can be deduced from the slope of the
characteristic. The ion-saturation current is estimated by noting that the
Bohm formula for the zero field case corresponds to ions flowing to the
probe at approximately the ion sound speed (Te/mi)1^2. In a strong field
this sonic flow can occur only along the field not across it. Therefore, it
is reasonable to suppose that the Bohm formula would still apply except
that the effective collection area is not the total probe surface but the
projection of the surface in the direction of the magnetic field. So an
estimate of the plasma density may be obtained from Eq. (3.2.20) using
this projected area in place of As. A justification for this procedure and a
discussion of some of the complications is given in the following sections.

3.3.2 Quasicollisionless ion collection in a strong magnetic field
The general characteristics of the situation of strong magnetic

field are illustrated in Fig. 3.7. The sheath is still thin and, hence, located
close to the probe. The presheath, however, is a long flux tube extending
in the direction of B. When the probe is attracting ions, the ion flux into
the sheath is made up almost entirely of ions that have diffused into the
collection tube across the field rather than entering from the end, since,
for small TI? the inflow of ions at the end is very small. It may be, in some
situations, that sources of ions due to ionization within the presheath are
also important, but these may be treated in much the same way as ions
entering the flux tube via diffusion.

If ions, once having entered the presheath, have a high probability of
reaching the probe without making a collision, then a quasicollisionless
treatment of the collection can be used. ("Quasi" here reminds us that
some form of collision is essential to provide the ion source within the
presheath via diffusion or ionization.) Such a treatment requires the mean
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Fig. 3.7. Schematic representation of sheath and presheath in a strong magnetic
field.

free path along the field to be longer than the presheath, a criterion that
we shall discuss later; let us assume, for now, that the criterion is satisfied.

The model we adopt, therefore, is that the presheath can be taken as
one-dimensional, ignoring variation perpendicular to the field, and has
a source of ions within it, due to cross-field diffusion or ionization. To
simplify the treatment we take the ions to be born with zero energy so
the source rate is described by a single function S(x), particles born per
unit volume per unit time.

Ions born at x\ are accelerated toward the probe and at a position x
(< xi) have acquired a velocity

(3.3.3)
L m J

Assuming the potential distribution in the sheath to be monotonic so
that there is a one-to-one relationship between velocity (at x) and birth
position xi, the ion distribution function f(v,x) is given by equating the
number of ions passing x per second to their source rate:

= S(xi)dxu (3.3.4)

where xi and v are related via Eq. (3.3.3).
The ion density is then

dXl dVj

(3.3.5)
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The electrons, being the repelled species for the case of most interest, are
governed by a simple Boltzmann factor as before:

ne = naoQxp(eV/Te). (3.3.6)

These are the two particle densities to be substituted into Poisson's
equation.

As before, we treat the plasma region (the presheath) as quasineutral
fit = ne, with the result that we obtain an integral equation that may be
written

where

ri = -eV/Te, (3.3.8)
F(rj) = Qxp(-rj), (3.3.9)

m, \ 1/2 S dx (3.3.10)

and we regard the potential, in its dimensionless form rj, as the indepen-
dent variable and x, implicitly in 3>, as the dependent variable.

Equation (3.3.7) is a form of Abel's integral equation, which we shall
encounter again in a different context (Section 4.4). Its solution is

where the prime denotes differentiation with respect to argument. The
reader may care to verify this solution, as Exercise 4.7 indicates. Substi-
tuting for F we obtain

Ofo) = - 1 [^ -> '
—p:  - 2 exp(-fy) / exp(r) dt
] ' Jo

(3.3.12)

Now we shall need the ion current density, which is

( ) ( m ) m (3.3.13)
0 V mi )

The value of O is substituted from Eq. (3.3.12) and integration by parts
then gives

(IT \ 1/2 2 f^fl
r\- = Hoo — I - exp(-f/) / exp(t 2) dt. (3.3.14)

V mi ) n JO
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We must now determine the position (or rather the potential) of the
sheath edge. We proceed, as before, to identify this as the place where the
plasma solution breaks down. This occurs at or before the point where
drj/dx becomes infinite, that is, where O = 0. So, on this basis, we should
take the sheath potential to be the solution of

—  2exp(—rj s) exp(£2) dt = 0. (3.3.15)
nl/1

This proves to be rjs = 0.854 (Vs = — 0.854T e/e), a value originally ob-
tained by Tonks and Langmuir (1929) for a specific choice of S. Notice,
though, that this value is in fact completely independent of any assump-
tions about the spatial variation of the source 5, a fact first demonstrated
by Harrison and Thompson (1959) (whose treatment we are loosely fol-
lowing). Indeed, not only is the sheath potential independent of S but so
also is the ion current at the sheath:

( IT \ ^2 1 / T \ ^2

~ar) ~^ = 0A9noD["ni) • (3-116)

This expression is just like what we had for collisionless ion collection
without a magnetic field, the Bohm current [Eq. (3.2.20)], except that the
coefficient is 0.49 instead of 0.61.

It should be noted that we have not strictly demonstrated that the
sheath forms exactly at O = 0. It might form somewhat before that,
although not by much, as an analysis of the sheath criterion along
our earlier lines [Eqs. (3.2.12)—(3.2.16)] would show (see Harrison and
Thompson, 1959). However, because Tt oc f<frdt], the derivative dTt/dr]
is equal to zero when O = 0, that is, at the potential n = rjs. Thus,
the difference in ion current due to some small correction in the sheath
potential will be zero to lowest order.

Because the sheath itself is thin, we may ignore the source of ions within
it, so the ion current to the probe is equal to the ion current across the
sheath: 0.49^oo(T£,/mj)1/2. This gives us all the information we require in
order to determine the probe characteristic because the electron current
is given, as before, by a simple Boltzmann factor. Therefore, we obtain a
characteristic given by just the same expression as in the field-free case
with two small modifications. First, the area to be used in determining
the ion current is the projection of the probe surface in the direction of
the magnetic field, for example, 2na2 instead of Ana2 for a sphere. Second,
the coefficient in the Bohm current is modified. This modification is so
small, though, and the approximations involved so substantial, that the
difference is hardly significant. Very often the coefficient is just taken as
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^, regardless of magnetic field strength, recognizing that the analysis is
only good to perhaps 10-20%.

3.3.3 Collisions in a magnetic field
We must now consider in somewhat more detail the question

of whether the quasicollisionless treatment is valid. This involves the
relative magnitude of the ion mean free path along the magnetic field /
and the length of the collection (presheath) region L, say. If / > L, then
the treatment is justified; otherwise not.

It should be noted here that the distinction between ion-ion and ion-
electron collisions needs to be borne in mind. For the purposes of the
present discussion, only the ion-electron collisions are really important.
Ion-ion collisions, though they lead to modification of the ion distribu-
tion, do not change the total ion momentum. They therefore give rise
neither to cross-field diffusion nor parallel momentum loss, which are the
crucial factors determining the ion collection. Therefore, all the collision
lengths and rates in this section should be regarded as referring to ion-
electron momentum transfer, which takes place more slowly by a factor
~ yj(me/mi) than ion-ion transfer.

The length of the collection region must be just great enough to
allow sufficient ion sources within it to make up the ion flow to the
probe. If we were to assume some form for S(x) we could, in principle,
integrate Eq. (3.3.10) to determine L. However, the mathematical labor
would not be justified since we mostly want an approximate result
for present purposes. Therefore, we proceed on a very rough basis as
follows.

In our case the source of interest is perpendicular diffusion of ions
across the field. Suppose this is governed by a diffusion coefficient Dj_;
then the cross-field particle flux is D±W±n, which we approximate by
taking the perpendicular scale length as a, the probe radius, and the
difference in density between the presheath and the surrounding plasma
as ~ ftoo/4 on average. Then the cross-field flux along the whole tube
length for a circular tube is

Jt ~ L2naD±no0/4a. (3.3.17)

We put this equal to the Bohm value of the ion flux to the probe,

T , 1 „ (rp /n.\\/2—Jl  n T i o \

Jj tt TJMQQ̂  i e/Wli) 7ta , ^j.J.loj

and deduce

a2 / T \ 1 / 2

L~!iU) • (3J-19)
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On the other hand, if ions have a parallel diffusion coefficient D\\, then
the mean free path along the field lines is

t « —  . (3.3.20)
Vti

Hence, the ratio of / to L is

£-£2l, (33.21)
where we have written cs = (Te/mi)1^2, the ion sound speed. This shows
that, provided diffusion is strong enough, a quasicollisionless approach
is valid.

However, one can readily show that classical collisional diffusion is
never strong enough. Classical diffusion gives

D± « pjve, (3.3.22)
J>ll * vlhc, (3.3.23)

where vc is the collision frequency and pi is the ion Larmor radius. Thus
classically

f « P ) . (3.3.24)
L \ a J cs

But the ion thermal speed is always less than the sound speed (remember
that cs really includes Te + yTJ), and by presumption we are discussing
the strong magnetic field case pi < a. Therefore, £/L < 1 and collisions
are important.

It might seem, therefore, that all our treatment of the quasicollisionless
case of the previous section is in vain. Fortunately, this is not so because
in most plasmas the cross-field particle diffusion is substantially enhanced
above the classical value by a variety of collective effects. This so-called
anomaly in the transport is frequently sufficient to make //L large
and thus the quasicollisionless treatment appropriate, in which case our
analysis using the Bohm value of the ion current may be expected to
give reliable results.

Even so, there are undoubtedly cases where the diffusion is sufficiently
slow as to have an appreciable effect upon the current and it is to these
cases that we now turn. We shall consider the plasma to be sufficiently
well described by a continuum approach as in Section 3.1.3, but now we
take the diffusion coefficient to be anisotropic. We note also that particle
fluxes will be driven by potential gradients as well as density gradients,
so we write

r = - D - V n - n M ' V F . (3.3.25)

The tensor [X is the mobility and is anisotropic like the diffusivity D.
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In a simple isotropic collisional treatment, provided the drift velocity
is much less than the thermal velocity, the mobility and diffusivity are
related by (Chapman and Cowling, 1970)

li « jD, (3.3.26)

where q is the species charge. It is far from obvious that this expression
remains true in an anisotropic case, but we shall assume that it does, so
that

f = - D • (Vn + — V7) . (3.3.27)

Primarily, we want to calculate the ion current, so we apply this
diffusive approach to the ions and assume (as usual) that the electrons
are governed by a simple Boltzmann factor. This is reasonable when they
are the repelled species, even if collisions are important, since the electron
diffusion tends to be much quicker than that of the ions. Also, we treat
the outer plasma region, which is quasineutral; therefore

Vn, = Vne = WooVexp I — j =  —n&V.  (3.3.28)

Substituting and taking q = e, we get

r = - D • (l + ^ \ Vn,-. (3.3.29)

In order to obtain a tractable problem let us take D = constant. Then
the equation of continuity becomes

T,

where x is the parallel direction. A simple scaling of the parallel coordi-
nate putting

£ = (D±/Dl{f2x (3.3.31)

leads to Laplace's equation in the (£,y,z) coordinate system. It may be
solved for specified geometry to give a relationship between yi[ and the
total current Jt (Bohm et a/., 1949). In view of the rather gross assumption
involved in taking D = constant, it is sufficient to obtain this relationship
by a more physically transparent approximation.

We recognize that the perpendicular scale length of the solution is of
order the transverse dimension of the probe (a), therefore, we replace



3.3 The effects of a magnetic field

[nt by (ftoo —  ni)/a2, to get

d2m
dx2 ' D,| a2

This gives a solution

= 0.

1/2
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(3.3.32)

(3.3.33)

where no is the density at the inner surface (x = 0) of the diffusion region.
The total ion current across this inner surface is then

Jt ~ %a2D\\
dx

\1/2 ( 1 + —  J (̂ oo - n0).

(3.3.34)

We must now equate this ion current to the current obtained by a local
analysis of the sheath region, based on the local density no. If we write
this as

Jt = (3.3.35)

so that vo represents an effective flow velocity, then by combining
Eqs. (3.3.34) and (3.3.35) to eliminate no, we find

R

where the factor

R =
aLv

l+R

1/2

(3.3.36)

(3.3.37)

is a reduction factor determining the magnitude of ion current reduc-
tion from its expected value if diffusion were ignored and n^ used in
Eq. (3.3.35). Normally for ion collection vo will be given by the Bohm
value \cs. Notice then that apart from the correction factor due to mo-
bility (1 + Te/Tt) and the distinction between cs and vti, the factor R is
equal to 2^/L)1'1 from Eq. (3.3.21).

Alternatively, we can regard R as representing, as in Section 3.1.3,
approximately the ratio of a mean free path f to probe size. In the
strong field case f represents the geometric mean of the transverse and
longitudinal diffusion lengths, that is,

R (3.3.38)
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(In this final form we have taken notice of the fact that the mobility
enhancement factor 1 + Te/Ti will not be appropriate if Te > Tt because
the drift velocity will be too large. Therefore, we have just put Te = Tt
in this factor.)

3.3.4 Mach probes for plasma velocity measurements
Let us return now to the quasicollisionless case, where the

electron-ion collisions can be ignored. We notice that in the strongly
magnetized case, illustrated in Fig. 3.7, the presheath is divided into two
separate parts on opposite sides of the probe, with the ion collection in
opposite directions in the two parts. If we construct a probe with sepa-
rate collectors for these two directions, it can measure separately the ion
saturation current on either side. In a stationary plasma we expect the
currents to be equal by symmetry. However, if the probe is situated in a
plasma which has a significant pre-existing flow along the magnetic field,
then it seems intuitively reasonable to expect that the collection current
on the upstream side would be greater than that on the downstream side,
because of the external flow. This proves to be the case, and it is the
basis for measurement of the flow velocity. The ratio of the upstream to
the downstream ion current proves to be a function of the ratio of the
flow velocity to the ion sound speed, that is, the Mach number. For that
reason, such probes are called Mach probes.

It is instructive to adopt a fluid treatment to analyse the ion current
in a flowing plasma (Hutchinson, 1988). We therefore assume that the
electrons are governed by the simple Boltzmann factor, as before, but
the ion fluid, having density nt and velocity v, is governed by standard
continuity and momentum equations, including a viscous stress tensor TT
as follows,

V-(Wl-v) = 0, (3.3.39)
V • (^m/vv) + VmTi + eriiVV + V • TT = 0. (3.3.40)

We eliminate the potential, V, by using the Boltzmann relation, eV =
Te ln^i/ftoo), take both Te and T[ to be uniform, and take the parallel
component only of the momentum equation to obtain

VIICFÎ H) = -Vx • (11,-vx) = S, (3.3.41)
V || (n/m/t; || i; ||) + (Tt + Tc)V||n,- =

(V • n)|| = Sm. (3.3.42)

In addition, instead of a perpendicular momentum equation we invoke
a phenomenological perpendicular diffusion equation

nty± = -DV±n, (3.3.43)
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in which the value of the diffusion coefficient, D, will turn out not to be
important. The point of the rearrangement of the equations (3.3.41) and
(3.3.42) is to bring the perpendicular divergences over on to the right-
hand side and then simply to regard them as particle and momentum
sources, S and Sm, in approximate one-dimensional parallel equations.
The viscous term becomes a perpendicular divergence only if we assume
that the parallel viscosity can be ignored, which we shall do. We shall
also assume, again phenomenologically, that the shear viscous stress is
governed by a simple viscosity coefficient, rj, such that

(V-n)||=Vx-foVxi>B)- (3.3.44)

Now, to derive our approximate one-dimensional equations, we substitute
for the perpendicular velocity from the diffusion equation (3.3.43) and
replace the perpendicular gradients using an approximate perpendicular
scale length according to the scheme:

V K U / « o o n , | l .
I I'll J I Vao\\ ~ »ll J a

' U {^-"<U (3.3.46)

where, as usual, oo refers to the background values outside the presheath.
The equations are nondimensionalized by scaling the parallel coordinate,
z, and the perpendicular coordinates x, y by their appropriate lengths

x/a^x, y/a^y, j-^dz ^ z, (3.3.47)

and the density and velocity by their characteristic values

ni/noo -+ n, v{l/cs -+ M, (3.3.48)

with cs = \/(Te + Ti)/nii the sound speed. The resulting equations are

n+^—).  (3.3.50)
mfiD

^ + n M ^ ( M 0 0
dz dz ioo

Notice that the equations contain the parameter

OCEE—H— 9 (3.3.51)
mifiooD

the ratio of the viscosity to the diffusivity, or more precisely of the
momentum diffusivity to the particle diffusivity, but are independent of
the diffusivity itself. This independence of D, even of its spatial variation,
is crucial to the possibility of probe interpretation in magnetic fields.
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If the ion current depended on the diffusivity, which is rarely known
a priori, it would be impossible to interpret the measurements reliably.
Fortunately, although the length of the presheath depends on D, the flux
to the probe does not, which is why it can be scaled out of the equations.
The solution does depend, however, on the parameter a, which we will
take as simply a uniform constant.

These equations are simultaneous differential equations in the variables
n and M. The behavior of the solution depends on the determinant of
the coefficients of the differentials:

M n
1 nM = n(M2 - 1). (3.3.52)

One way to understand the importance of the determinant is to realize
that if we wanted to rearrange the equations to express them as separate
equations for the derivatives dn/dz and dM/dz then we could do so by
solving the linear equations regarding those derivatives as the unknown
variables and the other quantities as known. To do so we would have
to divide by the determinant. That tells us that when the determinant is
zero the equations are singular. At that point, which is where M2 = 1,
the equations will usually break down and other physical effects occur.
Thus even without solving the equations, we can see that the connection
to the sheath, where the quasineutral equations break down, occurs at
M = +1, that is when the ion speed reaches the sound speed, which is,
of course, just the Bohm condition.

It is possible to solve the equations analytically if a = 0, giving
(Stangeby, 1988)

and consequently the ion current density at the sheath edge (where

Tt = - ^ - . (3.3.54)
2 +Moo

In the case of a stationary plasma, M^ = 0, we get F; = |̂ ooCs which is
almost exactly what we obtained from the kinetic treatment, Eq. (3.3.16),
ignoring ion temperature. However, despite the analytic convenience, tak-
ing a = 0, that is, setting the viscosity equal to zero, is not the right choice.
On heuristic grounds one might expect that if diffusion, even turbulent
diffusion, takes place by the random exchange of particles between the
presheath and the external plasma, then the particles will carry their par-
allel momentum with them and therefore exchange parallel momentum
at the same rate as they are exchanged, i.e., with the same diffusivity.
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Moreover, experiments on magnetically confined plasmas usually show
that momentum diffusivity is indeed similar in magnitude to heat and
particle diffusivity.

Therefore, although we can not speak definitively about exact values
when dealing with turbulent diffusion, the more plausible value to take is
a « 1. Extensive numerical solutions of Eqs. (3.3.49) and (3.3.50) for the
range of values of a have been calculated (Hutchinson, 1988). They are in
excellent agreement with numerical solutions of the full two-dimensional
problem. The results may be summarized in the expression for the ion
flux density at the sheath edge,

T, = fn^cs, (3.3.55)

with the all-important factor / approximated by the convenient compact
form

/(Moo, oc) = exp[- l - LlMoo + (1 - V^)(0.31 + 0.6Moo)], (3.3.56)

where the sign convention of the flow, M^, is away from the collection
surface. That is, the upstream surface has negative M^ and the down-
stream surface positive. Our previous arguments and what experimental
confirmation of Mach-probe performance there is leads to a recommen-
dation to adopt a = 1 and thus drop the final term in the exponential
for practical measurements. Then the ratio of the upstream to the down-
stream ion currents is equal to cxp(MOD/Mc) where the calibration Mach
number is Mc = 0.45.

A particle-kinetic theory of the Mach probe can be developed by
generalizing the treatment of Section 3.3.2. To do so, one needs to
include not just the birth of ions in the presheath, but their partial
loss after having been accelerated, thus modeling diffusive exchange of
particles, not just their perpendicular influx. This theory (Chung and
Hutchinson, 1988) shows excellent agreement with the fluid approach
just outlined, and helps to confirm that the approximations inherent in
the fluid approach, for example the neglect of parallel viscosity, are valid.

In Fig. 3.8 are shown comparisons of the fluid theory we have discussed
using viscous a = 1 and inviscid a = 0 ions, theoretical results of two-
dimensional kinetic theory based on a particle in cell (PIC) code and
of one-dimensional kinetic theory (Chung and Hutchinson, 1988), and
experimental observations (Poirier and Boucher, 1998) in which the flow
velocity was independently measured by laser induced fluorescence (LIF)
(see Section 6.6.1). All the viscous theories agree with each other to well
within the uncertainties in a. They agree with the experiment to within its
uncertainties. The inviscid theory does not agree with the experimental
results.

Although Eq. (3.3.56) with a = 1 is now reasonably well established for
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Fig. 3.8. Comparison of theories of Mach probe current ratio and an experiment
(after Gunn et al, 2001).

interpreting the Mach number from ion current ratios in Mach probes,
the value of/ for stationary plasmas, namely / = 0.37, has not universally
displaced the corresponding inviscid value, / « 0.5, in deducing density
from the ion current. Theoretically it should do so. However, as our
treatment has shown, the ion temperature contributes to the sound
speed. Also T, is generally not known from probe measurements. If
the ion temperature is taken equal to the electron temperature in our
oversimplified discussion, then using / = 0.37 we conveniently obtain
Tt = 0.52(Te/mi)1/2, which has restored the factor of 1/2 to the sheath
current by expressing it only in terms of Te. Perhaps this numerical
coincidence helps to explain the persistence of the use of a factor 0.5 in
deducing the density. Another reason why the exact value has not been
fully confirmed is simply that the uncertainty in probe measurements in
magnetized plasmas is often sufficient to obscure differences of this order
(30%).

3.3.5 Oblique collection and perpendicular velocity measurements
In strongly magnetized ion collection when the surface is oblique

to the field line, as illustrated in Fig. 3.9, the details of the ion flux to
the probe are more subtle than we have so far considered. In addition
to the Debye sheath, there appears a quasineutral "magnetic presheath"
of thickness approximately an ion gyroradius, in which the electric field
is strong, and where the ions are accelerated across the field to enter the
Debye sheath with an average velocity normal to the surface equal to
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Solid Surface Debye Sheath

Fig. 3.9. Collection of ions when the magnetic field is oblique to the probe
surface.

the sound speed. It can be shown that, in the absence of other effects,
the ions enter the magnetic presheath with their parallel velocity equal
to the sound speed. This is confirmed by a full numerical solution to the
two-dimensional problem, obtained by Chodura (1982). In our previous
discussions we have been adopting this as our boundary condition,
but now we need to discuss what happens if other effects change this
condition.

The context in which changes to the boundary condition become
important is when there is, in addition to any parallel flow, a background
plasma flow that is perpendicular to the magnetic field. Since we have seen
that parallel flow can be measured with a Mach probe by taking the ratio
of upstream to downstream collection, the idea arises that perpendicular
flow might also be measurable by taking measurements of the ion current
at different angles to the magnetic field. This proves to be possible but
convincing theoretical models have only recently been developed.

Perpendicular plasma flows arise from effects such as diamagnetic
currents (from pressure gradients) and other particle drifts. A generic
case of specific interest is when the flow arises from E A B drift. This
situation is illustrated in Fig. 3.9: a perpendicular electric field Ey gives
rise to drift in the perpendicular direction. The simplest way to see what
this does to the ion collection (Hutchinson, 1996) is to transform to a
frame of reference moving in the tangential (x) direction at a velocity
(assumed nonrelativistic)

t ^ e / e^ = ex / = e x r 5 ,
Bz B sin 9 sin 9

(3.3.57)

where z is the direction normal to the probe surface, 9 is the angle of the
field to the probe surface, and vj is the perpendicular drift velocity. The
electric field in this moving frame, E + vt A B, is zero by the choice of
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\t: there is no external drift velocity in the moving frame. Consequently,
provided the boundary condition at the probe surface is independent
of this transformation of reference frame, as it is for example if the
probe just absorbs ions, then the solution in the moving frame is just
the same solution that we have been assuming all along: in the moving
frame the parallel ion velocity is equal to the sound speed when the
ions enter the magnetic presheath. But notice that in the moving frame
the ions have everywhere (and most particularly at infinity, i.e., in the
external region) acquired an additional parallel velocity of — v tcos9
compared with the laboratory frame of reference, and if the problem is
translationally invariant in the x direction, as we are tacitly assuming,
then this additional parallel velocity is the only way in which the problem
in the moving frame is different from the corresponding problem in the
lab frame with zero Ey. In short, then, adding a perpendicular drift
caused by Ey changes the ion flux to the probe in exactly the same way
as (1) changing the external parallel velocity by — v tcos0 = —VdCOtO
and then (2) adding the tangential x-velocity vt = vj sin 6 to the whole
plasma solution. Step (2) transforms from the moving frame back to the
lab frame, but it does not change the flux into the magnetic presheath so
it might as well be ignored.

The resultant ion flux into the magnetic presheath is then given by the
usual expression, F, = fdn^Cs, but now the coefficient fd is a function
of the drift velocity as well as M ^ and a. Denoting Vd/cs by Mj_, and
substituting into the function (3.3.56), we get

fd(Ml]ao, M±9 a) = /(M||oo - M i cot 0, a)
= exp{-l - l.l(M||o0 - M± cot 6) (3.3.58)

+ [1 - ^S] [0.31 +0.6(M|,oo - M± cot 6)]}.

This expression is valid only so long as the external flow in the trans-
formed frame is subsonic: I M ^ —  M±_ cotO\ < 1. If it is supersonic, then
for upstream collection no presheath forms and the plasma flows in at the
external velocity; that is, the supersonic value of fd is —  ( M ^ —  M±_ cot 6).
In practice this means that extremely small values of 6 should be avoided.

Adopting a = 1 as recommended, the ratio of the flux to opposite fac-
ing collectors of a Mach probe is then simply e x p ^ M ^ —  M± cot 6)/Mc]
with Mc = 0.45 as before. This result was first derived by directly solving
the flow equations in the laboratory frame (Van Goubergen et al, 1999),
but the Galilean transformation above shows that it is derivable from
the solution without perpendicular flow, which avoids any necessity for
further numerical solutions. To distinguish perpendicular from parallel
flow, it is necessary to measure at more than one angle 9 to the magnetic
field. This can be done either by constructing a probe with multiple
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Collectors

Fig. 3.10. Probe configurations for perpendicular and parallel velocity measure-
ments. Either a rotatable probe (left) or multiple collector "Gundestrup" probe
(right) are required to give multiple angles {6) of collection.

current collectors (MacLatchy et a/., 1992) or by rotating a planar Mach
probe (Hothker et al, 1998, for example). Figure 3.10 shows the sort
of geometry that is used. Though several examples of this type of per-
pendicular velocity measurements have been published, the experimental
verification to give full confidence in the technique is at an earlier stage
than for parallel measurements. However, it may progress more rapidly
because there is a simple probe-based alternative to measure the cross-
field flow, namely to measure the gradient of the plasma potential, from
the gradient of the floating potential of a simple Langmuir probe, and
from it derive the electric field directly. Indeed it might be argued that
measuring the potential gradient is the more convenient probe method
to measure cross-field velocity in the first place.

3.4 Applications
3.4.1 Some practical considerations

A typical Langmuir probe construction is shown in Fig. 3.11. The
tip of the probe is usually subject to the greatest energy flux and is usually
made of some appropriate refractory metal (platinum, molybdenum,
tungsten, etc.) or sometimes graphite. The end of the insulating jacket
also needs to be robust. Alumina and fused silica are materials that
have been widely used. Silicon carbide has shown promise in extreme
heat-load situations.

Various complicating factors influence the design and operation of the
probe. These have been reviewed by Chen (1965) and include: surface
layers either insulating on the probe tip or conducting on the insulator,
in either case changing the effective probe area; secondary emission of
electrons from the probe, possibly leading to arcing; photoemission of
electrons; negative ions.

A major factor in many cases is to minimize the heat flux to the probe
in order to avoid damage. Because the electron-saturation current is so
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Fig. 3.11. A typical Langmuir probe.

much larger than the ion, a probe biased to draw electrons receives a much
higher heat load. Thus, it is often advantageous to avoid the electron
saturation part of the characteristic, especially since it provides little extra
information beyond what can be deduced from the characteristic in the
ion-saturation and floating potential region.

Of course, the electron current can be minimized by simply choosing
appropriate probe voltage biasing. However, another method that ensures
that one never collects more than ion-saturation current is to use a
floating double probe. Figure 3.12 shows schematically the operation of
such a probe. The two probe tips, although their potential difference is set
by the circuit, float in mean potential and rapidly adopt a potential such
that their total current is zero. Since their difference current flows out of
one and into the other, its magnitude can never exceed the ion-saturation
current.

The characteristic of the difference current versus the difference voltage
may be calculated by using our previous results for the current to each
probe separately [Eq. (3.2.33)] and eliminating the floating mean potential
by using the knowledge that the total current is zero. The result for the
usual case of identical probes is

I =Isit<inh(eV/2Te) (3.4.1)

(see Exercise 3.5), where the ion-saturation current Isi is just as before.
Analysis of the characteristic similar to that for the single-probe case
provides the measurement of Te and n^.

The use of Langmuir probes from spacecraft naturally enforces a
double-probe configuration upon the experiment because there is no
independent "Earth"! Normally, though, the spacecraft itself will be one
probe and the other will be much smaller. Provided the ion-saturation
current to the spacecraft is greater than the electron-saturation current
to the probe, the result will be an effective single-probe measurement.
In a deeper sense even a lab experiment is double, the second electrode
being, for example, the plasma chamber. One normally does not need to
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Fig. 3.12. A circuit for operating a floating double probe.

take account of this because the chamber surface is so much bigger than
the probe.

A popular Langmuir probe configuration that has the benefits of the
double probe is called the triple probe. This configuration, as its name
implies, employs three electrodes that are in the same plasma. Two of
them are operated as a floating double probe with constant bias potential
between them. The third is floating. Provided that the potential difference
between the double-probe pair of electrodes is at least a few times Te, the
negative electrode of the pair draws ion saturation current, the positive
electrode draws an equal and opposite current, and adopts a potential that
is somewhat above the floating potential to do so. Thus, by measuring the
current of the double-probe pair and the potential of the floating electrode
and the positive double-probe electrode, one has all the information
needed to fit an exponential characteristic. Essentially one has three
points on the characteristic. The major advantage of this configuration is
that the potentials adjust themselves to remain near the floating potential,
avoiding any dangerous large electron saturation currents. The currents
that the electrodes draw are approximately optimized for fitting the
characteristic in this region, without need to sweep, or often even to
adjust the bias potential. Measurements can thus be made with fast time
resolution. The disadvantage in comparison with swept measurements is
that there is no additional information on the shape of the characteristic
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that might signal that the probe operation is less than satisfactory.
One cannot observe directly whether the ion-collecting probe is indeed
properly saturated or whether the characteristic has a nonexponential
shape that might indicate nonthermal electrons.

Often, Langmuir probes are used to measure the fluctuations in the lo-
cal plasma parameters, not merely their average value. If the fluctuations
are sufficiently rapid, then the technique of sweeping the probe voltage,
normally used for obtaining the mean characteristic, cannot be used.
Instead the probe is either left floating and measurements made of float-
ing potential fluctuations or else the probe is biased at constant voltage
(often such that saturation ion current is drawn) and current fluctuations
measured. In the case of ion-saturation current, the signal is a function of
both density and electron temperature although the density dependence
(Isi oc n) is stronger than that of the temperature (Isi oc Te ). When
floating potential fluctuations are measured, the signal depends strongly
on plasma potential. Unfortunately the dependence is not direct. How-
ever, if temperature fluctuations are relatively small, there is a constant
difference between Vp and Vf, so the floating potential fluctuations are
equal to the plasma potential fluctuations. In principle the triple-probe
configuration overcomes these ambiguities, but one needs to be certain
that the wavelength of the fluctuations is greater than the spacing be-
tween the electrodes, otherwise the assumption that the electrodes are
sampling the same plasma is violated.

Despite all efforts to avoid plasma damage of a probe by making
it robust and operating away from electron saturation current, high
temperature and density plasmas eventually cause too severe a heat load.
Two additional strategies can be adopted to extend the range of plasmas
that can be diagnosed. The first is to use a rapidly reciprocating probe
which is moved mechanically into and out of the plasma before excessive
heat is deposited on it. For this purpose, scanning assemblies capable of
10 cm or more of movement in a few tens of ms and with turn-around
times of a few ms are routinely used in measurements at the edge of
fusion plasmas. An example of their construction is described in Watkins
et al. (1992). The other strategy in the scrape-off-layer of fusion plasmas
is to embed the probes in the limiter or divertor plates that define the
plasma edge. Such embedded probes, sometimes called "flush" probes,
gain the protection of being part of a large structure that is designed
to withstand the escaping heat flux, rather than experiencing the full
force of the plasma bombardment on their own. In the usual situation
where the surface is at a small oblique angle to the magnetic field, some
severe complications affect the interpretation of the probe characteristic
(Wolters et al, 1999). The sheath of a probe whose potential is different
from the surrounding plate has a thickness that depends on its potential,
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so the geometry of ion collection is strongly influenced by the probe
bias potential. In effect, the collection dimension perpendicular to the
magnetic field is comparable to the sheath thickness, because of the
oblique collection. The ion saturation is thus incomplete. This difficulty
can be avoided if the embedded probe is not flush but presents a more
nearly normal face to the field. However, such a "proud probe" design
collects a substantially higher heat flux density, and so one faces a
difficult trade-off between avoiding damage and being able to interpret
the characteristic.

The difficulties mentioned in Section 3.2.5 in determining the plasma
potential from the Langmuir probe characteristic may be overcome in
large measure by the use of an emissive probe. Such a probe is continually
emitting electrons, usually thermionically from a heated surface. The
idea behind the use of the emissive probe is this: if the probe potential
is positive with respect to the plasma, then electrons emitted with low
energy cannot escape from the probe but are simply attracted back to
it. The probe current is therefore unchanged by the electron emission.
On the other hand, if the probe is negative with respect to the plasma,
the electrons can escape and so the probe current is decreased compared
to what it would have been without the electron emission. Thus, if we
can obtain probe characteristics with the same probe hot (i.e., emitting
electrons) and cold (not emitting), the characteristics will differ for V < Vp
but not for V > Vp. This should enable us to identify the plasma
potential, Vp.

Since obtaining hot and cold characteristics is rather troublesome and
requires a reproducible plasma, it would be helpful if a more direct way of
obtaining the plasma potential were available. One idea is to use a floating
emissive probe. The notion is that if the electron emission exceeds the
electron-saturation current and also takes place with an effective electron
temperature much less than the plasma electron temperature, then the
probe will tend to float at a potential close to the plasma potential, just
negative enough (by a fraction of the emission temperature) to reduce
the emission current to that of electron saturation.

Unfortunately, this simple picture does not describe what actually
occurs. In fact, a potential minimum usually forms between the probe
surface and the plasma. This tends to reflect a fraction of the emitted
electrons back to the probe, even when the probe is still negative with
respect to the plasma potential. This double layer thus prevents the
emission probe from floating at the plasma potential except in very
special circumstances over which the experimenter, in general, has no
control. Therefore, as discussed briefly by Chen (1965), the floating
emissive probe does not usually float at exactly the plasma potential.

The amount of electron emission required to use an emissive probe,
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even in the hot/cold mode, to give a reasonable indication of Vp is
obviously of the order of magnitude of the electron-saturation current;
otherwise the difference between hot and cold would be undetectable.
This tends to limit the use of emissive probes to plasmas of low density
and temperature since there are limits to the emission current density
possible. These limitations and the cumbersome procedure required for
the hot/cold comparison make the use of emissive probes unattractive
except in rather special circumstances.

3.4.2 More sophisticated analyzers
Because the current flow to any probe is intimately connected

with its potential relative to the plasma, our Langmuir probe analysis
is important even if the electric current is not the primary quantity
measured. There are, however, various techniques that rely on other
quantities related to the plasma particle flux for diagnostic purposes.

As we have seen, for most cases when T, < Te, the Langmuir probe
current characteristic is insensitive to ion temperature. Here then, is an
area where a more sophisticated analyzer can be useful. The reason why
we cannot easily obtain information on the ion distribution function
from a Langmuir probe is that when the probe is at positive potential,
repelling ions, it is drawing electron-saturation current. This is usually
large enough to swamp completely any variations in the ion current
that might have told us about Tt. A solution to this problem is to use
a "gridded energy analyzer", in which a system of grids at different
potentials is used. In Fig. 3.13 we illustrate schematically the type of
approach to be used.

The plasma particles are allowed to approach the current collector only
after passing first through a grid. This grid is biased strongly negative so
as to repel essentially all electrons. Therefore, only the ions are able to
penetrate past to the collector. Now, when the collector voltage is varied,
only ions with energy greater than eVc will be collected, so that the
logarithmic slope of the collection current for Vc > 0 should give the ion
temperature. The gridded energy analyzer is also often called a "retarding
field (energy) analyzer" since it is the repulsion of the retarding field that
selects the minimum energy collected.

The main shortcoming of the single-grid analyzer illustrated in Fig. 3.13
arises because of secondary electron emission caused by ions or electrons
striking the surfaces of the electrodes. Although the electron repeller may
prevent all the plasma electrons from passing through to the collector,
the ions all pass the grid (some of them more than once!). In doing so
they may collide with it and liberate secondary electrons. The secondary
electron coefficient (i.e., the number of electrons liberated per colliding
ion) may be typically a few percent. Therefore, when the collector is
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Fig. 3.13. Simplified illustration of the operation of a gridded energy analyzer.

repelling all but a few percent of ions, the electron current due to
secondaries from the grid will become dominant and obscure the desired
signal.

This problem may be overcome by using a more elaborate series of
grids such as is illustrated in Fig. 3.14. In this case the first grid repels
all the plasma electrons; the second is the ion repeller whose potential is
varied in order to obtain the characteristic; the third grid is the electron
suppressor, which prevents secondaries from either of the first two grids
from reaching the collector. The collector is negative (but not as much
as the suppressor) ensuring good ion collection. Other configurations are
also possible; for example, sometimes the ion repeller is made the first
grid, but the configuration shown overcomes most of the difficulties with
secondary electrons. It also has the important merit that the electron
and ion repellers are separate from the collector, so that any spurious
currents carried by them do not obscure the required collection current.

Another difficulty with gridded analyzers, particularly in higher-density
plasmas, arises because of space-charge limitations. In Fig. 3.14 we plotted
the potential due just to the grids. However, when plasma flows into
the analyzer and the positive or negative charge species are selectively
removed from the flow, additional charge density exists between the grids,
which can change the potential. This change will affect the operation of
the analyzer if the potential between two grids is altered so much that
it is larger than the greater or smaller than the lesser of the two grid
potentials. If this happens, then either ions or electrons will encounter



96 3 Plasma particle flux

Repelters: Collector
Suppressor

Fig. 3.14. Potential plot of a practical gridded energy analyzer including sec-
ondary electron suppression.

a repulsive potential hill higher than that given by the grids. The result
will be an unexpected lowering of the current of that species.

The space-charge effects may be calculated using just the same ap-
proach as in Section 3.2.2, where we discussed the sheath thickness. The
worst case occurs between the electron and ion repellers when the bulk of
the ions have just enough energy to reach the ion repeller. The marginal
case, when the potential has zero slope at the ion repeller so that higher
density would lead to space-charge limitation, then corresponds approxi-
mately to the sheath solution of Section 3.2.2 with Vs = 0. In other words,
the relationship between the grid spacing x and the potential difference
between the grids V is [see Eq. (3.2.25)]

TD ~ 3 [exp(-l)J
1/4 3/4 3/4

(3.4.2)

The Debye length 1D to be used here is that corresponding to the plasma
density outside the electron repeller grid, but reduced by the attenuation
factor of that grid for ions (due to collisions with the mesh). As before,
in order to repel all electrons, V is generally a few times Te and x ~ AXj).

What we have shown, therefore, is that to avoid space-charge limitation
the distance between the electron and ion repellers must be less than
~ 4/ID in this one-dimensional case. For high-density plasmas in which
the Debye length is short, this condition becomes too difficult to satisfy.
(For example, grids closer than perhaps 0.5 mm would be very hard to
maintain.) Two main approaches to solving this problem are available.
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The first is to attenuate the plasma flux before it encounters the repellers
using, for example, meshes with low transparency. This has the effect
of increasing the relevant XD (because the density is decreased). The
second is to restrict the transverse dimensions of the plasma flow using
an entrance slit. This has the effect of transforming the Poisson equation
into a two- or three-dimensional problem, rather than the one dimension
we implicitly assumed. Oversimplifying slightly, one may say that space-
charge limitations will then be avoided if the transverse dimension (rather
than the longitudinal dimension x) of the flow is less than a few Debye
lengths.

The problem with both these solutions is that they tend to introduce
greater uncertainties in the total effective collection area. The result is that
the absolute plasma density tends to be more uncertain. Nevertheless,
the relative energy distribution is usually not affected much.

Finally, let us mention a difficulty that may arise if the plasma
presheath region is not collisionless, for example, in a strong magnetic
field. Then the starting potential of the ions may not be exactly zero,
but may be some fraction of the sheath potential (~ Te/2e). This will
tend to cause additional broadening of the observed ion distribution and
obscure the ion temperature if Tt < Te.

Implicit in the discussion of Fig. 3.14 is the assumption that the
particles are flowing mostly in the direction along the axis of the analyzer;
otherwise, of course, they would tend to hit the sides of the analyzer before
being collected or repelled. In a strong magnetic field this collimation is
provided by aligning the axis along the field. The analysis is then of the
parallel component of the particle velocity, and using a gridded analyzer
the parallel distribution function may, in principle, be deduced either
for the ions or the electrons. Note that a Langmuir probe characteristic
may also be used for the same purpose for the electron distribution (but
not for the ions) by analysis of the shape in the intermediate region.
This will give information on the shape of the distribution function if
it is not Maxwellian. For a probe or gridded analyzer the analysis is
straightforward in one dimension, as follows.

The current collected (for a single species) per unit area is
•o

f(v)vdv, (3.4.3)

where quantities are those at the probe (or repeller) potential Vo and / is
the parallel distribution function. Using Eqs. (3.2.1) and (3.2.2) this may
be written

(3.4.4)
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Differentiating this we get

dY (2e\xtl 1

where v^ = — yJ\2eVo/m\. Thus the distribution function is proportional
to the derivative of the collection current for a single species.

When the magnetic field is absent or small so that p > a, it does not
provide the collimating effect we require. In this case, collimation must
be achieved for a gridded analyzer by some kind of material apertures. A
particularly effective method is to use a microchannel plate consisting of
a honeycomb of small channels all pointing in the same direction. This
method has been used to great effect by Stenzel et al. (1983) in obtaining
the distribution functions of electrons and ions in essentially arbitrary
directions in a large low-field plasma with non-Maxwellian distributions.

In an unmagnetized plasma whose distribution function is known to
be isotropic, the characteristic of a spherical Langmuir probe (without
collimation) may be analyzed to give the electron distribution function.
The method, due originally to Druyvesteyn (1930), involves taking the
second derivative of the characteristic and so tends to be rather sensitive
to errors. Exercise 3.9 derives the formula.

These and related techniques are widely used in space plasmas to pro-
vide extremely detailed measurements of the distribution functions from
spacecraft. In lab plasmas it is much more unusual to have such detail
because plasmas are rarely large enough, cold enough, or unmagnetized
enough for nonperturbing gridded analyzer experiments to be possible.

Another approach to obtaining additional information from a probe
is to use a bolometric probe. This measures the total power deposition
on the probe, usually by sensing the probe temperature rise. Usually the
electric current is simultaneously monitored in the manner of a Langmuir
probe. The additional information obtained on the particle energy may (in
rare circumstances) be sufficient to give an estimate of ion temperature,
although the ion energy gained in the sheath is usually substantially
greater than the thermal energy unless Tt > Te. (Remember that near
the floating potential the probe has a negative potential of order a few
Te/e.) More often such probes are used as a direct measure of heat flux
to edge structures by replacing a representative part of the structure with
a bolometric probe.

A normal Langmuir probe cannot give information on Tt, primarily
because one cannot operate it at a potential that would repel ions,
without drawing electron saturation current much larger than the ion
current of interest. A generic approach to overcoming this problem is to
devise a probe geometry that suppresses or prevents electron collection.
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In a magnetized plasma some partially successful attempts to do this
have been based on discriminating between ions and electrons on the
basis of their different Larmor radii. The general idea is to make a probe
in which the ion-collecting surface is aligned parallel to the magnetic field
and to shield it from electron collection by scraping off the electrons with
a "shading" structure. If this scraped-off layer is thicker than the electron
gyroradius but thinner than the ion gyroradius, then electrons can't reach
the collection surface, but ions can. Examples of the geometries that have
been used include planar (Katsumata and Okazaki, 1967) and cylindrical
with end plugs (Demidov et al, 1999). The main difficulty with this
approach is constructing the probe so that ion collection is relatively
unaffected by the shield. The plug probe is a favorable geometry from
this viewpoint but requires very precise field alignment.

Finally, mention should be made of trapping probes. They are used to
analyze the species impinging on the probe by trapping them in some
otherwise virgin probe surface by burial in the material. Subsequent
analysis of the probe surface can tell, for example, the different impurity
species in the plasma and something about their energy (and hence
possibly charge state because of acceleration in a known sheath potential)
from measurements of how deeply they are buried in the surface.

Many and varied are the methods used to glean extra information from
the measurement of particle flux inside the plasma using sophisticated
analyzers. For the most part, the techniques employed are variations on
the themes we have discussed here and so we leave the interested reader
to pursue further studies in the extensive literature.
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Exercises
3.1 Prove Eq. (3.1.7) for the current density drawn to a perfectly

absorbing spherical probe from the equation V2n = 0 in the diffusion
region surrounding the probe and the boundary condition

T = D\Wn\ = \nv

at the surface of the probe.

3.2 Take the electron collision cross section in a fully ionized plasma
to be

(J
/ e2 \
I I

J\4nsoJ m2vA
e

where In A ~ 15 is the Coulomb logarithm. Hence, show by substituting
thermal values that the mean free path is

3.3 (a) Show that the electron density at position x where the potential
is Vx (relative to the potential at infinity) near a plane probe of potential
Vo (< 0) that absorbs all particles incident on it is given by Eq. (3.2.5).

(b) Hence, calculate the minimum potential at which the approximate
formula,

ne(x) = rioo exp
\ 1 e

is accurate to 1%.

3.4 In a plasma with ions of charge Ze show:
(a) The sheath potential is still —T e/2e.
(b) The ion electric current is

It = eexp ( -1) AsneaD{ZTe/mi)l/2.

Hence, show that for a mixture of ions of different Z but constant Z /m
the electron density may be deduced from the Bohm formula by replacing
m,- with THi/Z.
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3.5 Prove Eq. (3.4.1).

3.6 Solve the quasineutral equation governing the potential in the
plasma region surrounding a probe for radius as a function of potential,
when the probe is (a) spherical and (b) cylindrical. Hence, calculate at
what multiple of the probe radius the value of \e(V — V^)/Te\ is equal
to 0.01 for these two cases.

3.7 Discuss the relative merits of operating a trapping probe, de-
signed to diagnose impurities by trapping them on its surface, under the
following conditions:

(a) Electrically floating (i.e., isolated from electrical conduction to other
parts of the machine).

(b) Electrically grounded (connected by a low resistance path to, say,
the vacuum vessel).
What would you expect to be the differences in heat load and trapping
efficiency?

3.8 To derive the expression (3.2.30) for orbit limited collection, con-
sider a cylindrical surface at a large distance L from the probe, at which
the particle distribution is given by a two-dimensional Maxwellian (after
integrating over the longitudinal velocity). Show that the fraction of the
distribution that has impact parameter less than bc is bc/nL. At far
distances these particles are all moving essentially perpendicular to the
surface. Thus evaluate the flux of particles that will eventually be col-
lected (per unit length) crossing the surface, by substituting for bc from
Eq. (3.2.29), and show that it is:

2V2anoo(T/m)1/2 /
Jo

Hence, integrating by parts, verify Eq. (3.2.30) using the identity

3.9 The Druyvesteyn formula relating collection current and the par-
ticle distribution function in a spherically-symmetric situation is readily
derived from the orbit limiting equations. Consider a spherical surface
at a large distance L from the probe, at which the particle distribution
is isotropic. Show that the fraction of the distribution that has impact
parameter less than bc is b2/4L2. At far distances the collected parti-
cles are all moving essentially perpendicular to the surface. The flux of
particles crossing the surface that will eventually be collected is thus
obtained by integrating vf4nv2dv times this fraction. Substituting for bc
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from Eq. (3.2.29), show that it is:

where /oo(̂ oo) is the distribution function far from the probe, and vc =
y/2q(Vo —  Foo)/m is the minimum speed required to overcome the probe's
repelling potential.

Differentiate twice with respect to the probe potential, Vo, and hence
give an explicit expression for f^ in terms of d2l

3.10 The Druyvesteyn formula can be obtained directly using Liou-
ville's theorem, which states that in a collisionless situation, the distribu-
tion function is invariant along particle orbits. (We proved this for the
one-dimensional case in Eq. (3.2.3).) Assuming that the electron distribu-
tion function at the collecting surface is indeed given by /(v) = /oo(Voo)
and that / ^ is isotropic, show that the collected current density at the
collecting surface is:

= —, / (e -

where 4> = Vo — V^ and s = ^mv^. Also show that this is consistent with
the flux expression of Exercise 3.9.

Discuss what conditions are necessary to make this derivation valid.

3.11 This exercise estimates the heat flux to a probe to develop quanti-
tative information about probe survival. Consider a strongly magnetized,
collisionless, plasma of electron density ne, electron temperature Te and
cold (Tt <C Te) deuterium ions. We can assume that the probe size far
exceeds the Debye length, AD, and the ion Larmor radius, and that it
consists of a disk oriented perpendicular to the field, of radius a.

(a) Calculate the power flux (energy per unit area per unit time) carried
by ions to the probe when it is attracting ions with a potential V(< 0)
with respect to the plasma. You should use the simplifying assumption
that the ion energy spread (i.e., "temperature") at the sheath edge can be
ignored as small (c.f. the electron temperature). Add to the kinetic energy
the recombination energy, 13.6 eV per ion, which will be liberated at the
surface when the ion is neutralized.

(b) By integrating over the electron distribution colliding with the
probe, calculate the power flux to the probe carried by electrons (again
for V < 0, so that they are repelled).

(c) the sum of (a) and (b) is the total heat flux density to the probe.
Write it as HTe times the ion flux density to the probe. The dimensionless
factor H is often taken as approximately 6-8. Your calculation gives a
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more careful value. In steady state this heat flux must be balanced by
a heat loss. Assume that the only loss mechanism is radiation and that
the probe surface radiates as a blackbody with emissivity s. Obtain an
expression for the surface temperature Ts that the probe will acquire in
steady state.

(d) Suppose Te = 4 eV, ne = 2 x 1019 m"~3, and e = 0.4. Evaluate the
expression obtained in (c) to obtain the surface temperature of the probe
in the following cases:

(i) When the probe is at the floating potential, Vf;
(ii) When V = 2Vf;
(iii) When V = 0.5 x Vf.

Comment on whether the probe will survive under these assumptions.

3.12 Suppose in Exercise 3.11 that the probe is instead cooled purely
by thermal conduction to a 100°C rear surface. Take the probe to be
planar with thickness d and conductivity K. What is its surface tempera-
ture in steady state then? Evaluate this for cases (i)-(iii) of Exercise 3.11
when the probe is made of tungsten 2 mm thick (thermal conductivity
K = 160 J m - ^ K - 1 ) .

3.13 Suppose that the probe is oriented with the normal to its face at
an angle a = 70° to the magnetic field (instead of a = 0). Calculate the
factor by which the surface temperature is changed in Exercises 3.12 and
3.13.

3.14 Suppose a Langmuir probe resides in a collisionless plasma with
cold ions and an electron distribution function far from the probe given
by

/oofaoo) = ^ expHtfool/ty).
zvt

Here v^ is the component of velocity towards the probe, vt is a constant
"thermal" velocity and the whole problem is one-dimensional, ignoring
any other velocity components.

(a) Derive the electron density in the region surrounding the probe
as a function of the plasma potential (relative to infinity) V, ignoring
depletion of the distribution function by probe absorption. (That is,
approximate all electrons as being reflected by the probe.)

(b) Hence derive the "Bohm criterion" for this plasma, which must be
satisfied at the sheath-edge to permit monotonic sheath solutions, and
show where the singularity in the quasineutrality equation occurs.
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In many plasmas it is unsatisfactory to use material probes
to determine internal plasma parameters, so we require nonperturbing
methods for diagnosis. Some of the most successful and accurate of these
use electromagnetic waves as a probe into the plasma. Provided their
intensity is not too great, such waves cause negligible perturbation to the
plasma, but can give information about the internal plasma properties
with quite good spatial resolution. In this chapter we are concerned with
the uses of the refractive index of the plasma, that is, the modifications to
free space propagation of the electromagnetic waves due to the electrical
properties of the plasma.

The way waves propagate in magnetized plasmas is rather more com-
plicated than in most other media because the magnetic field causes the
electrical properties to be highly anisotropic. This is due to the difference
in the electron dynamics between motions parallel and perpendicular to
the magnetic field. Therefore, we begin with a brief review of the general
problem of wave propagation in anisotropic media before specializing to
the particular properties of plasmas.

Interferometry is the primary experimental technique for measuring
the plasma's refractive properties and we shall discuss the principles of
its use as well as some of the practical details that dominate plasma
diagnostic applications.

4.1 Electromagnetic waves in plasma
4.1.1 Waves in uniform media

We must first consider the nature and properties of electromag-
netic waves in a plasma. We treat the plasma as a continuous medium
in which current can flow, but that is otherwise governed by Maxwell's
equations in a vacuum. The important equations are then

V A E - - ^ ? V A B = /ioj + W o ^ , (4.1.1)
ot ot

where all the electromagnetic properties of the plasma appear explicitly
in the current j . There may be equilibrium values of fields Bo, jo, Eo
that are present in the absence of the waves we are considering. If so,
then Eq. (4.1.1) applies to the equilibrium and wave parts separately and
we shall consider now that unsubscripted variables refer to the wave
quantities only.
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We can eliminate B by taking VA (the first) and d/dt (the second
equation) to get

V A (V A E) + j t U j + a o / ^ J = 0. (4.1.2)

Now we suppose, first, that the wave fields are small enough that the
current is a linear functional of the electric field (not at all a severe
restriction in general). This means that if a certain spatial and temporal
variation of E, say Ei, gives rise to current ji and similarly E2 to J2,
then Ei + E2 gives rise to ji + J2. Second, we take the plasma to be
homogeneous in space and time. These properties allow us to Fourier
analyze the fields and currents so that, for example,

E(x,t) = [E(k,co)ei(^-^^^, (4.1.3)

and treat each Fourier mode E(k,co) separately since each separately
satisfies Eq. (4.1.2). Then, for each Fourier mode, the assumption of
linearity allows us to write the relationship between current and electric
field, usually called Ohm's law, as

j(k, CD) = a(k, co) • E(k, co\ (4.1.4)

where a is the conductivity of the plasma. In general, a plasma may
be an anisotropic medium so that a is a tensor conductivity; we shall
explore its form later.

Writing Eq. (4.1.2) for a single Fourier mode we get

k A (k A E) + ;<X>(/IOCT • E - £oW<^E) = 0, (4.1.5)

which may be written (noting ao/̂ o —  1/c2) a s

2

kk - /c21 + ^ - c j • E = 0, (4.1.6)

where 1 is the unit dyadic and c is the dielectric tensor

£ = (1 + — a] . (4.1.7)

In tensor subscript notation this is

kikj - k2dij + ^-Si^j Ej = 0, (4.1.8)

(4.1.9)
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The properties of the plasma may be equally well specified through the
permittivity sot as through the conductivity a. These contain equivalent
information since they are related by Eq. (4.1.7); it is often more conve-
nient to think of the plasma as a dielectric medium whose permittivity is
specified, rather than its conductivity.

Now Eq. (4.1.6) [or equivalently Eq. (4.1.8)] represents three homoge-
neous simultaneous equations for the three components of E. In order
for these to have a nonzero solution, the determinant of the matrix of
coefficients must be zero:

^ e ) = 0. (4.1.10)

This equation relates the ks and cos for different waves and is the
"dispersion relation" for these waves. For any given wave vector k it
determines the corresponding frequency co or vice versa. Mathematically,
one may regard the propagation equation (4.1.6) as a matrix eigenvalue
problem. The eigenvalue, making the determinant zero, provides the
dispersion relation, while the eigenvector, which is the solution for E
corresponding to a particular eigenvalue, determines the characteristic
polarization of the wave with that k and co.

The simplest case to consider is when the medium is isotropic, that is,
when

a = (j1, c = e1. (4.1.11)

In such a case the possible waves separate into two types, one in which
the electric field polarization is transverse (k • E = 0) and one in which it
is longitudinal (k A E = 0) to the propagation direction. Taking k to be
along the z axis, we can write out explicitly the matrix

, (4.1.12)

whose

or

determinant

,2 « 2

AV ~ ~ O

c2

2

— £ = 0,

0 ) 2 c _ 0

0

is zero if

= 0, E transverse,

E longitudinal.

0

0

0

0

c2 .

(4.1.13)

(4.1.14)

The transverse wave dispersion relation is just the familiar expression
of simple optics,
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i V = ^ = e V 2 (4.1.15)
CO

where N is the refractive index. The longitudinal wave dispersion relation
is simply s = 0, which in the plasma case can represent a nontrivial
solution, but which we shall not explore further here.

When c is not isotropic there is no such simple division into transverse
and longitudinal waves. The electric field is in general partly transverse
and partly longitudinal, and naturally the refractive index depends on
the direction of propagation as well as the frequency. With the choice
of axes such that k is along z, the matrix of Eq. (4.1.12) will have
nonzero off-diagonal terms arising from those of e. However, if these
terms contain no explicit dependence on /c, the determinant will be a
quadratic in k2. There will then in general be two solutions for k2, given
co. These correspond to the transverse waves of the isotropic case (in the
isotropic case the two solutions are degenerate); these two waves will be
the focus of our interest.

So far everything we have said applies quite generally to any uni-
form linear medium in which electromagnetic waves may propagate.
Our treatment shows that all that is needed in order to calculate the
wave propagation properties in this medium is a knowledge of the (ac)
conductivity <J(/C, co) or, equivalently, the permittivity e(fc, co). The partic-
ular properties of plasmas as media enter the treatment through their
particular form for these quantities.

4.1.2 Plasma conductivity
Our task now is to calculate the plasma conductivity and hence

permittivity on the basis of an understanding of the nature of the plasma.
This can be done at various levels of sophistication, from a kinetic-theory
treatment (using the Boltzmann equation) down to a fluid treatment
(ignoring plasma temperature). These correspond, in part, to the various
levels of detail to which we have noted that the plasma parameters can be
measured. The kinetic treatment incorporates details of the distribution
function, whereas the simplest fluid treatment ignores all but the zeroth
moment, the density. For present purposes it turns out that the simplest
of treatments is perfectly adequate. The reason for this is that we shall be
concerned with waves traveling at phase velocities close to the speed of
light in plasmas whose thermal electron speed is vt < c. We are, therefore,
able to ignore thermal particle motions and adopt what is called the cold
plasma approximation.

The electrons are taken to be at rest, except for motions induced by
the wave fields, and we must calculate the electron current caused by
a specified electric field. We could obtain this from the Ohm's law for
an electron fluid including electron inertia [e.g., Boyd and Sanderson
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(1969) follow this approach]. However, it is probably more transparent
to proceed from first principles as follows. The equation of motion of a
single electron is

(4.1.16)

where we include, in general, a static magnetic field Bo but ignore colli-
sions. In view of our cold plasma assumption, for a single Fourier wave
mode, v is purely harmonic, oc exp(—icot). In order to simplify the algebra
we take the z axis in the direction Bo. Then the three components of
Eq. (4.1.16) are

—m eicovx = —eE x —

—m eicovy = — eE y + eBovx,

—m eicovz = —eE z.

We may readily solve for v in terms of E:

1

(4.1.17)

Vx = come 1 —  Q2/co2

—ie 1
come 1 —

—ie
vz = EZ9

Z7 Qr
EX-l~Ey

T J? _1_ /7
I l^x ^ La^

co }
(4.1.18)

where Q = eBo/me is the electron cyclotron frequency. In this cold
plasma approximation all electrons move alike and so the current density
is simply

j = —  ene\ = a E,

where

a =
1

meco 1 —  Q2/co2

1 -iQ/co 0

n/co 1 0

0 0 1 - Q2/'co2

(4.1.19)

. (4.1.20)

This is the conductivity tensor we require.
Strictly speaking, this is only the electron current conductivity. The

ions may be treated in exactly the same way and an identical equation
obtained with ion parameters (mass, charge, density) substituted for
electron. The total conductivity is then the sum of the electron and ion
parts. Because mt > me, the ion contribution is usually small provided
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the frequency is high enough; we shall consider here only cases where
the ion motion may be ignored.

The dielectric tensor may be written down immediately from our
knowledge of a using Eq. (4.1.7):

G =

1 -
co2 - Q 2 co(a>2 - Q2)

co(co2-Q2)

0

m
2 - Q 2

0

0

0

(4.1.21)

where cop = (nee2/Eome)i/2 denotes the electron plasma frequency. To
simplify the notation we adopt the common practice of using the nondi-
mensional quantities

X = col/(D2, Y = Q/co, N = kc/co. (4.1.22)

Then we substitute e from Eq. (4.1.21) into Eq. (4.1.10). In doing so we
can choose axes such that kx = 0, that is,

k = k-(0, sin 6, cos 0),

where 6 is the angle between k and Bo. The determinantal equation then
becomes

N2- H

1
iXY
-Y2

0

•Y2

N2
COS2

N2

UV 1

l-Y2

a _i_ i
1

sin 9 cos 9

X
-Y2

0

N2 sin 0 cos 9

-N2 sin2 0 + 1 - X

- 0 .

(4.1.23)

In the cold plasma approximation c is independent of k; thus, as
we have previously noted, this dispersion relation represents a quadratic
equation for N2. It may, of course, be solved, though the algebra is heavy.
The solutions are usually written in the form

, , 2 , X(l-X)

(4.1.24)

This expression is called the Apple ton-Har tree formula for the refractive
index.
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Two cases provide much simplified results that may be obtained from
Eq. (4.1.24) or directly from Eq. (4.1.23).

Parallel propagation (6 = 0): When waves propagate parallel to the
magnetic field, the solutions are

for which the characteristic polarization of the wave electric field is

f^=±i , Ez=0, (4.1.26)

that is, circularly polarized waves with left and right handed E rotation,
respectively.

Perpendicular propagation (6 = n/2)\ When waves propagate perpen-
dicular to the magnetic field, the solutions are

iV2 = l - X or N2 = 1 - * l
x ^ 2 , (4.1.27)

for which the characteristic polarizations of the electric field are

Ex = Ey = 0 (4.1.28)

and
77 i y -yl

t ^ , E.-0. (4.L29)
respectively.

In addition to dependence upon the wave frequency, the parameter X
(= OJ^/CD2) depends only on electron density ne and Y(= Q/co) only on
magnetic field £0. It should be no surprise that the values of the refractive
index obtained depend only on density and magnetic field, since our cold
plasma treatment has explicitly excluded other effects, such as finite
temperature. However, the fact that this treatment represents a typical
plasma very well allows the refractive index to be used to measure these
two parameters with excellent confidence and accuracy, as indicated in
Table 1.2.

4.1.3 Nonuniform media: The WKBJ approximation and full-wave
treatments
Naturally, no practical plasma or any other medium satisfies

the condition of being uniform throughout all space. It is important to
consider, then, what happens when there are spatial gradients in the
electromagnetic properties. Mathematically, the results are that fields of
the form exp i(k • x — cot)  no longer separately satisfy Maxwell's equa-
tions (4.1.2). One can still express any solution as a sum of such Fourier
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modes, but these will, in general, be coupled together by the nonunifor-
mities of the medium. For example, a wave propagating in one direction
that encounters a gradient in the refractive index will be partially reflected
(coupled to the oppositely directed wave).

If the properties of the plasma vary sufficiently slowly, then locally
the wave can be thought of as propagating in an approximately uniform
medium and, hence, behaving as if all the previous treatment applied.
Thus, for any frequency and propagation direction, there is locally a well
defined k and refractive index N corresponding to the local values of the
plasma parameters.

The names of Wentzel, Kramers, and Brillouin (and sometimes Jef-
freys, hence WKBJ) have become associated with a very widespread
technique for solving such wave-type equations in slowly varying media.
The approach is also often called the eikonal or more simply geometric
optics approximation. In this approximation the propagation of the wave
field for a given frequency is expressed in the form

E « exp i | / k • dl - cotj , (4.1.30)

where / is the distance along the ray path and k is the solution of
the homogeneous plasma dispersion relation for the given co, based on
the local plasma parameters. This will be a good approximate solution
provided that the fractional variation of k in one wavelength of the wave
is small. That is,

|V/c|//c2 < 1. (4.1.31)

In this case the coupling to other waves is small and may generally be
ignored as far as the single transmitted wave is concerned. For our present
purposes we need only note that the phase of the emerging wave is given
by / k • dl, which may be written f ™Ndl provided the ray direction and
k approximately coincide (for example if the plasma is approximately
isotropic). (The usual k~1^2 amplitude variation, which provides an even
better approximation, is not important for the present discussion.)

When the condition Eq. (4.1.31) is not satisfied, the WKBJ approach
breaks down and it is necessary to return to the original wave equa-
tion (4.1.2), prior to Fourier transformation, to describe the propagation.
One therefore has to deal with partial differential equations rather than
algebraic equations and the solutions are naturally much more difficult.
When the spatial nonuniformity can be regarded as being in a single
coordinate, for example, with a cylindrical plasma (variation only in the
r direction) or in a slab, then it is possible to Fourier analyze the problem
in the remaining coordinates and arrive at an ordinary differential equa-
tion governing the wave. The application of boundary conditions again
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leads to an eigenvalue problem (under some conditions to a second order
Sturm-Liouville problem) whose eigenvalues relate co and the k vector in
the direction of uniformity and whose eigenfunctions give the wave field
solution in the direction of nonuniformity.

The sort of situation in which this approach is essential is for a plasma
column of low electron density, such that the wavelength of radiation in
the vicinity of the plasma frequency is greater than the plasma radius. For
example, for a column of dimension 10 cm, say, the frequency of radiation
having this wavelength is about 3 GHz, which is the plasma frequency of
a plasma of density ~1017 m~3. Therefore, refractive-index diagnosis of
such a plasma would require a full-wave treatment. This density tends to
be low enough to allow the use of internal probes for diagnostics, which
reduces the need for refractive-index methods. What is more, the full-
wave solutions and their interpretation in terms of plasma parameters
are highly dependent upon the exact geometry, so a general description is
difficult. For these reasons no detailed discussion of situations requiring
a full-wave solution will be given here. The interested reader may refer
to treatments given elsewhere [e.g., Heald and Wharton (1965)].

4.2 Measurement of electron density
If the magnetic field is negligible (7 —• 0) then the refractive

index is

N2 = 1 - X = 1 - coj/co2 (4.2.1)

for all modes, independent of the direction of propagation because the
plasma is then isotropic. There is also, even when 7 ^ 0 , one polarization
for perpendicular propagation that has this same refractive index. This
mode is called the ordinary wave. It corresponds to the positive sign in
Eq. (4.1.24). By extension, at other angles of propagation, 6 ^ n/2, the
solution having the positive sign in Eq. (4.1.24) is also referred to as the
ordinary wave, although its refractive index is then more complicated.
The other solution is called the extraordinary wave.

4.2.1 Interferometry
Measurements of the refractive index of any medium are most

often made by some form of interferometry. An interferometer is any
device in which two or more waves are allowed to interfere by coherent
addition of electric fields. The intensity then observed is modulated
according to whether the fields interfere constructively or destructively,
that is, in phase or out of phase.

Consider a simple two-beam interferometer in which monochromatic
fields E\ exp icot and E2 exp i(cot + 4>) are added together, with some phase
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i£tr

Ef-Ej

Fig. 4.1. Variation in the (power) output signal of a two-beam interferometer
with relative phase.

difference (j) between them. Then the total field is given by

Et = (E\ + Ei exp i(j>) exp icot. (4.2.2)

The power detected, for example, by a square-law detector is proportional
to |£t |2, which may readily be shown to be

(4.2.3)

The output intensity (power) thus has a constant component plus a
component varying like cos</>, as shown schematically in Fig. 4.1.

There are many different types of interferometers used for a variety of
different purposes. The configurations in widest use are as follows:

1. The Michelson interferometer is a two-beam interferometer, as
illustrated schematically in Fig. 4.2, with one beamsplitter, two
arms in which the beams travel in both directions, and two
outputs, one of which is along the input. In this, as in other
configurations, the arms may be free space straight optical paths
or, for example, microwave wave guides, and the beamsplitter
may be some form of partial reflector of optical character or, for
example, some type of microwave coupler. The principles are the
same in all cases. Phase differences between the two components
of one of the output beams arise, in the case of refractive-index
measurements, by changes in the refractive index in one of the
arms of the interferometer.
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Fig. 4.2. The Michelson interferometer configuration.
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Fig. 4.3. The Mach-Zehnder interferometer configuration.

2. The Mach-Zehnder configuration is also a two-beam interferom-
eter but differs from the Michelson in having two arms in which
the beams travel in only one direction. Both outputs are separate
from the input (see Fig. 4.3). Again phase changes are caused by
variations of the refractive index in one arm.

3. The Fabry-Perot interferometer is a multiple-beam interferometer
in which there are two beamsplitters and two composite output
beams. Because it has multiple beams (see Fig. 4.4), the output is
not a simple cosine as in two-beam interferometers. This makes
phase shift interpretation more difficult, so it is less often used
for plasma refractive-index measurements.
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Beamsplitters

Out I r** Out

Fig. 4.4. The Fabry-Perot interferometer configuration.

Consider, then, a situation in which we wish to measure the refractive
index of a plasma that we arrange to be in one arm of a two-beam
interferometer such as the Mach-Zehnder. The total phase lag in the
plasma arm, assuming we can apply a geometrical optics (WKBJ) type
of solution, will be

4= fkdl= f N™dl.  (4.2.4)

Of course, a significant proportion of the length of this arm along which
this integration is taken will be outside the plasma. Also the reference
arm has a length and corresponding phase lag that we may not know
with great precision. These effects are all removed by comparing the
phase difference between the two arms [deduced from Eq. (4.2.3)] with
plasma present to that without plasma. The difference in these phases is
then simply that introduced into the plasma arm by the plasma, namely

A0 = /(/Cplasma " *o) dl = J(N - 1 ) " dl, (4.2.5)

where we assume that in the absence of plasma feo = co/c, that is, the
wave propagates effectively in vacuo. The integral may now be considered
to be limited to that part of the path that lies in the plasma.

The measurement of the interferometer phase shift A0 thus provides
us with a measure of the mean refractive index along the line of the
interferometer beam through the plasma.

When the plasma refractive index is given by Eq. (4.2.1), we can write
this as

N2 = 1 - COI/OJ2 = 1 - ne/nc, (4.2.6)



116 4 Refractive-index measurements

Fig. 4.5. The variation of the square of the refractive index N of the ordinary
mode with plasma density.

where nc is called the cutoff density,

nc = co2m8o/e2. (4.2.7)

Plotting N2 versus ne gives a linear relationship as shown in Fig. 4.5. For
ne < nc the interferometer then gives a measure of electron density from

1/2
_ ^ ] _ 1

nc
dl, (4.2.8)

which is a form of average along the beam path. If the plasma density is
sufficiently small, ne <C nc, then an approximate expansion is

N « 1 - ±(ne/nc)

and the phase shift simplifies to

nedl.

(4.2.9)

(4.2.10)

that is, the simple chord averaged density.
If the density exceeds the cutoff value, ne > nc, then N2 becomes

negative and N pure imaginary. This means that the wave is no longer
propagating but evanescent, falling off exponentially with distance. The
result is that, normally, very little power is transmitted through the
plasma and the interferometer ceases to function.

4.2.2 Determining the phase shift
To determine the mean density requires us to interpret the output

power of the interferometer - the quantity directly measured by a detector
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Fig. 4.6. Possible evolution paths of phase that would give identical outputs from
a simple interferometer.

- in terms of phase shift, using Eq. (4.2.3). Various problems arise in this
interpretation. There are two main sources of ambiguity and error.

1. Amplitude variations (of E\ or £2) due to absorption or refrac-
tion of the beam. These must be distinguished from the phase
variations in which we are interested.

2. Ambiguity of the phase change direction. This arises primar-
ily where <fi = 0,n,2n, and so forth, because at these points
d\Et\2/d<fi = 0, so that the interferometer has a null in its phase
sensitivity. Consider a time-dependent phase, passing through
such a point, say <j> = 0; it is impossible to tell a priori whether
or not there may have been a change in the sign of d(j)/dt at
the instant <fi = 0. For example, variations of phase illustrated
in Fig. 4.6 would give identical outputs from the interferometer.
This figure also illustrates the ambiguity arising from knowl-
edge of <fi only modulo 2n. Sometimes other knowledge about
the plasma allows one to determine whether 0 is increasing or
decreasing; however, many situations arise when the ambiguity
remains.

The problem of amplitude variations can be alleviated somewhat by
monitoring both outputs of the interferometer since the total powers
in both outputs (for a lossless beamsplitter) is equal to the sum of the
power in the interferometer arms. The second problem is not solved by
this means, however, and generally requires an additional output whose
power is proportional to sin cf> rather than cos (j). That is, it requires a
second output in quadrature with the first. It is possible to provide this



118 4 Refractive-index measurements
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Plasma A r m

Received Wave

Output

Fig. 4.7. The final beamsplitter of an interferometer can be regarded as a mixer
in a heterodyne receiver.

by operating essentially a second interferometer, with phase different by
TT/2, along the same path as the first, although this solution is rarely
adopted.

The most satisfactory way to resolve both problems is to modulate
the phase of the interferometer. One can think of this as a method of
causing the interferometer to read alternately sine and cosine functions
of the phase. If it does so more rapidly than variations in <j> occur, then
(j) is unambiguously determined.

The frequency of a wave is simply the time rate of change of its
phase. Therefore, variations of phase may be regarded as variations in
frequency. It is instructive, then, to consider the phase determination
problem and its resolution by phase modulation in terms of frequency.
We shall then see that the problem is essentially one of FM detection
and is common in radio reception and other familiar situations.

Consider the final beamsplitter in our interferometer, illustrated in
Fig. 4.7. Two waves are mixed there and the power detected in the output.
The wave that has passed through the plasma has been phase modulated
or equivalently frequency modulated by the changing refractive index of
the plasma. The reference arm serves as a local oscillator in the detection
of the received wave from the plasma arm. The output then contains
sum and difference frequency components, that is, if the frequency in the
reference arm is <x>\ and that in the plasma arm is co2, the output contains
frequencies co2 + (O\ and CD2 — CD\. Only the low frequency Aw = a>2 — coi
will be of any interest here.

Now, in the simple interferometer configurations we have considered
so far, if the rate of change of the plasma arm phase is zero (denoted by
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Fig. 4.8. Illustration of the frequency relationships in homodyne and heterodyne
reception.

superscript zero) (e.g., if density is constant), then co° = co® and Aco0 = 0;
the output of the interferometer is constant. When phase changes occur,
Aco = d<p/dt, and the output frequency is nonzero. However, it is generally
not possible to distinguish between positive and negative Aco; both give
an output with frequency |Aco|. This is the cause of the ambiguity of
phase change direction.

Suppose, then, that we introduce an extra phase modulation, not
present in the simple interferometer, in addition to the plasma effects.
Then even when the plasma phase shift is constant, the frequencies co?
and co° are no longer equal and the output contains a signal at frequency
Aco0 = co° —  coi, which for simplicity we take as constant. The final mixer
is thus acting as a heterodyne receiver with intermediate frequency (IF)
Aco0 (rather than as before, a homodyne receiver with zero IF frequency).
In this case, when additional frequency modulation occurs, due to plasma
phase changes, the output signal is shifted in frequency to

Aco = Aco0 + d(j)/dt. (4.2.11)



120 4 Refractive-index measurements

Fig. 4.9. Rotating wheel Doppler modulator for producing a frequency shift.

The output frequency thus increases or decreases according to the di-
rection of phase change, and the ambiguity in direction is no longer
present. These relationships are illustrated in Fig. 4.8, which shows the
locations of the input and output frequencies for positive and negative
d(p/dt that can be distinguished in a heterodyne configuration but not in
a homodyne one (because opposite signs of Aco are indistinguishable).

There are additional advantages to the heterodyne interferometer aris-
ing from the shift of Aco° from zero. First, there is now no need to sense
the dc signal level and all the detecting electronics can be ac coupled.
Second, the amplitude of the output modulation is not crucial in deter-
mining phase; only its frequency is required. These factors ensure that
the interferometer can be made very insensitive to changes of ampli-
tude in either plasma or reference beam or in the phase contrast (see
Section 4.2.4).

4.2.3 Modulation and detection methods
Various methods for producing the required frequency shift can

be employed, depending upon the radiation frequency of the interferom-
eter. At its simplest level some kind of mechanical vibration of one of
the mirrors in an interferometer arm may be employed.

A more satisfactory technique (Veron, 1974) involving mechanical
modulation is illustrated in Fig. 4.9. Inserted into one interferometer
arm is a reflection from a rotating wheel, usually having an appro-
priate diffraction grating cut into its rim to optimize the reflection.
Because of the Doppler effect the radiation frequency emerges shifted
to cof = co(l + vt/c)/(l — vr/c), where vt and vr are the components of
wheel velocity along the incident and reflected directions, respectively,
thus providing the heterodyne frequency required. This technique is most
useful for far infrared and submillimeter wavelengths.

A functionally equivalent result [e.g., Jacobson (1978)] is available
for shorter wavelengths (~ 10 urn to visible) from commercial acousto-
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Fig. 4.10. Schematic of a dual-laser heterodyne interferometer [after Wolfe et al.
(1976)].

optic modulators, in which the radiation partially reflects (scatters) from
a traveling sound wave in a refractive medium. The wave acts like a
moving diffraction grating and the scattered wave is shifted in frequency
by the sound wave frequency.

A common technique used with microwave interferometers (Heald and
Wharton, 1965) is to sweep the frequency of the source. Then if one arm
of the interferometer is much longer than the other, the frequencies of
the waves, when they interfere, are different by

A 0 dC0 L

dt vp

(4.2.12)

where dco/dt is the frequency sweep rate, L the difference in arm lengths,
and vp the radiation phase velocity in the interferometer (vp = c in
free space).

It is appropriate, in some schemes, to obtain the heterodyne detection
by simply employing two different sources of radiation at slightly differ-
ent frequency. This poses quite serious constraints upon the frequency
stability because Aco/co is usually extremely small. However, it can be a
very satisfactory solution. As an example, Fig. 4.10 shows schematically
an interferometer used for density measurements on the Alcator toka-
mak (Wolfe et al, 1976). It employs two lasers at 119 jam wavelength,
detuned so that their frequencies are different by ~ 1 MHz, thus providing
heterodyne phase detection.

The detection of the phase shift in a heterodyne interferometer is usu-
ally performed automatically. What is required is, in essence, to count
the number of periods (and fractional periods) of the IF (beat fre-
quency) and subtract from it the number (Aco°t/2n) that would have
been observed in the same time duration if no change of refractive index
had occurred. This difference measures the number of wavelengths or
"fringes" by which the phase has changed (A(/>/2TT). Usually some kind of
fast digital circuitry is used to perform this measurement. Meddens and
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Taylor (1974) describe one widely used scheme; Veron (1979) describes
another. Sometimes analog techniques prove more satisfactory for mea-
suring very small phase shifts A<p < 1 [e.g., Jacobson (1982)]. Naturally,
these methods strongly resemble standard techniques of FM reception.

4.2.4 Coherence, diffraction and refraction
As mentioned in Section 4.2.1, in order to propagate through

the plasma, the radiation used for interferometry must have a frequency
greater than the plasma frequency. The choice of frequency to be used
thus depends on the plasma to be probed. Plasmas of fusion research
interest, and many other laboratory plasmas, may have density from,
say, 1017 to 1021 m"3 and beyond. The corresponding plasma frequencies
range from ~ 3 to 300 GHz, which lie in the microwave and millimeter
wave spectral range, that is, wavelength I = 10 cm to 1 mm.

The radiation used must also generally have a very narrow bandwidth.
The reason for this is that the contributions to the output power from
different frequencies across the source bandwidth must all experience the
same phase shift, otherwise the degree of modulation of the output power
due to phase changes - called the phase contrast of the interferometer -
will be decreased by the different contributions adding up with random
phase. The exact bandwidth limitation depends upon the precise configu-
ration of the interferometer, but the requirements are met almost always
by using a coherent source of radiation such as a microwave generator
(klystron, Gunn diode oscillator, etc.) or else some form of laser. Such
a source will generally guarantee adequate temporal coherence - narrow
bandwidth.

Now the propagation of coherent beams of radiation in free space is
governed by the equations of Gaussian optics, so-called because spatial
eigenmodes of beam propagation are products of Laguerre polynomials
with Gaussian curves, the lowest eigenmode being simply a Gaussian
beam profile. The feature that distinguishes such beams from incoherent
pencils of rays is that they are diffraction limited, meaning that the
angular divergence and beam size are uniquely related by virtue of
the principles of diffraction. Although multimoded lasers can be used for
interferometry, it is more usual in plasma interferometry to employ single-
mode generators and lasers, which tend naturally to give diffraction-
limited beams for their propagation through the plasma. We shall not
employ here the detailed mathematics of Gaussian optics but rather
adopt an elementary approximate treatment of the diffraction from first
principles. This is sufficient to understand and illustrate the important
diffraction and coherence questions that arise.

Suppose we have a diffraction-limited beam brought to a focus as
illustrated in Fig. 4.11. Then the angular half width of the beam far from
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Fig. 4.11. Diffraction-limited beam focus.

Fig. 4.12. Diffraction angle determined by a Huygens construction.

the focus (Fraunhofer limit) is given by the condition for the difference
in path length across the wavefront to be no more than about half a
wavelength, as illustrated in Fig. 4.12, so that the Huygens "wavelets"
add up in phase. Thus the angular width of the beam is

k (4.2.13)

This will be the basis of our simplified treatment.
At the final beamsplitter of an interferometer two beams are added.

They are then generally focused onto some form of detector. We desire
to optimize the interferometer by maximizing the interference signal of
these two beams. To do this it is not sufficient merely to ensure that
all the power in both beams falls on the detector. It is also required
that the signal be coherent in space, that is, that all the power in the
beams' spatial extent should add simultaneously either in phase or out of
phase. This condition maximizes the phase contrast. There are essentially
two requirements for the alignment of the beams that will ensure this
optimization. One is that the beams should coincide (in position and
width) and the other is that the wavefronts should be parallel. Two forms
of misalignment are illustrated in Fig. 4.13. In (a) the beams coincide
on the detector but phase contrast is decreased because their wavefronts
are not parallel and, instead of a single maximum or minimum power
detected, a modulated interference pattern exists across the detector at
all times. Phase shifts in the interferometer cause the pattern to move
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(a)

Lens Detector

Fig. 4.13. Possible types of interferometer misalignment.

across the detector, but the total power modulation is small. In (b) the
wavefronts are parallel, but because they do not overlap significantly,
little interference, and hence power modulation, occurs.

If the detector is at the focus of a lens, then far away from the focus,
for example, at the lens or perhaps at the beamsplitter, the types of
misalignment are reversed; that is, the situation of nonparallel wavefronts
at the focus (detector) corresponds to poor beam coincidence at the
lens and poor beam coincidence at the detector arises from nonparallel
wavefronts at the lens.

It is easy to see that these types of misalignments are entirely equiv-
alent; phase contrast will be lost if the relative displacement of the
wavefronts is more than ~A/2 across the beam. This corresponds to an
angular deviation of the beam directions of a/2 = k/2d, just as with the
calculation of beam diffraction size. So the condition for wavefronts to
be parallel is just the condition for the far-field beams to overlap.

Suppose, now, that we have an interferometer that is adequately aligned
in the absence of plasma. If the plasma were uniform, then its presence
would introduce a phase shift but no significant change in alignment.
However, no laboratory plasmas are uniform, of course, because they
have boundaries. So the plasma may act so as to cause deterioration
in the alignment of the interferometer, by the processes of refraction.
Figure 4.14 illustrates the type of process we have in mind. In this case
a cylindrical plasma of nonuniform density acts like a lens and refracts
the originally well aligned beam away from its original path.

We can rapidly arrive at a criterion governing the importance of these
effects as follows. Consider a beam that traverses a refractive slab in
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Fig. 4.14. Refraction of an interferometer beam by a nonuniform plasma.
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Fig. 4.15. Slab approach to calculating the refractive ray deviation.

which the total phase difference along the beam path [(/> = J(co/c)Ndl]
varies uniformly across the beam, as illustrated in Fig. 4.15. Then the
wavefront emerging from the slab will have an angle 9 to the incident
wavefront:

^ ; f = f < I Ndl<
dy 2n dy

(4.2.14)

(assuming 9 < 1 ) . This will also be the angular deviation of the ray. If
the transverse beam dimension is d, then clearly the coherence across the
wavefront will be maintained if

n > Ad) = i
2n0d (4.2.15)

that is,

•<a- (4.2.16)
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Again, naturally, for a diffraction-limited beam this is just the condition
for the far-field beam patterns to overlap. Thus the refractive deviation
can equivalently be thought of as a problem of whether the far-field
beams remain coincident or whether the wavefronts near the plasma
remain coherent.

The latter approach is perhaps more useful since it may immediately
be generalized to a situation in which 0 varies arbitrarily across the
beam. The criterion for maintaining phase contrast remains that Acj) < n
over the width of the beam.

It is generally the case that this criterion for maintaining phase con-
trast is much more demanding than that of simply avoiding cutoff of
the radiation. One can show (see Exercise 4.2) that for a cylindrical
plasma having a parabolic density profile, the angular deviation has a
maximum value

0 = no/nc, (4.2.17)

where no is the peak (central) density. Now the acceptance angle of
an interferometer diagnosing such a plasma will usually be limited by
practical matters such as the available port size and so on. But the largest
acceptance angle possible, in principle, if we wish to sample the density
along M different chords is a « 1/M. Therefore, we certainly need

no/nc < 1/M, (4.2.18)

and usually a more stringent condition is required.
The requirements of maintaining phase contrast in the presence of

refraction thus dictate that not only should co > cop to avoid cutoff, but
also actually for off-axis chords

CD > copa-{/\ (4.2.19)

where a is the interferometer's acceptance angle. This usually requires the
use of frequencies considerably higher than the plasma frequency.

4.2.5 Choice of frequency, vibration
As we have just seen, it is generally advantageous to use a

frequency significantly above the maximum expected plasma frequency to
avoid cutoff and refraction difficulties. The constraints upon the maximum
desirable frequency tend to involve primarily issues other than those of
the plasma itself.

The use of high frequencies, such as optical, has the advantage that
well-developed technology exists. However, it places extremely severe
demands on the mechanical stability of the interferometer. The angular
alignment must be set and maintained within angles proportional to the
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wavelength; so shorter wavelengths are more demanding. By far the most
important issue, however, is the stability of the path length.

Any interferometer, particularly one in the usually noisy environment
of a plasma experiment, is subject to spurious changes in path length due
to vibration of its optical components. If a total vibrational path distur-
bance / is present, then the change of the interferometer phase is 2nl/l;
it is larger for shorter wavelengths. Moreover, the phase shift introduced
by the plasma is Acj) oc A, so the ratio of spurious vibrational phase error
to plasma phase change is proportional to X~2. The consequence is that
vibration becomes a very serious problem for short wavelengths.

It is usually desirable, therefore, when available technology permits, to
employ a frequency large enough to satisfy the demands of refraction, and
so forth, but not much larger than this; otherwise vibration becomes more
important. This is the reason why many interferometers in fusion research
operate at millimeter to submillimeter wavelengths (X ~ 100-2000 urn),
which tend to be optimum for typical densities.

Another alternative when vibration is not or cannot be avoided is
to compensate for it by measuring simultaneously the phase shift at
two widely different wavelengths. An early example of this is Gibson and
Reid (1964). Veron (1979) discusses more recent applications. The shorter
wavelength (usually visible) measures mostly the mechanical vibration,
while the longer wavelength has a stronger dependence upon plasma
refractive index. The effects of vibration can be removed by subtracting
from the long wavelength phase shift an appropriate proportion of the
phase shift of the shorter wavelength (see Exercise 4.9).

Another way to implement vibration compensation using such "two
color" interferometry is to use the output of the short wavelength detector
to stabilize the path length in the interferometer. This is accomplished by
feedback control of one of the mirrors, using, for example, a piezoelectric
transducer to maintain constant phase difference at the short wavelength.
This has the advantage of avoiding the necessity for fringe counting at
the short wavelength, but it requires a transducer that has sufficient speed
and displacement to follow the vibrations (see Exercise 4.10).

4.2.6 Interferometric imaging
So far, we have implicitly considered a case in which all the

power in the interferometer beam is to be focused onto a single detector.
Any spatial information is then to be obtained by using multiple beams
and multiple interferometers. In this case, phase variations across the
beam are a cause of decreased phase contrast and hence decreased
signal-to-noise ratio, an effect one usually wishes to avoid.

If, however, sufficiently intense sources or sufficiently sensitive detectors
are available, it is of value to consider deliberately sampling only a small
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Detecting
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Fig. 4.16. Deliberate misalignment is used to provide a pattern of reference
fringes even in the absence of plasma.

proportion of the beam wavefront. If one does this with a sufficiently
large array of detectors or, for example, a photographic plate, then a one-
or two-dimensional interferometric image of the plasma can be formed.

In this case the spatial coherence requirement is that A<fi < n not over
the whole beam but over that portion of the beam that is imaged onto
each spatially resolved element of the detecting array (or photographic
plate).

In this application it is usually convenient to introduce some deliberate
misalignment into the interferometer so that a pattern of linear interfer-
ence fringes appears across the detecting plane in the absence of plasma
as illustrated in Fig. 4.16. The phase shift introduced by the plasma then
shifts the position of the fringes to produce a pattern in the image plane
indicating the phase shift. The deliberate misalignment has the merit that
it allows unambiguous interpretation of the pattern produced without
any need for heterodyne techniques. This is basically because the initial
phase of the interferometer is then continuously varying across the beam
so that quadrature information is available directly on the plate. One can
think of this as spatial phase modulation as opposed to temporal phase
modulation of the heterodyne systems.

An example of the type of result that may be obtained is shown in
Fig. 4.17. The technique has been used most successfully in the visi-
ble wavelength range using pulsed lasers and photographic techniques.
Unfortunately, these wavelengths require dense plasmas to produce sig-
nificant phase shifts so that many plasmas are not suitable for diagnosis
using visible interferometry.

The requirements on flatness of optical components to maintain
straight initial fringes of an optical interferometer are quite severe; how-
ever, it is possible to circumvent these restrictions by double-exposure
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Fig. 4.17. Interferometric image of a 6 pinch [courtesy F. Jahoda (1985), private
communication] showing the circular plasma compressed away from the outer
low-density regions in which the fringes are straight.

holography, a more complicated interferometric technique, described in
the plasma context by Jahoda and Sawyer (1971). Some authors use
the expression "holographic interferometry" to refer to the simple in-
terferometric imaging just described. However, the spatial resolution of
the phase information in such an image is generally much lower than
in a normal hologram [see, e.g., Jones and Wykes (1983)] and the im-
age reconstruction does not require coherent illumination. Therefore, the
expression is not fully appropriate.

4.2.7 Schlieren and shadowgraph imaging
There are ways other than interferometry to obtain information

on the spatial variation of the refractive index across a probing beam.
These rely directly upon the deviation of the different parts of the beam
due to refraction. In these techniques no separate reference beam is used;
rather, the intensity variations arise by virtue of local intensification of
the probing beam due to refraction.

The distinction between schlieren and shadowgraph methods is gener-
ally that schlieren techniques are sensitive to the first (spatial) derivative
of the refractive index while shadowgraphy depends on the second deriva-
tive.

The basic principles of the schlieren approach are illustrated in Fig. 4.18.
An approximately plane parallel beam illuminates the refractive plasma
slab, whose thickness must be much less than the distance to the imaging
lens. The ray bundle at any point is deviated by an angle
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Fig. 4.18. Principle of the schlieren approach to refractive imaging.
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Fig. 4.19. Shadowgraph imaging.

0 = ± [
dyj

Ndl, (4.2.20)

as shown earlier. A knife edge at the focal point of the lens partially ob-
structs the image formed there of the undeviated beam. The ray deviation
causes this obstruction either to decrease or to increase according to the
sign of 0. The image of the plasma itself is not shifted, but its intensity
is altered by the variation in the obstructing effect of the knife edge. The
result is that, for small enough deviations, the change in image intensity
is proportional to the local value of 0 and hence of d(J N dl)/dy.

Shadowgraphy is even simpler in experimental layout, as illustrated
in Fig. 4.19. No imaging optics need be present between the refractive
plasma slab and the detecting plane a distance L away. Variations in
intensity occur because rays are deviated by angle 0, which varies across
the slab. The effect is to cause the electromagnetic energy that would
have fallen upon the point y to be moved to the point / = y + L.0(y),
where again
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6 = 4- I NdL (4-2-21)
dy J

The same effect occurs in the orthogonal direction within the plasma
denoted by coordinate x. Thus, the ray incident at position (x,y) is
moved to the position on the detecting plane

If the incident beam is of uniform intensity /, then the detected intensity
Id will be given by

Iddx'dyr =Itdxdy, (4.2.23)

so that

This gives, for small fractional intensity variations,

as stated earlier, a signal proportional to the second derivative of the
refractive index.

The limitations on these two methods may be seen as follows. For a
schlieren technique, if d(j)/dy is constant, the maximum angular deviation
detectable is equal to the angular beam divergence of the illuminating
beam. Larger deviations will leave the intensity at either the maximum
brightness or fully dark because the focal spot will be obscured by
the knife edge either not at all or completely. The minimum detectable
deviation will depend upon the dynamic range of the detector; that is, how
small an intensity variation is detectable. Note that this might mean that
to use a diffraction-limited illumination beam is not optimum when large
deviations are expected. If a diffraction-limited beam is used, however,
the maximum detectable angle corresponds to a refractive-index gradient
that, continued constant across the whole beam, corresponds to a total
phase difference across the beam of A0 « n. If d<fi/dy is not constant,
that is, the scale length of the perturbation is smaller than the beam
size, the effective diffraction angle corresponds to the perturbation size
rather than the beam size and is proportionately larger than for constant
d<p/dy. The result is that A</> « n is the maximum detectable phase shift
for all scale lengths. The shadowgraph's allowed maximum phase shift
before rays cross and hence cause ambiguities is A(f> « nd2/XL, where
d is the scale size of the refractive-index variation. Since d2 /XL > 1 is
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Fig. 4.20. Phase contrast interferometry.
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the condition for the intensity enhancements not to be "washed out" by
diffraction before the screen is reached, it is thus clear that the maximum
Acj) is greater than n and, depending upon d and L, may be much
greater. Thus, shadowgraphy is generally less sensitive than schlieren but
can handle larger phase shifts.

4.2.8 Phase contrast interferometry
Probably the most sensitive interferometric method for detecting

small phase perturbations is phase contrast interferometry (often called
PCI) invented by Zernike (1935). It has been applied successfully to
several plasma experiments since being introduced to the field by Weisen
(1988).

The idea behind this technique is that the sensitivity of an interfero-
metric image of phase fluctuations is optimized by applying a reference
beam exactly in quadrature with the scene beam. However, to maintain
that exact quadrature using a separate reference beam is extremely dif-
ficult, and indeed impossible if the plasma itself has refractive gradients
that amount to more than a small fraction of a fringe over long length
scales. Therefore the phase contrast technique deliberately abandons the
separate reference beam and uses the scene beam itself as the reference
but shifts its phase by ±n/2. Figure 4.20 illustrates the technique.

The refractive slab of plasma can be thought of as a random transmis-
sion diffraction grating. The spatial variation of the optical path length
is represented by the sum of different wavelengths corresponding to a
spatial Fourier transform of the slab's variation perpendicular to the
beam. Considering a single Fourier component with wave-vector kp, the
diffracted part of the wave field emerges at an angle 6 to the initial par-
allel beam, satisfying the diffraction grating equation kp = k sin 6 for that
particular Fourier component (where k = In/X is the wave-vector of the
illuminating radiation). The lens 1 focuses the beams. At its focal plane



4.3 Magnetic field measurement 133

is placed a phase plate. The undiffracted waves of the primary beam
pass through a central region of the phase plate which is constructed
to have a total optical thickness different by +n/2 from the rest of the
surrounding plate. The diffracted waves pass through the main part of
the plate because of the deviation of their propagation vector. When the
final image is formed by lens 2, interference occurs as the deviated and
undeviated electric field components are coherently added. But, because
the undeviated beam has been phase shifted, the interference has the
desired quadrature phase adjustment and so there is an intensity modu-
lation at the image plane proportional to the phase modulation at the
corresponding point on the refractive plasma slab.

The part of the wave field that passes through the central region of
the phase plate, and hence operates as the local oscillator, is made up
of all the Fourier components with kp less than a limit controlled by the
size of the central region. That limit is kp < ka/f\, where f\ is the lens's
focal length and a the radius of the central region. Thus the average
phase shift across the slab (corresponding to kp = 0) cannot be measured
by this technique. This insensitivity to long perpendicular wavelength
perturbations may be considered an advantage when trying to diagnose
small amplitude, small scale-length perturbations.

4.2.9 Scattering from refractive-index perturbations
There is one further large topic that can be thought of as being a

refractive-index based measurement, namely the scattering of electromag-
netic waves from density (and hence refractive index) nonuniformities.
Here we are thinking of perturbations whose scale length is generally
much smaller than the plasma or beam size.

Of course, the shadowgraph and schlieren techniques are sensitive to
such perturbations and so we have in part already ventured into this
area. However, the problem of electromagnetic wave scattering is not
most easily approached by the geometrical optics approximation that
we have used (with due note of diffraction limitations) so far. For this
reason, consideration of scattering will be deferred to a later chapter,
even though it can be shown to be mathematically equivalent in some
cases to some of the methods we have discussed here.

4.3 Magnetic field measurement
4.3.1 Effect of a magnetic field

As we have seen, the refractive index of the plasma is primarily
determined by the electron density and also the magnetic field, through
the two quantities X = CD^/CD2 and Y = Q/co, respectively. In our con-
sideration of density measurement by plasma interferometry we assumed
that the magnetic field effects were negligible either because Y <C 1 or
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because only the ordinary mode at perpendicular propagation was used,
so that the refractive index was given by N2 = 1 —  X. Let us begin our
discussion of magnetic field effects by considering the case of small but
finite Y and examine the accuracy of our previous assumptions about N2.

The Appleton-Hartree dispersion relation, retaining only first order
terms in the assumed small parameter Y, can be written

JV2 « 1 - X ± XY cos 9, (4.3.1)

where + refers to the ordinary wave. Thus the lowest order correction to
the refractive index is the additional term in N2: ±XY cos 9. (This term
tends to zero as 9 —»  TT/2, SO for perpendicular propagation one must go
to the next order and the correction to N2 for the extraordinary wave
is ~ XY2/(1 —  X), the ordinary wave having N2 = 1 —  X exactly, of
course.)

From the viewpoint of density measurement, then, the presence of a
magnetic field introduces an extra term leading to a fractional error of
magnitude Y cos 9 (for 9 ^= n/2) in the density deduced by the previous
analysis. This may occasionally be significant but usually can be ignored
provided co >• Q.

On the other hand, the finite magnetic field introduces anisotropy
and hence birefringence into the wave propagation. That is, the char-
acteristic waves now have different refractive indices. The difference is
perhaps only small, but if it is measured it can give information on the
magnetic field inside the plasma and hence offer important diagnostic
possibilities.

4.3.2 Faraday rotation
Consider a wave propagating through a medium in which the

polarizations of the two characteristic modes are circular, that is, in a
coordinate system with k along z the polarization is

| ? = ±i. (4.3.2)

Suppose also that these characteristic waves have different refractive
indices N+, N-. Then the progress of a wave of arbitrary polarization
E(z) is determined by resolving E into two circular components, corres-
ponding to a superposition of characteristic waves, and then allowing
these two waves to propagate with their known refractive indices. The
wave amplitude at any other position is then determined by the super-
position of the waves there. Their phase will, in general, be different
because of the different ATs, so that the polarization will vary with
position.
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Fig. 4.21. Faraday rotation causes a linearly polarized wave's E vector to rotate
as the wave propagates.

In particular, suppose that at z = 0 the wave is linearly polarized such
that Ey = 0, Ex = E. Then this must be written as

(4.3.3)

At z ^ 0 this decomposition will then become

E(z) = — (1,—f)exp  (ih

r /N, +M_\ co t , ^ . ^ .

c I v
c o s ^ - ' s m —  ) ' (4-14)

where
x CO (4.3.5)

is the phase difference between the characteristic waves arising because
of the difference in refractive index. Thus, the polarization of the wave
after propagating this distance z is linear still, but rotated by an angle
A0/2 with respect to the initial polarization. This is the effect known as
Faraday rotation, illustrated in Fig. 4.21.

Now consider the case of magnetized plasma propagation. We have
already obtained the refractive index for propagation at a general angle
9 to the magnetic field. For the purposes of evaluating Faraday rota-
tion we also require the characteristic polarization. This requires solving
Eq. (4.1.6) for E. In our present coordinate system, with k along the z axis
and taking the x axis perpendicular to B [not the same system as used
for Eq. (4.1.23)], as illustrated in Fig. 4.22, the transverse components of
E are related by

Ex _ iY sin2 9 \ Y2sin40 11/2

Yy ~ ~2(1-X)cos0 ~ l [ + 4(l-X)2cos20J ( ' ' ̂
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Fig. 4.22. Coordinate system for expressing the wave polarization.

(see Exercise 4.5). Now provided Y sec 6 < 1 (and 1 —  X is not small),
this may be approximated to lowest order as

Ex (4.3.7)

which could also have been obtained using the approximate form of the
refractive index Eq. (4.3.1). Thus, we find the perhaps surprising result
that for weak magnetic fields, at all angles not too close to perpendicular
(Y sec 9 < 1), the characteristic polarizations are indeed circular.

We can therefore immediately apply our previous analysis and find
that the Faraday rotation angle is

fXFcos f l l oo
7 I n - xv/21 7 ;

If, in addition, X <C 1, this approximates to

a =
Ac/> cô Q cos 9

2oo2c

(4.3.8)

(4.3.9)

Whichever of these forms is appropriate, the Faraday rotation is pro-
portional to Q cos 6, which is (e/m)B • k/fc. Thus, Faraday rotation is
proportional to the parallel component of the magnetic field. In the
approximation X < 1 it is also proportional to ooj, that is, to electron
density.

For nonuniform plasmas, as with the treatment of interferometry, we
suppose that a WKBJ approach can be adopted. Then the total Faraday
rotation along the beam is given by

Ac/>
GC — —

;^Qcos0 dl
(4.3.10)
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which may be written

Ac/> e f(% — _ —  I
2 2mec J nc(

neB • dl

c(l-ne/ncy/2

n,for — < 1. (4.3.11)

4.3.3 Propagation close to perpendicular
When the direction of propagation is sufficiently close to perpen-

dicular that Y sec 6 > 1, effects other than simply polarization rotation
become important, because the characteristic waves are no longer ap-
proximately circularly polarized. A linearly polarized incident wave then
generally acquires some degree of ellipticity in its polarization: this is
known as the Cotton-Mouton effect. As a practical matter it is usually
more convenient when possible to choose a frequency and propagation
angle such that Y secO <C 1, so that our previous approximations do
hold. When this is impossible a more elaborate analysis is necessary.

Elegant, but more abstract, mathematical apparatus exists to deal with
such cases, using a representation of the polarization known as the
Poincare sphere [see, e.g., DeMarco and Segre (1972)]. It would take
us too far from our main theme to master these methods here, but
the important results may be obtained by a generalization of our more
elementary treatment. Even so, the algebra is somewhat tedious and is
omitted in places.

We use the general expression for the polarization ratio Eq. (4.3.6),
which we write as

Ex/Ey = iq = i{-l ± [F2 + l]1 /2}/F, (4.3.12)

where

F = 2(1 - X) cos 6/Y sin2 6. (4.3.13)

We shall require two identities, which follow by elementary manipulation:

^h=±jp4w; ^ T = + ( F 2 + 1 ) 1 / 2 - (43-14)

We shall also need a more general form of the difference between the
refractive indices of the two characteristic waves:

for X <C 1 (after considerable algebra). Now we express the wave electric
field in terms of its decomposition into the two characteristic wave
polarizations,
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E+ = (iq, l)/(q2 + I)1/2, E_ = (1, iq)/(q2 + 1)1/2, (4.3.16)

in the coordinate system of Fig. 4.22, where we now choose to make q
correspond explicitly to the upper sign in Eq. (4.3.6) (in other words,
Ex/Ey = iq for E+;EX/Ey = —i/q for E_). So we write at z = 0,

E(0) = a+E+ + a_E_. (4.3.17)

The characteristic waves propagate separately for a small distance z,
acquiring different phases exp(iN±coz/c), so that then

E(z) = exp |i ( ^ - ^ j - :

x L+E+exp (+<^f) +^-E_exp ( ~ ^ ) 1 , (4.3.18)

where, as before, A0 = (N+ —  N-)(co/c)z. We take the input wave at
z = 0 to be linearly polarized (with unit magnitude) at an angle fi to the
x axis, E(0) = (cos/?,sin/?). It is most convenient to work in a coordinate
system in which E(0) is aligned along the (new) 1 axis. So we transform
all our vectors to this new coordinate system by multiplying them by the
rotation matrix

C O S{! S i n / ? J . (4.3.19)
—  sin/? cos/? J v ;

In the new coordinate system

E + = (iq cos p + sin jff, -iq sin p + cos jS)/(<?2 + 1)1/2,
(4.3.20)

E_ = (cos p + ig sin p, - sin j8 + ig cos jS)/(<?2 + 1)1/2,

and in either coordinate system

a+ = (-iq cos P + sin P)/(q2 + 1)1/2,

«_ = (cos p - iq sin P)/(q2 + 1)1/2.

We substitute these values in our expression for E(z) and retain only the
lowest order terms in A0, to get

The electric field thus acquires two components perpendicular to its orig-
inal direction, one real and one imaginary, which become, on substitution
for Acj), etc.,
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Fig. 4.23. The polarization ellipse and the polarization coordinate systems for
the case when propagation is close to perpendicular.

co (4.3.23)

The imaginary part corresponds to an ellipticity gained by the polariza-
tion, whilst the real part corresponds to a rotation of the polarization
(major axis), as illustrated in Fig. 4.23.

The Faraday rotation angle is essentially as in the Y sec 0 < 1 case,

XY cos(9 co 1
(4.3.24)

when both X and Y are small. Thus Faraday rotation, for small A</>, is
unchanged by propagation close to perpendicular. The ellipticity is such
that the ratio of the major axes is

b
a

XY2sin26 . , m
W^)sm2^z (4.3.25)

This is not necessarily small compared with a unless Y sec # sin 2/? < 1.
This criterion is thus what is required for the ellipticity, acquired by
linear birefringence, to be negligible. It shows that the optimum input
polarization for minimizing the ellipticity is perpendicular or parallel
to the magnetic field (i.e., /? = 0 or n/2). Note that the criterion we
used in the previous section for ignoring linear birefringence ab initio,
7sec# < 1, guarantees that the present less restrictive condition be
satisfied.

All of this analysis requires the phase difference Acj) between the char-
acteristic waves to be small. This is the other requirement for Faraday
rotation to remain dominant even at perpendicular propagation. Pro-
vided A0 < 1 then a spatially inhomogeneous plasma gives rise to the
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immediate generalizations

c
(4.3.26)

l-XY cos 0-dz,
2 c

-*\[-XY2sm26sm2p-dz
a \J 2 c

If Acj) is not small, then our elementary treatment fails and numeri-
cal integration of the full polarization equations is generally required.
Moreover, the information about the internal magnetic field is eventually
lost when A<p > 1 since the polarization observed becomes dependent
only on the magnetic field at the plasma edge. This is because the wave
anisotropy is so great that the two characteristic waves are decoupled
and propagate through the plasma retaining their separate identities. The
fraction of power that enters the plasma in the ordinary (or extraordi-
nary) mode thus exits in that same mode, regardless of the intervening
internal plasma characteristics. The phase difference between the modes
rapidly becomes virtually random (because it is large).

4.3.4 Measurement of the polarization
The ratio of the Faraday rotation angle to the phase shift of an

interferometer at the same frequency in a given plasma is approximately
2(O/cu)cos0, as may be verified by comparing Eqs. (4.2.10) and (4.3.11).
As we have noted, Faraday rotation is generally easiest to interpret when
the condition Y sec 9 < 1 is satisfied. This implies that Q/co = Y is small,
and so the rotation angle will be much less than the interferometer phase
shift, even more so in cases when the propagation angle is substantially
different from zero.

Even with optimum choice of frequency, the Faraday rotation angle
may thus be quite small (<C n) and so sensitive techniques need to be
employed to measure it. One method that is particularly appropriate
involves modulation of the polarization. For example, suppose that the
linear input polarization is arranged to be at an angle that rotates at
frequency Aco/2 ( < co). The reason for writing the rotation frequency thus
is that this situation is equivalent to having two collinear incident beams,
circularly polarized with opposite E rotation direction, but now, instead
of them having identical frequency (which would give linear polarization
at constant angle), they have frequencies different by Aco, so that their
relative input phase changes as Aco • t and the linear superposition rotates
at frequency Aco/2.

This approach is essentially identical to the heterodyne interferometer
discussed earlier, except that in this case both beams pass through the
plasma and the phase difference being measured is the difference between
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Detector 1

Detector 2

Fig. 4.24. Principle of a heterodyne scheme for simultaneous Faraday rotation
and interferometry.

two polarizations, rather than the difference between the two spatially
separated plasma and reference beams.

Because the Faraday rotation measures approximately the integral of
neB, in order to deduce B we must know ne as well. The most satisfactory
way to get this is generally to measure ne by interferometry simultane-
ously along the same path. This may be done using the same radiation
sources, by providing an additional reference beam path, which is then
appropriately mixed with a proportion of the transmitted beam to give an
ordinary interferometer. This amounts to measuring simultaneously the
refractive indices of both characteristic waves JV+, N- (or equivalently
measuring N+ and AN). Schematically, such a measurement is illustrated
in Fig. 4.24 (but see examples) in approximately the form proposed by
Dodel and Kunze (1978).

Despite the importance of internal magnetic field measurements, the
use of Faraday rotation is rare in plasma diagnostics. Experiments illus-
trated in Fig. 4.25 have shown that measurements with useful accuracy
can be made even of the relatively small poloidal field in a tokamak. One
other technique, that of the motional Stark effect (see section 8.4.2), has
established itself as a diagnostic for internal magnetic field measurement,
in competition with Faraday rotation. Faraday rotation suffers by com-
parison because it measures a line-of-sight integral of the field, whereas
the motional Stark effect measures a local value.

4.4 Abel inversion
Interferometry and polarimetry share with many other diagnostic

techniques the property that they measure the average value of some
quantity along a chord through the plasma. A recurrent problem is
then to deduce local values of the quantity under consideration from
the available chordal measurements. Naturally this problem is of much
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Interferometer
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Faraday
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Fig. 4.25. Simultaneous measurements of interferometer phase shift and Faraday
rotation angle as a function of chord major radius in the Textor tokamak [after
H. Soltwisch (1983)]. The rotation reverses with the direction of the vertical
component of the (poloidal) magnetic field. From such data information about
the toroidal current density can be obtained.

wider interest than just plasma diagnostics. However, very many plasmas
have the property that they are cylindrically symmetric, that is, they are
independent of 6 (and z) in a cylindrical coordinate system (r,6,z). This
fact enables one to address the problem of deducing the radial distribution
from the chordal measurements using the known mathematical properties
of the Abel transform. It is to this generic problem that we now turn.

Consider, then, a cylindrically symmetric quantity (such as refractive
index or radiative emissivity) f(r) of which the accessible measurements
are chord integrals,

F(y)= f(r)dx, (4.4.1)

as illustrated in Fig. 4.26. We may change the x integral into an r integral
to get

F(y) = 2 ff(r) r<*r

Jy (r2-y2)1'2
(4.4.2)

This relationship between F and / is an integral equation for F (of the
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Fig. 4.26. Chordal measurement in a cylinder.

Volterra type) first studied by the mathematician Abel in the nineteenth
century. F is sometimes said to be the Abel transform of / . The inverse
transform relates the quantity we seek [/(r)] to an integral of F, as
follows:

rdF
dy (4.4.3)

provided that f(a) = 0 (see Exercise 4.7). We therefore have a simple
formula for obtaining the radial profile of / from measurements of chord
integrals F. This process is often called Abel inversion.

Naturally, in practical situations, we have measurements of F at only
a finite number of y values, so that to perform the required integral
requires some kind of interpolation scheme to be adopted. Moreover, it
is clear that a small number of chord measurements will give only limited
information about f(r). Thus, if an effectively continuous f(r) is deduced
using interpolation, it must be remembered that much of the detail of /
deduced will depend upon the assumptions inherent in the interpolation
scheme.

Finally, note that in the inverse transform, it is the spatial derivative
of F that appears. This tends to make the Abel inversion [/(r)] rather
sensitive to any errors in F(y). One can see this easily by realizing that
deduction of dF/dy will require essentially taking the difference (AF)
of adjacent F measurements. If these are such that AF is considerably
smaller than F, as will usually be the case if F is measured at a rea-
sonable number of y values, then the fractional error in AF is much
greater than that in F. Fortunately, this effect is partially compensated
by the integration occurring in Eq. (4.4.3), which "smooths out" some
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of the errors generated by differentiation. Nevertheless, enhanced error
sensitivity remains to errors in dF/dy near r = y.

We shall discuss in Chapter 5 some more general inversion problems
when cylindrical symmetry cannot be assumed.

4.5 Reflectometry
When a wave of a certain frequency propagates through a plasma

with density increasing in the direction of propagation, it may arrive at a
point where the electron density equals the cutoff density nc. As we have
seen, the wave is evanescent at higher density; therefore, what will happen
is that the wave will be reflected from the cutoff point and propagate
back down the density gradient and out of the plasma the way it came
in. If the reflected wave is detected, it is possible to use it to diagnose the
plasma density. This is then called reflectometry.

Naturally reflectometry depends upon the presence of a cutoff within
the plasma; therefore, if the magnetic field is negligible, it requires that
somewhere there is a point at which

X = coj/co2 > 1. (4.5.1)

This is obviously the opposite inequality for the effective operation of
a transmission interferometer, so reflectometry generally uses lower fre-
quency than interferometry (for the same plasma).

In magnetized plasmas the different characteristic polarizations have
different dispersion relations, and hence different cutoff densities. For
the common case of perpendicular propagation, the ordinary wave is
unaffected by the magnetic field, while the extraordinary wave is affected,
having refractive index given by equation (4.1.27). There are two solutions
to the equation N = 0 for the extraordinary wave. They are

X = 1±Y. (4.5.2)

The densities (proportional to X = nee2 / e^me(D2) of the two cutoffs are
thus above and below the ordinary mode cutoff density by an amount
proportional to the magnetic field strength (Y = Q/co). The higher cutoff
density corresponds to a left-hand circularly polarized wave and is called
the left-hand cutoff. The lower is right-hand polarized - the right-hand
cutoff - which, because it is associated with the upper-hybrid layer, is
sometimes called the upper-hybrid cutoff.

The mere observation of substantial reflected power indicates that
reflection is occurring and hence gives information about the electron
density, namely that somewhere ne > nc. One way to determine the
maximum density along the line of sight is to probe the plasma with a
series of frequencies and observe which are reflected and which are not.
The peak density lies between the highest critical density that is reflected
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Fig. 4.27. The principle of reflectometry.

and the lowest that is not. However, the objective of most reflectometry is
to say much more than whether or not the wave is reflected. To develop
the full potential of reflectometry it is necessary to measure the phase of
the reflected wave not just its power. Measurement of phase generally
involves using coherent interference effects, so that reflectometry is in
reality a type of interferometry.

The form of experiment we are considering is illustrated in Fig. 4.27.
A wave is launched into the plasma, is reflected from the cutoff layer,
and detected again near its launch point. The similarities with radar are
obviously very strong. In radar the group delay of a pulse is generally
used for ranging. The early reflectometry applications sought to measure
the phase delay of a continuous wave, that is, the relative phase of the
reflected and incident waves. One then deduces information about where
in the plasma the reflection occurs, and hence about density as a function
of position. We shall see in a moment that often the group delay is the
more appropriate quantity even for reflectometry.

It might be thought, by analogy with radar, that the phase or group
delay provides a single number that is directly proportional to the distance
of the cutoff layer from the launching point, independent of the density
profile elsewhere in the plasma. It is important to emphasize that this is
not the case. The analogy with radar breaks down because the plasma
between the launching point and the reflection point acts, as it does in
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interferometry, to alter the phase delay. In other words, we must take
into account the refractive index of the plasma all along the wave path,
unlike radar, in which the refractive index is essentially unity everywhere.

4.5.1 Calculation of the phase delay
We shall discuss a one-dimensional plasma slab model in which

the density ne varies with position (x) giving rise to a plasma frequency
that is a function of position cop(x). The WKBJ form of the phase
difference between points A and B is then

<j>{B) - (p(A) = - [ Ndx. (4.5.3)
c JA

Near the reflection point N = 0 the usual conditions for the applicabil-
ity of the WKBJ approximation break down because k —• 0. However, it
can be shown that, provided the density gradient can be taken as uniform
in the region of reflection (a condition not always satisfied in practice),
the phase difference at position a between forward and reflected waves
can be written

2co ' Ndx-'- (4.5.4)

(Ginzburg, 1961), where xc is the cutoff position where N = 0. This
equation states that the phase is just what would be obtained from
simple-minded application of the WKBJ approach, regarding the cutoff
layer as a mirror, except that an additional n/2 phase change at reflection
must be included.

Identifying a as the edge of the plasma, where the wave is launched, and
recalling that the refractive index is a function of density and possibly
magnetic field, it is clear that (j) is determined, via Eq. (4.5.4), by an
integral of this function of ne from the plasma edge to the cutoff point.
This is one of the unattractive features of reflectometry, that measurement
of a single phase delay cannot be related to some simple average value
of (say) the density in the way that interferometry can.

If, however, we are more ambitious and wish to deduce a complete
density profile rather than just an average density, the comparison be-
tween interferometry and reflectometry is not so unfavorable. In fact,
there are close mathematical parallels between the deduction of radial
density profiles from interferometric measurements along different chords
of a cylindrical plasma and the deduction of density profiles along a
reflectometer's wave path from phase measurements at different frequen-
cies. Both require the solution of an integral equation. For the ordinary
wave, both involve Abel transforms, which allows us to write down an
explicit analytic solution.
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Suppose that we have (ideally) measurements of the phase delay cf> at
lots of different frequencies so that we can construct the function 4>(co)
(by interpolation if necessary) for all relevant frequencies. We substitute
the ordinary mode expression for N into Eq. (4.5.4) and differentiate with
respect to co. Expressing the result in terms of the (vacuum) wavelength
X = 2nc/co as the integration variable leads straightforwardly to

(4.5.5)
dco ./; V c dXp

where kp = 2nc/cop. This is exactly the same integral equation (though
with infinite upper limit, which is unimportant) as occurs in the chordal
Abel inversion problem Eq. (4.4.2), provided we make the identifications

dco c dA

Perhaps the most convenient form of the inverse transform for the
reflectometry case is

xc(co) = a - - I -y-f7— 2 Tjrrj^, (4.5.7)
n Jo dco1 (co2 — co 2 ) 1 / 2

which may be verified directly from Eq. (4.5.4) (Exercise 4.8).
One can therefore deduce the position of the cutoff xc(co), provided one

knows the phase delay cj)(co) for all frequencies less than co. In reality it
is not necessary to have information for frequencies below which dcj)/dco
is negligible. For low enough frequencies the wave is essentially reflected
immediately at the plasma edge so that d<p/dco « 0 and no contribution
is made to the inverse integral Eq. (4.5.7). Notice also that the quantity
we require for the inversion is actually the derivative of the phase delay
with respect to frequency. This quantity is precisely the group delay, that
is, the round-trip time it would take a pulse or a modulation envelope to
propagate out to the reflection layer and back.

For the extraordinary mode, the integral equation represented by (4.5.4)
can be solved to give the density profile only if the spatial profile of 7 ,
the magnetic field, is known, and then generally only numerically. Never-
theless, this inversion is not in principle significantly more problematical
than for the ordinary wave. Moreover there are some situations where the
use of the extraordinary wave is advantageous, either because it enables
the reflectometer to avoid regions of electron cyclotron absorption, or
because magnetic field variation permits access to reflection layers that
would not otherwise be accessible, for example because of nonmonotonic
density profiles.
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4.5.2 Implementation of reflectometry
From the earliest observations of reflectometry signals, a domi-

nant characteristic has been that the phase and amplitude of the reflected
wave fluctuate strongly. The fluctuations are caused by plasma fluctua-
tions, and thus it turns out that reflectometry is one of the most sensitive
ways to measure the plasma density fluctuations. Before discussing that
application, however, we must briefly discuss the problems that these
fluctuations pose for the more immediate desire to measure density pro-
files. Reflectometry faces the same challenge as interferometry in trying
to resolve the ambiguities modulo 2n in the reflected phase. However,
because reflectometry uses a large total phase delay, and because the
fluctuations in that phase delay can in many cases be greater than 2n,
the difficulties are in practice much more serious for reflectometry. For
that reason the earliest reflectometry experiments generally were very
unreliable as density measurements. In cases where they used heterodyne
detection to resolve the direction of phase change, the systems often ob-
served a phenomenon called "phase runaway", which refers to the phase
delay apparently continuously increasing with time in a way that could
not possibly represent a continuous motion of the reflection layer away
from the receiver. This phenomenon is an example of the fact that the
simple one-dimensional picture is too oversimplified and two or three
dimensions must really be taken into account to understand a practical
reflectometer's operation. The explanation of phase runaway is generally
thought to be that the plasma fluctuations are propagating, and the
resulting ripples on the reflection surface combined with reflectometer
misalignment can cause the reflectometer to see reflections partly tangen-
tial to the cutoff layer. The effect is equivalent to the Doppler frequency
shifter illustrated in Fig. 4.9.

Various different approaches have been investigated to improve the
reliability of reflectometer operation. One approach involves amplitude
modulation of the probing wave, and detection of the round-trip delay
of the amplitude modulation signal, rather than the wave phase. A
major advantage is that the wavelength of the modulation envelope
can be chosen long enough that the 2n ambiguities are avoided. Of
course, the group delay is then being measured, but as we noted, this
is the quantity desired in any case. A disadvantage is that the delay
measurement accuracy can be compromised by small spurious reflections
in the system. For this reason, the receiving and launching antennas
and waveguides must be separate. Another interesting approach uses
extremely short pulses of radiation, introducing a significant bandwidth
inversely proportional to the pulse duration. In this case the analogy
with radar is even closer, and it is self-evident that the group delay is
what is measured. Doyle et al. (1996) argue on fundamental grounds that
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Fig. 4.28. Comparison of density profiles from reflectometry and Thomson scat-
tering shows excellent agreement within the uncertainties of both measurements.
(Doyle et aL, 1996)

systems with frequency swept over wide ranges (Aco/co ~ 1) in sweep
times less than the characteristic period of the fluctuations offer the best
discrimination against fluctuations. Such systems challenge millimeter
wave technology but are now feasible up to about 100 GHz.

Figure 4.28 shows a comparison of the density profile obtained from
swept reflectometry and from Thomson scattering on the DIII-D toka-
mak. In a case with monotonic density like this, the reflectometer gives a
very complete profile.

Reflectometry can produce density profiles of the edge of the plasma
with rapid time resolution. Figure 4.29 shows a recent example from
the ASDEX Upgrade tokamak where time resolution as short as 30 us
is achieved. With considerable effort, these measurements can be made
almost routine. In this particular example a deliberate motion of the
plasma is induced and the edge density profile is observed to follow the
plasma's motion measured by the magnetic diagnostics.

Fluctuation measurements in the plasma interior using reflectometry
are relatively straightforward to perform but rather hard to interpret.
The phase delay is most sensitive to density fluctuations located near
the reflection layer. However, it is also sensitive to fluctuations along
the entire radiation path, and so the localization of the measurement is
not the same as if one were probing an oscillating mirror at the cutoff
position (despite the fact that many published analyses have adopted this
analogy). Attempts to improve on this situation have used two probing
frequencies along the same paths, and then formed the cross-correlation
between the signals from the two frequencies (Costley et al, 1990). The
correlation is then perfect when the frequencies are exactly equal, but as
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2.3
1.04

Fig. 4.29. Edge density as a function of time measured by reflectometry. The
steep density gradient at the plasma edge is well resolved. The same data is
shown as a shaded 3-d plot on the left and a contour plot insert at the top. (Silva
et aU 2001)

they are separated, corresponding to reflections from cutoff layers separ-
ate in space, the correlation falls off. It was hoped and initially claimed
that the spatial correlation function of the fluctuations corresponded
to the reflectometers' signal correlation at the corresponding cutoff layer
separation. However, it was observed early on that the correlation lengths
thus deduced were sometimes so short as to be much shorter than the
wavelength of the probing wave. This seems to be impossible within
the context of a one-dimensional model. Therefore the one-dimensional
model is too simplified to describe what is actually observed. Multiple
dimensional scattering of the waves is thought to be responsible for this
artificially short correlation length, and so it is unjustified to attribute
the reflectometry correlation length to the actual density fluctuations.
The current thinking [see, e.g., Sanchez-Sanz and Estrada (2000)] is
that in situations where the fluctuation magnitude is small enough, the
observed correlation length is longer than the probing wavelength and
is a plausible measurement of the density fluctuations, but for large
fluctuations the nonlinear effects cause the unrealistic shortening of the
observed correlation length.
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4.5.3 Relative merits of reflectometry and interferometry
In order to obtain a density profile, interferometry requires mea-

surements over many chords while reflectometry requires measurements
over many frequencies. Therefore, the relative ease of application of these
techniques depends a great deal on the details of the plasma experiment
under consideration. In practice the awkwardness of having to make mea-
surements over a wide range of frequencies for reflectometry is usually
sufficient to make interferometry more attractive. Moreover, reflectome-
try frequencies must be specifically chosen to match a particular density
plasma whereas the operation of an interferometer is usually satisfactory
over a much wider density range.

The fact that reflectometry cannot deal with density profiles that are
not monotonic (since it cannot "see over the horizon" of a local density
maximum) is a significant handicap. Also the resolution of the phase
ambiguity tends to be more difficult for reflectometry. All these factors
contribute to the conclusion that, in most situations, interferometry (when
feasible) gives a more robust measurement than reflectometry in the
laboratory. On the other hand, reflectometry gives a powerful method of
obtaining the details of density at the plasma edge, and in ionospheric
work, for example, where transmission interferometry is rarely possible,
reflectometry naturally dominates the picture.

For density fluctuation measurements, the reflectometer is much more
sensitive and gives better localization. It has proven its worth for fluctu-
ation measurements, even though uncertainties in interpretation remain.

Further reading
Wave propagation in plasmas is treated in most introductory

plasma physics textbooks, and the principles of interferometry in most
introductions to optics.

A monograph devoted primarily to refractive-index based plasma di-
agnostics, which is still valuable, even though some of the applications
are dated, is:
Heald, M. A. and Wharton, C. B. (1965). Plasma Diagnostics with Microwaves. New York:

Wiley.

Another excellent introduction is:
Jahoda, F. C. and Sawyer, G. A. (1971). Optical refractivity of plasmas. In Methods of

Experimental Physics. R. H. Lovberg and H. R. Griem, eds., Vol. 9B. New York:
Academic.

A detailed discussion of interferometers and associated technology in
the far-infrared for plasma diagnostics is given by:
Veron, D. (1979). In Infrared and Millimeter Waves. K. J. Button, ed., Vol. 2. New York:

Academic.
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A wider ranging discussion is given by:
Luhmann, N. C. (1979). In Infrared and Millimeter Waves. K. J. Button, e<±, Vol. 2.

New York: Academic.

Reflectometry techniques for measuring density profiles have been
reviewed by:
Laviron, C, Donne, A. J. H., Manso, M. E., and Sanchez, J. (1996). Plasma Phys. and

Control. Fusion 38:905.

and:
Doyle, E. J., Kim, K. W., Lee, J. H., Peebles, W. A., Rettig, C. L., Rhodes, T. L., and

Snider, R. T. (1996). In Diagnostics for Experimental Thermonuclear Fusion Reactors,
R E. Stott, G. Gorini and E. Sindoni, eds. New York, Plenum.

Exercises
4.1 Solve Eq. (4.1.23) to obtain Eq. (4.1.24).

4.2 Consider a beam propagating along a chord of a refractive cylin-
der at a distance y from the axis. Suppose the cylinder has a refractive
index N(r), where r is the radius. Obtain a general equation for the
angular deviation of the beam 6 due to refraction when Or <C y so that
the chord can be approximated as straight. In the case where en >> CDP
and ne = no(l — r2/a2), calculate the value of y at which 9 is greatest and
prove that this maximum 6 is no/nc [Eq. (4.2.17)].

4.3 In some plasmas with high magnetic shear, one cannot guarantee
doing interferometry with the ordinary mode. It is of interest to calculate
the error occurring in the deduced density if we use the expression
N2 = 1 —  co2/(o2 when really the mode is the extraordinary mode.
Consider perpendicular propagation and calculate an approximation for
the difference in refractive index between the ordinary and extraordinary
wave for co >> cop. Hence calculate the fractional error in using the above
expression to determine density if the extraordinary mode is used in a
plasma with ne = 1020 m~\B = 6 T, and co/2n = 1012 Hz.

4.4 Starting with the general equations for propagation with the k
vector in the z(3) direction and arbitrary dielectric tensor

eliminate £3 and k and hence obtain the equation for the polarization,
p = E1/E2, in the form

+ (£11633 -

+(£12^33 -£32£ l3 ) = 0.
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4.5 If B is in the 2/3 plane at an angle 9 to z, then

X iXY cos 6 iXY sin 6
1 - 1 - Y 2 1 - Y 2 1 - Y 2

iXY cos 6
1 - Y 2 1-Y2 1 - Y 2

2 X ( l - Y 2 c o s 2 0 )
1-Y2 1-Y2 1-Y2

Using these values obtain the equation for p,

2 iY sin2 6

and hence prove Eq. (4.3.6).

4.6 One may generalize the cold plasma treatment to include colli-
sions by writing the momentum equation for BQ = 0 as

d\

Show that this leads to spatial damping of the wave and calculate the
damping exponent.

4.7 Substitute Eq. (4.4.3) into the right-hand side of Eq. (4.4.2) and
reverse the order of integration. Hence verify that Eq. (4.4.3) is the correct
solution.

4.8 Prove Eq. (4.5.7) by substituting from Eq. (4.5.4).

4.9 Consider an interferometer that operates at a radiation wave-
length lc = 10-6 um (CO2 laser) in the presence of spurious vibrations
of the optical components. To compensate for these vibrations, interfer-
ometry is performed simultaneously using the same optical components
at XH = 0.633 jim (HeNe laser). The HeNe interferometer is affected
much less than the CO2 by the plasma phase shift, but still somewhat. If
CD >> (Dp for both wavelengths:

(a) Derive an expression for the plasma density j ne dl in terms of the
phase shifts <fic a n d 4>H, of the CO2 and HeNe interferometers.

(b) If (j)u can be measured to an accuracy of ±n, what uncertainty
does this introduce into the plasma density measurement?

(c) Thus evaluate the fractional error in measuring a i m thick plasma
of density 1020 m~3, assuming §c is measured exactly.

4.10 Use the formulas developed in Exercise 4.9 to calculate the
residual error in the density measurement in an interferometer with
feedback stabilization that maintains the HeNe phase shift constant. The
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density will be deduced straight from the CO2 phase shift assuming
that the physical path length is constant. However, the path length will
not in fact be constant because of the small phase shift of the HeNe
interferometer due to the plasma. Express the density error as a fraction
of the true density for general values of the two wavelengths XQ and AH
when co > cop. Notice that this result makes it possible to compensate
very easily for this error effect in the interpretation.

4.11 Consider a Michelson interferometer using beams of radiation
of wavelength A, that uniformly illuminate the surface of square mirrors
of side length a. Obtain an expression for the mirror misalignment tilt
angle, a, that will reduce the phase contrast (i.e., the ratio of half the peak-
to-peak power modulation to the average power) to 0.5, assuming that
the combined beams are collimated completely onto a perfect square-law
detector.

Calculate the magnitude of this angle when a = 5cm and (i) X =
119 um, (ii) X = 0.633 um.

4.12 Consider reflectometry to measure the density profile in a toka-
mak using waves launched from the outboard along the midplane. Flat
or even hollow density profiles are often obtained in the plasma center,
(a) Why is this a problem for reflectometry with the ordinary wave?

To alleviate this problem, extraordinary mode reflectometry has some
advantages arising from the fact that the magnetic field varies approxi-
mately as \B\ oc 1/R, where R = RQ + r is the major radius, (b) Explain
why x-mode reflectometry from the right-hand cutoff is better at diagnos-
ing flat density profiles, (c) If there is a hollow density profile ne oc r2/rl
(where r is the minor radius and rn is a constant) out to a radius r = a,
and density is negligible for r > a, what is the smallest value of rn
(that is, the most hollow density profile) that an x-mode reflectometer
can measure, if the plasma frequency at r = a is approximately half the
cyclotron frequency at r = 0?



Electromagnetic emission by free electrons

5.1 Radiation from an accelerated charge
There are several ways in which free electrons can emit radia-

tion as well as simply affecting its passage through the plasma via the
refractive index. This radiation proves to be of considerable value in
diagnosing the plasma, especially since the emission depends strongly
upon the electron energy distribution, for example the temperature of a
Maxwellian plasma, as well as the electron density. Before moving on to
discuss the specific emission processes of interest, we briefly review the
fundamentals of single particle radiation. Since the derivations are fairly
standard, readers desiring a more detailed treatment should consult a
textbook on electromagnetism, such as one of those mentioned in the
further reading suggestions.

5.1.1 The radiation fields
Our starting point is Maxwell's equations, now with the fields

expressed in terms of scalar potential 4> and vector potential A in the
Lorentz gauge:

V-A + i f = 0 , (5.1.1)
c1 dt

B = VAA, (5.1.2)
PA

E = -—-V</> . (5.1.3)

Then the potentials satisfy the inhomogeneous wave equations

(5.1.4)

These can be solved using the Green's function for the wave operator,
namely
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where S(x) denotes the Dirac delta function, to give

4ns0 J

= /fo f
An J

(5.1.6)

x —x'l

where here and from now on bold square brackets indicate that a quantity
is to be evaluated at the retarded time t' = t —  |x —  x'\/c.

Now consider a point charge of magnitude q, position r(t), and velocity
v(r). Then

p = qS(x - r(0), j = q\S(x ~ r(t)). (5.1.7)

Substituting these values and performing the integrals we obtain

where R = x —  r is the vector from the charge to the field point and
K = 1 —  R • \/Rc. These are the Lienard-Wiechert potentials.

The electric field may then be calculated from Eq. (5.1.3), taking care
with derivatives of retarded quantities, to give

E = ,

(5.1.9)

where R = R/R.
The magnetic field may most easily be obtained as

B=- [R]AE. (5.1.10)
c

We shall be concerned primarily with the second term in Eq. (5.1.9),
which is the radiation term, going as 1/R. The first term is the near
field, which we shall ignore. The radiated power is given by the Poynting
vector

= E A H = — |E| 2[R]
IUC

RA R - - A - [R]. (5.1.11)16n280cR2 [

This is the energy radiated across unit area per unit time at the field
point, not per unit time at the particle. Time at the particle is retarded
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time t! = t — R(t')/c  so dt = Kdt' and the energy emitted per unit
time-at-particle is K times the above.

5.1.2 Frequency spectrum in the far field
One often requires the frequency spectrum of the emitted radia-

tion. This is obtained by writing the electric field as a Fourier integral

r0 0

E ( r )= / e-lC0tE(v)dv, (5.1.12)
J — oo

so that

We change the integration variable to retarded time t! and consider the
far field (R > r) so that we can approximate R as constant and the
distance R as x —  R • r in the phase term and constant elsewhere. Then
we get

E(v) = S— r  expto (t> - ±«±\ 1 JR A (R - I) A '-) dt',
(5.1.14)

which it is sometimes convenient to integrate by parts to obtain

i?-—)di?.  (5.1.15)c J
[In these formulas we have omitted the unimportant additional phase
term exp(icox/c).]

The radiated energy d2W/dQsdv, per unit solid angle (Qs) per unit
cyclic frequency (v), is then obtained by Parseval's theorem in the form

[" \E(t)\2 dt = 2 f°|E(v)|2dv, (5.1.16)
J-oo JO

to give

d2W q2co2 /»00 /

/ R A ( R A - ) expia) I if -
J-oo V CJ \ cd£lsdv . _ _ ^ ^

(5.1.17)

(Note that d2W/dQsdv is considered nonzero only for positive v.)
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These general formulas are the basis for our discussion of radiation
by free electrons. Let us note, before moving on, some important general
points.

First, radiation is emitted by a particle in free space when it is acceler-
ated, as indicated by Eq. (5.1.9), for example. Now acceleration can occur
as a result of the particle experiencing either a magnetic or an electric
field. Most plasmas are permeated by some background magnetic field,
and the resultant gyration of electrons gives rise to emission of what
is called more or less interchangeably, cyclotron, synchrotron, or gyro
radiation.

A constant electric field produces constant acceleration (unlike a mag-
netic field) resulting in very little radiation at high frequencies. The
important sources of radiation by electrons accelerated by electric fields
are therefore due to rapidly varying fields. When such a field is due to
an incident electromagnetic wave, the process is one of scattering, whose
treatment we defer to a later chapter. The other important source of
varying electric fields in a plasma is the plasma particles themselves.
An electron moving in the Coulomb field of an ion radiates, owing to
its acceleration, by the process known as bremsstrahlung (German for
braking radiation).

It is important to realize also that plasma is a refractive medium so
that free space calculations represent a good approximation only for
CD >> (Dp. In particular, when the refractive index is greater than one
it is possible for an energetic electron to travel faster than the local
electromagnetic wave phase velocity. When this happens radiation is
emitted, even though the energetic electron undergoes negligible accel-
eration; this is known as Cerenkov radiation. From the viewpoint of
our free space treatment, one can think of the radiation as arising then
from the acceleration of the background plasma electrons during the
rapid passage of the energetic electron, rather than from the electron
itself. This approach is cumbersome for actual calculation even though
conceptually helpful, and so Cerenkov emission is usually treated by
recognizing the dielectric properties of the plasma at the outset. Plasma
dielectric effects can also be important for the other emission processes
when CD ~ (Dp, in which case modifications to the free space calculation
are important.

5.2 Cyclotron radiation
5.2.1 Radiation by a single electron

We consider the radiation from a single electron in a plasma
sufficiently tenuous that the waves can be treated as being essentially
in free space, so that the analysis of the previous section is applicable.
Suppose there is a constant applied magnetic field BQ that we take to be
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Fig. 5.1. Electron trajectory in a magnetic field.

in the z direction. Then the equation of motion of the electron is

jt(ymey) =-e(y AB0). (5.2.1)

Note that it is essential to take into account the relativistic effects such
as the mass increase by the factor y = (1 —  /?2)~~1/2; we shall henceforth
work in terms of p = \/c for convenience. The electron charge is —e and
we shall define

Q eB0
CDC = — =

y mey
(5.2.2)

as the relativistically shifted cyclotron frequency, decreased by virtue of
the mass increase.

The equation of motion is readily solved to obtain

P = P±(x cos coct + y sin coct)

- = — (x sin a) ct — y cos coct) + fi\\tz.
C (JJf

(5.2.3)

The electron moves on a spiral path as illustrated in Fig. 5.1. We have
ignored the constant of integration in r since it introduces only an
irrelevant phase shift. It is convenient to choose axes such that the vector
from the emission point to the observation point has no y component;
that is,

R = (sin 0,0, cos 0),

where 9 is the angle between R and z.

(5.2.4)
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We now calculate the electric field of the radiation from the electron
in the form of Eq. (5.1.15). For this calculation we need the phase factor

exp ico It I = e x p ia> ( t sin 9 s in coct —  P\\t cos 6 I ,
c J V (°

(5.2.5)

where we note that the use of retarded time is implicit in Eq. (5.2.3). We
also require the vector determining the polarization,

R A (R A p) = x(j8|| cos 9 sin 9 - p± cos2 6 cos coct)

+ z(—j8||  sin 9 + j3j_ sin 6 cos 6 cos coct), (5.2.6)

after a little algebra.
In order to perform the required integral, we employ the Bessel function

identity
00

e-«sin4,= J2 e-^MZ) (5.2.7)
m=—oo

and two further identities that can be obtained immediately from it by
differentiation:

(5.2.8)
00

These enable the integrand to be expressed in the form
7 R r \

R A (R A p) exp icolt —

+ z f-p{l sin2 0 + p± sin 9 cos 0 ^ Jm(

x exp i[(l —  P\\ cos 0)co —  mcoc]t, (5.2.9)

where

^ = — ^j_sin^. (5.2.10)
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All the t dependence is now in the exponential and the integration is
trivial,

'00

Qiat dt = 2nS((x). (5.2.11)
—00

We therefore obtain the electric field as

00
-\-Cl(D —̂"\

E(v) = > 2nd[(1 —  B\\ cos 6)co — mco c]
—00

+ ft-iP±K(Z)

(5.2.12)

where we have replaced m/£ by (1 —  f}\\ cos6)/fi± sinO because of the
delta function.

We see, therefore, that the radiation consists of a series of discrete
harmonics at frequency

(Dm = mcoc/(l - j8|| cos 6), (5.2.13)

a result we might have anticipated because of the periodicity of the
electron motion. We shall write vm = com/2n where convenient, of course.

To calculate the power emitted, we obtain the instantaneous electric
field

= / Q-i(DtE(v)dv
J-oo

_ ^A eicom Umexp(-fa)mt)-U^exp(fo)mt)
^-^ 4TZ£QCR 1 — j8|| cos 6

ecom

(5.2.14)

where we have combined the positive and negative summations using
Jm(^m) —  J-m(—<^m),  and dropped the m = 0 term, for the moment,
under the assumption 1 — j8||  cos# ^ 0. Um denotes the vector part of
Eq. (5.2.12) with £m = mP± sin 6/(1 — ft^cosO). The power is then the
sum of the powers in the individual harmonics and, written per unit solid
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angle (Qs), is

The spectral power density can thus be written

Again we note that this is the energy radiated per unit time at the field
(observation) point, not time at the particle. It is important to main-
tain this distinction because if we wish to know the rate of energy loss
by the particle per unit solid angle per unit frequency the preceding
expression must be multiplied by 1 —  /?u cos 9. When we wish to cal-
culate the emission from an assembly of particles, the power arising
from any volume element is just the number of particles in that vol-
ume (of the particular velocity considered) fd3xd3v times their rate of
energy loss, that is, (1 —  /?u cos9)(d2P/dv d£ls)fd3xd3v. Thus the quan-
tity (d2P/dv dQs)(l —  j8|| cos#) is normally the power of interest. Expres-
sion (5.2.16) is often called the Schott-Trubnikov formula after two influ-
ential investigators of cyclotron emission (Schott, 1912; Trubnikov, 1958).

5.2.2 Plasma emissivity
In plasma that is sufficiently tenuous that the preceding free

space treatment is appropriate, we can also assume that the electrons are
completely uncorrelated so that to obtain the emissivity of the plasma
we simply have to add all the intensities from the individual electrons.
We define the emissivity j(y, 9) as the rate of emission of radiant energy
from the plasma per unit volume per unit angular frequency per unit
solid angle. Then if the plasma has an electron distribution function

/
d2P

^ j - ( l - h cos0)/(/?x,/J,)27tj8j.dflidfi|, (5.2.17)

with d2P/dvdns given by Eq. (5.2.16).
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The result of this integration is to obtain emission lines of finite width
because of the dependence of the resonance frequency com = mQ(l —
/?2)1/2/(l —  p\\cos6) upon the particle velocities. The two broadening
mechanisms here are the relativistic mass increase (1 —  /?2)~1//2 and the
Doppler effect (1 —  /?j| cos ^)~~1. Additional broadening effects that are
usually negligible are natural broadening (radiation broadening), due to
the loss of energy by the electron as it radiates, causing an exponential
decay of its energy, and collision broadening, due to collisions interrupting
the wave train.

The relative importance of mass increase and Doppler effect is deter-
mined by the angle 6 of the radiation emission to the magnetic field. The
Doppler shift will be larger if

p]]cos6> p2 (5.2.18)

or, for thermal plasmas with thermal velocity vt[= (Te/me)1/2],

cosO>vt/c. (5.2.19)

Thus, for nonrelativistic plasmas (vt < c) the broadening mechanism will
be dominantly Doppler broadening except at angles of propagation very
close to perpendicular.

5.2.3 Nonrelativistic plasma
If we can universally assume that for the plasma under consid-

eration the velocities are small, ft < 1, it is possible to obtain convenient
nonrelativistic approximations for the emissivity. First, we note that the
broadening effects will be small so that we can treat each harmonic
separately and expect narrow lines close to the frequencies com = mQ.
Second, we can adopt the approximation, valid for small argument,

1 R\Ut) * ^ (I) • (5.2.20)

Third, we retain only lowest order terms in ft elsewhere. Then

2

m2(m-l) / o \ 2m

( m_l)!2( s i n^"-"(cos2 e + 1) Uf) (5.2.21)
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and so
9 o

e cot

/xc3 / S((l —  j8|| cos

It is most convenient to deal with the total emissivity for a single
harmonic, integrated over frequency in the vicinity of com; that is,

jm = j jn (v)dv. (5.2.23)

To lowest order in fi it is equal simply to the expression (5.2.22) for
7m(v), divided by In without the delta function. If we take the electron
distribution to be the Maxwellian

{ i f ) '
we can perform the velocity integrals, noting that

= a2im+1)m\, (5.2.25)
•00

70

so that

^ / ( ^T I / 2 7 r ^ d ^ ^ii = ( ^ y ) w! ng (5.2.26)
J \ 2 J \2mec2 J

and

7m = / jm(v)dv

(sin0)2(w-1)(cos20 + l ) f T ^ T
> ) . (5.2.27)e2coinP m2

(m— 1)! \2m ec2

The distribution of the emissivity within this line can be expressed as
a shape function c/)(v —  vm) such that

- Vm), / 0(v)dv = 1.jm(v) = jm(j){y - vm), / (/>(v) Jv = 1. (5.2.28)

For angles that are not close to perpendicular (cos# ^> /?), Doppler
broadening dominates, so we can calculate <\> straightforwardly. The delta
function in Eq. (5.2.22) becomes d(co(l —  pn cos 6) — co m), independent of
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Shape-function:

Htm

Mass
Shift

-20

Fig. 5.2. Shape of the cyclotron emission line for the case of oblique and
perpendicular propagation, giving Doppler- and mass-shift-broadened shapes,
respectively.

fS±, so we can perform the /} x integral as before and the /?| integral is
then trivial because of the delta function. The result is

_ fmec2\1/2 exp{-(mec2/2r)((v - vm)/vmcosg)2}
<P\v —v m)— —— ,

\2nTj vm cos 9
(5.2.29)

a Gaussian line shape, as expected from Doppler broadening.
When cos 9 < /}, so that relativistic mass shift broadening is important,

4> is more complicated and is asymmetric. It is also narrower, giving a
line width of order (T/mec2)vm rather than ~ (T/mec2)1/2cos9vm for
the Doppler-broadened case. This is illustrated in Fig. 5.2 where we
see that for cos 9 < /? the spread of the line is entirely downward in
frequency owing to the relativistic mass increase. The shape function for
perpendicular propagation for a nonrelativistic (T < mec2) Maxwellian
distribution is

2lm+3/2 m!
(2m+1)!

x exp
—m ec

m2Q2

m2a2

m+l/2

(5.2.30)
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(See Exercise 5.1.) In either case, the frequency-integrated emissivity is
correctly given by Eq. (5.2.27).

5.2.4 Radiation transport, absorption, and emission
It is a general principle that if a medium emits radiation it also

absorbs radiation at the same frequency. The absorption coefficient a(v)
is defined as the fractional rate of absorption of radiation per unit path
length. Then, in a medium whose refractive index can be taken as unity,
the intensity of radiation J(v), which is the radiative power per unit area
per unit solid angle per unit cyclic frequency, is governed by the equation

?L=J(V)-IOL(V)9 (5.2.31)
as

where 5 is the distance along the ray trajectory. The solution of this
equation is straightforward:

I(s2) = J(Sl)e<Tl-T2> + p 7(v)eT~T2 ds, (5.2.32)

where the "optical depth" is defined as

TEE / oc(v)ds (5.2.33)

and s\ and s2 are two points on the ray. Suppose, then, that we consider
a ray crossing a plasma slab, as illustrated in Fig. 5.3, in which we take
j/oL to be uniform. Then

r2
7(s2)=/(si)e T21 + / O'/a)eT T2 dx

= /(si)e"T21 + (;/a)[l - e"T21], (5.2.34)

where T21 EE T2 — T\ is the total optical depth of the slab. This equation
shows that the emergent intensity consists of some fraction of the incident
intensity (first term) plus additional emitted intensity (second term).

When T21 > 1 the slab is said to be optically thick and we find simply

I(s2) = ]/*. (5.2.35)

The slab absorbs all radiation (at this frequency) incident upon it.
It is a fundamental thermodynamic property that any body in ther-

modynamic equilibrium that is "black", meaning that it is perfectly
absorbing, emits radiation with a unique blackbody intensity

v^ hv
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Fig. 5.3. Intensity of radiation at a point 2 is determined by an integration of
the transport equation from point 1 along the ray path (s).

which for low frequency hv <C T may be written

B{v) = -jr- (5.2.37)

In its first form this is Planck's radiation formula and the second form is
called the Rayleigh-Jeans approximation or classical limit. Both expres-
sions refer to a single wave polarization.

It is clear, then, that we must identify the emergent intensity /(S2) with
B(v) in the optically thick case so that

J/OL = B(v)9 (5.2.38)

which is known as Kirchoff's law. This allows us to deduce the absorp-
tion coefficient immediately from the emissivity or vice versa when the
plasma is thermal. Since our treatment of emission has been entirely
classical so far, it is appropriate to use the Rayleigh-Jeans formula.
For cyclotron emission from laboratory plasmas this will always be an
excellent approximation.

We can now write down the absorption coefficient for the rath harmonic
for a tenuous nonrelativistic thermal plasma, using Eq. (5.2.27), as

am(v) =
2njm

B(vm) [B(vm)\ 2n

n e2ne ra2m-1

2c me&o (ra —  1)!

X (COS2

m-l)

2mec2

m-i

2n '
(5.2.39)
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[We adopt the definition am(v) = am0(v)/27r, with the additional factor
of 2TT, SO as to retain contact with the review literature. We are working
with a cyclic frequency spectrum, in contrast to the angular frequency
convention of much of the plasma literature.]

In many cases the absorption at the lower (first and second) harmonics
is strong enough that T >> 1, that is, the plasma is optically thick. This
proves to be of great advantage for diagnostic purposes because the
intensity emitted by the plasma is then simply the blackbody level Tv2/c2.
A measurement of this intensity then provides a very direct measurement
of the electron temperature, since the intensity is independent of other
parameters such as density.

As a general point, true for any radiation measurement, the intensity
at the plasma edge is measured by detecting the power per unit frequency
crossing an area A in a solid angle Qs defined by some collimating optics.
The optics may consist of lenses, mirrors, or other focusing elements or
merely of two apertures, but in any case the power observed is then
I(v)A£ls, assuming the collimation to be sufficient that J(v) can be taken
constant across A and Qs. The product AQS is called the etendue of the
optical system and determines its light gathering power. It is clear from
our previous treatment of the radiation transport that one may place the
collecting optics at any distance from the plasma and observe the same
power provided only that there is no absorption in the intervening region
and also that the plasma viewed fills the whole of the etendue. (This
second requirement will always be violated if one goes too far away.)

In an optically thin case, T < 1, assuming no radiation to be incident
on the other side of the plasma, the intensity emerging from the plasma is

I(s2)= ]ds (5.2.40)

and the power detected via the collimating optics is

IAS1S= [ jAQsds. (5.2.41)

Note that the etendue is now simply a multiplying number. The fact that
it can therefore be taken inside the integral is sometimes expressed by
saying that the etendue is "conserved" through a lossless system.

The treatment given here of the radiation transport assumes, for sim-
plicity, that the refraction in the plasma can be ignored. When this is not
the case a more complicated treatment is required (Bekefi, 1966), which
recognizes that solid angle varies along the ray path due to refraction.
The effect in an optically thin case is that the intensity is given by the ray
integral, Eq. (5.2.40), of j/N2 (rather than j), where Nr is the ray refractive
index. Nr is equal to N for isotropic media but not generally otherwise.
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Although the blackbody intensity within the medium is also changed by
refraction, the intensity observed outside the plasma in an optically thick
case is still the usual blackbody level, Eq. (5.2.37), provided that the full
etendue is accessible to the emitting plasma (see Exercise 5.2). We now
turn to some related questions when plasma refraction is considered.

5.2.5 Wave polarization and finite density effects
Thus far, we have ignored the dielectric nature of the plasma

and calculated the emission and absorption based on a single particle
approach. However, now we must consider the modification of our results
that occurs for finite density plasmas in which the dielectric effects are
not negligible.

First, we know that the characteristic modes of wave propagation are
not degenerate in a magnetized plasma but have specific polarization
given by Eq. (4.3.6). It is then often convenient to treat the two charac-
teristic waves separately. This may be done within the framework of our
tenuous plasma approximation as follows.

The direction of the electric vector for the characteristic waves in the
low-density limit X < 1 is, in the coordinate system of Eq. (4.3.6) (that
is, with z along k = R, Bx = 0),

± = ( 5 - 1 4 2 )

where Eq. (4.3.13) reduces to F = 2cos 0 /7 sin2 6. Now we project the
vector Um, which determines the E vector of the radiation in Eq. (5.2.14),
onto E+ to determine what proportion of the radiation is in each mode.

For the nonrelativistic case we find

Um oc(-i,cos0,O) (5.2.43)

in the appropriate coordinates, and the proportion of power in each
mode is then (see Exercise 5.3)

|E+ • LT |2 _ 1 _ (sin4 0/4m) + cos2 6
|Um|2 2

= n± (say) (5.2.44)

(putting Y = 1/ra). As usual, the upper sign here refers to the ordinary
wave. Note that 77+ + T/_ = 1, as must be the case since the rjs are just the
fraction of power in each mode. Then we can write down the emission
and absorption coefficients for each mode separately as

Jm = Jmnt 4 = Mi - (5-2.45)
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Fig. 5.4. Fraction of cyclotron emission (and absorption) in the ordinary wave
as a function of propagation angle in the tenuous plasma approximation.

Clearly, since the second term in Eq. (5.2.44) is positive definite, the power
in the ordinary wave is always smaller than that in the extraordinary
wave. Graphically, rj+ is as shown in Fig. 5.4, for the first few harmonics.
It is always much less than 1.

It should be recalled, however, that we are working only to lowest
order in (T/mec2), so at those angles (0 and n/2) where n+ is small in
this approximation, corrections of the order T/mec2 must be invoked
and cause n+ to remain finite. In fact, as we shall see, our results so far
are usually inapplicable at the fundamental (m= 1).

When we are dealing with a plasma in which the refractive index is
significantly different from 1, we must abandon the tenuous plasma as-
sumption and recognize that the wave propagation is no longer governed
by the free space equations. A derivation based on single particle emission
and the Lienard-Wiechert potentials is then no longer valid. Instead, the
usual approach is to calculate the imaginary part of the refractive index
and hence the absorption coefficient from a kinetic-theory treatment of
the wave propagation problem. The derivation is far beyond our present
scope. The interested reader is referred to a major review article (Bor-
natici et al, 1983) for exposition of the theory. We shall discuss here the
main physical issues and present the most important results.

As with our treatment of the line shape, it is necessary to distinguish
oblique propagation from perpendicular propagation. In the perpendicu-
lar propagation case, N cos6 < vt/c, relativistic effects dominate the line
shape and make the calculations even more difficult.

1. Oblique propagation for harmonics higher than the first. The finite
density modifications can be included in the absorption coefficient for
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nonrelativistic plasma by writing it as before,

am = Xmim* (5.2.46)

with am given by Eq. (5.2.39), but now the coefficients rj± are modified
as follows:

(5.2.47)

where

7 { [l - {(oJmQ)2] N2 cos2 9
at = < H :

[1 - {(Op/mQ)2 - N2 sin:

x m 1 mf- —
mz V (Dp J

1 - {(Dp/mQ)2

—  {1-N2) sin2 6,

(5.2.48)

1 - (cop/mQ)2 - N2 sin2 0

m2 \(Dp)

and N is the (real part of the) refractive index given by the Appleton-
Hartree relation with co = mQ:

Ni = 1 -
KmQ

sm
2m2

sin2

2m2 m2

1/2*

(5.2.49)

Evaluation of these formulas [e.g., Bornatici et al. (1980)] shows that they
result in an absorption generally lower than in the tenuous plasma limit
by a factor that for (op < Q is rarely smaller than 0.8. Thus, in many cases
the previous tenuous plasma calculation is adequate, particularly when
dealing with an optically thick harmonic, for which the precise value of
a is unimportant.

2. Oblique propagation for the first harmonic. Here the situation is
very different. The dielectric effects are strong when {(op/Q)2 > v2/c2;
that is, even for rather low densities {(op/Q) <C 1. The most important
effect is that the polarization of the extraordinary wave becomes nearly
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circular, rotating in the opposite direction to the electron gyration. As
a consequence its coupling to the electrons, and hence absorption, is
much weaker than calculated in the tenuous plasma limit. Also, as noted
earlier, the ordinary wave possesses an absorption that is of order (vt/c)2,
which was ignored in treating the two modes simultaneously. This can
cause the ordinary wave to be the more strongly absorbed mode. The
line shapes obtained are no longer Gaussian, but the absorption can still
be expressed as

a±(v) = af <£±(v), (5.2.50)

with

' (j)±dv = l. (5.2.51)
/ •

It is found that for propagation at a large but still oblique angle (sin4 9 >
4[1—  ojp/Q2]2 cos2 9) the absorption integrated over the line can be written

+ _ n_ 2N ( l+2cos 2 0) 2 s in 4 0 ( T
1 2c p + ( l+cos 2 0 ) 3

and

for the ordinary and extraordinary modes, respectively. It should be
noticed that the extraordinary mode absorption scales approximately in-
versely with density rather than proportional to density as in the tenuous
plasma limit. For general angles no convenient analytic expressions are
available.

3. Perpendicular propagation NcosO < vt/cfor m > 2 in the extraordi-
nary mode. Absorption integrated over the resonance is the same as given
for oblique propagation [Eq. (5.2.47)], which reduces at 9 = n/2 to

( l - X ) r n 2 - !
(5.2.54)

with X = coj/m2Q?. (Strictly speaking, there are some additional correc-
tions for m = 2, but these are usually negligible.)

4. Perpendicular propagation for m > 2 in the ordinary mode. To lowest
order in (vt/c)2 the absorption coefficient is

+ _ 7i ^ 2ne m2m~l

c Eome (m —  1)!

I m-l/2

(5.2.55)
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(rather than zero as in the tenuous plasma limit, which really does not
treat this mode consistently).

5. Perpendicular propagation for m = 1. The ordinary wave has absorp-
tion given by the same formula as for oblique propagation [Eq. (5.2.52)].
The extraordinary mode has weaker absorption oc (T/mec2)2; a simple
analytic expression is not available.

In all these finite density cases the emissivity may be obtained from the
absorption by application of Kirchoff's law (suitably modified to account
for the refractive index).

The refractive-index effects are most noticeable in their effect upon the
cyclotron radiation when there exists a cutoff region where N2 < 0 either
at the point of emission or in the line of sight between the emission and
observation points.

The presence of cutoffs may be determined from the Appleton-Hartree
formula. For perpendicular propagation the ordinary wave is cut off if
co < (op and the extraordinary wave is cut off if COH < co < COR or co < coL,
where

(oR = Q[l + (1 + 4co2
p/Q2)1/2] /2 , (5.2.56)

wL = Q [ - l + (1 + 4co2
p/n2)i/2] /2, (5.2.57)

and

cojj = Q 2 + co2
p. (5.2.58)

Because the wave is evanescent when cut off, the transmission through
or emission from a cutoff layer is generally very small.

The avoidance of cutoff layers constitutes fairly serious limitation to
the use of cyclotron radiation for diagnostics since emission only at
co > (Op will be useful. For high-density plasmas in which cop > Q the
lowest harmonics are likely, therefore, to be unusable. Fortunately, many
fusion plasmas such as tokamaks and stellarators satisfy cop < Q for most
operating conditions so that cyclotron emission can be used.

In high-density plasmas, for which cop > Q, it has been proposed that
electron cyclotron emission into the electron Bernstein modes might give
comparable diagnostic utility to the electromagnetic waves discussed so
far. The Bernstein wave is a short-wavelength, electrostatic mode that
propagates in hot plasmas but is not describable by the cold plasma
approximation. It is expected theoretically that the mode's cyclotron
damping is sufficiently strong that its intensity is characteristic of the
thermal blackbody level. Experiments seem to confirm this expectation.
However, they also confirm the expectation that the key determining
factor for the observation of the radiation outside the plasma is the
extent to which the Bernstein wave couples to an electromagnetic wave
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that can propagate in vacuum. This coupling is far from perfect and is
affected by subtle parameters such as the density gradient in the coupling
region. Consequently it is difficult to be certain that the observed intensity
is directly proportional to temperature. Nevertheless, very recent results
indicate that this is sometimes the case, especially if the optimal angle
for coupling is used. See for example Taylor et al. (2001).

5.2.6 Spatially varying magnetic field
In most diagnostic applications the magnetic field varies with

position in the plasma. As a result, the emission of cyclotron radiation
does not appear as a series of narrow harmonic lines; rather, these
harmonics are broadened by the variation of the magnetic field along
the line of sight. Often the inhomogeneity of the field causes broadening
much greater than that due to Doppler and relativistic effects.

Consider then a case in which the magnetic field varies slowly enough
that the wavelength X is much less than L (the scale length of variation)
so that a WKBJ approach is possible. For a specific frequency vo, the
cyclotron absorption and emission at the mth harmonic is appreciable
only when

[mQ(s)/2n - v0] < v0 (5.2.59)

(5 denotes distance along the ray), in other words, only close to the
position so of exact resonance. Fig. 5.5 illustrates the situation.

If the resonant layer is small enough that we can take the density and
temperature to be constant over it, then we can write the local absorption
coefficient for the frequency vo as am(vo,s) = am(so)</>(vo, s)/2n with the
shape function in the form 0(v,s) = 4>(v — m£l(s)/2n\ where Q contains
all the variation with 5. If we can also approximate the gradient of raQ as
constant through the layer, then we can calculate the total optical depth
through the resonance layer at frequency v0 as

E= / am(v0, s)ds= / ccm(s0)(f>(vo - mQ/2n)

d(il)

dQ
Is

- 1 dQ

= ocm(s0) ds
— m£l/2n) da

2n'

Now 4> is, by presumption, narrow and normalized, so

/ ^(^o —  mQ/2n) dQ/2n = / <

Therefore,

am(s0) Lam(s0)

v') dv' = - .

m m\dQ/ds

(5.2.60)

(5.2.61)

(5.2.62)
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Distance

Fig. 5.5. In a spatially varying field the cyclotron resonance at a certain point (so)
has a certain narrow spectral shape (j)(v,so). Equivalently, at a certain frequency
vo the resonance has a narrow spatial shape 4>(VQ, S).

where L = £l/\dQ/ds\. Thus, the precise shape of (j) is unimportant in
calculating the total optical depth of plasmas whose resonance is narrow.
The plasma parameters to be used in am(so) are, of course, those at the
resonance layer where m£l(s) = a>o (m£l/2n = vo).

If this plasma is viewed from the vacuum, then, provided there is no
radiation incident upon the plasma from outside, the intensity observed
will be

/(vo) = (5.2.63)

assuming the frequency (Do = 2TZVQ to be resonant at only one position
and harmonic.

This equation illustrates the potential power of cyclotron emission
diagnostics. The intensity observed is a function only of the local plasma
parameters T(so), Tm at the resonant layer, not, as with many other
diagnostics, a chordal average of the parameters. Therefore, if, as is often
the case, one knows quite accurately the spatial distribution of Q (\B\ is
known), then excellent spatial resolution is possible.

5.2.7 Diagnostic applications in thermal plasmas
The most successful applications of cyclotron emission for diag-

nosis of laboratory plasmas have been in toroidal plasma confinement
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Fig. 5.6. Variation of cyclotron harmonic frequencies and cutoffs, etc., in a
toroidal magnetic field (tokamak).

experiments such as tokamaks. In these plasmas the magnetic field is
dominantly toroidal and accurately known (for tokamaks proportional
to 1/R, where R is the major radius). A typical plot of the relevant
frequencies is then as shown in Fig. 5.6. In addition to the first three
harmonics of the cyclotron frequency, we show the location of the cutoffs
cop and CDR for the ordinary and extraordinary waves, respectively; these
depend on plasma density of course.

In Fig. 5.7 we show a typical emission spectrum obtained observing
such a plasma from the low magnetic field (large R) side along a major
radius. In the upper part of the figure we see spectra of intensity /
versus frequency v for the characteristic modes when cop < coc. The
parameters of the plasma here are such that the extraordinary mode
second harmonic and ordinary mode first harmonic are optically thick
(T >> 1). Thus, the intensity in the second harmonic (e-mode) is just the
blackbody level I(v) = v2T/c2 at the point of resonance. The width and
shape of the emission then corresponds to the width and shape of the
temperature profile along the line of sight. The second harmonic omode
is optically thin and according to Eq. (5.2.63) should have an intensity
much less than that observed. This discrepancy is resolved by taking
into account reflections from the metal walls of the tokamak. Multiple
reflections also increase the observed intensity of the optically thin third
harmonic. At the fundamental, negligible emission is observed in the
e-mode because there is a cutoff region directly in the line of sight. An
additional feature occurs near cop/2n that is attributable to Cerenkov
emission.

The lower figure shows a higher density plasma in which cop > coc. In
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Fig. 5.7. Typical cyclotron emission spectra from a tokamak plasma when
(a) ojp < Q,, (b) Op > Q (Hutchinson and Komm, 1977).

this case the o-wave first harmonic is also obscured because of the cutoff
at co = cop.

From an optically thick harmonic such as the extraordinary mode
second harmonic we can obtain the temperature profile by inverting the
emission formula Te(R) = I(v)c2/v2 (which can be considered to define
a radiation temperature) using

(5.2.64)

where Qo is the cyclotron frequency at radius Ro. Figure 5.8 shows an
example of the type of diagnostic information that can be obtained. From
spectra measured every ~15 ms, the evolution of the temperature profile
throughout the plasma pulse is obtained. The profile starts "hollow"
during the early phases and evolves to a centrally peaked shape during
the main part of the discharge.

Measurements using instruments such as grating polychromators or
heterodyne receivers, which give signals proportional to the intensity
in narrow frequency bands, are useful for obtaining fast time-resolved
measurements of the electron temperature. They have become indis-
pensible in tokamaks for diagnosing the effects of instabilities on the
plasma temperature. Perturbations arising from large MHD instabili-
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Fig. 5.8. Evolution of the temperature profile in Alcator C tokamak as deter-
mined from optically thick second harmonic cyclotron emission.

ties are routinely diagnosed. A particularly challenging application is
to diagnose the low-amplitude fluctuations that are associated with the
small-scale turbulence responsible for thermal transport. These fluctu-
ations typically have frequencies up to 1 MHz and relative amplitudes
less than 1%. Obtaining sensitivity at this level requires considerable
effort.

The photon size is extremely small for electron cyclotron emission
(approximately 10~3 eV at 2Q for B = 5 T). So there are large numbers
of photons even in the rather weak signals observed. It does not follow,
however, that photon statistics are a negligible effect. On the contrary, the
statistical fluctuations of the signal arising, from a quantum viewpoint,
from photon correlations are very important. They are the noise source
that constrains attempts to observe low-level temperature fluctuations.
This statistical fluctuation in intensity may be expressed as a root mean
square fluctuation in radiation temperature:

tr =
(Te (5.2.65)

2Avvi
N

where Te + TNoise is the average radiation temperature observed (for a
good system TNoise *C Te); Avracj is the bandwidth over which the radia-
tion is collected (perhaps a few GHz for good spatial resolution); Avvid is
the video response bandwidth of the receiver (perhaps 1 MHz, depending
on the fluctuations); and N is the number of transverse modes received,
equal to the etendue divided by the square of the radiation wavelength (1
for a heterodyne receiver, a few for a quasi-optical system). Consequently
the instrinsic statistical fluctuation level for a heterodyne system is at least
1%. To obtain useful temperature fluctuation measurements below this
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level requires one to measure correlations of two signals' fluctuations such
that the correlated part of the fluctuation arises from the temperature
fluctuations, while the statistical fluctuations are uncorrelated. Averaging
the correlation over a long integration time then extracts the tempera-
ture fluctuation from the statistical fluctuation. To ensure the statistical
fluctuations are uncorrelated requires either that the radiating volumes
of the two cyclotron emission signals do not overlap, or that the anten-
nas observing them do not overlap. Pioneering experiments (Cima et al,
1995) have demonstrated the feasibility of this method. No noncontact
diagnostic other than electron cyclotron emission has demonstrated the
combination of fast time-response, spatial resolution, and high precision
necessary for such fine scale Te fluctuation measurements.

In principle, it should be possible to deduce the density from an
optically thin harmonic, once the temperature has been obtained from the
optically thick harmonic, by deducing the optical depth from the observed
intensity. The point is that the optical depth is a strong function of density
as well as temperature. However, despite experiments demonstrating
the principle, convincing quantitative density measurements are rarely
feasible because multiple reflections from the walls enhance the observed
intensity in an uncontrolled and difficult-to-calculate manner.

For low enough densities another attractive possibility is to use the
polarization of the emission to determine the direction of the magnetic
field inside the plasma at the point of emission. For tokamaks this would
provide vital information on the poloidal magnetic field. Two problems
make this application difficult. One is the multiple reflection problem
that reduces the observed degree of polarization. The other is much
more fundamental in that if the plasma density is large enough to cause
strong birefringence, the waves do not preserve their emitted polarization
as they travel out of the plasma. Instead, they remain ordinary or ex-
traordinary waves with appropriate polarization relative to the magnetic
field direction at the point of propagation, not at the point of emission
(Hutchinson, 1979). The result is that they provide a measurement only
of the field direction at the plasma edge rather than at the point of
emission. At low densities (or high harmonics) this polarization rotation
effect is small so that the desired information may still be retrievable,
although no experiment has successfully demonstrated this as a practical
measurement.

5.2.8 Nonthermal plasmas
When the plasma distribution function deviates significantly

from Maxwellian many of the preceding results are altered. Kirchoff's
law no longer holds and so emission and absorption coefficients must be
calculated separately. If the deviations involve very high-energy electrons,
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then the /? < 1 approximation must be dropped. The emission intensity
increases with perpendicular electron energy so that even a relatively
small proportion of electrons possessing high energies can dominate the
emission. On the one hand, this sensitivity requires that one be cau-
tious about interpreting radiation as representative of the bulk electron
temperature. On the other, cyclotron emission gives early warning of
the presence of energetic electrons and provides a diagnostic of their
distribution that, in principle, is very powerful.

First, some qualitative points concerning the effects on temperature
measurements. When the deviation from a Maxwellian distribution con-
sists of the presence of a high-energy tail to the distribution function, one
anticipates that observing an optically thick harmonic at right angles to
the field from the low-field side, an intensity reflecting the temperature
of the low-energy bulk part of the distribution will still be observed. The
reason for this is that in the relativistic regime at perpendicular prop-
agation, the line shape is asymmetric. Each electron resonates with the
wave at a frequency downshifted from mQ by the mass increase factor
(1 —  /?2)~1/2. Therefore, consider a specific frequency co. The energy of
particles that resonate with that frequency is given by

" " 2 ' " 2 <
So, taking Q = QQRQ/R we have

(5.2.67)

which is plotted in Fig. 5.9. For a wave propagating from left to right
toward the low-field side, its last point of resonance is at R = mQoRo/co
at which point it is resonating only with p2 ~ 0 particles. So, provided the
optical depth is large, the radiation emerging will "remember" only its
interaction with these last low-energy bulk electrons, since the nonthermal
radiation from the high-energy tail at R < mQoRo/co is absorbed by the
thermal electrons and cannot be observed. (Naturally this is true only
up to a point. If the nonthermal emission is very strong and the optical
depth not very great, the small proportion of radiation that penetrates
the layer may be sufficient to distort the measurements.)

By the same token, if the radiation is observed from the high-field
side, the contribution from the nonthermal tail will tend to dominate.
Radiation from optically thin harmonics will not show this asymmetry
since the emission will take the form of integrals, like equation (5.2.17),
over the whole distribution function.

Since the emission from the mth harmonic goes approximately as
Jm((J°f}±sin0/coc), which is ~ j8jm (for ft < 1), it is clear that higher
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Fig. 5.9. At perpendicular propagation the high-/? components are resonant
at smaller major radius R (higher B) than the thermal bulk of the electron
distribution.

harmonics will be more strongly enhanced by high-energy tails than low
harmonics. Moreover, the broadening of the resonances due to Doppler
and relativistic shifts can easily lead to overlap of the different harmonics
if the tail is relativistic. As a result one can obtain a rather broad
continuous emission spectrum extending to high harmonics, such as is
illustrated in Fig. 5.10. From such broad spectra it is difficult to obtain
more than a very approximate estimate of nonthermal tail temperatures
because the intensity observed tends to be a complicated integral over Q,
0,j8||,jB±.

One way to use cyclotron emission for diagnosing highly nonthermal
electron distributions is to simplify the problem by observing along a line
of constant magnetic field (i.e., vertically, rather than horizontally, in a
toroidal plasma) at fixed angle to the field. In such a situation, emission
at a particular frequency (co) for a particular cyclotron harmonic (m)
occurs only from electrons satisfying the resonance condition (5.2.13).
That condition describes an elliptical surface of revolution in relativistic
momentum space

IL
co mec

P±
mPc

mQ\2

co
- 1, (5.2.68)

where p± and p\\ are the momenta perpendicular and parallel, and 6 is
the angle of propagation relative to the magnetic field. The intensity of
emission is a different function of pitch angle for different polarizations
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Fig. 5.10. A typical cyclotron emission spectrum when significant nonthermal
components exist in the electron distribution.

or harmonics. For perpendicular propagation (cos 0 = 0) there is a one-
to-one relationship between frequency (given by mQ/co) and electron
energy (given by p2). As a result, one can diagnose the number density
and velocity anisotropy of electrons as a function of energy (Hutchinson
and Kato, 1986; Kato and Hutchinson, 1987) at the expense of returning
to a chord-averaged measurement. A vital practical requirement is to
avoid multiple reflections, which would otherwise confuse the desired
simple relationship, using some kind of "viewing dump".

Measurements of cyclotron absorption (of a transmitted beam) are
also of considerable potential utility. For thermal plasmas, direct mea-
surements of optical thickness [e.g. (Pachtman et al, 1987)] can give
density information as well as temperature although at the cost of the
added experimental effort of providing an independent radiation source.
An absorption measurement usually has the handicap of smaller dynamic
range. That is, it is hard to measure optical depths that are very large
or very small. And there is almost always some attenuation of the beam
due to refraction, which must somehow be compensated for. However, a
major advantage is that an absorption measurement is less affected by
the multiple reflection problem, and that coherent detection techniques
can be used to discriminate against multiply reflected radiation (Kirk-
wood et al., 1990b). This ability makes it possible to measure the parallel
distribution function of nonthermal electrons by using beams propagat-
ing at an oblique angle to the field and observing the difference between
the attenuation for radiation with positive and negative parallel wave-
numbers, that is, for equal and opposite values of cos 9 in Eq. (5.2.68).
This difference shows the parallel anisotropy of the electron distribution,
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Fig. 5.11. The nonthermal parallel distribution function measured from cyclotron
absorption. Before the application of lower hybrid current drive (LH) there are
negligible nonthermals. During LH the measured distribution has a steeper slope
than lossless theory, indicating fast electron loss. After Kirkwood et al. (1990a).

and when the nonthermal electrons are predominantly moving in one
direction, it gives the distribution function of those electrons (Kirkwood
et al, 1990b). Figure 5.11 shows an example of the sort of result that is
possible.

Other approaches to diagnosing nonthermal cyclotron emission include
using the plasma wave resonances and cutoffs as a means for localizing
the emission detected. Increasingly these techniques become specific to a
particular geometry and application.

5.2.9 Cerenkov emission
When relativistic particles are present in a finite density plasma,

it is possible for Cerenkov radiation to occur. This requires that the
refractive index be greater than 1 in order that the m = 0 ("cyclotron")
resonance condition, which is the Cerenkov resonance condition

co = k\\V\\ = coN\\V\\/c = coN cos Ov\\/c, (5.2.69)

can be satisfied. When the magnetic field is zero the only mode satisfying
this condition is the electrostatic longitudinal wave. Thus electromagnetic
emission requires conversion of this electrostatic wave into an electro-
magnetic wave, able to propagate in vacuum. In a magnetized plasma,
the two characteristic waves of the Appleton-Hartree dispersion rela-
tion [Eq. (5.2.49)] have frequency bands in which N > 1, as illustrated
by Fig. 5.12. These branches are sometimes called the slow extraordi-
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Fig. 5.12. The Appleton-Hartree dispersion relation for the case when Q = 1.5cop.
For any propagation angle other than 0 or n/2 there are two ordinary and two
extraordinary branches. Certain sections of these are slow.

nary (z mode) and slow ordinary (whistler) branches, "slow" implying
p̂hase < c. Direct Cerenkov emission is possible into these modes.

In straight magnetic fields it is difficult for this emission to be observed
because the radiation tends still to be trapped inside the plasma. Usually
the electron density is approximately uniform along the magnetic field
even though it may vary across it. Because of this uniformity (i.e., the
ignorability of the parallel coordinate) as the wave propagates, A^ is
conserved. Now, by virtue of the emission resonance condition, N\\ is
greater than 1 and no propagating (nonevanescent) wave in free space
(iV = 1) can have N\\ > 1. Therefore, in straight magnetic fields the
Cerenkov emission is again unable to propagate out into free space with-
out some type of complicated mode conversion occurring. The radiation
is normally trapped inside the plasma.

If there are abrupt "ends" to the plasma along the field lines or if
the magnetic field is substantially curved, as will usually be the case in
laboratory plasmas, escape of the radiation is possible. It turns out that
the slow extraordinary wave escapes due to curvature rather easily and
is quite often seen. In Fig. 5.13 the feature extending in frequency from
(Op upward to the lower-frequency end of the first cyclotron harmonic
arises by Cerenkov emission from a high parallel energy runaway tail
on the distribution function. As is clear qualitatively, it has the expected
characteristics of the slow extraordinary wave (extending upward in
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Fig. 5.13. Emission spectrum with a distinctive feature between cop and Q, arising
from Cerenkov emission (Hutchinson and Komm, 1977).

frequency from cop)9 even though its observed degree of polarization is
low, because of multiple reflections in the plasma chamber scrambling the
polarization before its final exit through the port. Moreover, theoretical
calculations (Swartz et al., 1981) can reproduce in reasonable detail the
line shape. The intensity of the emission is approximately proportional to
the total number of electrons with parallel velocity greater than c/N cos 6.
So this Cerenkov emission gives information about the high-energy tail
density.

The slow ordinary wave is much more effectively trapped by electron
density maxima. It is evanescent in the perpendicular direction for cop <
co. (Note the opposite inequality from the fast ordinary wave.) Because
of this, toroidal plasmas tend to form excellent high Q cavities trapping
the radiation. An intriguing consequence is that under some conditions,
when these waves experience gain because of an unstable distribution,
the whole plasma can act as a maser and generate coherent radiation
(Gandy et al, 1985). When this occurs, the radiation frequency tends
to be fractionally below the peak plasma frequency (by an amount that
depends on plasma conditions but is often as little as 1%). Thus, the
emission frequency may provide a highly accurate measurement of peak
density. On the other hand, the "population inversion" giving rise to
gain in this maser mechanism consists of a positive slope df\\/dv\\ in the
parallel distribution function. Hence the mere observation of the maser
action indicates the presence of such a distribution, useful information
in its own right.

Cerenkov emission is far from universal in the way that (m ^ 0)
cyclotron emission is, and thus it is not really a routine diagnostic.
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Nevertheless, it does provide useful information about the relativistic
components of the distribution function in nonthermal plasmas.

5.3 Radiation from electron-ion encounters
The radiation that occurs when a free electron is accelerated in

the electric field of a charged particle is called bremsstrahlung. When the
collision is with a positively charged particle such as an ion, the radiative
event can take one of two forms. It may be a free-free transition when
the final state of the electron is also free (total energy greater than zero)
or it may be a free-bound transition in which the electron is captured by
the ion into a bound final state (total energy less than zero). When it is
necessary to distinguish these two types, the free-bound transitions are
often called recombination radiation, though we shall sometimes use the
term bremsstrahlung to include both free-free and free-bound radiation.

Electron-electron collisions will be ignored because their contribution
to radiation is generally small unless their velocities are relativistic.
The low radiation from nonrelativistic collisions arises because in a
binary collision between identical particles there is no net acceleration
of the center of mass or center of charge. Thus, to lowest order, the
radiated fields from the two particles are equal and opposite and exactly
cancel.

In contrast to cyclotron radiation, a classical (nonquantum) treatment
of bremsstrahlung is generally inadequate; we shall therefore be obliged
to use quantum-mechanical formulas in our discussions. However, since
it is usual to express the emission in terms of the classical formula
multiplied by a correction factor, which takes into account the quantum
effects, let us begin with a brief discussion of the classical problem.

5.3.1 Classical bremsstrahlung
The trajectory of an electron in the Coulomb field of an (assumed

stationary) ion of charge Ze is as illustrated in Fig. 5.14. Assuming the
radiative loss of energy to be negligible, the electron path is a conic
section with the ion at the focus. In particular, for a free electron the
path is a hyperbola given by the formula

r = b(i + scosey (5>3*1)

where b is the impact parameter, bgo is the impact parameter for 90°
scattering, and s is the eccentricity,

(5.3.2)
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Fig. 5.14. Trajectory of an electron-ion collision.

Here v\ is the incident electron velocity and we shall drop the e suffix on
the electron mass for brevity.

The radiation from such an encounter is given by our previous equa-
tions (5.1.13) and (5.1.17), which we write in the form integrated over all
solid angles in the nonrelativistic limit:

dW
~dv~

e1 4
3c3 yeicotdt (5.3.3)

If we wished to obtain the polarization and angular dependence of the
radiation we could use the form R A (R A v), but since for an isotropic
electron distribution the integration over angles will need to be performed,
we allow it straight away. In order to calculate dW /dv, we need to
substitute v as determined from the orbit (5.3.1) and the energy equation,

(5.3.4)

into the Fourier integrals of Eq. (5.3.3) and evaluate them. Then, in order
to calculate the radiation from a single electron colliding with a random
assembly of ions of density nt, we multiply by ntv\ and integrate over
impact parameters to get the power spectrum

dp rdw. __ LJ7
= niVl / ——(v,b)27ibdb.

dv Jo dv
(5.3.5)

Both these integration stages can be performed analytically (with con-
siderable knowledge of Hankel function integral identities). The details
are given by Shkarofsky et al. (1966) [and Landau and Lifschitz (1951)]
and the result is

dP dP
~dv~ G(u90), (5.3.6)
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where U90 is a nondimensionalized frequency, ug0 = icobgo/vu the fre-
quency independent part is

dP_
~dv~

Z2e6 32TT2

(4TT£O)3
(5.3.7)

and

G(u) = ^-uHu(u)H'u(u). (5.3.8)

Hv(x) here is the Hankel function of the first kind and order v and the
prime denotes differentiation with respect to argument. This result was
originally obtained by Kramers (1923), by whose name it is sometimes
known.

The dimensionless factor G, as we shall see shortly, is generally a
weakly varying quantity of order 1. The physical significance of the first
factor dP/dco\c may be illuminated by writing it in terms of the classical
electron radius re and the fine structure constant a:

e2 e2

4nsomc2' 4nsohc \ 137

We find

dP
hdv

me2

\mv\
(5.3.10)

This may conveniently be expressed in terms of a differential cross section
dac/dv, defined by setting the number of photons emitted in the frequency
range dv per unit path length, in an ion density nu equal to nt da. Then
the power spectrum may be expressed as

d^ ^ / . (5.3.11)
dv 3V3

The subscript c on oc indicates that it does not include the factor G
needed to give the full expression for the cross section. On the right-hand
side we have a numerical factor (16/3^/3), two dimensionless factors (a
and c2/v\, the latter representing the ratio of electron rest energy to
kinetic energy), and finally a cross section. This last term, 7i(Zre)2, is the
area of a disk of radius Zre. We may thus loosely think of the ion as
presenting to a colliding electron an area corresponding to a radius Zre
but corrected by the other factors. (Note, though, that a and c2/v2 are
not of order 1.)

Turning to the factor G, its functional form is rather obscure. It is of
interest, therefore, to obtain some approximations for it in the limiting
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cases of high and low frequency. We may do this by some approximate
physical arguments as follows.

Radiation occurs mostly during the time when the electron is closest
to the ion, when the acceleration is greatest. If the subscript zero denotes
quantities evaluated at the instant of closest approach, the conservation
of angular momentum gives

v\b = voro. (5.3.12)

The acceleration at this instant is
Ze2

and the approximate time duration of the close approach is

T « 2ro/vo. (5.3.14)

When we evaluate the Fourier transform of v in order to obtain dW/dv,
its peak value will occur when the oscillation of the ei(Ot factor is syn-
chronized with the variation in v. For this particular frequency, co0 say,
we shall then find that

(5.3.15)

using Eqs. (5.3.12)—(5.3.14). Therefore, the peak in the spectrum of the
emitted energy is

dW 16TT 1
v\br (5.3.16)

Now we must recognize two opposite limits of impact parameter. (1) If
b > &9o, the electron hardly deviates in its course and we have approx-
imately a straight-line collision. (2) If b <C ^90, the electron trajectory is
then approximately parabolic in shape; it approaches the ion closely and
then returns in approximately the direction from which it came. We shall
call this a parabolic collision.

Although the peak value of the energy spectrum, dW/dv, is given by
Eq. (5.3.16) for both these cases, the shape of the spectrum is different.
This may be understood by considering the time history of v for the two
cases, which is sketched in Fig. 5.15. The two components of the acceler-
ation vx and vy, parallel and perpendicular to the direction of incidence,
respectively, are shown. For a straight-line collision vy is symmetric and
vx antisymmetric about t = 0, the instant of closest approach. Also vy is
always negative (downward in Fig. 5.14). The importance of this last fact
is that in either case the spectrum at very low frequency co « 0 involves
| fvdt\, the time integral ofv. In the straight-line collision this integral is
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(a)

Straight-line
dW
da) -

(b)

Parabolic

Fig. 5.15. (a) Accelerations and (b) corresponding power spectra for straight-line
and parabolic collisions.

approximately equal to |I?OT| because vy has constant sign (vx integrates
to zero).

On the other hand a parabolic collision has vy antisymmetric and
vx symmetric. Also i)x has both positive and negative excursions as the
electron first gains energy in the Coulomb field (far in excess of its initial
energy), passes the ion, experiencing rapid reversal of its vx velocity,
and then decelerates again as it retreats away from the ion. When we
consider co « 0 for this collision, the positive and negative parts of vx
almost exactly cancel, and so

< IM- (5.3.17)

Put another way, Jvdt is equal to approximately 2v\, but this is much
less than the peak velocity i?0 « IMI- What we have therefore shown
is that

dW

but

dv

dW

dW
dv

dW

(0 = 0

for a straight-line collision, (5.3.18)

for a parabolic collision. (5.3.19)
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The actual shapes of the energy spectra in these two cases are shown in
Fig. 5A5(b). They have an extent in co of approximately

1/T « (v\/2b), straight-line collision, (5.3.20)
1/T « (i;i/2^)(2b90/Z?)2, parabolic collision. (5.3.21)

When we come to integrate over impact parameters for a given frequency
co, the integral will be dominated by straight-line or parabolic collisions
according to whether cobgo/vi is less than or greater than 1. Straight-line
collisions thus correspond to low frequencies co < vi/bgo and parabolic
collisions correspond to high frequencies co > vi/bw-

We may obtain an approximate value for the impact parameter integral
by taking dW/dv to be given by Eq. (5.3.16) over a range from bm[n to
bmax- Then one finds straight away that

dP _ dP
dv dv G, (5.3.22)

with dP/dv\c given by Eq. (5.3.7) and

(5.3.23)
n

For low frequencies we must take bmax « v\/co because of the width of the
dW /dv spectrum and bm{n « b90 so that the straight-line approximation
still holds. This leads to

(5.3.24)

where the additional factor 2/£ is inserted in the argument of the logar-
ithm to conform our result to the exact limit obtainable from Kramer's
formula [Eq. (5.3.8)]. £ is the reciprocal of Euler's constant (£ = 1.78) so
the correction is negligible for most practical purposes.

For high frequencies bmSiX/bmin is a constant of order unity arising
from the width of dW/dv. No singular lower limit occurs because
dW/dv\aj = o < dW/dv\co = coo' Therefore, the logarithmic term is a con-
stant of order unity. Again, detailed treatment of the asymptotic Hankel
function limits provides the exact limiting value at high frequency,
namely

G = 1. (5.3.25)

Of course, it was in anticipation of this result that the division of the
power spectrum into dP/dv\c and G was chosen in the precise manner of
Eq. (5.3.8). A direct proof that G = 1 for parabolic collisions is given by
Miyamoto (1980), though it still involves some tricky integrals.
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Fig. 5.16. The Gaunt factor for classical electron-ion bremsstrahlung.

Figure 5.16 shows the frequency dependence of the factor G, deter-
mining the spectral power density for a classical collision. G is called the
Gaunt factor (Gaunt, 1930) and modifications of the emission due to
quantum effects are generally collected into corrections to G, as we shall
see in the following section. Note, however, that at low frequencies (gen-
erally the only region where a classical treatment may be satisfactory)
the classical Gaunt factor is greater than 1.

It should be noticed, too, that these classical results reveal an ultraviolet
catastrophe; that is, the integral of dP/dv to high frequencies becomes
infinitely large. This emphasizes the importance of a quantum-mechanical
treatment.

5.3.2 Quantum-mechanical bremsstrahlung
Semiclassically speaking, the quantum effects that enter are of

two types: (a) the wave nature of the electron and (b) the particle nature
of the electromagnetic radiation.

The de Broglie wave number of the electron is

= mv/h (5.3.26)

and the wave nature of the electron will be ignorable only if k^b >• 1.
Now in the high-frequency (b <C £>9o) regime the requirement upon the
photon size becomes more important than the de Broglie wavelength (see
Exercise 5.7). Therefore, we need to consider the restriction on k^b only in
the low-frequency regime b > bgo and can write the electron requirement
for the classical limit as

m = khb90 (5.3.27)
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Frequency :
Log\hu/Z%\
-2 0 2

Fig. 5.17. The domains of applicability of approximations to bremsstrahlung:
(K) classical Kramer's, (B) Born, (E) Elwert, (R) relativistic corrections needed
[after Brussard and van de Hulst (1962)].

We note that

Z2RV
(5.3.28)

is the initial particle energy in units of the ionization potential of the
ground state of the atom formed by the electron and ion. Ry is the
Rydberg energy

2

= 13.6 eV. (5.3.29)

The electromagnetic radiation quantum effects will be negligible only
if the photon energy is much smaller than the initial particle energy,

hco \mv\ (5.3.30)

It is helpful, then, to consider the bremsstrahlung coefficient, which is
a function of co and v\, in terms of the initial electron energy and the
photon energy, both measured in units of Z2Ry. Figure 5.17 shows this
domain. The region of applicability of the classical Kramer's formula is
indicated by K. No free-free emission can occur for frequencies above
the photon limit (ho = \mv\\ which appears as the diagonal right-
hand boundary. Above the line mv\/2Z2Ry = 1 the classical coefficient
is inapplicable and a proper quantum-mechanical treatment is required.

A full nonrelativistic quantum analysis has been performed by Som-
merfeld (1939), who calculated the transition probabilities between initial
and final velocities v\,V2 and the corresponding "quantum numbers"
rju^ii, to obtain the emission coefficient for photons of energy
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hco = \m(v\ - v\) = Z2Ry(rjY2 - nf). (5.3.31)

His result, in terms of a Gaunt factor, is

G = [ e x p ^ O - m - exp(-2,,2)] ^ ( l f (^1^2, l;x)|2} ,
(5.3.32)

where F is the (ordinary) hypergeometric function and x = —^r\\r\il{r\\  —
rj2)2. Again, despite its closed analytic form, the presence of the hyper-
geometric function makes this formula difficult to use.

A useful approximation may be obtained very simply by a semiclassical
argument as follows. In the classical formula for straight-line collisions
the logarithm ln(/?max/bmin) allows the minimum impact parameter to
be ^90. However, quantum limitations indicate that the classical formula
for dW/dv can apply only down to an impact parameter ~ /c/j"1. If we
replace bm{n with this value, the logarithm becomes \n(2mvj/hco). (An
additional factor 2 in the argument is inserted to give agreement with
other derivations.) Actually it may be more appropriate to use the mean
velocity \(v\ + t^) (although the difference will be small), in which case

V3 l

(5.3.33)

This result may also be obtained as the first Born approximation of
the quantum-mechanical scattering treatment (Heitler, 1944) and so is
usually called the Born approximation. A modified form, due to Elwert
(1939), with wider applicability is

V3f/2[ lexp(27nn)] ,
tr = — —  —  ln

[1 ( 2 ) ]

ln
n 7̂1 [1 —  exp(—27TI/2)]  \ri2-m

called the Elwert or Born-Elwert expression. All these formulas are valid
in the region \mv\ > h<x>,Z2Ry although the Elwert form provides good
accuracy up to frequencies close to ^mv\/h. The regions B and E on
Fig. 5.17 indicate where the Born and Elwert formulas are accurate
to 1%. In the region R relativistic corrections become important.

Numerical values of the exact Gaunt factor are indicated in Fig. 5.18,
which is a contour plot from which the Gaunt factor may conveniently
be read.
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Fig. 5.18. Contour plot of the Gaunt factor [after Brussard and van de Hulst
(1962)].

5.3.3 Integration over velocities
The radiation per unit volume per unit frequency observed from

a plasma with electron distribution function f(\) must be calculated by
integrating the power per electron over the distribution

dP

dv
(5.3.35)

Assuming / to be isotropic we can write this in terms of the emissivity
j(v) (power per unit solid angle per unit frequency per unit volume):

v,v)A 2 , _
-4nvzfdv,

where
dP
~dv

Zze2e6

(5.3.36)

(5.3.37)
(47T£0)3

is a coefficient independent of velocity.
For a plasma in thermal equilibrium at temperature T9f is Maxwellian

and the integral may be written
1/2

T

2m\ 1/2 ^dE'

where we have put E = ^
for E < hv. The quantity

= E' + hv and recognized that G(v,£) = 0
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— -  Low-frequency Kramers

- - - -Low-frequency Born
—Born

Fig. 5.19. Maxwell-averaged Gaunt factor. The solid line gives the exact (non-
relativistic) value. Other approximations are also shown [after Shkarofsky et al.
(1966)].

(5.3.39)

is then the Maxwell-averaged Gaunt factor, written in lowercase to
indicate that the factor Q~hvlT has been taken out of the G integral. The
spectral power emitted into An steradians per unit frequency is then

4nj(v) = ne
32TT 2m \ 1/2

(5.3.40)

Various approximations to g can be obtained from the approximate
expressions for G, which are applicable under various conditions of tem-
perature and frequency. Rather than derive them one by one we shall
summarize the most important results by Fig. 5.19, which shows as
solid lines the exact (nonrelativistic) Maxwell-averaged Gaunt factor as
a function of hv/T for various values of T/Z2Ry calculated numeri-
cally by Karzas and Latter (1961). Also shown are various broken lines
corresponding to the following:

(a) Low-frequency semiclassical (Kramers) approximation

2T\ 3 / 2 2m (4nso\
Cm J C&> \ Z e 2 J (5.3.41)

valid at low frequency for T <€.Z2Ry.
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(b) Born approximation, valid for T >• Z2Ry,

[see Shkarofsky et a\. (1966)], where Ko is the modified Hankel
function. This reduces at low frequency to:

(c) Low-frequency Born approximation

= -^-ln
£hv

(5.3.43)

Perhaps the most important thing to notice about these results is that for
a very wide range of temperatures the Gaunt factor lies between about
0.3 and 2 for 0.1 < hv/T < 10. The result is that, in this frequency range,
virtually all the temperature and frequency dependence is contained in
the T~1/2exp(—hv/T) factor of Eq. (5.3.40), compared to which g is
almost unity.

5.3.4 Recombination radiation contribution
Before going further we must discuss the contribution that arises

from free-bound transitions, since under some circumstances these can
significantly change the radiation intensity emitted.

In his (1923) paper, Kramers' main concern was actually not to cal-
culate bremsstrahlung but to estimate the cross section for absorption of
electromagnetic radiation by bound-free electron transitions (the inverse
of recombination). In the absence of a proper quantum theory at that
time, his method was to estimate the free-bound transition probability
from the correspondence principle by comparison with the classical for-
mula for radiation by an electron in a hyperbolic orbit, which we have
previously discussed. By this means one arrives at a semiclassical estimate
of recombination radiation. More complete quantum treatments usually
express their results, just as for free-free transitions, as a Gaunt factor
times Kramers' result.

The semiclassical approach is as follows. Consider a collision at velocity
v\ and impact parameter b <C b^\ that is, a parabolic collision. The
spectral energy density is dW(v,b)/dv as in Fig. 5.15. Now for photon
energy hv < ^mv2, the final state of the electron is free so we expect
the classical formula to hold (approximately). On the other hand if
hv > \mv2 then the final electron state is bound and must take up a
discrete spectrum of energies:

2eA 1 Z 2
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Fig. 5.20. Schematic illustration of the application of the correspondence princi-
ple to estimate recombination.

where n is the principal quantum number. The radiation spectrum thus
consists of discrete lines at

1 2 ZR
2 n1 (5.3.45)

The correspondence principle indicates that we should assign the clas-
sical power to these lines instead of to the continuum. This process is
illustrated in Fig. 5.20. The energy to be put into the nth line is that in
the frequency range

1 Z XVy

~
1
2

Z I\V

illustrated by the numbered (shaded) regions, so that

A 2Z2Ry

and the energy in the nth line is

•(M)Avn,
dv

(5.3.46)

(5.3.47)

(5.3.48)

where dW/dv is the classical value. Note that this process has the effect
of terminating the power spectrum at energy Ry/(\)2, so preventing an
ultraviolet catastrophe.

The integral over impact parameters is now performed as before. This
is unaffected by Avn and so immediately we have the total power in
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the nth recombination line per electron of velocity v in a plasma of ion
density ni as

dP_
n~ ~dv n n L(4^o)3

The Gaunt factor Gn we shall expect to be close to 1, provided \mv2 <
Z2Ry.

To calculate the recombination radiation from an electron distribution
f(v) as a function of v for level n, no integral is required; we simply put
v = [2(hv-Z2Ry/n2)/m]V2 and then

4njn{v) = Pn4nvzf(v) = Pn4nvf(v)-. (5.3.50)
m

For a Maxwellian distribution this may be written

2m\l/2

x e - ^ 7

This formula is identical to the bremsstrahlung equation (5.3.40), except
for the term in square brackets that replaces g, but it holds only for
hv > Z2Ry/n2; otherwise, jn is zero. No recombination occurs with fre-
quency less than Z2Ry/n2h. Quantum-mechanical calculations (Karzas
and Latter, 1961) indicate that the Gaunt factors Gn are indeed within
20% of 1 for hv < 10Z2Ry. At higher frequency they decrease approxi-
mately logarithmically.

The relative importance of recombination radiation is determined by

( , 3 . 5 2 |

At low frequencies hv <C Z2Ry, only very high n states contribute,
n2 > Z2Ry/hv. In view of the n~3 dependence, it is clear that recom-
bination rapidly becomes negligible in this limit. On the other hand,
when hv > Z2Ry all ns can contribute and, for Z2Ry > T, the recom-
bination will dominate. If Z2Ry <C T, recombination is negligible for all
frequencies.

As an example, Fig. 5.21 shows the theoretical emission spectrum of
a Maxwellian plasma in which T = Z2Ry. Significant steps occur at the
so-called recombination edges hv = Z2Ry/n2, where the next level begins
to participate.

In calculating radiation from electrons colliding with incompletely
ionized species, such as high-Z ions with electrons still bound to the
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Fig. 5.21. Emissivity of a plasma in which Te = Z2Ry, illustrating the addition
of recombination to the free emission spectrum [after Brussard and van de Hulst
(1962)].

nucleus, the usual approach is to assume that for free-free transitions and
free-bound transitions, except to the lowest electron shell, the previous
treatment is adequate using for Z the ionic charge rather than the
nuclear charge. In other words, perfect screening of the nucleus by the
bound electrons is assumed. However, this assumption will be valid
only for photon (and hence electron) energies that are not much larger
than the ionization potential. For the lowest unfilled shell we modify
the recombination formula, recognizing that if this shell contains some
electrons so that only £ holes are available instead of the usual In2,
then the recombination radiation is less by a factor £/2n2. Also, it
is usual to use the exact value %t of the ionization potential of the
recombined ion rather than the screened hydrogenic formula Z2Ry/n2

for this level.
The total continuum radiation from collisions with such ions is then

[cf. von Goeler (1978)]

= nen{
8TT (2m

nf

1/2

(5.3.53)

the first term being the free-free contribution, the second recombination
to the lowest unfilled shell (n), and the third to all other shells. It is often
adequate to take Gn = 1 for hv > Z2Ry/n2, and, of course, Gn = 0 for
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hv < Z2Ry/n2. Evaluating the fundamental constants gives

T l/2

j(co) = 5.03 x 1 0 V " i Z (

GO 7 2 D o

^ ^ v2T v
v=n+l

(5.3.54)

Wm~3 sr"1 Hz"1.

5.3.5 Temperature measurement
Bremsstrahlung can be emitted over an exceptionally wide spec-

tral range, from the plasma frequency cop, usually in the microwave
region, right up to the frequency whose energy hv is of order the electron
temperature or more, usually in the x-ray region. There are several possi-
ble uses of the emission for diagnostic purposes, using different spectral
regions.

For hv > T, as we have seen, the emission from both free-free and
free-bound transitions has a strong (exponential) dependence upon the
temperature. In this frequency range, the main diagnostic use of the
emission is as a measurement of electron temperature.

Figure 5.22 shows a spectrum in the region 1-6 keV photon energy
obtained from the Alcator tokamak. Only the relative spectral intensity
is plotted (on a log scale) because the great advantage of this method
is that it requires only the gradient of the spectrum, not its absolute
intensity, to give the electron temperature. The instrument used to obtain
this spectrum was an x-ray pulse height analyzer, which is simply a solid
state detector in which each photon releases a charge pulse proportional
to its energy. Pulses are then electronically sorted by size to provide the
spectrum.

One can see that the spectrum falls off rapidly with photon energy as
expected. Below ^2.5 keV a reasonably straight line is obtained on the
log-linear plot. A line is fitted to these points (whose slight curvature
is designed to account for the expected variation of Te along the line
of sight) representing the relative spectral shape for a plasma electron
temperature of 900 eV. This corresponds to an exponential decay of
intensity with characteristic (e"1) spectral width 900 eV. At about 2.5-
3 keV a sharp rise occurs in the spectrum. This is due to a combination
of line (i.e., bound-bound) and recombination radiation from impurities
in the plasma. The transitions involved are to the L shell of molybdenum
and K shell of chlorine, both of which species are present as highly
ionized impurities in the plasma. The feature is somewhat blurred by the
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Fig. 5.22. Typical emission spectrum from a tokamak plasma, also showing the
effects of impurities [after Rice et al. (1982)].

presence of different ionization states that have different characteristic
energies. Above this feature, from ~3-6 keV, the spectrum again shows
the exponential decay anticipated but now at a higher absolute level. This
may be in part because of the additional recombination contribution,
although a nonthermal electron component may also be present.

It is clear from such a spectrum that, even for a thermal plasma,
considerable care must be exercised in estimating the electron temperature
from the x-ray bremsstrahlung spectrum. If, for example, less spectral
resolution were available, say just two broad windows at 1.5 and 2.7 keV,
then an estimate of Te from the ratio of the intensities there would be
completely incorrect if a smooth exponential decay were assumed. It is
generally required to have a fairly detailed spectrum such as that shown
before any confidence can be gained that the measurement is not being
distorted by unknown recombination edges and associated line radiation.

The continuum observed in such a spectrum, even below 2.5 keV, is
mostly radiation, free-free and free-bound, arising from impurities such
as oxygen and carbon in the (hydrogen) plasma. The reason for this is
the dominance of the factor Z 2 in the bremsstrahlung coefficient and
also the importance of the factor cxp(Z2Ry/T) in recombination for any
ion species in which Z2Ry ~ T. These tend to cause the radiation from
impurities to exceed that from hydrogen for all but the cleanest plasmas.
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Fortunately, since the exponential dependence on hco is the same in all
cases, this does not affect the logarithmic slope of the spectrum from
which the temperature is deduced.

5.3.6 Multiple species: Zeff measurement
Consider the practical case in which there are many different

ion species i, of charge Z;, in the plasma. The continuum radiation is
then a sum of contributions of the form of Eq. (5.3.53) over all different
species. When recombination is important, no general simplification of
the radiation intensity is used, although quite often the extent to which
the continuum exceeds hydrogen bremsstrahlung, at the particular tem-
perature and electron density, is denoted by a single factor, the x-ray
enhancement factor.

When recombination is negligible it is easy to see that, provided the
Gaunt factor can be taken as equal for all species, the emission is
proportional to

Zt^nlZa. (5.3.55)

Zeff is then equal to the factor by which the bremsstrahlung exceeds that
of hydrogen (at electron density ne) and it is also given by the simple
formula

Y/Y^Zi, (5.3.56)

where quasineutrality has been invoked in writing ne = J2 ni^i- The
quantity Zeff is, therefore, a kind of mean ion charge in the plasma,
weighted for each species by the proportion of electrons arising from
that species. Clearly for a pure plasma of ionic charge Z, Zeff = Z, while
for a hydrogenic plasma (say) with impurities, Zeff measures the degree
of impurity in the plasma, an important quantity for many purposes.

As indicated by Eq. (5.3.52), a sufficient condition for recombination
to be negligible is hv <€,Z2Ry. For singly ionized species this requirement
is hv <C 13.6 eV, which is satisfied for visible radiation and longer
wavelengths. Absolute calibration of the detector and spectrometer is
necessary in order to deduce Zeff from the theoretical emission coefficients
given earlier. This is usually most easily accomplished in the visible,
although measurements can also be made in the near and far infrared. In
addition, independent estimates of the electron temperature and density
are necessary in order to determine the factor n2

eT~1^2 appearing in
the bremsstrahlung coefficient. The exponential dependence exp(—hv/T)
may also be important, but for the purposes of Zeff measurement it is
usually best to choose hv < T, so that this factor is unity.
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Fig. 5.23. Spectrum in the wavelength region suitable for Zeff determination
from visible bremsstrahlung [Foord et al. (1982)].

Of course, if it is established that Zeff = 1, one may use the brems-
strahlung to measure ?i2T~1//2 and hence ne (say) if T(e) is known. How-
ever, it is rarely, a priori, a reasonable assumption for hot plasmas that
Zeff = 1, so this approach is of less universal validity.

The most important precaution in performing the Zeff measurement
in the visible is to ensure that the intensity is measured in a spectral
region free from strong impurity line radiation. This is often a difficult
requirement to meet. Figure 5.23 illustrates a spectrum (from the Alcator
tokamak) in a wavelength region of interest for bremsstrahlung purposes.
As indicated, there are considerable numbers of lines in the region. A
3.0 nm wide section is used at 536.0 nm for the continuum measurement,
the line contribution being small enough there for these plasmas. In
general a spectral survey such as this is required for any specific plasma
to establish the freedom from line emission of a wavelength region of
interest.

5.3.7 Absorption: blackbody level bremsstrahlung
For a thermal plasma, Kirchoff's law relates the absorption

of radiation by the inverse of bremsstrahlung (collisional damping) to
bremsstrahlung emission,

a(v) - j(v)/B(v\ (5.3.57)

where the blackbody intensity is given by Eq. (5.2.36) or, in the Rayleigh-
Jeans limit, by Eq. (5.2.37). The v2 dependence of B(v) for hv <C T causes
a to increase as v decreases, so that absorption is more important at long
wavelengths.
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Fig. 5.24. The distance into which one can "see" at a certain frequency corre-
sponds roughly to an optical depth of unity. This distance increases with co for
bremsstrahlung.

There is, of course, a low-frequency limit to the applicability of the
bremsstrahlung emissivity we have calculated. This may generally be
taken as the plasma frequency CDP, below which waves do not propagate
(in an unmagnetized plasma). For large dense plasmas, however, as the
frequency is lowered, the optical depth due to bremsstrahlung processes
may exceed one before the cutoff frequency is reached. In this case, it
becomes possible to deduce the electron temperature from the blackbody
emission intensity observed.

The principle is the same as with cyclotron radiation except that for
bremsstrahlung there is no localized resonant interaction with the plasma.
This is a considerable handicap since it means that in an inhomogeneous
plasma the radiation temperature observed is that characteristic of the
region of plasma that the wave traverses during its last optical depth
of about unity before leaving the plasma. In other words, if the plasma
has a total optical depth much greater than one we shall only "see"
the edge of the plasma up to an optical depth ~ 1, not right into the
plasma center (see Fig. 5.24). The radiation temperature measured will
then be characteristic of the edge electron temperature. This point is
rather familiar in astrophysics. When viewing a star, for example, we see
radiation characteristic of its outer regions, the photosphere, and cannot
directly observe the core temperature.

Of course, the advantage of viewing an optically thick plasma is that
the radiation is then independent of ne and Zeff so that the interpretation
is simpler. If one can choose a frequency such that the total optical depth
is not much greater than one, then the plasma center can be probed.
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Unfortunately, this choice does require knowledge of the emissivity and
hence ne and Zeff. Thus a substantial part of the potential advantage is
lost. For these reasons, optically thick bremsstrahlung emission tends not
to provide very reliable temperature measurements for inhomogeneous
plasmas.

In very high-density plasmas, such as occur in inertial confinement fu-
sion or other laser-produced plasma experiments, it is sometimes fruitful
to use inverse-bremsstrahlung absorption as a measurement of electron
density. In such experiments the plasma to be diagnosed is generally
"back-lighted" by some (x-ray) radiation source, itself often a laser-
produced plasma. Viewing the plasma against this back-light one then
observes absorption of the back-light corresponding to the form of the
plasma under diagnosis. Obviously, since the source of the radiation is
rather uncertain and the absorption is a function of Te and Z as well as
ne, such measurements tend to be somewhat qualitative.

5.3.8 x-ray imaging
The spectral region in which the greatest bremsstrahlung power

is emitted is in the vicinity of photon energy equal to the electron
temperature. For much smaller energy, the frequency v and hence the
frequency width Av are smaller and so, despite significant power per
unit frequency, less total power is available. On the other hand, for
hv > Te the spectral intensity falls off exponentially. The radiation in
this optimum spectral range hv ~ Te, which for hot plasmas falls in
the soft x-ray region, tends to be sufficient and convenient for rapid
time-resolved observations of its evolution to be made. Practically, this
is facilitated by the availability of sensitive solid state detectors, usually
semiconductor photodiodes of various configurations, in which charge is
liberated and collected, proportional to the total energy incident upon the
detector (of photons above a certain energy). Thus, simple and convenient
technology exists to view a plasma in the soft x-ray region.

A further important factor governing the usefulness of such an ap-
proach is that for hv > Te the emission is a strong function of electron
temperature as well as density. So, by employing a foil filter in front of
the detector, chosen to pass photons above an energy of the order of Te
and to absorb (or reflect) them below that energy, the signal observed can
be made a sensitive monitor of temperature. Naturally, the dependence
of the emissivity on n\ and also Zeff remains; also recombination is often
appreciable, if not dominant, so that it is very difficult to make any
absolute deductions about Te and ne from the intensity observed. Instead
the usual interest is to obtain relative variations of the complicated com-
bination of plasma parameters that combine to determine the emissivity
as a function of time and space. This enables one to see qualitatively,
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Fig. 5.25. Schematic illustration of the type of pinhole camera system used for
x-ray imaging.

and sometimes quantitatively, the evolution of the shape of the plasma
as a result of instabilities or other perturbations.

The approach typically adopted is illustrated in Fig. 5.25. The plasma is
viewed, using an array of detectors, along a number of collimated chords.
Each detector thus measures the mean emissivity along its chord. Ideally
one would then want to deduce the entire spatial dependence of the
emissivity of the plasma by an inversion algorithm from the chordal mea-
surements. Naturally, even when there is a symmetry to the plasma that
allows one to concentrate on a single two-dimensional slice in attempting
this reconstruction, the degree of spatial resolution achievable depends
upon the number of views available. Moreover, under most conditions
the reconstruction is not unique, in that a given chordal measurement set
may arise from many different possible spatial configurations.

The problems involved in this reconstruction are essentially identical
to those arising in computer aided tomography (Cormack, 1964) (the
medical CAT scanner), although the case we are considering is emission
rather than absorption of x-rays. The reconstruction, therefore, draws
upon the same mathematical techniques, although sometimes the plasma
environment is less convenient and controllable than the patient in med-
ical diagnostics. These inversion problems also arise in other plasma
diagnostics that measure chordal averages, such as interferometry or any
optically thin radiation. Indeed, these other diagnostic techniques can be
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used to the same ends as the soft x-ray bremsstrahlung when sufficient
chord measurements are available.

The general principle of the approach to the inversion problem is to
assume that the emissivity can be expanded as the weighted sum of a
finite set of known functions of space. For example, one possible choice
would be to express the emissivity as a set of pixels covering some mesh.
Each pixel then corresponds to one of the functions

f i ( x , y ) = 1, x t < x < xt+uyt < y < y i + u
= 0, otherwise. (5.3.58)

The problem then is to obtain the weight coefficients of the functions
that most satisfactorily reproduce the chordal observations. The mean-
ing of "most satisfactorily" must be incorporated into the algorithm
for determining the coefficients so as to produce a single answer even
though many (or none) may be fully consistent with the data. Clearly,
then, one cannot meaningfully determine more coefficients than one has
observations. In general it is necessary, in fact, to employ significantly
fewer coefficients than independent observations, and then by some op-
timization procedure such as least squares, singular value decomposition
[see, e.g., Press et al. (1989)], or maximum entropy [see, e.g., Gull and
Daniell (1978)] to construct a fit to the data.

The quality of the results obtained will be strongly influenced by
the basis function set adopted. The pixel example is actually a rather
unsatisfactory choice for many situations because it employs none of the
additional information that one has a priori, for example, that profiles
tend to be smooth or that there are various approximate symmetries.

The obvious choice for an approximately cylindrical plasma is to take
the azimuthal dependence to be represented by a sum of Fourier modes:
cos mO, sin m8. The Fourier sum must be truncated at an appropriate m
number. For example, if m = 0 alone is allowed, the problem becomes
a simple Abel inversion (see Section 4.4), that is, the plasma is assumed
cylindrically symmetric.

In general, to proceed to higher m expansions requires more indepen-
dent views of the plasma. This may be seen easily when we consider
the plasma views to be sets of parallel chords. Figure 5.26 illustrates
the point. If we have only one set of parallel chords at angle 6 = 0
[Fig. 5.26(a)], we can obtain a unique expansion of the form

/o(r) + /i(r)sin0, (5.3.59)

but cannot observe a cos 6 component nor distinguish a sin 26 component
from sin 6. In effect, this single angle allows us to resolve only into odd
and even components, which might be correctly expressed as m = 0
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Fig. 5.26. (a) Parallel views in one direction allow one to distinguish only even and
odd modes, (b) Additional directions of view provide further mode resolution.

and m = 1 (sine), but might not. Figure 5.26(b), in which two views are
available, enables an expansion of the form

fo(r) + fUr) sin 9 + flc(r) cos 9 + /2c(r) cos 29 (5.3.60)

to be determined uniquely.
In some situations the plasma is cooperative and rotates poloidally at

what can be taken as a uniform rate. This behavior provides a single
chordal array with, effectively, a large number of angular views of the
plasma (just as does a rotation of the patient in a medical scanner). Then
this Fourier expansion can be taken to high m numbers and works very
successfully. In cases where the plasma cannot be taken as uniformly
rotating, either a priori assumptions about the symmetry of the plasma
must be invoked or the patience and funds of the experimenter tested by
the number of independent simultaneous views he provides.

The deduction of the radial dependence of each Fourier mode involves
a generalized form of the Abel integral equation. Because of its sensitivity
to errors in the measurement, this inversion too is best solved by assuming
an expansion in terms of a sum of special functions. The functions usually
adopted, for the particular convenience of their inversion, are Zernicke
polynomials.

An example of the type of reconstruction of plasma shape that can be
achieved is given in Fig. 5.27. This is a contour plot of the x-ray emissivity.
Under most conditions, because transport of energy and particles along
the magnetic field is extremely rapid, one expects Te, ne, Zeff, and, hence,



210 5 Electromagnetic emission by free electrons

SOFT X-RflY EMISSIVITY

£-4.

-4 . 0. 4.
RRDIUS (CMS

Fig. 5.27. Example of the plasma cross section shape deduced from x-ray to-
mography [Granetz and Camacho (1985)].

the emissivity to be constant on a magnetic surface. Therefore, contours
of emissivity should coincide with magnetic surfaces and a plot such as
Fig. 5.27 can be considered as approximating a magnetic surface plot.

5.3.9 Nonthermal emission
When the electron distribution is not Maxwellian, bremsstrahlung

emission can be very useful in diagnosing this fact. The situation of most
frequent interest is one in which there is some high-energy tail on the
distribution function. This shows up, naturally enough, as a tail on the
bremsstrahlung spectrum. Thus, qualitatively at least, the bremsstrahlung
immediately reveals the presence of such a tail. Bremsstrahlung mea-
surements of x-ray continuum have long been used for this purpose.
Figure 5.28 shows an example of a long high-energy tail on the x-ray
spectrum from a nonthermal tokamak plasma.

To interpret quantitatively an observed spectrum such as Fig. 5.28 in
terms of a distribution function, one immediately encounters a serious
deconvolution problem, in that there is no one-to-one correspondence
between photon energy and electron energy. In fact, an electron of velocity
v\ gives rise to a broad emission spectrum extending from v = 0 to
v = mv\/2h. The frequency dependence is contained in the Gaunt factor
G(v,i?i) (we ignore recombination in this section since we are mostly
interested in high-energy electrons). As a reasonable approximation we
may take G = 1 for hv < \mv\ and G = 0 for hv > ^mvj. The Elwert
expression [Eq. (5.3.34)] gives a more accurate form up to electron energy
~ 100 keV as Fig. 5.29 illustrates. For higher energies it underestimates
the emission by a factor up to ~ 2 (Koch and Motz, 1959). In general,
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Fig. 5.28. An x-ray spectrum with a high-energy tail caused by radio frequency
current drive [after Texter et al. (1986)].

though, an electron emits a whole spectrum of photon energies up to its
kinetic energy.

As a result, the distribution function is related to the emissivity spec-
trum by an integral equation, which in an isotropic case is just Eq. (5.3.36);
that is,

4 T T ; v = = /
m2c3 Jo

G(CO,V)4nvlf{v)dv. (5.3.61)
(47i80)3 3>/3^2

This equation may, in principle, be solved for any functional form for G.
It is particularly simple when the G = 1 approximation is adopted; then

i-i

f(v) = ~
Z2e2e6 m dj

"ft dv
(5.3.62)

co—mv 2/2h

(see Exercise 5.8). Using a more realistic expression for G leads to a much
more complicated inversion integral, which requires a numerical solution.

Although Eq. (5.3.62) may appear to be a relatively tractable solution
to the deconvolution problem, it is valid only for isotropic distribu-
tion functions. Unfortunately, most nonthermal distributions are highly
anisotropic. They therefore demand consideration not only of the energy
distribution of the electrons, but also the pitch angle distribution of the
nonthermal components and the resulting anisotropy in the radiation.

The angular distribution of bremsstrahlung from a single electron
may be understood qualitatively as arising from a dipole distribution of
radiation, proportional to the square of the sine of the angle between the
direction of emission and the dipole direction v. Roughly speaking, for
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Fig. 5.29. Bremsstrahlung spectrum at high energy (50 keV) where relativistic
effects are important. The Elwert expression reasonably reproduces the experi-
mental results (points) [after Koch and Motz (1959)].

photon energy much less than the electron kinetic energy, the direction
of v is arbitrary so that the emission is approximately isotropic. However,
when hv « \mv\ the electron is decelerated almost to rest; so v is mostly
in the direction of vi. Thus photons near the high-frequency limit have a
dipole distribution about the original velocity direction.

The preceding remarks refer to the angular distribution in the rest
frame of the electron, or rather, ignoring the relativistic aberration [see
any text on special relativity, e.g., Rindler (I960)]. In fact, however, this
"headlight effect" in which emission is preferentially beamed in the direc-
tion of electron motion is usually the dominant effect upon the angular
distribution. The relativistic aberration concentrates the radiation in the
lab frame into a forward cone of half angle approximately skT^l /y) for
v\ ~ c, and at more modest energies (< 100 keV) a moderate enhance-
ment of the emission occurs in the forward direction. This enhancement
is sufficient in some cases to allow the anisotropy of the electron dis-
tribution to be investigated. Efforts in this respect are reviewed by von
Goeler et al (1982).

Before leaving the topic of nonthermal bremsstrahlung, it should be
noted that a major source of emission caused by high-energy electron
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Fig. 5.30. The thick-target bremsstrahlung spectrum is composed of the sum of
all the instantaneous (thin-target) spectra of the electron as it slows to rest in
the target.

tails is bremsstrahlung not from collisions with the plasma ions but from
collisions with solid structures at the plasma edge. Such emission, often
loosely referred to as hard x-ray radiation, is most properly called thick-
target bremsstrahlung ("hard" and "soft" strictly refer to the energy
- high or low - of the x-ray photons). This designation distinguishes
it from our previous discussions by its most important characteristic,
namely that electrons colliding with thick targets are slowed down by a
series of collisions until they come to rest. During this process they may,
at any stage, emit bremsstrahlung. The radiation spectrum is, therefore,
characteristic not simply of the incoming electron energy, but of the
average bremsstrahlung spectrum for all electron energies between the
incident energy and zero. In other words, we may estimate the thick-
target bremsstrahlung spectrum by averaging the previous (thin-target)
spectrum over electron energies.

In the approximation where we take G = 1 (for hv < \mv\) this average
is very simple. It leads to a spectrum proportional to (^mv\ — hv), that
is, a triangular shape as illustrated in Fig. 5.30.

Usually the thick-target bremsstrahlung is sufficiently complicated by
these effects and the absorption of the radiation in the target itself
that it gives only a rather rough indication of the electron tail energies.
Nevertheless, because of its great intensity and considerable penetration
power (since it consists of high-energy photons), the hard x-ray emission
from thick-target bremsstrahlung is usually very easy to detect and gives
a simple indicator of the presence of nonthermal electrons. The fact
that it arises from electrons leaving the plasma edge, rather than merely
existing within the plasma, may sometimes be turned to advantage in
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indicating periods of rapid particle transport due, for example, to plasma
instabilities.

Further reading
Radiation from an accelerated electron in free space is discussed

in most books on electrodynamics, for example:
Jackson, J. D. (1998). Classical Electrodynamics. New York: Wiley, 3rd edition.
Clemmow, P. C. and Dougherty, J. P. (1969). Electrodynamics of Particles and Plasmas.

Reading, Mass.: Addison-Wesley.

Cyclotron radiation is discussed in these books and also, in the manner
adopted in this chapter, by:
Bekefi, G. (1966). Radiation Processes in Plasmas. New York: Wiley.
Boyd, T. J. M. and Sanderson, J. J. (1969). Plasma Dynamics. London: Nelson.

Bremsstrahlung is also discussed in some detail by Bekefi. Reviews of
the diagnostic applications of free radiation in fusion research plasmas
may be found in:
von Goeler, S. (1978). In Diagnostics for Fusion Experiments, Proc. Int. School of Plasma

Physics, Varenna, 1978. E. Sindoni and C. Wharton, eds. London: Pergamon.
von Goeler, S., et al. (1982). In Diagnostics for Fusion Reactor Conditions, Proc. Int.

School of Plasma Physics, Varenna, 1982. P. E. Stott et al, eds. Brussels: Commission
of E.E.C.

Costley, A. E. (1982). In Diagnostics for Fusion Reactor Conditions, Proc. Int. School of
Plasma Physics, Varenna, 1982. P. E. Stott et al, eds. Brussels: Commission of E.E.C.

These reviews concentrate more on practical techniques of measure-
ment.

Exercises
5.1 Show by integration over fi and pitch angle that the shape func-

tion for cyclotron emission from a nonrelativistic (T < mec2) Maxwellian
distribution at perpendicular propagation (6 = n/2) for the mth harmonic
is given by Eq. (5.2.30).

5.2 When a blackbody emits thermal radiation in a medium of
isotropic refractive index N ^ 1 the Rayleigh-Jeans formula is modi-
fied to give the intensity within the medium as

T t ^
IN(co) = r

Nevertheless, if the blackbody is observed from the vacuum (i.e., from an
observation point outside the medium), the intensity observed must be
the usual Rayleigh-Jeans formula (without the N). Otherwise, the second
law of thermodynamics would be violated. Show quantitatively how this
paradox is resolved.
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5.3 Verify Eq. (5.2.44).

5.4 A tokamak with major radius R = 1 m and minor radius a =
0.2 m has magnetic field 5 T on axis, and temperature and density profiles
that are parabolic [oc (1 —  r2/a2)], with central temperature 1 keV and
central density 1020 m~3.

(a) Calculate the optical depth for a frequency corresponding to the
second cyclotron harmonic on axis, in the tenuous plasma approximation.

(b) Do the same for the third harmonic.
(c) If one uses the second harmonic for temperature profile measure-

ments, what is the maximum minor radius (r) at which the corresponding
radiation can be assumed to be blackbody?

(d) What is the answer to (c) if the central density is 1019 m~3 (but
other parameters the same)?

(e) Consider now what happens if the tokamak plasma is surrounded
by a wall of average reflectivity 90%. Roughly what difference does this
make to your answers (c) and (d)?

5.5 What will be the optical depth (in the tenuous plasma approxi-
mation) of the central cell of a tandem-mirror plasma of diameter D and
uniform density temperature and magnetic field ne, T, B as a function
of frequency near the second harmonic, when the angle of propagation
to the magnetic field is 9 and cos 9 >• (T/mc2)1/2? Calculate this numer-
ically for D = 0.5 m, ne = 1018 m~3, T = 200 eV, B = 1 T, 9 = 45°, and
co = 2Q (exactly).

5.6 A certain reversed field pinch plasma has central magnetic field
0.3 T, density 2 x 1019 mr3, and temperature 200 eV. Discuss (with
numbers) the use of cyclotron emission as a diagnostic for this plasma.

5.7 For the case b <C 9̂0 show that if hv < \nw\ then mv\b/h =
mvoro/h >> 1; that is, the photon size is more important than the de
Broglie wavelength.

5.8 Show that Eq. (5.3.62) is the correct inversion of Eq. (5.3.61).

5.9 Calculate the optical depth due to bremsstrahlung processes of a
uniform hydrogen plasma 1 m across whose electron density is 1020 m~3

and electron temperature is 10 eV:
(a) At frequency v = 200 GHz,
(b) At frequency corresponding to wavelength X = 5000 A.

5.10 Oxygen is puffed into a plasma that is initially pure hydrogen.
If the electron density doubles and the oxygen atoms can be assumed to
be fully stripped (i.e., no bound electrons remain), then what is the final
Zeff of the plasma if the particles are perfectly confined (no recycling) ?
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5.11 A pure hydrogen plasma of uniform electron temperature and
density (Te = 1 keV and ne = 1020 m~3) has a diameter 1 m. It is viewed
through two collimating apertures of dimension 1 mm x 1 mm a distance
1 m apart, and afterward through a filter that absorbs photons with
energy less than 1 keV but transmits those with higher energy.

(a) What is the etendue of the collimating system?
(b) What is the total bremsstrahlung radiation power passing through

both apertures?
(c) What is the total power passing through the filter?
(d) How many photons per second pass through the filter? (This

involves a troublesome integral. Use tables or else make a reasonable
approximate estimate.)

(e) If the temperature changes by a small fraction F(= ATe/Te), by
what fraction does the power passing through the filter change?

(f) If photons are all perfectly detected by the detector, what is the
standard deviation of the number of photons detected during a time tl

(g) Hence, calculate the fractional temperature resolution (i.e., what
AT /T can be detected above the photon noise) during a time interval of
1 ms.

5.12 Consider a "Z-meter" measurement of the bremsstrahlung con-
tinuum at wavelength 536 nm, in a plasma of electron temperature
approximately 1 keV, and Zeff close to unity.

(a) Estimate what fraction of the emission arises from recombination
(as opposed to free-free bremsstrahlung).

(b) Evaluate the logarithmic derivative of the emissivity with respect
to temperature: (Te/j)(dj/dTe), and identify the contributions to this
quantity from the terms T^1/2, exp(—hv/T e) and gff in Eq. (5.3.54).

(c) Hence determine the fractional error, in a determination of Zeff,
that would arise from small fractional errors /„ and fT in ne and Te
respectively.



Electromagnetic radiation from bound electrons

Atoms and ions of the working gas and trace impurities emit
radiation when transitions of electrons occur between the various energy
levels of the atomic system. The radiation is in the form of narrow
spectral lines, unlike the continuum of free-electron radiation such as
bremsstrahlung. It was, of course, the study of these spectral lines that
originally led to the formation of the quantum theory of atoms.

Because of the enormous complexity of the spectra of multielectron
atoms it would be inappropriate here to undertake an introduction to
atomic structure and spectra. Many excellent textbooks exist [e.g., Thorne
(1974) or, for a more complete treatment, Slater (1968)] that can provide
this introduction at various levels of sophistication. Instead we shall
assume that the energy level structure of any species of interest is known,
because of experimental or theoretical spectroscopic research. Then we
shall discuss those aspects of spectroscopy that more directly relate to
our main theme, plasma diagnostics. It is fairly well justified for neutral
atoms and for simpler atomic systems with only a few electrons, to assume
that spectral structure is known (speaking of the scientific enterprise as
a whole, not necessarily for the individual student!). It is not so well
justified for highly ionized heavy ions that occur in hot plasmas. The
spectra of such species are still a matter of active research; therefore, it
should not automatically be assumed that all aspects of these spectra are
fully understood. However, for those diagnostic purposes that we shall
discuss, the gaps in our knowledge are not particularly important.

As a matter of terminology, we shall talk about atoms, but mean to
also include ions that still possess bound electrons, except where a specific
distinction is necessary and noted by the qualification "neutral".

Figure 6.1 shows an example of a photographic spectral plate of line
radiation emitted by a magnetically confined hydrogen plasma. Position
on the plate corresponds to the wavelength (or equivalently frequency) of
the particular line. From the absolute wavelength and other circumstan-
tial evidence, such as knowledge of the anticipated plasma composition,
one can identify, by reference to tables of known spectral lines, the atomic
species and transition that emits an observed line. It will be noticed that
the majority of lines identified in this spectrum are not from hydrogen
atoms, but from impurities: oxygen (O), nitrogen (N), nickel (Ni), and
chromium (Cr). The ionization stage that gives rise to the line is denoted
by a roman numeral; i means neutral, n means singly ionized, and so on.
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Fig. 6.1. Spectral plate or spectrogram of line radiation from a plasma. The
wavelengths are in nanometers and the emitting species are shown for some
identified lines.

Even such a narrow spectral region as shown in Fig. 6.1 - in the
near ultraviolet - illustrates the complexity of radiation spectra. Very
rarely are such spectra fully understood in all their details. Nevertheless,
extremely valuable and often quite accurate diagnostic information can
be obtained from bound-electron radiation. To understand the methods
used, we must first discuss the way in which the radiation comes about.

6.1 Radiative transitions: the Einstein coefficients
Consider just two energy levels (i, j) of a particular atomic

species. Electrons can make three distinct types of radiative transitions
between these levels. First, an atom with the electron in the upper level,
energy Et say, can decay spontaneously to the lower level Ej with the
emission of a photon whose frequency is vtj:

hvij = Ei-Ej. (6.1.1)

The probability per unit time of this transition occurring is the spon-
taneous transition probability, denoted Atj. Second, an atom with the
electron in the lower level may absorb a photon by a transition to the
upper level. If the energy density per unit frequency of electromagnetic
radiation at the atom is p(v), then the probability of absorption per unit
time is written Bjtp(vij). Third, induced decay from Et to Ej can occur
due to the presence of the radiation. The probability of this event per
unit time is written Bijp(vtj).

The numbers A\^ Bij, Bp are called the Einstein coefficients for this
transition. They are related by certain identities that can readily be
deduced from fundamental thermodynamics as follows. Consider an
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assembly of atoms in the upper or lower energy levels of density nt and
fty, respectively, residing in complete thermal equilibrium in a cavity of
temperature T. Because of the thermal equilibrium we know immediately
that the number of atoms in any quantum state is given by the Boltzmann
distribution

(6.1.2)

and in particular,

Nt/Nj = expHE,- - Ej)/T] = exp(-/ivl7/T). (6.1.3)

Actually, the normal practice is to assume that the levels i, j consist
not of single quantum states but of a number of degenerate states. The
number of states g,- in the ith level is called the statistical weight of the
level and we can immediately generalize Eqs. (6.1.2) and (6.1.3) to

(6.1.4)
Ni/Nj = (gi/gj) exp(-fcvy/n (6.1.5)

Also, the radiation is in thermal equilibrium and so is given by the
blackbody level

p(v) = Snhv3/[Qxp(hv/T) - l]c3. (6.1.6)

Now this will be an equilibrium situation only if the total rate at which
atoms make transitions from i to j is equal to the rate at which they go
from j to i. This is known as the principle of detailed balance and leads
immediately to

(Aij + Bijp)Ni = BppNj. (6.1.7)

Rewriting this as
A.. A..

P= (N/NfiBB = (g/gdexpihv/TlBB/ ( ' " '

we can see that the principle of detailed balance will be satisfied by the
blackbody formula for p at all temperatures only if

j jrij (6.1.9)

and

(6.1.10)

Of course, since the coefficients are simply properties of the atom, these
final relationships hold regardless of the actual situation of the atom,
thermal equilibrium or not.
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It is possible to obtain a general expression for the induced transition
probability directly from a simple perturbation analysis of the system
[e.g., Dirac (1958), Chap. 7]. For electric dipole transitions between single
quantum states this is

where Sy, which is often called in spectroscopy the line strength, is the
square magnitude of the matrix element of the atomic dipole moment:

(6.1.12)

Here \pt refers to the wave function of the ith state and, strictly, for
multiple electron atoms the integral should be summed over the position
vectors r of all participating electrons. For levels consisting of degenerate
states denoted by m*, m; this must be generalized to

R - 1 8 7 r 3 c
Dy = r jjji,

gl UG° (6.1.13)
Sij=Y^\(Umi\B\j,mi)\2.

Another way in which transition probabilities are sometimes expressed
is in terms of the (absorption) oscillator strength fp. This is defined
as the ratio of the number of classical oscillators to the number of
lower state atoms required to give the same line-integrated absorption.
Its relationship to the Einstein coefficients is

meh4nso 47i£0 mec3 gi A , , 1 1 / n

fji = ^-VyBp = 2 2~2~ V' (6.1.14)
n e en vtj gj

The usefulness of fp is that it is dimensionless, describing just the
relative strength of the transition. For the strongest transitions its value
approaches 1. (Strictly, the / sum rule is that the sum of all oscillator
strengths of transitions from a given state is equal to the number of
participating electrons.)

The detailed values of Ay can be obtained from reference compilations
or from electronic databases such as that maintained by NIST. For
hydrogen, the transitions to the ground state, n = 1, are called the
Lyman series conventionally denoted by La, Lp, ... , and those to n = 2
are called the Balmer series (Ha, H^ ... ). Key parameters for a few of
these lines are given in Table 6.1, which ignores the fine structure. For
principal quantum numbers n and n\ an approximate formula for the
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Table 6.1. Spectral line data for hydrogen.

Line

U

L,

H«
Hy

Wavelength (nm)

121.57
102.57
97.25

656.28
486.13
434.05

Aij (108 s"1)

4.699
0.558
0.128
0.441
0.0842
0.0253

U
0.4162
0.0791
0.0290
0.641
0.119
0.044

gt

8
18
32
18
32
50

average oscillator strength between these levels for hydrogen (Bethe and
Salpeter, 1977) is

which is exact in the limit of large n, n' and accurate to better than 30%
for all n ^= n', although Table 6.1 is far more accurate for those lines it
lists.

6.2 Types of equilibria
In order to predict the radiative behavior of any atomic species

in a plasma we must know the expected population of its various possible
states. In many cases the lifetimes of the plasma or atomic species are
insufficient to guarantee that an equilibrium population has been reached.
In these cases some kind of time-dependent calculation is necessary.
However, some types of equilibria are attained in some plasmas and so
it is of interest to understand these, both for their own uses and in order
to determine whether a time-dependent calculation is necessary.

6.2.1 Thermal equilibrium
If the atoms adopt the Boltzmann distribution between all pos-

sible states and if also the radiation energy density corresponding to all
possible transitions has the blackbody level of the system temperature,
then the system is said to be in complete thermal equilibrium. Radiation
is generally rather weakly coupled to the atoms. Therefore, this state
is essentially never achieved in laboratory plasmas, though it may be
approached in stellar interiors and it is useful (as in our discussion of the
Einstein coefficients) as a theoretical construct for thought experiments.
We therefore define a less complete form of thermal equilibrium, known
as local thermal equilibrium (LTE). In this equilibrium the atoms adopt
state populations given by the Boltzmann distribution but the radiation
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is not necessarily thermal. Unfortunately, even this condition is often too
restrictive to be met by laboratory plasmas.

Before moving on to discuss the still less restrictive equilibrium models,
let us explore somewhat further the consequences of the assumption of
local or complete thermal equilibrium.

6.2.2 Saha-Boltzmann population distribution
The ionization population distribution can be considered to be

a special case of a fundamental statistical mechanics theorem, sometimes
called the "law of mass action", which governs the equilibrium densities
of reacting species; see, e.g., Reif (1965) pages 318 and 316. However, it
is instructive, and possibly more accessible, to give a direct derivation.
The only tricky part of the problem is to derive the relative number of
free electron states.

Consider a volume V of plasma. We focus on two stages of ionization
differing by one in the number of times ionized, and refer to nuclei in
those states by subscripts i and i + 1. We use j to denote either i or
i: + 1. There is a certain large number, L, say, of translational quantum
states available to the ions. The fractional occupancy of those states is
the number of particles divided by the number of states,

Pj = ^ - , (6.2.1)

where nj is the density of ions of state j and g; is the statistical weight
of that ion state, that is the number of discrete bound electron quantum
states which it includes. Because the additional mass of the electron is
negligible compared with the ion mass, the translational states available
to ions are approximately the same: L, = Lj+i.

For free electrons, the number of available quantum states in the
velocity range dv at v, corresponding to a kinetic energy \mv2, is

Le = 2 - ^ 3 4nk2 dk = 2-^ ^Anv1 dv, (6.2.2)

where 2V/(2n)3 is the density of available states in k space (allowing for
two possible spin states) and k = mv/h is the de Broglie wave number
of the electron. Also, the number of electrons in our velocity interval of
interest is, from the Maxwellian distribution,

Ke = ( ^ f ) V V e-""2T4nv2dv. (6.2.3)

Hence the fractional occupancy of free electron states is

2
e - ^ . (6.2.4)
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The fractional occupancy of the combined electron and ion states asso-
ciated with i + 1 is PePt+i, whereas the fractional occupancy of the lower
ionization state is simply p/.

Each ionized state, i + 1, has energy greater than the un-ionized state,
i, by AE = xt + ^mv2, where #, is the electron binding energy of state i.
Hence, in equilibrium, each state i + 1 has fractional occupancy smaller
by the Boltzmann factor exp(—AE/T), that  is,

Piexp(-AE/T) = pi+lPe. (6.2.5)

Substituting our previous expressions into this equation immediately
yields

neiti+i _ gi+]_

/z3 V m
(6.2.6)

This equation is a form of what is called the Saha equation and
determines the relative populations of the ionization states in thermal
equilibrium. The term in square brackets is roughly equal to the inverse
of the volume of a cube of side length equal to the thermal de Broglie
electron wavelength. It is usually much bigger than ne, that is, there
is on average much less than one electron in a de Broglie cube. One
thus finds that the exponent, %t/T, can be appreciable but still allow
a high degree of ionization (ni+i/ni). For example, for the hydrogen
ground state, nt versus the ion n,-+i, xt = 13.6 eV so at Te = 1 eV,
ni+i/rii = (4 x 1021 m~3)/ne in thermal equilibrium. Thus modest density
hydrogen plasmas (ne < 1021 m~3) are almost fully ionized at 1 eV in
local thermodynamic equilibrium.

6.2.3 Nonthermal populations
To achieve LTE generally requires high enough density for col-

lisional transitions to dominate radiative transitions between all states;
otherwise, the absence of thermal radiation will cause deviations from
the thermal populations. A rule-of-thumb condition for collisional tran-
sitions to dominate may be written (McWhirter, 1965) (see Exercises 6.1
and 6.2)

ne > 1019(T/e)1/2(AE/e)3 m~\ (6.2.7)

where T/e and AE/e are the temperature and energy level difference
ineV.

It is rare in magnetic fusion plasmas, for example, for this criterion to
be satisfied for low-lying levels, although it may be between high levels
where AE is small. Therefore, more general equilibrium models must be
used. For these, because the statistical thermodynamic arguments do not
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apply, it is necessary to use the rate coefficients for the relevant processes
in order to calculate the populations.

The electron processes of importance are generally:

1. Radiative
(a) Transitions between bound states.
(b) Free-bound transitions: recombination/photoionization.

2. Collisional
(a) Electron impact excitation/deexcitation.
(b) Impact ionization/three-body recombination.
(c) Dielectronic recombination/autoionization.

Radiative processes l(a) have been introduced in Section 6.1 and l(b),
free-bound radiation, in the chapter on radiation by free electrons. The
inverse of this recombination is photoionization.

The collisional processes 2(a) and 2(b) correspond to the radiative
ones [l(a) and l(b)] except that the transitions are induced by electron
collisions and there is no spontaneous decay. Dielectronic recombination
is a process by which an atom captures an electron into an upper energy
level while using the electron's energy loss to excite another electron
already in the atom to an upper level. Its inverse is autoionization.
Of course, these apply only to multiple-electron species, not hydrogen.
Dielectronic recombination should perhaps also be classed as radiative
since the excess energy of the atom must be removed by a radiative
transition subsequent to the capture; otherwise autoionization of the
state simply breaks it up again.

The transition probabilities for radiative processes, the Einstein co-
efficients, have already been discussed. The collisional processes, like
radiative recombination, are usually described by individual cross sec-
tions <Tij(v) (for any specific processes i —> j) defined by setting the
number of such collisional events per unit path length of an electron of
velocity v in a density nt of "candidate" atoms equal to o^ni. Conversely,
the rate at which any atom undergoes these collisions with electrons in
the velocity interval d3v is

<Tij\v\f(v)d3v. (6.2.8)

The total rate at which the atom undergoes these collisions with all types
of electrons is

[ Gijf(y)vd3v = ne{oijv), (6.2.9)

where
1 fd3v (6.2.10)
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is called the rate coefficient for this process. A rate coefficient exists
no matter what the form of /(v), but normally these are evaluated
and tabulated for Maxwellian distributions. Usually, therefore, the rate
coefficient of interest is the Maxwellian rate coefficient for temperature T.

Under thermodynamic equilibrium conditions the principle of detailed
balance indicates that the inverse processes, excitation/deexcitation or
impact ionization/three-body recombination, exactly balance one another
so that, for example, there are just as many collisional deexcitations as
collisional excitations. One can then derive relationships between the
rate coefficients just as we did between the Einstein coefficients (see
Exercise 6.3).

When we can assume neither complete nor local thermal equilibrium
it is still possible to calculate the equilibrium populations of the atomic
states provided all the rate coefficients are known. In principle we can
write simultaneous equations for all states i that set the total rate of
transitions (to and) from that state equal to zero:

0 =

(6.2.11)

where the sum j is over all other states (including free-electron states)
accessible to the state i by all types of transitions. For compactness of
notation we include three-body recombination as a rate coefficient even
though the coefficient is then proportional to ne. To solve this system
of equations, even for simple atoms, requires some sort of simplifying
assumptions, since the number of equations is (effectively) infinite.

The approach normally adopted, even when all transition processes
are retained in the equations, is to truncate the system at some high
level, ignoring transitions to or from all higher levels. This works rather
well in many cases because the populations of the higher levels are often
very small. The system is thus reduced to a finite matrix system that
may be solved numerically given all the appropriate coefficients. In some
situations further simplifications are possible as follows.

6.2.4 Coronal equilibrium
When the density is low, a rather simple model, which acquires

its name from its applicability to the solar corona, may be used. In
coronal equilibrium the fundamental approximation is that all upward
transitions are collisional (since the radiation density is low) and all
downward transitions are radiative (since the electron density is low).

To put the point more fully, upward radiative transitions (i.e., absorp-
tion) use up a photon that was presumably emitted by the same transition
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(downward) in an atom elsewhere in the plasma. Therefore, if the plasma
is optically thin, so that most photons simply escape without being re-
absorbed, then upward radiative transitions will be negligible compared
with downward. On the other hand, the rate at which an excited state
is depopulated by spontaneous downward transitions is independent of
density. Therefore, if the electron density is low enough, the rate of
collisional deexcitation becomes negligible compared with spontaneous
emission.

Thus the only terms retained in Eq. (6.2.11) are the first two, sponta-
neous emission, and in the last, collisional excitation and recombination.
Moreover, if an excited state can be populated by collisional excitation
from the ground state, this process is the dominant one, so that the ex-
cited state population is determined by balancing this excitation against
radiative deexcitation:

^ = * < ™ > . (6.2.12)

nk

Ionization/recombination balance is governed by collisional ionization
and recombination, and again essentially only the ground state is impor-
tant because of its dominant population:

(6.2.13)

where n^+i, w& are the ground state populations of ionization stages fc + 1 ,
k, {&k,k+iv) is the ionization rate coefficient from the ground state, and
(vk+ijciv) is the total recombination rate coefficient to level i.

In actual fact, the spontaneous transition rate decreases quite rapidly
as one goes to higher and higher states, both because of decreasing
line strength Sy and because of the v?- dependence of Ay [Eq. (6.1.9)].
As a result, there exists a level, /', above which collisional transitions
begin to dominate over radiative, even for low densities. Therefore, even
when the low-lying states are in coronal equilibrium with the ground
state, the higher states above level i' will be approximately in local
thermal equilibrium with the free electron and ionized atom populations.
That is, the Saha equation will be obeyed by the higher states. It is
sometimes convenient, then, to extend the applicability of the coronal
model by considering the upper levels (> i') as belonging to the free-
electron continuum and think of "ionization" and "recombination" as
including all transitions between the lower levels (< i') and the upper
levels (> i') as well as the continuum. One can then calculate generalized
"ionization" and "recombination" coefficients, often denoted S and a.
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Fig. 6.2. Energy level diagram showing the relationship between the true energy
levels (left) of the atomic system and the conceptual division (right) of the levels
into states in coronal equilibrium with the ground state and states above level f
in LTE with the free-electron continuum.

Then Eq. (6.2.13) becomes

nk

(6.2.14)

Figure 6.2 illustrates the approach. In this case S and a may vary with ne
because i' is varying. Of course, at the lower limit of ne, S and a become
independent of ne as in the primitive coronal model.

6.2.5 Time-dependent situations
Very often it is necessary to deal with situations in which the

populations of states are not in equilibrium. In principle this is possible
by changing Eq. (6.2.11) to allow for changes in population, setting the
right-hand side equal, not to zero, but to the time derivative of the
population,

drit

~di itAij - njAp +

(6.2.15)

Then we have a set of simultaneous differential equations to solve that
is even more formidable than the equilibria.

The system can be considerably simplified in many situations by the
assumption that the excited state populations are in equilibrium with
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the ground state even though the ground states of different ionization
stages are not in equilibrium with one another. This assumption amounts
to putting drit/dt = 0 except for the ground state in Eq. (6.2.15). Then,
treating as before the high states > i' as part of the continuum, the
equations can be reduced to manageable proportions by using the coronal
model or possibly a less restrictive model in which additional collisional
processes (such as deexcitation) are included. [One such model is the
collisional radiative model in which all processes except induced-radiative
are included (McWhirter, 1965).]

The reason for the success of this approach is that the time scale for
relaxation to excited state equilibrium is very much shorter than that for
relaxation to ionization stage equilibrium. Estimates for these time scales
may be obtained as follows.

For excitation the appropriate time scale for equilibrium between two
levels is the inverse of the fastest transition rate between them, generally
Aij. The order of magnitude of Atj for transitions to the ground state may
be estimated by noting that the line strength (Stj) has order of magnitude
e2a2

)/Z2, where a§ = 4neoh2/me2 is the radius of the first Bohr orbit
(for hydrogen). Also, the frequency is of order Z2Ry/h where Ry is
the Rydberg energy (m/2)(e2/4n8oh)2. Therefore, one can immediately
calculate the order of magnitude of Atj from the fundamental constants
using Eqs. (6.1.9) and (6.1.11). One obtains

Atj » 108Z4 s"1, (6.2.16)

(for higher states Atj tends to be less and so relaxation takes longer).
The relaxation time is thus of order 10Z~4 ns, a time usually very short
compared to typical transport and pulse times in magnetically confined
plasmas.

On the other hand, for ionization equilibrium the rate of interest is the
recombination rate. This rate is calculated in Section 6.3.1. Anticipating
that result, we have (for T < xi)

(arv) « 5.2 x KT 2 0 Zte /T) 1 / 2 m3 s"1. (6.2.17)

For multiple-electron species the highest ionization stage reached in
equilibrium is such that

Xt/T « In \(l&me<?/Z2
Xi)/(Xi/T)\, (6.2.18)

where xt *s the ionization potential (see Exercise 6.5). This ratio thus
ranges from about 11 for hydrogen down to near 1 for Z « 20 (where the
approximations we are using break down). A simple way to approximate
the appropriate Z 2 of the highest ionization stage reached, which we
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substitute in Eq. (6.2.17), is thus to take

Z2*Xi/Ry~5T/Ry (6.2.19)

(taking Xi/T « 5 as typical). We then find that as a rough approximation

(<rrv) - 2 x lO-19(T/Ry)1/2 m3 s"1. (6.2.20)

For example, for a typical magnetically confined fusion research
plasma, in which Te « 1 keV and ne « 1020 m~3, the radiative re-
combination rate is of order

ne(arv) ~ 200 s"1, (6.2.21)

so that the time for relaxation to ionization stage equilibrium is ~ 5 ms,
very much longer than the excitation equilibration time. (This estimate
may require correction by an appreciable factor for some ions because
dielectronic recombination becomes important. Also, under some circum-
stances, the total recombination rate is significantly enhanced by charge
exchange - see Section 6.6.5. Nevertheless the point remains that the
equilibration is slow.)

6.3 Rate coefficients for collisional processes
The determination of cross sections and rate coefficients for the

various collisional processes that can occur to atoms in a plasma is the
subject of virtually an entire subfield of physics. It would be impossible
here to do justice to the extensive theoretical and experimental informa-
tion on these rates. However, for many purposes, the most immediate
need is for convenient general estimates of these rates rather than more
rigorous results of lesser generality. This is true even if the estimates
are subject to considerable errors. Besides, for all but the most common
atomic species, the results of even the very best specialized quantum-
mechanical theories are themselves subject to uncertainties that can be
as great as a factor of two.

The purpose of this section is to gather together some general estimates
of rate coefficients for easy reference. While detailed calculations, of
course, require a full quantum treatment, we shall see that the estimates
we seek are most conveniently derived by semiclassical treatments, in
the same spirit as our discussion of bremsstrahlung and recombination
radiation.

In Fig. 6.3 are shown domains in the plane (A£, E) in which the dif-
ferent collisional processes we shall discuss occur. Here, E is the incident
electron kinetic energy and AE its loss of energy during the collision. This
diagram bears a strong relationship to Fig. 5.17, the E versus hv graph
for bremsstrahlung. For radiative recombination the parallel is exact (since
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Fig. 6.3. Schematic representation of the regions in the plane (AE,E) in which
the various collisional processes occur.

AE = hv). For this process, AE > E so that the final energy is negative
(electron captured) and the energy change has discrete possible values
E —  Ej, where Ej is the jth energy level of the recombined atom (Ej is
negative).

Collisional ionization can occur to a continuum of states provided that
AE > xt ( s o that the atom's electron gains enough energy to escape)
and that E > AE (so that the incident electron remains free). Collisional
excitation occurs with discrete AE (= Etj) provided E is greater than the
excitation energy AE. Dielectronic recombination can be thought of as
an extension of this process to AE > E (so that the incident electron is
captured). Its domain overlaps the radiative recombination domain, but
it is a distinct process.

We now treat each of these processes in an appropriate semiclassical
manner in order to obtain simple approximate estimates of their rate
coefficients.

6.3.1 Radiative recombination
We already have an estimate of the power radiated by recom-

bination [Eq. (5.3.49)]. We express that power in the form of a collision
cross section like Eq. (5.3.11), so that for recombination to level n the
cross section is

1 £/v ^2 A D

(6.3.1)3V3 v\ vn

(here a is the fine structure constant).
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Now we take hAvn = 2xn/n, as in Eq. (5.3.47), but writing Xn for
Z2Ry/n2, the ionization energy of the nth level of the recombined ion.
Also hvn = £ + %„, where E = \mv\. This gives our estimate for the cross
section.

To obtain the rate coefficient we integrate over a Maxwellian electron
distribution, ignoring any variation of Gn and merely replacing it by an
average value gn:

/
n\2nT) Jo l+E/Xn

(6.3.2)
Using the identities such as occ = (2Ry/me)1^2 and re = a^a (see Appendix
4) and making the substitution 5 = (xn + E)/T, this becomes

/ v 2 6 4 / l V / 2
 3 7 _{arnv} = na^occ — - - a Z g n3 \JTCJ

x [ ^ l ) —  e x p ( — ) E i ( — ) ? (6-3-3)

where

rC°ftYnr""^ (6.3.4)

is the (first) exponential integral function. The distinction between
Z2Ry/n2 and Xn is important only for low-lying states in nonhydro-
genic ions, so usually it is ignored. However, the rate should be corrected
by the factor l;/2n2 for a level that is partially filled, as in Eq. (5.3.53).

Evaluating the fundamental constants, one gets

(arnv) = gn5.2xl(T20Z ( | ) 3 / 2 e x p ( | ) E, ( | ) m3 s"1. (6.3.5)

Note that the asymptotic forms are
exp(x)Ei(x) -> 1/x as x —>  oo,

- ^ - l n x asx-^0 . (6.3.6)

The former is generally the most useful for the lower levels, since the
temperature is usually much smaller than the ionization energy in equi-
librium. But in any case the approximation exp(x)Ei(x) « ln(l + 1/x) is
correct to better than 17% over the entire positive real domain, so the
use of this simple logarithmic approximation is well justified within the
present context.

It is often adequate to take gn equal to 1. Other more complicated forms
are available in the literature (Seaton, 1959). The total recombination rate
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to all levels is sometimes required for the purpose of calculating ionization
balance. A reasonable approximation to this sum over all levels is

(orv) * 5.2 x 10-2 0f 1/2

(6.3.7)

where no is the principal quantum number of the lowest incomplete shell
of the ion and xt is the ionization potential of the recombined atom (see
Exercise 6.6).

6.3.2 The classical impact approximation
In ionization and excitation of atoms by collisions, the process

can be viewed in two main ways. The binary encounter or more simply
the "impact" approximation supposes the colliding electron has a binary
impact with the bound electron in which the field of the nucleus to
which it is bound plays only a secondary role. The collision causes the
bound electron to end up in a new state, bound or free. The opposite
extreme, which may be called the "dipole" approximation (although this
expression is not established in the literature), regards the electric field
of the colliding electron as inducing transitions in the atomic system
in much the same way that photons do in emission or absorption: by
perturbing the atomic states. The reason why these two approximations
are both helpful is that together they capture the essential physics. The
dipole approximation is appropriate for distant collisions and allowed
transitions. The impact approximation better approximates situations
of close collisions or forbidden transitions, where many different atomic
states are coupled. This section discusses the impact approximation. Both
ionization and excitation can be treated.

The most elementary classical approximate treatment of the collisional
ionization process follows essentially that of Thomson (1912). We picture
the bound electron as stationary in the atom and calculate the energy
transferred to it (AE) in a collision by an incident electron of energy E. If
AE is greater than the ionization potential xu then ionization will occur.
The ionization cross section is simply the area, integrated over all impact
parameters b, for which AE > x\> Thomson showed that in a Coulomb
collision between like particles,

AE =E (6.3.8)
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This may readily be deduced from an orbit analysis, as in Section 5.2,
but taking care to work in the center of mass frame with reduced mass,
since we cannot take one of the particles to be fixed (Exercise 6.7). This
equation shows that AE > xt for all impact parameters less than a certain
value bc. Therefore, the cross section estimate is

Using the definition of the Bohr radius CIQ, this is most conveniently
written

This expression may be regarded as the classical collisional ionization
cross section per active bound electron. If there are £ electrons in the
upper quantum level we must regard the cross section as applying to
each and so multiply by £ to get the cross section for the atom as a
whole.

In a similar manner, we can regard excitation as corresponding to
collisions in which AE is equal to the energy difference between the
initial and final states. As with recombination, we must regard the upper
principal level rij as covering the range of binding energy Ax « 2Z2Ry/n3j
at binding energy Xj = Z2Ry/n2j. See Section 5.3.4. Then the cross section
for excitation from principal level nt to wy, in this classical approximation,
can quickly be shown to be

These expressions overestimate quite seriously the cross section near
threshold (E ~ Xi)- I n Pa r t this is because, even from a semiclassical
viewpoint, the previous model omits several important physical features.
In the first place, the bound electron's Bohr orbit is situated at a potential
energy —Ixi  m the ion's Coulomb field. Presumably a slowly impinging
colliding electron is accelerated in the ion's field so that its kinetic
energy at the time of collision with the bound electron is E + E+ (with
E+ ~ 2xi). In the second place, if the colliding electron passes on to the
atomic electron too much energy (AE > E) it will itself become bound.
There will then have been no net ionization.

A simple extension of the previous treatment, accounting for these two
differences (Exercise 6.8), gives a cross section for ionization
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and for excitation

^ = 4 ™ O £ T ^ ( f 0 2 ? ' (6-113)

where Z7 is the net atomic charge experienced by the bound electron
when it is in the excited state j . Notice the simple modification of the E
factor in the denominator by the addition of the extra energy at collision.
This form holds whatever value we take for this extra energy. Taking
£+ = 2xi, the threshold cross section (as E —»  Xi) is smaller by a factor
of three in Eq. (6.3.12) than in the earlier form [Eq. (6.3.10)].

Further refinement of the classical model has been pursued by numerous
studies, for example one can try to account for the prior motion of
the bound electron in the atom, which introduces additional terms. In-
creasingly these refinements become heuristic and unable to account
for the exact details of the cross section. Therefore we simply cite that
experiments and quantum-mechanical calculations, taking account of
the complexities of different atoms, indicate that a threshold cross sec-
tion about 0.2 times the Thomson classical value represents a reason-
able average for the different species (within a factor of about two)
(Seaton, 1962). We shall obtain this factor if we use Eq. (6.3.12) with

6.3.3 The dipole approximation
Transitions between atomic levels (whether up or down) may be

treated via perturbation theory. The perturbation of interest is, of course,
the electric field at the atom. In calculating rates for radiative transitions,
such as induced emission or absorption, the electric field is that of the
electromagnetic wave. For collisional excitation or ionization, it is the
field of the colliding electron that matters. A simple approach, therefore,
is to calculate the appropriate frequency component of the collisional
electric field and then obtain the rate of excitation by using the Einstein
coefficient for that transition.

We adopt the same semiclassical treatment of the colliding electron as
we used for calculating bremsstrahlung. In a collision with a given impact
parameter b, the acceleration of the colliding electron is caused by the
field of the ion (in our present case this is the atom to be excited). At any
instant, the field of the electron at the atom (ion) is equal to 1/Z times
the field of the atom at the electron. Therefore, the Fourier analysis of
the electron's acceleration that we required for bremsstrahlung provides
us also with the Fourier analysis of the electric field of the colliding
electron experienced by the atom.
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The total probability of a transition i to j being induced by the collision
is the time integral of the transition rate:

Pij= [ Bijpivrfdt, (6.3.14)
J —oo

where p is the energy density corresponding to the perturbing electric
field (per unit frequency). This is related to the Fourier component of the
electric field E(a>) by Parseval's theorem, which gives

p(v)dt = 2so\E(v)\2 (6.3.15)
7—00

(see Exercise 6.9). Hence, the transition probability for a specific colli-
sion is

Pij = 2fio^|E(vy)|2. (6.3.16)

Recall, now, that the spectral power of bremsstrahlung radiation is
given by Eq. (5.3.3), which may be written

4 e2 e2

? i £ l £ ' ( ) l (6317)dv 3 4n8oc5 rn

where E' = ZE is the field at the colliding electron. Thus Ptj is propor-
tional to dW/dv. This means that the integration over impact parameters
and subsequently over velocities proceeds exactly as in the bremsstrahlung
calculation. In other words, we have already done the necessary mathe-
matics; all that is required is to relate Py to the bremsstrahlung radiation
dW/dv, using Eqs. (6.3.16) and (6.3.17):

The impact parameter integration leads to a cross section for excitation,
2 3m2

ec3 hv doc
G

8TI

| ^ - / , 7 ^G, (6.3.19)

where E is the electron collision energy and we have used Eq. (5.3.11)
and identities for atomic parameters.

The remaining question is what to take for the Gaunt factor. The
Gaunt factor is Eq. (5.3.23) G = (y/3/n)ln |bmax/̂ minl- The upper impact
parameter cutoff frmax = vi/cotj remains appropriate here. But the lower
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cutoff choice made for bremsstrahlung, bm[n = bq = h/2mev\ is not, if it
is closer than the size of the atom. For a close collision, in which the
colliding electron penetrates the bound-electron "cloud" of the atom, the
exciting electric field is not uniform as the present treatment assumes, and
the excitation probability is generally noticeably reduced. (What is more,
such close collisions are covered by the impact parameter approximation.)
Therefore, when the size of the atom, or more strictly the scalelength
of the bound wavefunction, approximately an = a$n/Z for principal
quantum number n, is larger than bq, we should use an for the minimum
impact parameter. The ratio of atomic size to quantum cutoff parameter
can be written

Clearly, for high enough collision velocity, this will always be large.
Therefore, for high energy collisions, the Gaunt factor is approximately

G = -*-V3- v\Z A r> rz? 1

4RyZ ^
Eln2 (6.3.21)

When Z = n = 1, its asymptotic value is a factor of two smaller
than the bremsstrahlung Born approximation Gaunt factor, Eq. (5.3.33),
because the logarithm's argument is initially proportional to v\ rather
than v\. By squaring the argument and dividing the logarithm by two to
compensate, we arrive at an expression that has the same argument as
the previous form. (Plus an extra term proportional to \n\Z2Ry/Eijn2\,
which is asymptotically negligible.) Unfortunately, potential for confusion
exists in the literature because although most authors use Eq. (6.3.19)
for the cross section, some then cite the bremsstrahlung form (5.3.33) as
the "Bethe", or "Born" approximation Gaunt factor, even though it is
not appropriate. In contrast, a few authors express their cross section as
Eq. (6.3.19) divided by two, for which, as we have just shown, Eq. (5.3.33)
is correct (somewhat coincidentally on the basis of the semi-classical
treatment). This point has been explicitly discussed by Burgess and Tully
(1978). The approach adopted in this section is often referred to as
the "Bethe approximation" (Bethe, 1930) which is itself a high-energy
approximation to the Born approximation. The relationship between the
Bethe and the Born approximations is reviewed by Inokuti (1971).

To evaluate the cross section, we also require the absorption oscillator
strength, fijm Individual values of ftj are available from databases for
specific transitions. Hydrogenic values for bound states are given in
Section 6.1, which can be used for generic approximations. For ionization,
however, we need to perform an appropriate weighted average over all
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the free electron states to which the atom can be ionized. The form of
the cross section for ionization is obtained by replacing E^ with the
ionization energy xt and writing

^ ^ / G, (6.3.22)
^ Xi V*^

where /eff is the effective oscillator strength per electron. When averaged
over the angular momentum states in principal quantum level nu it is
well approximated by

/eff = 0.28/wf. (6.3.23)

More details are given by Mott and Massey (1965) and more precise
values for hydrogen by Kingston (1965) and by Johnson (1972).

6.3.4 Ionization and excitation rates
We approximate the total cross sections for excitation and ion-

ization as the sum of the classical impact form and the dipole form.
However, the dipole form always over-estimates the cross section near
the threshold of the process, and since we anyway expect the impact ap-
proximation to account for the threshold cross section, we attenuate the
dipole contribution to zero at threshold. A convenient analytic form with
an empirically adjustable shape parameter, s, is to multiply the dipole
part by the factor 1 —  exp(—s(E/AE — 1)). The final expressions for the
total cross section approximations are

Xt E

/eff In
4E

(6.3.24)

for ionization and

2ZJ

(6.3.25)

for excitation. The fundamental parameters here are, in the hydrogen-
like approximation, Xi = Z2Ry/nj; Etj = \xi — Xj\l /eff « 0.28/n*;
for average excitation between principal quantum levels ftj =
(32/3>y37r)nj(x//£i;n7)3g, with g a "Gaunt factor" specified in detail by
Johnson (1972) but reasonably approximated by 0.75 for the important
transitions. The ad hoc fitting parameters chosen to give agreement with



238 6 Electromagnetic radiation from bound electrons

1OU

1 0 "
10u

Mott & Massey (1965)
If. Drawin (1961)

Lotz (1968)
Johnson (1972)

\ — -  Vriens (1980)
Equation 6.3.24

• Experiment: Fite (1958)

10 10z

Fig. 6.4. Ionization cross section for hydrogen.

experiments and reliable theory are £ + = 4/,-, and 5 = 0.25£I ; /XJ or just
s = 0.25 for ionization. In the argument of the logarithm for excitation
we have dropped the factor 4 for no reason other than to obtain better
agreement for the low nt numbers with more elaborate Born approxi-
mation calculations. Remember the logarithmic argument has heuristic
factors in it that have been squared, so it is not expected to be very
accurate. In the limit of high energy, the dipole term (the second) domi-
nates and the exact factor in the argument becomes unimportant, but
that limit is approached only very slowly. These expressions should be
reasonably accurate as the cross section per active bound electron for
complicated atoms as well as the single-electron situation for which they
are deduced.

To illustrate the form of these cross sections we compare the ionization
cross section for hydrogen (ground-state) atoms in Fig. 6.4 with several
popular approximations and with experiment. Mott and Massey (1965)
give a detailed account of the Born approximation. At high energy it
is generally thought to be accurate for most types of collisions. Drawin
(1961, 1968) and Lotz (1968) are widely quoted empirical fits covering
many species. They somewhat over-estimate the cross section at high
energy because their leading coefficients of the logarithmic term are
larger than the Born value. Vriens and Smeets (1980) is a cross section
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Fig. 6.5. Electron impact excitation cross sections. Solid line: Eq. (6.3.25). Short
dash: Johnson (1972). Long dash: Vriens and Smeets (1980). Points in first frame:
experimental (Fite and Brackmann, 1958b) ls-2p cross section multiplied by 1.1
to approximate other contributions.

based on the impact approximation alone, and so it significantly under-
estimates the value at high energy where the logarithm is important. The
expression of Johnson (1972) is slightly high near the peak relative to the
experimental values of Fite and Brackman (1958a), which are generally
thought to be reliable. Equation (6.3.24) gives a cross section that agrees
with experiment somewhat better than Johnson's and has the correct
high-energy limit.

In Fig. 6.5 we show examples of the excitation cross sections from
Eq. (6.3.25) compared with published approximations. Janev and Smith
(1993) recommend Johnson's cross sections except for nt = 1 and low
rij, where they give expressions slightly higher at the peak of the cross
section. The present expression (6.3.25) agrees with the published values
at least as well as they agree with each other except for giving slightly
lower values at very high energy and n}• —  1 > nt > 1.

The rate coefficients for these processes are obtained by integration
over Maxwellian electron distributions. Our fitting functions were chosen
so that the integrations can be performed analytically, as the dedicated
reader can verify by following Exercise 6.10. The rather cumbersome
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results are

g ^ ^ / ^ { - (1 + a)ueu+auEx{u + an)

s + u J J
(6.3.26)

and
o p /~p ( p 9^2

V71 ^ 7 " -* I ^ij nj

u)] | , (6.3.27)

where £0 is Xi for ionization and Etj for excitation, and u =
a = E+/Eo = 4xi/Eo, and s = O.25Eo/xt- It is convenient also to note
that the leading dimensional term has the value na\&c — 1.925 x 10~ 14

m3s - 1 and the physical significance that na\ (= 0.880 x 10~20 m2) is
the area of a disk of radius equal to the Bohr radius, and otc is the
velocity of the electron at a kinetic energy of one Rydberg, the hydrogen
ground-state binding energy.

(In situations where evaluation of the exponential integral function is
inconvenient, the following simple approximation is more than adequate
in the present context.

e*E!(x) « In 1 +
1

+ 4.1.x+ 0.9x2 (6.3.28)

It is accurate to 0.5% for positive x.)
Some authors and databases provide the excitation data in the form

of a "collision strength", Q/7, which is related to the cross section via

% = g ! f ^ = ^ ^ (63.29)
R R ^

where S\ = \mev\ is the energy of the free electron when the atom is in
the state i, so that Si —  $ j = E\^ and the symmetry of the form with
respect to i and j is a reflection of the principle of detailed balance. The
collision strength, Q;7, is then dimensionless, and constant except for the
Gaunt factor variation, as can be seen from Eq. (6.3.19). The impact
term in our cross section does not explicitly manifest the symmetry
required by detailed balance. Therefore, it can only be applied to upward
transitions. For downward transitions, that is collisional de-excitation,
the cross section must therefore be derived from the excitation cross



6.3 Rate coefficients for collisional processes 241

section using Eq. (6.3.29). The deexcitation rate coefficient must use the
corresponding relation between rate coefficients:

(<Tjiv) = ^GEiJ/T(aijv). (6.3.30)

6.3.5 Dielectronic recombination
When an electron collides with a charged atom with an energy

slightly below the excitation threshold it may cause excitation and simul-
taneously be captured into a high bound state. Such dielectronic capture
can reverse. The electron may be expelled again by autoionization as
the atomic electron returns to its original level. In order to contribute to
net recombination, a second process (stabilization) must intervene before
autoionization occurs. In other words, a radiative transition, generally of
the lower-level electron, must rid the atom of its excess energy before it
breaks up of its own accord. Once the atom is stabilized, true dielectronic
recombination (as opposed to simple capture) is completed.

We denote the capture rate coefficient by {oc^v) (where k refers to
the level to which the capture occurs and it is understood that we are
discussing a single excitation j —>  i of the inner electron). The autoion-
ization and radiative stabilization transition rates of the captured system
are written Aa and Ar, respectively. Then the dielectronic recombination
rate coefficient (including stabilization) is

(odjcv) = {(Tc,kv} r . (6.3.31)
/ia -\- fly

This expresses the fact that a proportion Ar/(Aa + Ar) of captured states
stabilize before autoionizing.

Since capture and autoionization are inverse processes they are related
by detailed balance. No change of total energy of the system atom
plus electron is involved; therefore, in thermal equilibrium the Saha-
Boltzmann populations of captured (nz) and ionized (nz+\) states are
related by setting %t = —\m ev2 in Eq. (6.2.6), leading to

nz+1gz ne h3 \ me J
e xP

Here gz is the statistical weight of the atomic state and v is the free-
electron velocity, so that \mev2 is the total net energy of the system.
Setting the inverse rates nenz+i(ac^v) and Aanz equal in equilibrium
we get

^htM^f) (6333)
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Now we need to obtain an expression for {oc,kv) by extension of our
excitation cross section a^ to values below threshold. For capture to all
sublevels with principal quantum number n, we use the same correspon-
dence principle as we used for radiative recombination, namely that the
spread in final energies is 2Z2Ry/n3. Thus the spread of initial velocities
that recombine to the nth level is Sv = 2Z2Ry/n3mev. The rate coefficient
for capture to the nth level is therefore

{<TcnV) = GljV
ne nme ne

where f(v) is the (Maxwellian) distribution function and ^mv2 -\-Z2Ry/n2

is equal to Etj, the excitation energy.
For convenience, we use only the dipole part of the excitation cross

section. Then atj as given by Eq. (6.3.19) is proportional to Btj and hence
to Ajt, which will be equal to Ar (provided the captured electron is in
a high orbit "out of the way" of the lower electron). We may therefore
calculate Aa/Ar using Eqs. (6.3.34), (6.3.33), and (6.3.19). The algebra is
straightforward and the result is

£ " G ^ * ^ (6.3.35)
A ^ 3 a3 Ef n3

(a is the fine structure constant).
To obtain the total dielectronic recombination rate coefficient we must

sum (crd,nv) over all n:

where nr is the value of n that makes Aa/Ar = 1. As may be seen by
examining Eq. (6.3.35), n' is large provided Z < a~3/4 (recall Etj < Z2Ry).
Therefore, we may approximate the sum as an integral and also ignore
the term Z2Ry/n2 in the exponent (at least for all relevant T). Using
/0°° dx/(l + x3) = 2TI /3V3 we then get

It is often convenient to express this in terms of the dimensionless
oscillator strength ftj. Substituting for nf explicitly and rearranging in
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terms of atomic constants we get

/ 2 G \ 1 / 3 / 2 T A 1 / 2 8 7 T 2(Ry\yi
 2 ,

Fortunately, this expression is only very weakly dependent on the value
adopted for the collisional cross section Gaunt factor G. For practical
purposes, we may take 2G/y/3 = 1 with negligible error compared
to uncertainties involved in the overall approach. Then evaluating the
fundamental constants one obtains

M = 8 .8 x l O - ' V o ^ ( ^ ) p ( ^

(6.3.39)

A somewhat different and more complicated expression, due to Burgess
(1965), is widely used. It is based on empirical fits to a variety of calcula-
tions. The present expression has the merit of providing a more compact
form with a clearer physical motivation; it gives values slightly smaller
than the Burgess formula, by typically 30% at low Z and closer at higher
Z. In either case, the total recombination rate must be obtained by sum-
ming over all relevant excitations j —• i; usually only one or two need be
considered because of the exponential dependence on excitation energy.
For a more extensive review of dielectronic recombination processes see,
for example, Seaton and Storey (1976).

The characteristic emission lines arising from the radiative stabilization
of an atom formed by dielectronic capture have frequency approximately
equal to the corresponding resonance line of the unrecombined atom.
There is, however, a small frequency shift of the line due to the perturbing
effect of the captured electron in an upper level. The shifted lines are
called dielectronic satellites. The relative intensity of the satellite lines to
the resonance line(s) can give a useful estimate of electron temperature
relatively unaffected by the ionization stage equilibrium because they
arise from collisions with the same species (i.e., the unrecombined atom)
[see, e.g., Gabriel (1972)].

6.3.6 Example: carbon v
As an example illustrating the general shape of the rate coef-

ficients' variation with temperature, Fig. 6.6 shows the values obtained
from the formulas of the previous sections for the four-times-ionized
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Fig. 6.6. Rate coefficients for collisional processes involving C v.

Cv atom. Cv is a helium-like atom, having two bound electrons. Its
ionization potential is 392 eV and the energy of its resonance transition
from the ground state (ls-2p) is 308 eV. Figure 6.6 shows the rate coef-
ficients for ionization and resonance excitation of the C v ion and also
the radiative and dielectronic recombination rates to Cv (from Cvi).
The dielectronic recombination involves the resonance excitation of the
hydrogen-like core electron.

Notice that the temperature at which the Cv would be 50% ionized,
where {oft) = (crrv), is substantially below Xi- Therefore, the threshold
rates are the most important in practice because at higher temperatures
C v is almost completely ionized up to C vi or beyond. For example, from
the ratio of (op) to (odv) at T = 1 keV we deduce an equilibrium ratio
of Cv to Cvi of about 2 x 10~3.

At the temperature at which the Cv is 50% ionized (~75 eV) the
dielectronic recombination is negligible. This is because for this ion the
lowest excitation transition has an energy quite close to the ionization
potential. For ions with more bound electrons, lower-energy resonance
transitions often exist, so that the dielectronic recombination may not be
negligible at the 50% temperature.
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6.3.7 Charge-exchange recombination
There is a further process that we have so far ignored that

can influence the state populations of species within the plasma, namely
charge exchange. This is a mechanism by which a bound electron is
transferred or exchanged between two atoms in a collision. We shall
discuss its importance in more detail later when we deal with ionic
processes; however, it arises in the present context because under certain
circumstances it can have a noticeable, and from the diagnostic viewpoint
helpful, influence on the state distribution of atomic impurities.

The reason we are justified in ignoring the influence of charge exchange
upon the excited states under normal circumstances is that for hot plas-
mas the number of neutrals (with which charge exchange could occur)
is much less than the number of electrons (which are responsible for the
competing collisional processes). An exception is radiative recombination,
for which the cross section is so much smaller than other cross sections
(including charge exchange) that it may not dominate over charge ex-
change. In some circumstances, therefore, the ionization stage of highly
ionized impurities can be significantly depressed by charge-exchange re-
combination relative to our previous discussions (Hulse et al, 1980).
Naturally this depends upon the density of neutrals, so charge-exchange
effects are most likely to be important when neutral beams are deliber-
ately injected into the plasma either for purposes of heating the plasma or
specifically for diagnostics. Even without such beams, however, significant
numbers of neutrals may be present, as we discuss further in Chapter 8.

A major diagnostic advantage may be gained by using a neutral beam
crossed with the viewing chord. Insofar as the charge-exchange-produced
excited states are localized to the beam, the configuration then provides a
well localized measurement of (for example) ion temperature or impurity
density. In fact, it proves possible [e.g., Berezovskii et al (1985)] under
some conditions, using charge exchange between the majority ion (D+)
and a hydrogen beam, to localize the measurement of Balmer line emis-
sion to the interior of the plasma and hence to diagnose directly the ma-
jority ions. Thus, charge-exchange recombination with an active neutral
beam is a method by which active perturbation of the state populations
may be used to gain additional or improved diagnostic information.

The current importance of active beam charge exchange recombination
techniques, particularly observing impurities, justifies detailed separate
discussion, which we defer to Chapter 8.

6.4 Line broadening
The spectral lines emitted by bound-bound transitions do not

have infinitesimal spectral width, but undergo several possible line broad-
ening mechanisms that are extremely useful for diagnostics.
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6A.I Natural line broadening
This arises because of the fact that the quantum states of an

atom do not have a single energy, but a small spread in energy. The
energy spread arises because perturbations of the atomic system due to
interaction with the electromagnetic fields of virtual (or real) photons
cause the quantum states to be only approximate eigenmodes of the
system. A simpler way of saying the same thing in the language we have
been using is that the lifetime of the atom in an upper state is finite
owing to the spontaneous transitions to lower quantum states (induced
transitions may also be important, but we shall suppose the radiation
density to be negligible for our purposes). The effective spread in energy
of a quantum state is given by the uncertainty principle

AE « /Z/2TTT, (6.4.1)

where the lifetime T is given by

the sum of all possible spontaneous transitions. (The factor 2 here in our
definition of T is included to provide a standard form of the line profile.)
The corresponding line broadening of the spectral lines of transitions
from this broadened state i, due to the broadening of only this state, is
simply Av = AE/h « I/2m;.

The shape of the broadened line is determined by the shape of the
energy broadening. This may be shown to be the Fourier transform of
the square root of the exponentially decaying probability of the atom
being in the ith state. The resulting spectral shape is

I(v) = /(voK _, 1 „ 12, (6.4.3)
1 + [(v - VO)2TTT]2

where / is the intensity and vo the line center (note that if the lower
level k is also broadened, for example, when it is not the ground state,
the value to be used for 2/T is TLAy + liAkj). The line shape represented
by Eq. (6.4.3) is called Lorentzian. It is common to use as a measure
of line width (regardless of the precise line shape) the full width at half
maximum (FWHM). This is illustrated for a Lorentzian line shape in
Fig. 6.7. Its relationship to the lifetime is

Av1/2 = 1/TTT. (6.4.4)

Because A\j oc v^, natural broadening, though usually negligible in the
visible, can become important for the extreme ultraviolet lines of highly
ionized impurities.
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Fig. 6.7. The Lorentzian line shape typical of natural broadening: J(v) = (1 -f
Av2)""1, with Av in units of \/2nx. The full width at half maximum is shown by
FWHM.

6.4.2 Doppler broadening
This arises straightforwardly from the Doppler shift caused by

thermal particle motion

Av = v —  VQ = (6.4.5)

where v is the particle velocity in the line of sight. For an atom velocity
distribution f(v), this gives a line shape

/ (v)oc / ( [v /v 0 - l ]c ) . (6.4.6)

A Maxwellian velocity distribution gives rise to a Gaussian line profile

J(v) = J(v0) exp[-(v - vo)2c2/2vjaVQ], (6.4.7)

where v2
a = Ta/ma, the subscript a referring to the emitting atom. The

FWHM is

Avi/2 = 2vo(vta/c)(2 In 2)1/2. (6.4.8)

Of course, widths can also be expressed in terms of wavelengths X. For
the small fractional widths usually encountered, AX/X = Av/v.

6.4.3 Pressure broadening
This effect is also variously called collisional broadening or Stark

broadening and arises from the influence of nearby particles upon the
emitting atom. There are two main approaches to calculating the broad-
ening, starting from opposite extremes [Traving (1968) provides a brief
historical introduction as well as discussing the physical principles]. The



248 6 Electromagnetic radiation from bound electrons

collisional approach developed initially by Lorentz supposes that for most
of the time the atom radiates undisturbed, but occasionally collisions oc-
cur that interrupt the wave train. If the mean time between collisions is
T, this approach assumes that the duration of the collision is < T. Then
it is a general principle of Fourier transforms (mathematically equivalent
to a form of the uncertainty principle used in natural broadening) that a
sinusoidal wave of duration x has frequency width of order

Av ~ - (6.4.9)

(see Appendix 1). Taking into account the statistical nature of the time
between collisions, one can show that the coherence of the wave falls off
like exp(—t/x) (Poisson statistics; see Appendix 2). Fourier transforming
this gives, as for natural broadening, a Lorentzian line shape [Eq. (6.4.3)],
although the lifetime T is now the collision time.

At the other extreme is the quasistatic approach developed by Holtz-
mark in which the atom is assumed to radiate in an environment that is
effectively static during the period of emission. Any individual radiator
thus experiences an instantaneous shift in wavelength and the average
over all possible perturbations (and hence shifts) gives the line width and
shape. The most important perturbing effect is generally the electric field
of nearby particles. The atomic energy levels in an atom in an electric
field are perturbed by the alteration of the form of the potential energy.
States nearer the continuum are more strongly perturbed. The shift in
a spectral line due to electric fields is called the Stark shift; hence the
name Stark broadening.

To summarize: the impact or quasistatic approximations are applicable
according as Av < t~l or Av > tj1, where tp is the duration of the
perturbing interaction. Because of the difference in electron and ion
velocities, the electron effects are usually best approximated by the impact
approach while ion perturbations, for most of the line, are best modeled
using the quasistatic approximation. It turns out too that the ion effects
dominate the line width, at least for hydrogen lines.

Detailed calculations of Stark broadening are extremely complicated
[see, e.g., Griem (1964) or Breene (1961)] and have been done in detail
only for a few atoms. For hydrogen, good agreement between the theory
and experiment has been obtained. We shall not attempt any outline of
these theories. However, some important facts about the scaling of the
broadening can be obtained by very simple arguments as follows.

In order to calculate the line shape in the quasistatic approximation we
must first know how the line frequency is altered by a given electric field
E. In the case of hydrogen, the Stark effect is linear, that is, Av oc E (but
note that for other atoms it is quadratic Av oc E2 and much smaller);
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Limit
Radius

Fig. 6.8. The nearest neighbor approximation to Stark broadening. The prob-
ability that the nearest perturber is within a spherical shell dr at distance r is
oc r dr up to the limit radius.

this is because of complicated quantum-mechanical effects upon which
we shall not dwell. Also for hydrogen, because the Stark effect causes a
symmetrical spread of initially degenerate lines, the effect causes no net
shift of the line, unlike the situation with other atoms in which shifts as
well as broadening of the lines occur.

Knowing the Stark effect on the line, we then must calculate the
statistical distribution of electric field experienced by the atoms. For the
case of ions as perturbers in a plasma, provided the atom is significantly
closer to one ion than all the others, the electrical field E in the vicinity of
that ion is £ oc 1/r2, where r is the distance from that nearest ion. Also
the proportion of space in that vicinity corresponding to r and hence
the probability of experiencing E, say P(E)dE, is proportional to the
volume of the spherical shell 4nr2 dr as illustrated in Fig. 6.8. Therefore,
the distribution of intensity in the line is

J(v)dv oc P(E)dE oc -r2 dr. (6.4.10)

Now E oc 1/r2 so —r 2dr oc £~5/2dE; also Av oc E and hence

I(v)dv oc E~5/2 dE oc (Av)~5/2 dv. (6.4.11)

Thus the shape of the line in the region where E and hence Av is large
is J(v) oc (Av)-5/2.
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Fig. 6.9. Stark broadening line shape scalings.

This functional form holds only up to a radius such that the electric
field contributions from other ions are of the same order as that of the
initial ion. This will occur when |7ir3 « 1/n, at Av oc E oc n] . At this
point some kind of cutoff must be applied to P(E), since obviously the
relevant volume does not continue to increase. Thus the width of the
line will be proportional to this cutoff, that is, to ?y3. These scalings are
illustrated in Fig. 6.9.

Although this simple approach (often called the nearest neighbor treat-
ment) does not give a full picture of the complexity of the problem nor
account for important corrections due to electron effects (especially near
Av = 0), it does quite accurately give the density dependence of the line
width and its independence of temperature for lines whose upper state
has even principal quantum number, n. Full scale calculations give the
width as

FWHM = 0.54 nm, (6.4.12)

where /?2o is the ion density in units of 1020 m 3 (7220 = ^i/1020), X, of
course, is the wavelength, and the parameter ai/2 is the key result of the
calculations (Griem, 1974; Bengtson et a/., 1970). Values for the Balmer
series are summarized for the cases where equation (6.4.12) is reliable to
approximately 15% or better accuracy in Table 6.2. For Ha (656.2 nm)
the Stark width is significantly narrower than for Hp, for example, by a
factor ~10 at 1021 m~3 and 1 eV temperature.
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Table 6.2. Coefficients relating Stark width to density in Eq. (6.4.12).

Series line

Hf
H5

(»c)
(He)

Upper n
4
6
8
10

ai/2

0.08
0.17
0.28
0.46

6.4.4 Combinations of broadening effects
Sometimes both Doppler and other broadening effects and also,

possibly, the finite resolution of the measuring instrument, are important.
In general, when such a situation occurs, if there are two independent
profiles, say /i(Av) and /2(Av), then the resulting observed profile is the
convolution of the two profile functions:

/(Av) = /7i(Av - Av')/2(Av')d(Av'). (6.4.13)

Similarly, for further broadening functions f^, and so forth, further
convolutions are formed. Now for the Gaussian line shape, such as arises
from Doppler broadening, the convolution of two profiles of width Ai
and A2 gives a final width A given by

A2 = A2 + A2, (6.4.14)

while for the Lorentzian line shape

A = A!+A 2 . (6.4.15)

In both these cases (separately) the convolved shape is another profile of
the same form, Gaussian or Lorentzian (see Exercise 6.11).

A profile that is a convolution of Gaussian with Lorentzian is called
a Voigt profile and its shape has been tabulated, for example, by Un-
sold (1955). These tabulated values are often used to obtain deconvolved
widths corresponding to the Gaussian and Lorentzian parts, on the as-
sumption that the non-Gaussian broadening may be approximated by the
Lorentzian shape. Note, however, that as illustrated by our calculations
indicating a wing shape oc Av~5/2, the Stark profile will only approxi-
mately be represented by the Lorentzian. In high-temperature plasmas of
moderate density typical of magnetic fusion, Stark broadening is usually
negligible compared to Doppler broadening.



252 6 Electromagnetic radiation from bound electrons

6.4.5 Reabsorption: optically thick lines
Throughout most of this chapter we are tacitly assuming that

the absorption of radiation due to induced upward transitions can be
ignored. This will usually be a safe assumption for laboratory plasmas.
Possible exceptions are for the strong resonance lines in very dense (or
large) plasmas, in which reabsorption of the radiation may occur.

Such exceptional situations, in which the plasma is optically thick,
must be treated by the radiation transport equation (5.2.31) in much the
way we have discussed in Section 5.2.4. Additional complications arise
when the radiation is sufficiently intense to change the population distri-
butions, because then the excited state populations depend on conditions
distant from the point in question. In other words, the distribution is
nonlocally determined. We shall not explore here these possible effects
on the populations [see, for example, McWhirter (1965) for a discussion
of them]. The most noticeable immediate effect on the radiation observed
is a change of line shape, which we shall discuss briefly.

We can regard a ray passing through the plasma as gaining in intensity
due to the additional emissivity of each volume element through which
it passes. Mathematically, this is determined by the radiation transport
equation, of course. Broadly speaking, the effect of reabsorption is to
limit the intensity that can be reached to be less than or equal to the
blackbody level corresponding to the effective temperature governing
the atomic levels involved. This occurs because, as the blackbody level
is approached, absorption balances emission and further increase in
intensity is prevented. (Note that the effective temperature is given by
the Boltzmann factor governing the ratio of the upper and lower state
populations and may be completely different from, say, the local electron
temperature.) Thus, we may regard the primary effect of reabsorption
as being to place a "ceiling" at the blackbody level on the maximum
radiation intensity.

Incidentally, this provides a simple way to check whether reabsorption
is important. Calculate the intensity under the assumption that reabsorp-
tion is negligible by integrating the emissivity along the line of sight.
If this is significantly less than the appropriate blackbody level, then
reabsorption may indeed be ignored.

We can now understand what effect reabsorption will have on the line
shape. Consider a line from a uniform plasma whose density (optical
depth) we increase from a low value. Figure 6.10 illustrates the effect.
Provided the maximum intensity is less than blackbody, no significant
effect occurs (a). However, when the line center reaches close to the
blackbody level it can increase no further (b), even though the lower
intensity wings of the line are unaffected. (At the wing frequency the
plasma is still optically thin.) The result is that the line shape observed is
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Fig. 6.10. The effect of reabsorption on line shape: (a) optically thin;
(b) marginal; (c) optically thick.

broadened. Further increase in optical depth causes further broadening
of the observed line (c). In a uniform plasma the top of the line becomes
flat at the blackbody level. When the plasma is nonuniform, for example
if the effective temperature is lower at the plasma edge, inversion of the
line may occur. That is, the line center intensity may decrease because it
"sees" only the cooler plasma edge.

Thus, finite optical depth leads to a broadening of the observed line
shape. Strictly speaking it is not a broadening mechanism itself; it merely
serves to enhance the observed effect of broadening due to the other
mechanisms in the line.

6.5 Applications
6.5.1 Line intensities

The most important application of measurements of the absolute
line intensity is to estimate the density of an atomic species. Measurement
of the line intensity for a line in which Atj is known amounts to a
rather direct measurement of the excited state density. Then, using an
appropriate model to relate this to the ground state density (e.g., coronal
equilibrium) the density of that species can be estimated.

For hydrogen, a very important parameter that can be deduced from
such a measurement is the plasma source rate. The electron (and ion)
density is determined by a balance between the divergence of the plasma
particle diffusion flux and the rate at which plasma is replenished by ion-
ization of neutrals. In order to estimate diffusion rates, usually quantified
by a particle confinement time TP (equal to the ratio of the number of
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Fig. 6.11. The number of ionizations occurring per Ha photon emitted, as a
function of electron temperature [after Johnson and Hinnov (1973)].

particles to the rate of loss of particles), it is convenient to measure the
source rate. This is given by

nNne((iiv}, (6.5.1)

where nN is the neutral density and (op) is the rate coefficient for
ionization. Because the excited state density depends on collisions - as
does the ionization rate - in the coronal regime the ratio of ionization
rate to line intensity is independent of density. Also, for Te > Ry the
ratio is approximately independent of temperature because virtually all
collision velocities are capable of ionizing or exciting the atom. Therefore,
the ratio of, for example, Ha emission to ionization rate is constant.
Figure 6.11 shows the ionizations per Ha photon calculated from a
collisional radiative model. At low densities ne < 1018 m~~3, as expected,
the ratio is approximately constant. The calculations extend to higher
densities where the coronal equilibrium fails. Above ne ~ 1020 m~3 the
ratio becomes proportional to ne because LTE is approached and the
ratio of the population in the excited state to the total neutral population
becomes independent of ne.

By the same principles, atomic species of higher charge can be diag-
nosed. These appear as impurities in, for example, hydrogen plasmas. In
that case the impurity density itself is usually the parameter of interest.
Again a model for the excited state population and knowledge of the
important transition rates are required. If the total density of nuclei of a
particular element is required rather than the density of a specific ioniza-
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Fig. 6.12. Fractional abundances of different ionization stages of oxygen in
coronal equilibrium as a function of electron temperature [after Piotrowicz and
Carolan (1983)].

tion stage, then it is important to know the ionization stage populations
and also generally to make measurements on an abundant ionization
stage of the element in question.

As noted in Section 6.3, in ionization equilibrium (which is not always
attained) the dominant ionization stage reached is a strong function of
electron temperature. Examples of calculated populations as a function
of temperature are shown in Figure 6.12. Ionization to the next higher
level occurs (when collisional ionization exceeds radiative recombina-
tion) if T > Xi/\n\(l%mc2/Z2

Xi)/(Xi/T)\ [Eq. (6.2.18)]. This provides a
qualitative understanding of the behavior of the fractional abundances
in Fig. 6.12 (which are calculated using more accurate integrations of
the rate coefficients than our rough approximation). For example, the
significant increase in the ionization potential for helium-like ions versus
lithium-like is the reason why there is quite a broad temperature range
over which the helium-like state is most abundant.

The ionization state of impurities can be used as a rather rough
indication of electron temperature. This will rarely be better than a very
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crude estimate because it is usually rather difficult to measure the relative
abundances with any great precision and also because the impurities
are often not in ionization equilibrium because of the long time scales
involved. On the other hand, the problem usually is most significant in
the opposite way, namely that for a plasma of nonuniform temperature
the different ionization stages dominate different parts of the plasma. For
example, the lower ionization states will tend to occur in the outer cooler
parts of the plasma. The effective volume from which radiation from a
specific ionization stage will occur will then often be much smaller than
the total plasma volume viewed by the spectrometer. In the case of the
lower ionization stages, emission will be concentrated in hollow shells
near the periphery as illustrated schematically in Fig. 6.13.

The radial thickness of these shells will be determined by temperature
gradient and also (when ionization relaxation times are longer than impu-
rity transport confinement times) by impurity diffusion. Therefore, unless
some kind of radial resolution of the emission profiles is possible, for
example, by tomographic techniques or Abel inversion (see Section 5.3.8),
a knowledge of the temperature profile and the corresponding ionization
balance problem is required even to make a simple estimate of impurity
density. The same is true for estimating neutral hydrogen density, since
the hydrogen emission is dominated by the edge. This situation poses
a rather severe problem for making estimates, for example, of neutral
density in the plasma center of a hot plasma, since the emission there
can be orders of magnitude less than at the edge.

A long established technique for estimating electron temperature and
density is to use the ratios of intensities of lines from the same species.
Taking the ratio cancels the direct dependence on the species density and
leaves a parameter that depends mostly on the rates for excitation, and
so forth. These rates depend on the temperature through the rate coeffi-
cients. The density dependence tends to cancel out, since most rates are
proportional to ne. Therefore, for density measurement, one must seek to
employ lines whose intensity has additional dependence on density, for
example, forbidden lines from atomic states whose population is influ-
enced by collisional deexcitation (as well as excitation). These techniques
rarely give accuracy better than ~30% because of uncertainties in the
modeling and in the rate coefficients.

Line intensities are less often used nowadays for laboratory plasma
diagnosis of temperature and electron density, and so forth, because
of the availability of more satisfactory techniques that are often not
much more difficult to perform. They retain their importance, of course,
for astrophysical measurements where alternatives are not so readily
available, and also in some short-lived laser-produced plasmas for which
the alternatives prove very difficult.
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Fig. 6.13. In nonuniform plasmas the different ionization stages of a given species
tend to adopt a distribution of concentric shells, with the lowest stage in the
outermost (coolest) region.

6.5.2 Doppler broadening
Line widths prove to be of considerable importance and use for

diagnosis of the majority particle species. In particular the line width
due to Doppler broadening measures rather directly the temperature of
the atomic species. When this species is charged, it acquires, by collisions
with the majority ions, a temperature equal to the ion temperature. This
equilibration occurs with a collision frequency [see, e.g., Schmidt (1979),
p. 387]

\Z\1 nxZ\Z (6.5.2)

where we assume that the impurity species (2) is considerably heavier
than the majority species (1) and where /i represents the mass in units
of the proton mass (see Exercise 6.12). For many situations this is fast
enough for full temperature equilibration to be assumed.

In many situations the other broadening mechanisms, natural broaden-
ing, and Stark broadening, are negligible compared to the Doppler width.
If so, then a straightforward measurement of line width is sufficient to
give ion temperature from any impurity line. If the other broadening
mechanisms are not negligible, either because the transition probability
is great enough to give significant natural line width (as can sometimes
occur for high-energy lines from highly charged ions), or because high
density leads to significant Stark broadening, then some kind of deconvo-
lution of the different effects is necessary. This may be performed either
by detailed analysis of the line shape, since the different mechanisms
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Fig. 6.14. Radial profile of ion temperature during heating by neutral beam
injection in the PLT tokamak. Temperatures at different radii are obtained from
Doppler broadening of lines of different ion species [after Eubank et al. (1978)].

give different line shapes, or by auxiliary knowledge of the non-Doppler
broadening. For example, if the density is known, the Stark effect may
be estimated.

Of course, Doppler width measurement provides ion temperature infor-
mation only on the region of the plasma in which the particular atomic
species is present in abundance. Thus, in hot (Te > 10 eV) hydrogen
plasmas, broadening of hydrogen lines is rarely useful as a measure of
anything but the plasma edge temperature (unless other effects intervene;
see, e.g., Section 6.3.7) because essentially all the atomic radiation is from
the cooler edge.

On the other hand, this feature can be used to advantage when the po-
sitions of the shells of various ionization stages of impurities are known,
for then by observing the Doppler widths of lines from different species,
spatially resolved information on the profile of the ion temperature can
be obtained. Figure 6.14 shows an example.

In fusion plasmas the technical difficulties of performing Doppler
line width measurements are considerable because the high electron
temperatures cause the impurities in the discharge center to be very highly
stripped and correspondingly to possess line spectra with dominantly
very high-energy (short wavelength) photons, usually hv > Te. To obtain
sufficient resolution in the extreme ultraviolet and soft x-ray spectral
regions is difficult but detector technology now makes it quite practical.
Figure 6.15 shows an example of a high resolution x-ray spectrum in the
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Wavelength

Fig. 6.15. High resolution soft x-ray spectrum from Alcator C tokamak showing
two lines from hydrogen-like argon and a molybdenum line [after Marmar and
Rice (1985)]. Doppler widths give ion temperatures of 1200 eV for each line
(the Mo being narrower), thus confirming the thermal origin of the Doppler
broadening.

vicinity of 3.7 A (= 0.37 nm) wavelength, about 3.15 keV photon energy.
Three lines are visible: two are from the Lyman alpha line of hydrogen-
like argon A17+ and a third is from molybdenum Mo32+. All three are
predominantly excited in the center of this plasma (Te ~ 1500 eV). The
molybdenum line is noticeably narrower because molybdenum moves
more slowly owing to its greater mass. The ion temperatures deduced
from the line widths are consistent (~1200 eV) to within the experimental
uncertainty.

Another possibility for Doppler broadening measurements in high-
temperature plasmas is to use certain "forbidden lines", that is, lines
emitted by other than electric dipole radiation, arising from transitions
within the ground configuration of some highly ionized medium- and
high-Z elements. The lines emitted are often in the longer wavelength
(near) ultraviolet, where measurement techniques can be easier.

6.5.3 Ion flow velocity
An important plasma parameter that can also be probed by the

Doppler effect on spectral lines is the bulk flow velocity of the ions.
Impurities will generally acquire a mean velocity equal to that of the
ions in a time similar to that for temperature equilibration. If the mean
velocity parallel to the line of sight is significant, this will lead to a shift
of the emission line from its usual spectral position proportional to the
ion flow velocity.
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Fig. 6.16. Measurements of plasma flow velocity using the Doppler shift of lines
from different impurity species. The injection of energetic neutral beams causes
this tokamak plasma to rotate toroidally. Prior to injection the flow is too small
to measure [after Suckewer et al. (1979)].

Generally speaking, the presence of broadening due to thermal ion
motion will set a lower limit to the detectable line shift at some fraction of
the thermal Doppler width, the fraction depending on just how accurately
the center of the broadened line can be determined and hence on signal-
to-noise levels (see Exercise 6.13).

Because the thermal velocity is inversely proportional to the square
root of the mass of the species, heavier ions will generally have a smaller
ratio of line width to line shift (assuming their mean velocity to be equal
to the mean ion velocity) and so tend to provide better candidates for
flow measurements.

It is sometimes difficult to measure the absolute wavelength with
sufficient accuracy to provide line shift data. If so, then a measurement can
be made that observes both parallel and antiparallel to the flow, taking
the difference in the line position for the two cases. An example of this
type of measurement is illustrated in Fig. 6.16. These measurements were
obtained during neutral beam heating on the tokamak PLT. Suckewer
et al (1979) used a rotating mirror to scan the plasma view from forward
to backward along the toroidal direction and a more rapidly vibrating
mirror to scan the spectral line during this process. The neutral beams
impart substantial rotation to the plasma when they are switched on.
Measurements of lines from three different species, Fe xx, C v and H i,
give the flow velocity at three radial positions r « 0, 30, and 40 cm (the
edge), respectively.
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Fig. 6.17. Spectrum showing lines from the Balmer series in a cold, high-density
plasma. They are fitted (dashed line) with Stark-broadened profiles from which
the density (9 x 1020 m~3) is deduced. After Lumma et al. (1997).

In the presence of turbulent flows, caution must be exercised in the
interpretation of line widths. It is possible for flow velocities to mimic the
effect of thermal velocities and the experimenter may then be deceived
into interpreting as ion temperature broadening that which is in reality
the effect of simply coherent, but possibly fine scale, flow patterns. For
just the reasons mentioned, heavy atomic species are more susceptible to
this problem than light species. Thus, one way of distinguishing turbulent
flow effects from true thermal broadening is to perform measurements on
species of different mass. Agreement in the temperatures deduced from
assuming thermal Doppler broadening then confirms the dominance of
thermal velocity over flow velocity (see Fig. 6.15).

6.5.4 Stark widths
In lower-temperature higher-density plasmas it is possible for

the Stark broadening (particularly in hydrogen) to become significant
or even dominate the linewidth. If so, then the electron density can be
deduced from a measurement of the linewidth. The Hp line is the best
analyzed transition from the point of view of Stark width diagnostics but
any well separated line will do. Figure 6.17 shows an example spectrum
from the divertor region of the Alcator C-Mod tokamak. The widths
of the different lines give densities which agree to about 10%, using
Eq. (6.4.12), although assigning a single density is an oversimplification,
since the plasma is inhomogeneous over the region of emission.
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Incidentally, from spectra such as these, the populations of the excited
states can readily be deduced. The populations for principal quantum
numbers (p, q) greater than four in this case are in equilibrium with the
continuum, and so they are related to the electron density through the
Saha-Boltzmann distribution, Eq. (6.2.6), and have the ratio

nq gq

From this expression we can deduce the electron temperature provided
the exponent is large enough that there is substantial variation of the
ratio with temperature. To maximize the accuracy, we must use the lowest
quantum state, p, that is reliably in equilibrium. The fractional uncertainty
in Te deduced will then be approximately Tep2/Ry times the fractional
uncertainty in np/nq. In the spectrum shown, this uncertainty allows us
only to place a lower bound on the temperature. A more convincing
temperature estimate comes from the ratio of the continuum spectral
levels, avoiding the discrete lines, above and below the recombination
edge (see Lumma et al, 1997). It is approximately 1 eV for this spectrum.

6.5.5 Bolometry
Under some circumstances, the energy loss from the plasma by

radiation of all types (but notably line radiation) can be comparable
to other losses by thermal conduction. This is a matter of considerable
importance for fusion research, since the energy balance of the plasma
is altered thereby. Moreover, this is by no means a purely pathological
situation because, even when radiation losses in the plasma center are
small, there is very often substantial radiation from the cooler outer
regions of the plasma.

In principle, if all the impurity species responsible for the radiation
were known, it should be possible to estimate the total energy loss by
an elaborate sum over dififerent states and transitions. The proportion of
each ionic species would have to be estimated from line emission from
that species. In practice, this procedure proves to be too cumbersome
to be useful routinely and in those cases where it has been attempted
it sometimes provides results that are not in agreement with other mea-
surements (Hsuan et al, 1978).

An alternative and more direct measurement of radiation loss is to
use a radiative bolometer. This is a detector specifically designed to
respond to the total escaping energy flux with a spectral response as near
as possible constant in the regions of major radiative loss (usually the
ultraviolet). Most bolometers consist of an absorbing element designed
to absorb all the incident energy, whose temperature rise, measured by
some appropriately sensitive method, is then equal to the total energy flux
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divided by the bolometer's thermal capacity. Naturally, such bolometers
are sensitive to energy loss by all neutral particles; in particular, fast
charge-exchange neutrals will be detected as well as photons. This is
usually perfectly satisfactory, since all direct energy losses are of interest.
Solid state detectors are now available whose spectral response is flat
enough in regions of interest to serve as bolometers. Unlike the thermal
bolometers, these photodiodes are insensitive to the energy of escaping
charge-exchange neutrals; so comparing the two different measurements
enables one to distinguish between photon and neutral particle energy
loss (Boivin et al., 1999).

It is usually most satisfactory to adopt some kind of imaging system us-
ing apertures and to employ sufficient chords that a spatial reconstruction
of the emission profile by, for example, Abel inversion can be performed.
This allows one to determine where the radiation is mostly coming from
and is considerably more useful than, say, a single bolometer near the
plasma edge.

6.6 Active diagnostics
There are several attractive possibilities for diagnostics in which

active perturbation of the excited state populations is used to improve
on the usefulness of emitted line radiation.

6.6.1 Resonant fluorescence
The basis of this approach is to irradiate some portion of the

plasma with intense electromagnetic radiation at some resonant (line)
frequency of an atom in the plasma. Generally, a tunable laser such
as a dye laser is used to provide appropriate frequency (e.g., Ha) and
sufficient intensity. The effect of the radiation is to induce transitions
between the atomic levels of the transition chosen. If the radiation is
intense enough, these induced transitions will dominate over all other
(spontaneous and collisional) processes between these levels, and the
result will be to equalize the occupancy of each quantum state of the two
levels. In other words, the effective temperature describing the population
difference of the two levels becomes infinite.

The alteration of the state population, generally an enhancement of the
upper-level population, causes a change (usually an increase) in the ob-
served radiation. When the radiation observed is from the same transition
as that excited, the effect is sometimes called fluorescent scattering, al-
though this terminology may be misleading, since the radiation observed
is from spontaneous transitions from the upper level, not those induced
by the laser beam. The induced photons are emitted in the direction of
the illuminating beam whereas the observed fluorescence is generally in
a different direction and consists only of the spontaneous transitions of
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the enhanced upper-level population. It is desirable and often possible to
observe radiation at a different wavelength than the pump laser. This flu-
orescence is then rather obviously not scattering. The general expression
resonance fluorescence or more colloquially "laser induced fluorescence"
often denoted "LIF" covers all situations.

The observable fluorescence is limited by the extent to which the upper-
level population can be enhanced. If the exciting radiation resonates with
a line whose lower level is the ground state, or sometimes a metastable
state, then the degree of enhancement possible is usually very great
because, for example, in coronal equilibrium the ground state population
is usually much larger than the excited state population. For this reason
excitation from the ground state appears most attractive. However, for
hydrogen the longest wavelength line to the ground state is La (121.6 nm),
which is in the vacuum ultraviolet where suitable lasers of sufficient power
are not available.

Excitation of hydrogen by Balmer transitions (Ha, etc.) that are acces-
sible to existing tunable lasers is possible. The population of the upper
level is enhanced usually by a modest factor only (perhaps 2-3), because
the initial populations of the n = 2 and n = 3 levels are not greatly
different. The enhancement is observable, however (Razdobarin et al,
1979), and so use can be made of the technique.

The advantage of resonant fluorescence - in comparison with passive
spectroscopy - for hydrogen arises mostly from the ability to localize the
region of measurement. The use of crossed exciting and viewing beams,
as illustrated in Fig. 6.18, means that fluorescence is observed from a
well-defined spatial region. If the fluorescence can be detected, it can
then give information on the neutral population in the plasma center, for
example, which is normally unavailable through passive Ha observations
because of the dominant emission from the plasma edge. In detecting the
fluorescence, the edge radiation plays the role of a strong background
noise signal that must be discriminated against as far as possible. This
noise dictates the minimum detectable internal neutral density in most
situations, despite various techniques to reduce it.

Another diagnostic of interest involves the application of fluorescence
to impurity species. The principles are essentially the same except that
many proposals envisage the use of atoms (for example, of lithium)
injected in the form of an energetic neutral beam into the plasma.
Lithium is of particular interest since it has lines to the ground state of
long (visible) wavelength (670.8 nm).

The linewidth of laser radiation exciting the upward transition can be
considerably narrower than the Doppler broadened plasma line. In fluo-
rescence from an excited state, where the major concern is the maximum
degree of upper-level enhancement, this is a handicap. Only those transi-
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Fig. 6.18. Resonant fluorescence of atomic transitions with orthogonal viewing
direction allows a very localized detection region.

tions that resonate with the laser radiation are excited, so the maximum
degree of upper-level enhancement is reduced. In fluorescence from the
ground state, however, the lower-level population is usually far greater
than all the excited states, and one rarely reaches saturation. Instead,
every absorbed photon gives a fluorescence photon. The narrow laser
line width is then a major advantage, because by tuning it across the
plasma resonance, the full line-shape of the resonance can be determined
without performing any spectral analysis of the fluorescent photons. (Of
course one must be able to discriminate fluorescent photons from the
background, so generally some wavelength filtering is necessary to ensure
one only detects photons from a particular line.) The atom distribution
function along the line of illumination can then be determined.

Since the ground states of many interesting species present in relatively
cold plasmas are roughly 10 eV below the first excited state, correspond-
ing to wavelengths in the region of 100 nm or somewhat longer, the
incentive to extend fluorescent techniques to such energetic transitions
is very great. Two general approaches have received considerable recent
attention and are briefly reviewed by Dobele et al. (2000).

The first is to generate vacuum ultraviolet radiation from intense
visible (dye laser) radiation by doubling or tripling the frequency in a
gaseous medium. The final stage must be gaseous because the vacuum
ultraviolet radiation would be absorbed by a solid. Indeed, when windows
must be used, that absorption prevents the use of this technique below
about 105 nm wavelength. (Lithium fluoride transmits down to that
wavelength.)

The other approach is to use two-photon excitation. If the electric field
intensity is sufficiently strong, an upward transition can be excited which
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absorbs two photons whose energies add up to the energy level difference.
The subsequent fluorescence observed can in many cases be of a different
transition that also has lower energy than the excited transition. Thus,
in principle, a resonance beyond the transmission limit of windows or
corresponding to an optically thick line can be probed. If the exciting
photons come from counter-propagating beams, then a "Doppler free"
measurement is possible. That is, the Doppler shifts, arising from the
atom's velocity along the beam, of the two absorbed photons cancel.
They are equal and opposite. Thus, other broadening or wavelength
shift effects can be separated out, and the intensity observed is enhanced
because the entire Doppler line is in resonance.

For this nonlinear two-photon process, high intensity is needed, since
the excitation rate is proportional to the product of the intensities of
the two photon beams (the intensity squared if one beam provides both
photons). For hydrogen L^ transitions, which are the most attractive and
have been experimentally observed (Czarnetzki et a/., 1994) the optimal
intensity is somewhat below 1013 W/m2, above which ionization of the
atoms causes saturation of the fluorescence.

A major experimental difficulty with all such measurements of atom
density is the absolute calibration of the laser power and optical system.
It must generally be done by finding some appropriate scattering process
in a gas that can be used in place of the plasma.

6.6.2 Zeeman splitting: magnetic field measurements
The splitting of emission lines by a magnetic field into three

groups of components, the unshifted n component and the symmetrically
shifted tr components, can in principle be used to diagnose the magnetic
field even from the natural line radiation.

The magnitude of the field may be deduced from the magnitude of
the splitting. Oversimplifying slightly, the shift of the a components is
proportional to B, the exact constant of proportionality being determined
by the Lande g factor gj (^1):

Av = ^gJ^. (6.6.1)

In many configurations the magnitude of the field is of great interest,
but sometimes it is primarily the direction that one wishes to measure.
For example, in a tokamak the dominant toroidal magnetic field is rather
well known but the smaller poloidal component is determined by the
internal plasma current profile and is of great importance in determining
MHD stability, for example. It can be measured by a measurement of the
precise field direction. For this purpose the polarization dependence of
the Zeeman effect is useful. When viewed perpendicular to the magnetic
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field the n component is polarized with E vector parallel to the magnetic
field, and the a components perpendicular. By a measurement of the
angle of polarization of one of these components the magnetic field
angle may, in principle, be measured.

Complications arise in a passive measurement because of the lack of
spatial resolution along the line of sight or the dominance (for hydrogen)
of the edge region emission. A solution that has been made to work
(McCormick et a/., 1977 and 1986), though not really routinely, is to
use an injected lithium beam, so as to localize the emission source. A
further enhancement of this technique is to use resonance fluorescence
to increase the emission intensity. The main difficulty in either case is in
producing a lithium beam sufficiently energetic to penetrate the plasma
but sufficiently monoenergetic as not to obscure the Zeeman splitting by
Doppler broadening. Further discussion of the use of lithium beams is
given in Section 8.2.3.
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S. L. Leonard, eds., Chap. 5. New York: Academic.

Wiese, W. L. (1965). In Plasma Diagnostic Techniques. R. H. Huddlestone and
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Quantum mechanics:
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Collision processes, classical encyclopedic work:
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In addition, collision phenomena involving ions typical of hot plasmas
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Janev, R. K., Presnyakov, L. P, and Shevelko, V. P. (1985). Physics of Highly Charged
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Nowadays detailed collisional cross section and rate data are normally
obtained from computerized databases, for example:

Atomic Data and Analysis Structure, http://adas.phys.strath.ac.uk/
National Institute of Standards and Technology, Physical Reference Data,

http://physics.nist.gov/PhysRefData/contents.html

Reference works on spectral lines and line strengths:

Wiese, W. L., Smith, M. W., and Glennon, B. M. (1966). Atomic Transition Probabilities
I - Hydrogen through Neon. NSRDS-NBS4. Washington: U.S. Government Printing
Office.

Wiese, W. L., Smith, M. W, and Miles, B. M. (1969). Atomic Transition Probabilities
II - Sodium through Calcium. NSRDS-NBS22. Washington: U.S. Government
Printing Office.

Striganov, A. R. and Sventitskii, N. S. (1968). Tables of Spectral Lines of Neutral and
Ionized Atoms. New York: Plenum.

Exercises
6.1 Show that two levels i, j of an atom will be in local thermody-

namic equilibrium in a plasma of negligible optical depth if

6.2 Using the dipole approximation

8 1/2 fmey/2 f-hvtj
Jl jl \T J V T

ignoring Gaunt factors and statistical weights, show that

p

What value of hvtj/T does the rule-of-thumb equation (6.2.7) correspond
to?

6.3 Use the principle of detailed balance to deduce the relation-
ship between the Maxwellian rate coefficients for collisional excita-
tion/deexcitation, (G^V), {(Jpv), between energy levels Eh Ej9 with sta-
tistical weights gi, gj.

6.4 Calculate, using Eq. (6.2.7), the principal quantum level in a
hydrogen atom above which LTE can be assumed when:

(a) ne = 1020 m~3, Te = 1 eV.
(b) ne = 1017 m~3, Te = 1 eV.
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6.5 Suppose that, in coronal equilibrium, there are equal densities of
atoms of ionization stages i and i+1. Equate the collisional ionization rate
to the radiative recombination rate, using Eqs. (6.3.26) but approximating
the entire curly bracket expression as T/5xu and (6.3.3) in the limit
Xi > T. Obtain the equation

;Xi] 3V3T 1 1exp ' ' —
40 # Z 2 a 3 g '

For what value of g does this yield Eq. (6.2.18)?

6.6 The sum over levels of the recombination rate requires the sum

Perform this sum, maintaining the distinction between Xn and Z2Ry/n2

only in recombination to the lowest level no, when the result is sensitive
to the value used. Consider separately the two cases representing the
extremes of temperature:

(a) Xt ^ T. Let vl be the level at which Xn' = T. The sum above n' may
be ignored, and below n' the approximation exp(x) Ei (x) « l/x(x > 1)
may be used. Show that

n0

and evaluate this sum approximately as an integral over n to get:

S = ±(Z2Ry/T)1'2]n\Xi/T\.

(b) Xf < T. Use exp(x) Ei (x) « -ln(x)(x < 1) to obtain

11/2

Ignore the weak dependence of the logarithmic term on n and perform the
sum for the higher levels n > no approximately as an integral with lower
limit no + \. Since this sum is most significant when no is substantially
greater than 1, expand the term (no + \)2 as ~ n^2(\ — I/no) to obtain

*^W>71n — [
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Add on the term for the lowest level, including the hole correction factor

Sno =

to obtain
11/2

S [ T \ LTJI T :

Show that the empirical interpolation formula Eq. (6.3.7) correctly gives
these values for the sum at high and low temperatures.

6.7 Derive Eq. (6.3.8) from an analysis of the Coulomb orbits.

6.8 Take the colliding electron's energy at collision to be E + E+,
due to the potential energy in the nuclear field. Ionization will occur if
Xt < AE < E, where A£ must now be evaluated from Eq. (6.3.8), but
substituting E + E+ instead of E. Show that this leads to Eq. (6.3.12)
for <j\.

6.9 The EM wave energy density may be written p(t) = so\E(t)\2

(twice the electric field energy density, because half the energy is in the
magnetic field). Write Parseval's theorem for £, for finite time duration
T and use it to obtain an expression for the mean value of p(v). Hence,
prove Eq. (6.3.15) in the limit T —• oo.

6.10 Consider a cross section of the form o = o^h(x)/x, where OQ is
constant, x == E/EQ is the electron collision energy E = \mv2 normalized
to some fixed energy Eo, and ft is a function to be specified, which is zero
for x < 1. Show that the rate coefficient for this cross section is

T J
where T is the Maxwellian temperature and u = EQ/T.

Show that the value of H(u) = u f™ h(x)e~ uxdx is as follows:

u e-(b+u)

h{x) = —*— : H(u) =  u EI(M + au) efl

x + a
: H { u ) ^ .

b + u
Hence show that the rate coefficients for electron collisions based on
the cross sections (6.3.24) and (6.3.25) are indeed (6.3.26) and (6.3.27)
respectively.
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6.11 Show that convolutions of Gaussians and of Lorentzians sepa-
rately lead to Gaussian or Lorentzian resultants, respectively, and prove
Eqs. (6.4.14) and (6.4.15).

6.12 Consider a straight-line Coulomb collision between a stationary
heavy impurity atom and a majority ion. Show that the momentum
transfer is

7 7 P

4nsvb'

where Z\ and Za are ion and atom charges, v is ion velocity, and b is the
impact parameter. Hence, show that the rate of gain of energy by the
atom due to all collisions with a Maxwellian distribution of ions is

dW _ (ZtZae2\2 8nm / - x 1/2

In A,

where In A is the Coulomb logarithm arising from applying cutoffs to
the b integration. The effective collision frequency may be taken as
(dW/dt)/Ti. Obtain Eq. (6.5.2).

6.13 Suppose one had a perfect spectrometer that gave an exact
spectrum of all photons arriving at it. Because of photon statistics there
would still be some noise in the spectrum. Calculate the minimum de-
tectable line shift as a fraction of the (Gaussian) linewidth if the total
number of detected photons is N. How is this result affected if the
spectrometer has a finite resolution with a spectral shape that is Gaus-
sian with width equal to the emission linewidth (but is perfect in other
respects)?

6.14 The attenuation of radiation of a particular frequency in the
vicinity of a spectral line can be written as an absorption coefficient
a(v) such that the rate of change of intensity / per unit distance s is
dlIds = —a/. (See Section  5.2.4.) Explain why the rate of change of the
radiation energy density integrated over the line is related to the absorp-
tion rate by J(dp/dt)dv = hvpBjiUj, where rij is the density of the lower
state atoms. Use this expression to derive the line integrated absorption
coefficient: Jocdv = nfjicrerij.

6.15 It is proposed to use emission from Hen (i.e. helium with a
single atomic electron) for a temperature measurement using line ratios.
Calculate the sensitivity of the ratio of intensity of a line whose upper
state has principal quantum number n = 3 to that of a line with upper
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state n = 4, in the form of a logarithmic derivative:
c _ T dR
S~ RdT'

Here T is the electron temperature, R is the line intensity ratio, and
coronal equilibrium can be assumed.

Evaluate S for (i) T = 1 eV (ii) T = 10 eV (hi) T = 100 eV.



Scattering of electromagnetic radiation

One of the most powerful methods of diagnosis is to use the
scattering of electromagnetic radiation from the plasma. The attractive-
ness of this diagnostic derives from two main features. First, it is, for
all practical purposes, a nonperturbing method, requiring only access of
radiation to the plasma. Second, it offers the potential of determining
detailed information about the distribution function of electrons and
sometimes even of the ions too. These advantages are sufficient to off-
set the great technical difficulty of the measurements. Electromagnetic
wave scattering diagnostics are now widespread, especially in hot plasma
experiments.

The process of electromagnetic wave scattering by charged (elementary)
particles may be thought of as follows. An incident electromagnetic wave
impinges on the particle. As a result of the electric and magnetic fields
of the wave, the particle is accelerated. The charged particle undergoing
acceleration emits electromagnetic radiation in all directions. This emitted
radiation is the scattered wave.

Of course, this description is purely classical. From a quantum-
mechanical viewpoint we might have described the process in terms
of photons colliding with the particle and hence "bouncing off" in differ-
ent directions. This would lead to an identical mathematical formulation
provided there is negligible change in the mean particle momentum dur-
ing collision with the photon. This will be the case provided that the
photon mass is much smaller than the particle mass: hco <C me1. This
classical limit of scattering by free charges is called Thomson scattering.
On the other hand, when the photons are sufficiently energetic that their
momentum cannot be ignored, the quantum-mechanical modifications
lead to different results and the situation is called Compton scattering.
The plasma applications of scattering tend to be limited to visible or
longer wavelengths, whose photons have much less energy than the rest
mass of an electron (~ 1 eV versus ~ 500 keV). Therefore, we shall deal
only with the classical Thomson scattering case.

Because the ions are much heavier than the electrons, their acceleration
and hence radiation is usually small enough to be negligible. Thus, it is
the electrons that do the scattering, at least from the microscopic point
of view. This does not mean that the ions are irrelevant, as we shall see,
but rather that in order to obtain information about them we shall have
to measure some effect they have on the electrons.
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IX Relativistic electron motion in electromagnetic fields
One finds that when electron thermal energies exceed a fraction

of a percent of their rest mass (that is, if Te > 1 keV) the relativistic
corrections become significant in the scattering spectrum observed. It is
important, therefore, to perform a truly relativistic calculation for scatter-
ing from hot plasmas. Thus, we cannot rely on our earlier nonrelativistic
calculation of the electron motion.

Here we suppose that an electron of velocity v = cp moves in (time-
varying) electric and magnetic fields E and B. The equation of motion is

- , ( E + vAB). (7.1.1)

The left-hand side of this equation can be calculated explicitly to give

moyp + y3m0P(P • p) = -e Q E + P A B V (7.1.2)

where mo is the electron rest mass, y is the relativistic factor (1 —  /?2)~1/2,
and overdots denote time derivatives. Taking p- this equation we obtain

^ . (7.1.3)PP ^ P

We then substitute this back into Eq. (7.1.2) to solve for P, obtaining

, 7 , 4 )

We suppose that the wave fields are small enough that the value of p to
be used in the right-hand side of this formula is that of the unperturbed
particle orbit. That is, we linearize the equations. Also, for now, we shall
suppose that no applied constant E or B fields are present so that the
unperturbed P is simply constant.

The electric and magnetic fields we shall suppose to be given by an
incident transverse plane wave E, propagating in the direction i, for which

Bf = -lAEf. (7.1.5)
c

Inserting these fields gives

P = - ^ { E ; - (P • E;)P + (P • Et)\ - (P • i)E,-}. (7.1.6)
mocy

This is the electron acceleration we require.
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Incident * ty^ Scattered

Fig. 7.1. Vector diagram for general scattering geometry.

Now we recall the formula for the radiated electric field from an
accelerating charge, Eq. (5.1.9), which we write

Es = -=—(s  A (p A (s - p})} . (7.1.7)

We have changed our notation slightly by putting s for R, consistent with
the identification of s as the direction in which the scattered radiation
is detected. Figure 7.1 shows the general geometry. Remember that bold
square brackets denote quantities to be evaluated at retarded time and
K—  1 — s«  p. The value for 0 is substituted into this formula and gives the
scattered electric field in terms of the incident field. A convenient form
of the resulting expression that may be obtained by vector manipulation
of the cross products in the formula (see Exercise 7.1) is

(7.1.8)

where e = Ei/Ei and subscripts on /? indicate components in the direction
of the vector indicated (e.g., jSs = P • s, etc.).

This is the general formula for relativistic Thomson scattering from a
single electron. The multiplicative factor is simply the classical electron
radius, defined as

re =

If we consider a specific incident wave polarization such that the electric
field is perpendicular to the scattering plane (i.e., the plane containing s
and i), then e • s = 0 (e • i = 0 always). Also suppose that we select, using
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Incident ^ Scattered

Fig. 7.2. Vector diagram for restricted scattering geometry.

a polarizer, for example, only that part of the scattered wave that has E
parallel to e; then we have a rather simpler formula,

[f.(]—R2\l/2
fe'E' = r4 Jt(l-j8a)3 {(l-^i)]gg

2-(l"A)(l-ft
Figure 7.2 illustrates this more restricted scattering geometry. Equation
(7.1.10) is the formula usually used for relativistic scattering from a single
electron.

7.2 Incoherent Thomson scattering
7.2.1 Nonrelativistic scattering: the dipole approximation

In some cases the additional complexities of the relativistic treat-
ment are unnecessary. The nonrelativistic formulas are particularly simple
and bear a rather more elegant relationship to plasma parameters, so we
derive them here. In the nonrelativistic limit, the initial particle velocity
is small enough that the equation of motion becomes simply

moc
and the radiated (scattered) field is

(7.2.1)

(7.2.2)

This latter equation is just the radiation field for an oscillating dipole of
moment p such that p = — e\; hence, the term dipole approximation for
this nonrelativistic limit. The scattered electric field is therefore

(7.2.3)

The power per unit solid angle (Qs) scattered in the direction s by a
single electron is simply R2c8o\Es\2, which is

dP
(7.2.4)
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Fig. 7.3. Polar plot of the angular distribution sin (
approximation.

of power in the dipole

where <j> is the angle between s and Er-. This scattering is illustrated in
Fig. 7.3, which shows a polar plot of the power scattered in different
directions. It is convenient then to define the differential scattering cross
section as the ratio of dP/d£ls to the incident power per unit area C&Q\EI\2.
This cross section is then

da
(7.2.5)

The total Thomson scattering cross section is simply the integral of this
expression over all solid angles. Noting d£ls = 2n sin 0 d(j), this is easily
evaluated to give

8TT
G — (7.2.6)

Naively, one may interpret this as indicating the effective "size" of
the electron for scattering. The total power it scatters in all directions is
equal to the power of the incident wave that would fall on a disk of area
G = Snr2J3.

7.2.2 Conditions for incoherent scattering
So far we have calculated the scattering from a single electron.

However, we need to know what the scattering will be from a plasma
consisting of many electrons. In order to calculate the total scattering, it
is necessary to add up the electric field contributions from each of the
electrons. To do this correctly requires information on the relative phase
of each contribution as well as the amplitude.

If one could assume that the phases of all contributions were com-
pletely uncorrelated, then the prescription would be simple. For any such
case of incoherent summation we know that the powers add. So we need
simply to take the modulus squared of the electric field and sum over all
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Particle

Observation
Point

Fig. 7.4. Coordinate vectors for calculation of the wave phase.

electrons. For the nonrelativistic case, the total fraction of the incident
power scattered over all angles per unit path length is then simply

neo = \nner2
e. (7.2.7)

The problem is, though, that we do not know a priori that the phases
are purely random like this, because plasma is a medium supporting all
kinds of collective effects in which electron positions and motions are
correlated. Thus, in some cases the summation requires coherent addition,
which will give a very different result.

First let us note that the scattered field from a single particle can be
written quite generally as

] (7.2.8)
where fl is a tensor polarization operator that, as we have seen, is equal
to s A sA = ss —  1 for the dipole approximation, but is more complicated
in the fully relativistic case.

Now we are considering the far field where the distance R may be
approximated as x —  s • r, where r is the position of the particle relative
to an origin in the scattering region and x is the position of observation
of Es as illustrated in Fig. 7.4. The difference between R/R and x/x
is negligible; both are equal to s. The retarded time at which we must
evaluate PI • E, is then

tf = t--{x-s-x'\ (7.2.9)
c

where primes again denote retarded quantities.
We shall be interested in the frequency spectrum of the field scattered
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during a finite time interval T (at x), so we require the Fourier transform
of Es(t):

Es(vs) = j Es(t)eto'< dt = J fc n • E J eto*< du {12A0)
where vs = 2nojs denotes the scattered frequency. Now we transform
the integral to retarded time noting dt = K' dt' and ignore the difference
between R and x except in the calculation of the retarded phase; we get

Es(vs) = r± [ n ' • E;(r', 0 e^ ' + ( *- § - r ' ) / c V dt'. (7.2.11)
x JT,

Defining ks = sa>s/c, this is

' • E,- e
/ ( a ^ ' - M / ) dt'. (7.2.12)f

JT>T>

If we take the input wave to be monochromatic,

Ef(r, t) = Et exp i(kt • r - cotf), (7.2.13)

then the scattered field becomes

Es(vs) = r^ll f Kn' - E; e^f'-k-r/) dt', (7.2.14)
x J

where co = cos — cot  and k = ks — kt called the scattering frequency and
k vector. In particular, the phase difference between scattered fields from
two electrons at ri and r2, respectively, is k • (ri —  r2).

Now, as we saw in Chapter 2, the Debye shielding effects of a plasma
cause a test charge to be surrounded by shielding charges in a cloud of
characteristic length XD. The combination of the charge and its shield
is referred to as a dressed particle; consideration of the interaction of
radiation with the combination of charge and shield enables us to see
when particle correlations are important and when they are not, as
follows.

A test electron has a shielding cloud (whose total charge is +e) con-
sisting purely of electrons, or rather, the absence of them. This is because
electrons move so much faster than ions (for comparable temperatures)
that the ions "can't keep up" with the electron in order to contribute
to its shielding. On the other hand, a thermal test ion is slow enough
to allow the other ions to participate in the Debye shielding, so it will
be surrounded by a cloud of roughly — e/2 total charge of electrons and
—e/2 of (absence of) ions.

Now, if the phase difference between the scattering from an electron
and from electrons in its shielding cloud is large, as will be the case
if kAD > 1, then the random distribution of the electrons within the
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cloud will be sufficient to ensure that the scattered fields of electron and
shielding cloud are incoherent. In this case, no correlation alterations to
the power are necessary and the total scattered power is a simple sum of
single-electron powers.

If, on the other hand kXjy <C 1, the contribution from test particle and
cloud will add up coherently since there is negligible phase difference
between them. For a test electron, this means that its scattering is almost
exactly balanced by the (absence of) scattering from its electron shielding
cloud. As a result the total scattering from test electrons is greatly
reduced. For a test ion, though, there is scattering from the electrons
in its shielding cloud, but direct ion scattering is negligible. Thus, in
this case, the total scattered power from a uniform plasma is essentially
just from the electrons shielding ions, which is approximately half that
from uncorrelated electrons and is characteristic of the ion distribution
function, since the scattering comes from the "^ electron" cloud shielding
each ion and moving with it. This second situation is sometimes called
ion Thomson scattering or perhaps more accurately collective scattering
or coherent scattering.

We shall return to the problem of particle correlations and put these
heuristic arguments on a more rigorous footing when we discuss collective
scattering, but for now we proceed with a discussion of incoherent
scattering.

7.2.3 Incoherent Thomson scattering (B = 0)
In the limit kkD > 1, when particle correlations can be ignored,

the scattered power can be obtained as an incoherent sum of scattered
powers from single electrons.

Consider a monochromatic input wave; take the wave amplitude Et to
be constant (in space) and also (for now) the particle velocity v = r to be
effectively constant, because we assume no applied steady magnetic field.
The time integration in Eq. (7.2.14) can then be performed to get

ik *x
Es(vs) = Te e S ITLKU • Et <5(k • v - co). (7.2.15)

Thus, the scattered field from this electron has a single frequency

cos = coi + k ' V = coi + (ks —  k t ) - v, (7.2.16)

which may also be written cos = coi(l —  i • P)/(l —  s • P) = coj. This
is precisely the Doppler-shifted frequency of the input wave, the shift
arising from a combination of the shift occurring at the electron due
to its motion toward the source of the incident wave (k; • v) and the
additional shift at the observation point due to the electron's motion
toward it (ks • v).
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The scattered power may be obtained easily in this monochromatic
case by forming

r0

J-o
Es(vs) er^dvs = - n El? (7.2.17)

using |d(k#v—co)/dco s\ = 11 —s*v/c|  = K SO that 7c<5(k*v—co) =  S(CDS—<x>d)  =
<5(̂ s —  VJ)/2TI. Note that the real part is implied in this expression for
Es(t). The Poynting vector magnitude is

(Ss) = -n-E,-
x

2
(7.2.18)

Expressed as mean power per unit solid angle per unit frequency this is

d2p
s dv, (7.2.19)

where (Si) is the mean incident Poynting vector usually expressed as Pi/A,
the total input power divided by the total input beam area.

Recall once more that this is energy per unit time-at-observer. If we
want scattered energy per unit time-at-particle we must multiply this by
the factor K relating these two times. When we wish to calculate the
total power from an assembly of electrons within a specified volume
element d3x, the total power is equal to the number of particles in the
element (with specified velocity) fd3vd3x times the rate of scattering per
unit time-at-particle. This is just the same issue as arose in Section 5.2.1
with cyclotron emission, although in Thomson scattering it has acquired
(somewhat misleadingly) the specific name finite transit time effect.

Some early treatments erroneously omitted the additional K factor until
the point was thoroughly discussed by Pechacek and Trivelpiece (1967).
A similar confusion also arose over the cyclotron emission formula and
was resolved almost simultaneously (Scheuer, 1968).

We are now able to write down the total incoherently scattered power
spectrum from an assembly of electrons with distribution function / . It is

dQs dv
= r

2
e [ (St) [Jv J • e\2Kf2riK <5(k • v - co) d\ d3r, (7.2.20)

where V is the scattering volume from which the scattered radiation is
detected, and we have again used S(vs — Vd) = 2nKd(k • v —  co). Recall
here that, in general,

x s A { [ s - p ] A [ e - ( p - e ) P + (p -e ) i - (p - i ) e ]} (7.2.21)

from Eqs. (7.1.6), (7.1.7), and (7.2.8).
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The power spectrum Eq. (7.2.20) is sometimes expressed as a mean
differential scattering cross section per electron by dividing by f(Si)ne d3r
so that

°^4 [-e\2tK25(k-v-co)d\ (7.2.22)
n

4rha>i dils dvs

provided ne is uniform in the scattering volume V. The extra factor cos/^>i
is required to compensate for the fact that the scattered photons have
somewhat different photon energy from the incident. This av is the cross
section for yhoton scattering. Some authors use an expression without
the factor (os/coii their cross section is then for energy scattering.

In the nonrelativistic dipole approximation these expressions become
particularly simple because K2\n • e|2 reduces to |sA(sAe)|2, a quantity
independent of v. The velocity integral can then be performed trivially
to obtain

where fk(v) is the one-dimensional velocity distribution in the k direction:

h(vk) = J HM^dW (7.2.24)

(J. denotes perpendicular to k.) For a Maxwellian distribution this is

The potential power of this result is clear. The frequency spectrum
(for fixed scattering geometry) is directly proportional to the velocity
distribution function, giving, in principle, complete information on the
electron distribution in one dimension along k.

A typical scattering spectrum is shown schematically for this case in
Fig. 7.5. The spectral shape is proportional to the distribution function.

Unfortunately, it is rather rare for the results of a practical scattering
experiment to be sufficiently accurate as to provide detailed information
on the precise shape of the distribution function. Signal-to-noise limita-
tions usually require that a specifically chosen curve shape (Maxwellian)
be fitted to the spectrum obtained, thus in effect measuring Te from
the width and ne from the height, again providing only moments of the
distribution function.

For high-temperature plasmas it is essential to retain the relativistic
treatment. The main effect of relativistic corrections arises from the
relativistic aberration or "headlight effect", whereby a relativistic particle
emitting radiation isotropically in its rest frame preferentially beams this
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+ V

Fig. 7.5. The scattered spectrum in the dipole approximation is directly propor-
tional to the one-dimensional velocity distribution with % = (cos — a>i)/k.

radiation in the forward direction in the frame of a stationary observer.
In the present context this means that we observe preferentially greater
scattering intensity from electrons moving toward the observation point
than from those moving away. Now the Doppler shift for scattering
from electrons moving toward the observer is upward in frequency, that
is, toward the blue (rather than red for the optical spectrum). Thus
scattering from a relativistic plasma shows enhancement of the blue
(high-frequency) side of the spectrum. This blue shift is important even
for temperatures of only a few keV, especially when, as is often the case,
the spectrum is measured only on one side (usually blue) of the incident
frequency. An interpretation of the single-sided blue spectrum ignoring
the relativistic blue shift would then tend to overestimate the width of
the spectrum and hence the temperature.

These factors are automatically accounted for in our relativistic for-
mulas. It is inconvenient to maintain the full generality of the Fl *e term,
so we use the simpler form of Eq. (7.1.10) when E/ is perpendicular to
s and i and we select only the e • Es component. The scattered power
is then

e-n-e\2K2fd(k-y-(o)d\

1 -
( 1 - s - i )

J2e

x(l-p2)f5(k-y-(o)dh. (7.2.26)

The terms inside the velocity space integral have a simple interpretation.
The first, which is always less than or equal to 1, is the extent of
depolarization of the radiation due to relativistic effects. The second is
simply (D2/cof, the ratio of scattered to incident frequency squared. As
such, it can be taken outside the integral, being independent of vj_. The
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third term can be thought of as due to the relativistic mass increase of
the electron that decreases its scattering efficiency (remember re oc l/me).

As before we can do the v integral along k to get

lr^ 1 = 2nrl
e I (Si) d*r —^

dilsdvs Jv cof

1 - ( 1 - S - i ) , 2 , 1

(7.2.27)

where Vk = co/k and p = (vj_ + v^)/c. In this case, without further
approximation, we do not obtain simply the one-dimensional distribution
because of the extra p± dependent terms in the integral. To first order in
j8 these terms are constant and equal to 1, so one easy approximation is
to ignore fi2 terms; then

, dv,
= 2nr2 1 + ICDj

(7.2.28)

(see Exercise 7.3) and we obtain a simply weighted function of the one-
dimensional distribution. (Note, we have accounted for the variation of
both k and a>s with co in this expression.) This mildly relativistic form can
be expected to provide reasonable accuracy for electron temperature up to
at least 10 keV. The consistent approximation for the thermal distribution
for fk (i.e., ignoring fi2 and higher terms) is the nonrelativistic Maxwellian
distribution Eq. (7.2.25). Thus, the temperature is conveniently found by
fitting a Gaussian form to a linearly weighted (1 — 3co/2(Oi)  multiple of
the power spectrum.

For very high temperatures, higher order /? terms must be included
and the fully relativistic Maxwellian distribution used. The velocity inte-
gral of Eq. (7.2.27) can then be performed analytically only by making
the simplifying approximation of treating the depolarization term as a
constant that is independent of velocity. With this approximation one
finds that the scattering can be evaluated (Zhuravlev and Petrov, 1979)
for a relativistic Maxwellian distribution with temperature T, and may
be expressed in terms of a differential photon cross section as

JP _= q(T)
1 - 2cor\ -S + OJ2

x exp
2tur(l-i-s)

(7.2.29)
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Fig. 7.6. Spectral shapes for relativistic Thomson scattering.

where cor = cos/co; and q(T) is the appropriate mean value of the
depolarization factor |1 - ^ ( 1 —  I • s)/(l - /?,•)( 1 - ft)|2, slightly smaller
than 1.

Although the modified Bessel function K2 may be retained in this for-
mula, a more convenient expression is obtained by using the asymptotic
approximation

X 1 V2

2n
(7.2.30)

valid for x = moc2/T > 1. The value of q may be estimated by substitut-
ing typical thermal values of p,pt ~ y/(T /moc2), into the depolarization
factor, giving q « (1 —  T/moc2)2 for 90° scattering. The resulting expres-
sion agrees with an exact numerical integration to within negligible error
for practical purposes (Selden, 1982). The shape of the theoretical spectra
is illustrated in Fig. 7.6 for several different electron temperatures.

7.2.4 Experimental considerations
The order of magnitude of incoherent scattering is determined

simply by the total Thomson cross section a = 8nr2/3, which is a
fundamental constant o = 6.65 x 1(T29 m2 (re = 2.82 x 10~15 m). Thus
if a beam of radiation traverses a length L of plasma of density ne,
a fraction oneh of the incident photons will be incoherently scattered.
In most laboratory plasmas this fraction is very small; for example,
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Fig. 7.7. Typical configuration for an incoherent Thomson scattering experiment.

if ne = 1020 m~3 and L = 1 m, aneL = 6.65 x 10~9 and less than
10~8 of the photons are scattered. Of these photons, an even much
smaller fraction will be detected, since usually one collects scattered
radiation only from a short section of the total beam length (perhaps
~ 1 cm) with collection optics that subtend only a rather small solid
angle (perhaps 10~2 sr). The fraction of scattered photons collected is
then (10~2 m/1 m) x (10~2 sr/47t sr) ~ 1(T5. Thus, of the input photons,
only perhaps 10~13 will be collected.

This fact is the source of most of the practical difficulties involved
in performing an incoherent scattering experiment. The first requirement
that it forces upon us is that we must have a very intense radiation source
in order to provide a detectable signal level. That is why the measurements
are almost always performed with energetic pulsed lasers. Actually, of
course, the number of scattered photons observed is proportional to the
total incident energy (regardless of pulse length) for a given frequency.
However, the noise from which the signal must be discriminated will
generally increase with pulse length. Hence, high incident power as well
as high energy is required.

A schematic representation of a typical incoherent Thomson scattering
configuration is shown in Fig. 7.7. The input laser beam is allowed to pass
through the plasma, as far as possible avoiding all material obstructions.

Naturally, it must pass through a vacuum window at its entrance
(and possibly exit) to the plasma chamber. At these points unwanted
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scattering of the laser beam occurs, even from the most perfect windows,
whose intensity can far exceed the plasma scattering. This is the second
important restriction we face arising from the small magnitude of the
Thomson cross section: the need to avoid detection of this "parasitic
radiation", usually called stray light. The baffles indicated in the figure
are often used to reduce the stray light. Also, removing the windows
and other optics far back into the ports is another way to reduce stray
light, and the purpose of a viewing dump, when present, is primarily to
reduce the effect of multiple scattering of the stray light from vacuum
surfaces finally entering into the collection angle. In other words, the
viewing dump provides a black background against which to view the
scattered light.

Despite these types of precautions the stray light may often still exceed
the Thomson scattered light. Fortunately, it can be discriminated against
by virtue of the fact that the stray light appears precisely at the input
frequency, whereas the Thomson scattered spectrum is broadened out
from a>i by the Doppler effect, which is our main interest. Thus, provided
we avoid the frequency cot, we can avoid the stray light. Various filters
and high rejection spectral techniques exist for this purpose.

Let us suppose, then, that by a combination of these techniques the
stray light is eliminated. The other contributions to the noise come either
from the detector/electronics used to observe the scattering or from
radiation from the plasma. (Strictly, we should add a third possibility:
thermal background radiation. This is usually negligible.) The detector
noise depends upon the type of detector used; therefore, it is hard to
generalize on its contribution. However, in many cases, for example when
photomultipliers are used in the visible, it can be ignored.

Therefore, we consider only the plasma radiation as the noise source.
Usually the only types of radiation we need to consider are line radia-
tion and bremsstrahlung continuum. Again, a general treatment of line
radiation is not feasible since it depends entirely upon the composition
of the plasma. In very many cases line radiation is an important or even
dominant contribution to the noise signal. However, we shall proceed
with a calculation that ignores it. Two points can be made in justifying
this approach. First, the bremsstrahlung, which we do include, consti-
tutes the minimum possible plasma radiation that would occur in the
absence of any line-emitting impurity atoms. Second, because the lines
are narrow it is possible in principle to adopt the same strategy as for
avoiding stray light, namely, to discriminate against them by avoiding
them in the spectrum. Even when there are many lines in the spectrum
this is not as overwhelming a task as it may seem. For example, a "mask"
can be constructed to exclude the important lines from being transmit-
ted through a grating spectrometer. Naturally, it is necessary first to
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Fig. 7.8. Geometry for background-light calculation.

perform a spectral survey to discover where these lines are. Because of
the extra trouble involved and because the resolution of spectrometers
used in scattering experiments is usually insufficient to allow a very fine-
wavelength-scale mask to be used, such steps are rarely taken if signal to
noise is satisfactory.

Let us therefore calculate the signal to noise expected considering
only bremsstrahlung. We suppose the collection optics to subtend a solid
angle Qs at the scattering volume and to collect light from a region of
dimension L along the incident beam and d perpendicular to it. Figure 7.8
illustrates the geometry. We take d to be large enough to see the whole
beam, but no larger since that would increase the noise but not the
signal. Thus d is essentially also the beam size. The plasma dimension in
the direction of the scattered light will generally be much larger than d\
call it D. Note that the viewed incident beam length perpendicular to the
viewing direction is L sin 6, where 6 is the scattering angle.

The bremsstrahlung emissivity we obtain from Chapter 5, writing it

(7.2.31)

where for a single polarization we take

e2 \ 3 STT / 2 m \ 1 / 2 .
gff

2 V47ieoy 3V3m2c3 V n

= 1.0 x 10~63gff (SI units) (7.2.32)

to be constant and to include only the free-free term, which will be a
good approximation provided hcos < Ry < Te. Remember Ry = 13.6 eV
so this is satisfied for visible and longer wavelengths. The total number
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of bremsstrahlung photons per unit frequency collected in a time At will
then be

Nb(vs) = Atj(vs)(QsdLsm6)D/hvs

= (Qs dL sin 6)DAt(Cn2
eZeff/Ty2hvs). (7.2.33)

Note here that QsdL sin 6 is the etendue, which is therefore constant
along the entire collection path. The emissivity j may not be constant
along the path because of spatial variation of ne and Te. We account for
this by taking D to be the effective path length of the plasma.

The total number of Thomson scattered photons collected in the
nonrelativistic case, when polarization is chosen to make sA(sAe) = l
(E perpendicular to the scattering plane), is

Ns = Ni^-QsneL = Nir2
eQsneL, (7.2.34)

where Ni is the total number of incident photons. These are spread over
a frequency band whose width is approximately

n

Avs ~ kvt/2n = vt 2— sin - . (7.2.35)
c 2

This is the frequency band over which we are also obliged to collect the
bremsstrahlung photons, so over the total bandwidth the ratio of signal
(scattered) photons to noise (bremsstrahlung) photons is

Nb vt2(vs/c) sin(0/2)(Qs dL sin 6)DAt(Cn2
eZQfi/Te/2hvs)

= ^ 1 l *L m^2li (7236)
At 2sin(0/2)smO kiDdneZGSC' V ' ' '

Thus we see that this ratio is proportional to the incident power and
inversely proportional to d, D, and ne. It is independent of Te and L.

In some cases this ratio is the required signal-to-noise ratio. For
example, when A£ (taken equal to the laser pulse length) is of the same
order of magnitude as the plasma duration, this is the case. Also, if the
plasma has considerable variation (due to turbulence, for example) over
the time At so that the bremsstrahlung is modulated by a fraction 5, say,
the signal-to-noise is Ns/SNb.

If the plasma is essentially constant during the laser pulse, then the
true noise level is not the total bremsstrahlung power but the fluctuations
in the bremsstrahlung. From a practical viewpoint, this may be under-
stood by considering an experiment in which the background average
bremsstrahlung emission, determined just before the scattering pulse, is
subtracted from the total signal during the pulse. Only the fluctuations
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in the background remain uncompensated. The minimum level of these
fluctuations is due simply to the photon statistics of the bremsstrahlung
photons (plus, to be rigorous, the scattered photons). The fluctuation
level in the photon number is then just (JV& + ATS)1/2 (see Appendix 2).
Actually we need to account for the fact that our system does not detect
every photon, but has a certain quantum efficiency, Q say, of production
of detected photoelectrons. That is, we only detect Q times the number of
collected photons. Then the statistical fluctuation level in photoelectrons
is Q1/2(Nb + Ns)1/2 and the signal-to-noise ratio is Q1/2Ns/(Nb + Ns)1/2.
Usually the term Ns in the denominator can be ignored, in which case
the signal to noise is

r Q J 1

N[C2sm(e/2)sme\ [dDAt\ Z
2 37)

which is now independent of density but weakly temperature dependent.
A numerical example discussed by Sheffield (1975) is that of scattering

of ruby laser (A = 694.3 nm) light from a plasma with parameters
Te = 500 eV, ne = 2.5 x 1019 m"3, L = 0.7 cm, Qs = 2.3 x 10~2 sr,
0 = 90°, and Q = 0.0025. The number of scattered photons detected
when the laser pulse energy is W joules is QNS = 2.7 x 102 W. For a
Q-switched laser pulse of duration 25 ns, the bremsstrahlung estimate
of background light suggests that less than one noise photon should be
detected. On paper then, the signal to noise with a 6 J pulse looks very
good. However, it was found in practice that the background plasma
light was about 500 times more intense than expected. The source of this
extra light was identified as primarily line radiation, against which no
special precautions were taken. This experience serves as a cautionary
tale against relying too heavily upon low background light calculations
based upon bremsstrahlung alone.

An example illustrating the spatial information to be gained from
incoherent scattering is depicted in Fig. 7.9, which shows the so-called
TV Thomson scattering (TVTS) system originally developed at Princeton
University by Bretz et al. (1978). It gains its name from the intensifier
tube in the detection system that uses principles similar to a television
to receive a two-dimensional image from the detection spectrometer. The
optics are arranged so that one axis of this image represents different
wavelengths while the other receives scattered light from different spa-
tial positions in the plasma. Thus, a large number of scattered spectra
are measured simultaneously, providing good spatially resolved measure-
ments of plasma temperature and density as illustrated in Fig. 7.10.
The previous two examples are both based on scattering of ruby laser
light.
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Fig. 7.9. Schematic illustration of the configuration used for multiple point
Thomson scattering (TVTS) [after Bretz et al. (1978)].

The ruby laser has dominated incoherent plasma scattering experi-
ments since its availability first made them possible in the 1960s. It still
offers a well proven way of meeting the requirements of incoherent scat-
tering, primarily high power and energy with good beam quality (low
divergence, etc.) at a wavelength (694.3 nm) where sensitive detectors are
available. However, detector developments have made possible the use of
neodymium lasers (X = 1.06 urn) with avalanche photodiodes for scatter-
ing experiments. The major advantage that such lasers have, particularly
when yttrium aluminum garnet (YAG) is used as the solid state laser
medium, is the ability to fire repetitively at up to ~ 100 Hz. This can
then enable the time evolution of electron temperature and density to be
followed in long plasma pulses typical of modern fusion experiments, as
has been demonstrated, for example, by Rohr et al. (1982). An incidental
advantage also observed is that the plasma light due to impurity line ra-
diation is often less troublesome near 1 urn because there are fewer lines
there. These YAG laser scattering experiments are now the predominant
Thomson scattering system in use on magnetically confined plasmas.
They generally are not able to use the TVTS approach to their spectral
selection. Instead multiple polychromators using filters in reflection have
proven to give high light efficiency in a cost-effective design (Carlstrom
et al, 1990).

An approach with significant advantages in incoherent scattering from
large plasmas has acquired the name LIDAR. It is based on discrim-
inating the position of scattering by the time of flight of the light. A
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Fig. 7.10. Typical results from the TVTS system on the Princeton large torus.

backscattering configuration is used (scattering angle of 180°). The ob-
served scattered light takes a time 2L/c to propagate to a distance L,
scatter, and return. If this delay time can be measured to an uncertainty
of AT, it is then possible to tell what distance the scattered light comes
from to an uncertainty of AL = CAT/2. Moreover, scattering from a whole
range of delays can be detected, providing a diagnostic profile along the
laser beam. The spectral width and the integrated scattered intensity give
the temperature and density in the usual way. The main challenge is
to make AT short enough to allow adequate spatial resolution. Experi-
ments on JET (the largest tokamak experiment) have obtained spatial
resolution (AL) down to about 5 cm using 3 J ruby laser pulses of 300
ps duration, streak-camera detection, and some deconvolution (Gowers
et al, 1995). But their commoner resolution is 10 cm with microchannel
plate photomultiplier detectors. The detection speed is then the limiting
factor. Only in large plasmas is this spatial resolution adequate. Stray
light is far less of a problem in such a system, because it is discriminated
against by its arrival time. A single window can be used without the
baffles and other stray-light precautions.
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7.3 Coherent scattering
7.3.1 The scattered field and power

We must now consider the case in which there is significant
correlation between the electrons over the scale length of the inverse
scattering k vector, that is kX^ < 1. We can no longer invoke the
simplification that the total power is the sum of individual electron
scattering powers. Instead we must perform a coherent sum of the electric
fields from the various electrons. To do this we return to Eq. (7.2.12),
which expresses the electric field due to scattering from each electron.

Now any scattering experiment receives scattered power only from a
finite volume of plasma. Usually this is defined by the finite extent of
the input beam and the finite acceptance angle of the collection optics,
although sometimes finite plasma size is important too. Suppose that the
position of the y'th electron in the vicinity of this volume is Tj(t); then we
can write sums over all electrons conveniently in the form of an integral
over a distribution of delta functions

= fd3rd3vFe, (7.3.1)
j

where

Fe{r,v,t) = ^d{r-Tj{t))S(y-Vj(t)) (7.3.2)
j

is the Klimontovich point distribution function of the electrons. The total
scattered electric field from all the electrons is then

Es(Vs) = ^ ^ / / F y n ' - E i e W " W dt' d3r' dV. (7.3.3)
* JT JV

In the dipole approximation (but not in the relativistic case) fc'lY is
independent of v' and so the velocity integral can be done, giving

Es(vs) = ^ - n

where Ne = jFed3v = Zl(Hr~~r/) *s t n e (Klimontovich) density, and
primes remind us that retarded quantities are involved.

These equations (7.3.3) or (7.3.4) are formal solutions when the input
wave field Et is general. Normally one is interested in scattering of
monochromatic incident radiation, so now let us consider, as before, the
specific incident wave

i(Y, I) = ii-j-e , {/.j.J)

where we shall, for simplicity, take E; to be of constant magnitude
across the volume V, although the situation may easily be generalized
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to nonuniform illumination by adopting a weighted integral over space.
Bear in mind, too, that we imply in this expression for E;(r, t) that the
real part of the right-hand side is to be taken.

In the dipole approximation we then have

Es(Vs) = rA^l\\^i [ [ Ne(rf,fy-W-aOdtrdV. (7.3.6)

This particularly simple expression indicates that the scattered field is
proportional to the Fourier transform of Ne over finite time and volume.
Specifically it is proportional to that component of Ne with /c-vector
k = ks —  kf and angular frequency CD = cos — cot, the scattering k and
co. Remember, though, that Ne is the Klimontovich density, including all
the "graininess" of the discrete particles, not the smoothed out density
ne that is the ensemble average of Ne.

Now we can obtain the average power during the time T per unit
frequency per unit solid angle. The form of Parseval's theorem that we
require for this is

/•OO 1 /*OO

/ \®e(E{t))\2dt=- \E(v) + E'(-v)\2dv, (7.3.7)
J-OD * JO

because we must take real parts before forming products and we cannot
distinguish between positive and negative frequencies. Note that E(v) ^
E*(—v) when  E(t) is not purely real (see Exercise 7.6). The resulting
power spectrum is

d2p

dvsdQs ~ 27 ' - " ' " ' ^ vs;i

= e ° 2 |AUks - k;, a>s - co,-)

+ N*e(-ks-ki,-cos-o)i)\2, (7.3.8)

where <x>s = 2nvs is positive and the Fourier transform is defined as

JVe(k,co)= / f Neir'j'^'-^'Ut'd^r. (7.3.9)
JT JV

If the total incident power across the volume is P, so that

= A(St)=Pi, (7.3.10)

where A is the incident beam area, that is, the area of V perpendicular
to k/ (A is assumed constant), then the scattered power spectrum can be
written
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Fig. 7.11. "Beating" between the crossing wavefronts shows where the two terms
in S{k,co) come from.

where

S(k,G))ES
1

neTV
\Ne(k, co) - 2ks, co - 2cos)\2. (7.3.12)

S(k, co) is called the scattering form factor.
Several comments should be made concerning this important expres-

sion. First, we can obtain an impression of how the two Ne{k,co) terms
arise by considering the interference pattern formed between the incident
and scattered waves. These are illustrated in Fig. 7.11, taking the waves
as plane. The crossing wavefronts form patterns of peaks (lines, say) and
troughs (spaces). Where troughs coincide there are enhanced troughs and
likewise for peaks. As indicated, there are two diagonal directions that
connect the positions of enhancement. These two directions correspond
to the wavefronts of the components iVe(k, co) and Ne(k —  2ks, co —  2cos)
of density perturbation from which the wave can scatter.

Second, one is usually concerned with radiation frequencies cot and cos
that are much greater than the characteristic frequencies of the plasma
(strictly speaking, this is essential for our free space treatment). The
second Fourier component N*(—k s —  k,-, —a>,-  —  cos) is likewise a high
frequency component. Moreover, its phase velocity is greater than c.
Therefore, there cannot be a normal mode of the plasma with this co
and k. The second term is thus usually negligible compared to the first,
whose frequency cos —  cot can be much smaller than cos. The second term
is normally omitted; we shall do so from now on.

Third, we note that the Fourier transform appearing is only over finite
time and space. This can be significant; it is generally unnecessary and
incorrect to proceed, as many treatments do, to the limit T, V —> oo.
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Scattering is done with finite time duration and volume. The effect of
taking finite Fourier transforms is to restrict the available k and co
resolutions to values of the order of Afe ~ 1/F1//3 and Aco ~ 1/T. If
the correlation length of density fluctuations is much smaller than F1//3

then no difference is obtained between the finite and infinite spatial
transforms. In this case proceeding to the V -» oo limit is allowable
because in effect the k spectrum is broad and smooth enough that the
finite Afe is negligible. In some cases though, for example, scattering from
a coherent sound wave, the coherence length exceeds the extent of V. In
such a case to proceed to V —• oo is incorrect because Afe is not negligible
compared to the fluctuation k width (the width is narrow). The same
argument applies to T and co. If we wish to express the result in terms
of infinite Fourier transforms we must, in general, note that the finite
transform is the convolution of the transform of V or T with the infinite
transform (see Appendix 1). This convolution then accounts correctly for
the Afe and Aco resolution.

Fourth, our calculation has considered a single realization of the scat-
tering experiment. Normally T is taken long enough that the averaging
process gives a mean power that is equal to the mean over all possible
realizations. That is, we can replace \Ne(k,co)\2 by the ensemble average
(|iVe(k,co)|2), which is what a statistical treatment of the plasma can
calculate.

7.3.2 Scattering form factor for a uniform unmagnetized plasma
A particular case of interest for diagnostic purposes occurs when

the plasma can be taken as uniform across the scattering volume. We
mean by this that the average value of the electron density is constant
and that all the contributions to the density fluctuation spectrum Ne(k,co)
arise from the discreteness of the particles. Provided the number of
particles in the shielding cloud of any test plasma particle is large,
then particle correlations can be adequately described by regarding this
"dressing" as given simply by the dielectric response of the rest of the
plasma. In a uniform plasma the plasma response can be expressed in
the linearized case by a dielectric constant s = 1 + x> where % is the
susceptibility. We consider only an isotropic case B = 0, although this
can be generalized to include an applied magnetic field. The dielectric
description can only generally be applied to the Fourier transformed
Maxwell's equation, so really £ and x are functions of k and co.

Knowledge of s(k,co) (or x) is sufficient to calculate the exact form
of the dressing on a test particle of arbitrary velocity. Recall that in a
general dielectric medium

D = 880E = s0E + P, (7.3.13)
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where P is the electric polarization of the medium,

^ (7.3.14)

Now we shall actually need to distinguish, in the plasma response, be-
tween the polarization (and hence x) contribution due to electrons and
that due to ions, so we write

p = p. + pe?
(7.3.15)

X = Xi + Xe-
The ions contribute negligibly to the scattering so that we shall be
interested primarily in the electron part of the polarization Fe and the
charge associated with it, namely,

pe = -V-P, = - ^ V - D . (7.3.16)
8

This equation constitutes an expression for the electron charge density
dressing our test particle, which is the only particle to be considered in
calculating D.

Suppose now that the test particle has charge q and velocity v, so that
the charge density of the test particle is q S(x —  \t). The required Fourier
transform of this charge density is then

po = fqS(x- v O e " 1 ' ^ - ^ d3x dt

= q27i8(k'V-co) = VD. (7.3.17)

Hence the electron cloud dressing this particle is

pe(k, co) = —q  2TT <5(k • v - co). (7.3.18)

In order, now, to obtain the density fluctuation spectrum for the whole
plasma particle assembly we consider each plasma particle in turn as
being the test particle and add up the contribution to the total Ne(k,co)
spectrum from each particle plus shielding cloud. For test electrons we
must include the density of the particle itself (po) as well as the cloud
(pe), but not for test ions since they do not scatter significantly; only
their shielding electrons are important. The result is

Ne(k,co) = - E

4/2TI <S(k • v/ - co), (7.3.19)

where qe is the electron charge (—e) and q\ the ion charge.
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The essence of the dressed particle approach is now to assume that the
dressed particles, represented by the two sums in this equation, can be
taken as uncorrelated, at least when an ensemble average is taken, all the
particle correlations being accounted for by the dressing. This amounts to
ignoring higher order correlations of more than two particles. This being
so, when we form the quantity {\Ne(k,co)\2), cross terms vanish and we
must simply add up the sum of the individual particle terms squared. We
have to note too that we are strictly dealing with finite Fourier transforms
when it comes to a practical case of scattering volume V and time T. So
the square of a delta function must be interpreted as S2(co) = T5(co)/2n
(see Appendix 1). Then we get

S(k,co) =
1

neTV
(\Ne(k,w)\2)

/ions

j electrons

Xe
1+Xe +

1 -

Xi

1 + Xe + Xi
5(k'\j -co)

Z2S(k • v/ —  oo) (7.3.20)

where Z/ = \qi/qe
example,

is the ion charge number. Now we note that, for

\
5(k-Vj-co)) =

/\ j electrons
/

J
d\Fe(\)d(k-v-co)

(7.3.21)

where the subscript k denotes the one-dimensional distribution function
along k. A similar relationship holds for ions. Thus we can write

1
1 1 +

1

Xe
Xe

+

+ Xi

Xe
Xe +

2
i
J

Xi

fek(j

(7.3.22)

where, for completeness, we allow the possibility of different ion species
i. Note, too, that we have implicitly assumed that the finite width of
S(k'\ -co), which arises because of finite V, can be ignored.

All that remains is to obtain appropriate expressions for Xe and xt- We
should note that these are related to the electron and ion conductivities by
X = —d/icosQ  so that the problem is simply to calculate the conductivity
of the plasma, due separately to electrons and ions. The method used
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in Chapter 4, based on the cold plasma approximation, is clearly not
appropriate since we are interested in precisely those values of wave
phase velocity co/k at which f^co/k) is significant. Thus we cannot
ignore the thermal plasma particle velocities, but must treat the response
from a kinetic theory viewpoint. To do this we start with the Vlasov
equation

dl+y.dl + lE.dl=0, (7.3.23)
dt dx m d\

which we linearize and then Fourier transform to get

-icof + zk • vf' + ̂ d-f = 0, (7.3.24)
m oy

where now / is the zeroth and f the first order distribution function.
Solving this equation for ff and then integrating q\ff over velocity we
get the perturbed current density

( 7 . , 2 5 )
J I 1 ?

zra j co —  k • v
so that the conductivity tensor is

a = q- [ Vdf[dy fy. (7.3.26)

For our assumed isotropic distribution this can be integrated over the
components of v perpendicular to k to give

(7.3.27)
co — kv

with fk the one-dimensional distribution along k. In these expressions the
improper integrals must be taken along the appropriate Landau contour
chosen to satisfy causality. For our sign convention this means a contour
in the complex v plane below the pole at v = co/k. Details of this question
are discussed in books on plasma kinetic theory; for example, Clemmow
and Dougherty (1969) give an insightful account.

Thus the Vlasov treatment provides the required general form of the
susceptibility of any species of the plasma. This can be used in our
previously calculated form of S(k, co).

For a Maxwellian particle distribution,

(7.3.28)
V2 , /_,,2_LV _L —v

2nJ %
C X P \ 2 4
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with thermal velocity vtj = (Tj/mj)1^2, the susceptibility for the yth species
becomes

C0l:

k2v?j Jhi J co/k-v

Recalling that Xo = vte/cope, this may be written

dv. (7.3.29)

1 / ZfnjTe \

where £j = co/kvtj^f2 and

^ # (7-3.31)

is equal to minus half the derivative of the plasma dispersion function
(Fried and Conte, 1961). It can be evaluated for the correct contour to
give

Z2 [ c' d£ + in1/2^\ (7.3.32)

The form of w(£) is shown in Fig. 7.12.
Rigorously we can now see that when kXz> ^> 1, then Xj < 1 so the

dominant term in S(k, co) is just the first term of the electron contribution,
that is, the incoherent term, while if klD < 1 then Xe ̂  1 (at least for
£ values that are not very large) and the coherent terms are important.
In fact, for Xe > 1 the total electron term will become negligible and, as
pointed out before, we are left with the ion feature only.

An understanding of the principles underlying the collective form factor
S(k,co) may be gained by observing that the denominator in Eq. (7.3.22),
1 + Xe + lu is simply the dielectric constant s. Now the dispersion relation
for longitudinal waves in the isotropic medium under consideration is

s = 0. (7.3.33)

Thus, a peak will occur in the collective scattering spectrum [because of
a peak in S(k,co)] for any co,k corresponding to a longitudinal wave sat-
isfying this dispersion relation. In general such waves are either electron
plasma waves (co « cop) or ion acoustic waves [co/k « cs = (ZiTe/mi)i/2]
and these are the points at which we expect special enhancement due to
collective effects to occur.

The extent to which this peak is high and narrow in the spectrum
depends upon the degree to which these waves suffer damping, primar-
ily Landau damping. If the damping is weak the peak will be very
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Fig. 7.12. Real and imaginary parts of the plasma dispersion function w(^).

pronounced. However, if the damping is appreciable there will be con-
siderable broadening or perhaps even complete removal of the peak. The
reason for this is that damping shows itself in the fact that, for real co
and k, s has a significant imaginary part that then prevents |e| from being
exactly zero even when its real part is zero.

Now Landau damping is due to the wave-particle resonance co/k = v,
and occurs when there is an appreciable gradient in the distribution
function df/dv at velocity co/k. Recalling that Xv = vte/cope, it becomes
clear that the condition for collective effects to be dominant (kXr, <C 1)
is equivalent to

vte < cop/k, (7.3.34)

that is, the condition for Landau damping of electron plasma waves to
be small. In this case the only part of the electron feature that remains
is a narrow peak at cop.

Ion acoustic waves are always strongly affected by ion Landau damping
unless ZTe^> Tt. This disparity in temperatures is necessary if the wave
phase speed is not to be of the same magnitude as the ion thermal speed.
Therefore, the extent to which the ion acoustic resonance shows in the
spectrum depends not just on scattering geometry kXD, but also on the
plasma electron to ion temperature ratio.

The importance of the wave properties of the plasma in determining
the form factor S(k,co) can be thought of as arising because the electrons
and ions of the plasma are continuously emitting (and absorbing) waves
into the plasma by a Cerenkov (Landau) process. These waves (or more
properly fluctuations, since they may be so strongly damped as not to
satisfy a normal dispersion relation) are then what a collective scattering
process observes.

Returning to a consideration of S(k,co) in Eq. (7.3.22), because of the
fjk(co/k) factors, the ion and electron terms have very different widths in
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S(k,u>)

Fig. 7.13. Illustration (not to scale) of the ion and electron contributions to
S(k,co) in the collective regime.

co (for a given k), corresponding to velocity co/k, of the order of the ion
or electron thermal speed, respectively. When electron and ion densities
are equal, in the spectral region where ^ = co/kvti^/2 ~ 1 this means that
fi ^ fe (because the integrals of fj over all velocity space are equal). On
the other hand, in the region £e ~ 1 (near the electron thermal speed) //
is negligible. Figure 7.13 illustrates this point schematically.

As a result of this separation of velocity scales it is possible to express
<S(k,co) in a convenient approximate form, originally due to Salpeter
(1960). This approximation replaces Xe in the ion term by its value
l/(/d/>)2 at £e —» 0, and sets xt  m t n e electron term equal to zero
since xt ^ 0 as & -» oo. The resulting Salpeter approximation (see
Exercise 7.7) is

where

and

S(k,co)

a2 =

2?r, l

ZTe

rp($,), (7.3.35)

(7.3.36)

(7.3.37)
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Fig. 7.14. The Salpeter shape function Tp(x) for various values of p.

is the same shape function for both features, though with different
arguments. (Note that this approximation is valid only for a single
species of ion.)

In Fig. 7.14 is plotted the shape function Tp for various values of /?.
It shows how the spectral shape of the ion feature varies as a function
of the temperature ratio ZTe/Tt, which determines /?. For large ZTe/Ti
(and hence /?) we see a sharp peak at the ion sound speed: the ion
acoustic resonance. (Care should be exercised here, though, since the
Salpeter approximation breaks down for very large ZTe/Ti.) As ZTe/Tt
decreases, the ion acoustic resonance broadens and is absorbed by the
thermal spectrum so that at /? = 1, for example, only a vestigial hump
remains.

Since a > 1 in the collective scattering regimes, if electron and ion
temperatures are comparable then fi2 ~ 1 (assuming Z ~ 1). Thus
diagnosing the ion distribution using the ion feature will produce not a
Gaussian spectrum (which requires /} <C 1) but one significantly distorted
by the dielectric effects of the plasma, the vestigial ion acoustic hump.

7.3.3 Problems of diagnostics using the ion feature
There are numerous practical difficulties involved with detecting

the ion feature. Many of these are common to incoherent scattering too
but some arise specifically because of the requirements of coherent scat-
tering. In particular the requirement k^o < 1 enforces longer scattering
wavelength (smaller /c-scattering). This can only be achieved by decreas-
ing the scattering angle or increasing the incident radiation wavelength.
The former approach has limits, since the scattered radiation must be
separated from the input beam. As a result only rather dense plasmas
(typically ne > 1022 m"3) are suitable for detection of the ion feature
using visible radiation.

For more typical plasmas it is essential to use longer wavelength ra-
diation such as that obtained from a CO2 laser (10.6 urn) or specially
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developed far infrared lasers (1 approximately a few hundred microme-
ters). Particularly for the longer wavelength lasers, whole new areas of
technology development are required in order to perform the measure-
ment. The cherished objective of a reliable direct measurement of the
ion temperature and also of the plasma microstate has been sufficient to
motivate extensive development of these techniques [see, e.g., Luhmann
(1979)].

Despite the advances in technology, we can see from our theoretical
expression that, even if clear measurements of the feature were achieved,
it is far from obvious that an accurate unambiguous interpretation of
the spectrum obtained would be straightforward.

If we have a pure plasma of (say) hydrogen then, provided the plasma
is indeed thermal (i.e., there are no distortions of the ion spectrum due
to instabilities, etc.), we might expect to be able to fit appropriate curves
to the spectrum so as to deduce Tt. However, impurities (which will be
present in any practical laboratory plasma) will tend to confuse the result
because if they have similar temperatures their thermal speed will be
lower by the square root of the mass ratio. Thus they will tend to enhance
the central regions of the ion feature, and unless they are negligible
(which requires Zeff —  1 <C 1) or else are carefully compensated for, they
will distort the spectrum, giving an incorrect temperature estimate. (One
way to try to circumvent this problem is to restrict attention to the
wings of the scattering line so as to emphasize the contribution of the
lightest ion species.) On the other hand, to look on the positive side,
one might possibly be able to deduce detailed information about the
impurities from the spectral shape. Figure 7.15 illustrates experimental
collective scattering spectra from an investigation of impurity effects in
a low-temperature arc plasma (Kasparek and Holtzhauer, 1983).

A particular application that has more recently motivated ion Thomson
scattering experiments is that they can give information about nonthermal
parts of the ion distribution, and in particular confined fusion reaction
products. We defer additional discussion to Section 7.4.4.

7.3.4 Scattering from macroscopic density fluctuations
The formidable difficulties of coherent scattering from the den-

sity fluctuations that arise in an otherwise uniform plasma owing to the
discreteness of the particles have prevented the routine use of coherent
scattering for diagnosing the ions. However, most laboratory plasmas ex-
perience density fluctuations caused by various types of instability within
the plasma. These fluctuations generally have wavelengths exceeding the
Debye length so we may call them macroscopic. Their frequencies may
extend from very low frequency up to the characteristic frequencies of
the plasma (cop, etc.). Considerable interest focuses upon the ability to



7.3 Coherent scattering 305

200 400
V(MH2)

1>VAJ
Tj * t,9eV
H*: 83 V,
A44:13'/.
A+ : 6**»

1 0 -

S(V)

200 600
V (MHz)

200 400
V (MH2)

Fig. 7.15. Experimental spectra of composite plasmas: (a) hydrogen alone, (b) hy-
drogen plus argon, (c) hydrogen plus nitrogen, and (d) hydrogen plus helium
[after Kasparek and Holtzhauer (1983)].

diagnose these fluctuations because, in the case of "naturally" occurring
fluctuations, they can be responsible for enhanced transport, while in the
case of deliberately excited waves, such as those launched for heating
purposes, internal detection allows the wave dynamics to be investigated
directly.

Generally, the fluctuation levels encountered far exceed the thermal
levels calculated in Section 7.3.2, so that by judicious choice of incident
frequency the detection problems can be made considerably easier than
they are for thermal scattering.

The equations governing this process are again simply those we have
had before [Eq. (7.3.6)] except that now we need not consider the Klimon-
tovich density but instead can ignore the discreteness of the particles and
use the smoothed density ne:

r eik-x r p

2nx JT Jv
(7.3.38)
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Fig. 7.16. An example of a scattering system designed for simultaneous measure-
ment of S(k) at various k values [after Park et al. (1982)].

When, as is often the case, we wish to characterize a density fluctuation
spectrum ne(k,co) that is broad in k and co, that is, a rather turbulent
spectrum, the frequency spectrum may be obtained by appropriate fre-
quency analysis of the scattered waves. The k spectrum, on the other
hand, is most easily obtained by varying the scattering angle so that
k = 2/cj sin 6/2 scans an appropriate domain. Sometimes it is convenient
to observe scattering simultaneously at various different scattering an-
gles so as to obtain reasonably complete k information simultaneously.
Figure 7.16 shows an example of such a setup and Fig. 7.17 shows some
typical k and co spectra.

Although CO2 laser radiation has been extensively used for the pur-
poses of density fluctuation measurements, its wavelength (10.6 urn) tends
sometimes to be rather smaller than desirable. As a result, very small
scattering angles are required, which usually prevent one from obtaining
spatial resolution along the incident beam. Figure 7.18 illustrates this
point. In this respect, longer wavelength lasers in the submillimeter spec-
tral region prove more satisfactory, although their technology is less well
developed. Microwave sources have also been used extensively. Their
main drawback is that the frequency tends to be so low that the beam
suffers from considerable refraction by the plasma. Also, diffraction limits
the minimum beam size obtainable. From the theoretical point of view,
the treatment we have outlined presupposes cot > cop, which may not
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Fig. 7.17. Typical fluctuation spectra obtainable from a collective scattering
experiment [after Semet et al. (1980)].
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Fig. 7.18. Scattering with shorter wavelength radiation gives poorer spatial res-
olution along the beam than longer wavelength (for the same k).

be well satisfied for microwaves. Moreover, fluctuation wave numbers
greater than 2kt are not obtainable so relevant parts of the k spectrum
may not be accessible with low kt microwaves.

More often than not heterodyne (or homodyne) detection techniques
are used together with a continuous, rather than pulsed, source. When
this is the case the resemblance between a scattering experiment and an
interferometer becomes very obvious, as illustrated in Fig. 7.19. In fact
one can regard interferometry as functionally equivalent to zero angle
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Scattering Interferometry

Fig. 7.19. The functional similarity between a homodyne scattering experiment
and a simple interferometer.

scattering. This practical similarity reflects a much more fundamental
equivalence between the refractive index of any medium and its electro-
magnetic wave scattering properties. Indeed, we could have approached
the problem of scattering from density perturbations from the viewpoint
of wave propagation in a medium with refractive-index perturbations,
using the dielectric properties of the plasma calculated in Chapter 4.
Identical results would have been obtained for the same assumed plasma.
In this respect note that the classical electron radius re = e2/4nsomc2,
which determines the scattering cross section, can be written

re = coz/c 4nne. (7.3.39)

So nere is proportional to co2, which is the quantity determining the
refractive index N2 = 1 —  CD2/CD2 in the field-free case.

7.4 Scattering when a magnetic field is present
When the electrons from which scattering is occurring experience

an applied constant magnetic field B, considerable additional complexities
arise. The most important effect is that the unperturbed electron orbit is
now helical instead of being a straight line. The periodicity of the electron
motion in the plane perpendicular to the field gives rise to a cyclotron
harmonic structure to the scattered spectrum. It turns out, as we shall
see, that except in rather special cases this structure is smoothed out by
the broadening effects in an integration over the distribution function.
The spectrum obtained is then just what we deduced earlier ignoring
the magnetic field. If appropriate (rather demanding) precautions are
taken so as to observe the "magnetic modulation" (as the cyclotron
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harmonic structure of the scattered spectrum is often called) then this
can in principle be used as a diagnostic of the magnetic field.

7.4.1 Incoherent scattering from magnetized electrons
We must return to the treatment of Section 7.1 and generalize

the equations to include an applied field. The equation of motion is still
solved as

- ( 5 ^ ) (7.4.,,

but now B has a constant component (Bo, say) as well as the component
arising from the incident wave. We know that the acceleration arising
from Bo gives rise to radiation. However, that is just the cyclotron
radiation that we have already discussed in Chapter 5. It occurs, in any
case, at frequencies typically much smaller than the scattering in which
we are presently interested. Therefore, we wish to obtain only that part
of the acceleration that is due to the incident wave. It is easy to show
that this is given, as before, by

P = -Z^{Ei- - (P-EOP + (P E,)i - (pi)E;}, (7.4.2)
mcy

except that now the P appearing on the right-hand side of this expression
is that appropriate to the helical unperturbed orbit. The analysis thus
proceeds just as before as far as Eq. (7.2.14):

(7.4.3)s ( s ) I / ,
x JT

but now we must substitute the quantities [Eq. (5.2.3)]

P = fi ±_{%cos coct (7.4.4)
a

- = — (x sin o) ct —  y cos coct) + /?n tz

for the helical orbit.
In the general case K'W • e is a function of P and hence is periodic

with period 2n/coc (note a>c = Q/y). It is convenient to choose axes such
that the y-component of k is zero: k = (fex,0,fe||). Substituting for r' in
the exponential term gives

expz (-k± sin cocif—  + [co - ck^^A . (7.4.5)

The first term here again gives a periodic function, while the second
term we keep separate. Now the periodic part of the integrand can be
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expanded as a Fourier sum,

KU • e exp i ( —k± sin  oct—  ) = ^ a« eIlwM> (7.4.6)
V C°c / n=-oo

and the integral can then be performed to give

reelks 'x ^ ^
Es(vs) = E( 2TT > aw ^(co —  k\\p\\c —  wcoc), (7.4.7)

x ^ ^ " "
—oo

a sum over discrete cyclotron harmonics much the same as with cyclotron
emission, except, of course, that co here is the difference frequency cos—co z.

Writing out the argument of the delta function and setting it equal to
zero, the frequency of the nth harmonic cosn is given by

(cosn - co/) - (cosns - C0ji)-p|| - ncoc = 0, (7.4.8)

so

(7.4.9)

To understand this result one can regard the electron as a composite
entity that moves at the guiding-center velocity along the field, P||, but
simultaneously gyrates around the guiding center at frequency coc. During
scattering the electron experiences the incident wave at the frequency
coj(l —  i«P||), Doppler-shifted by the guiding-center motion. It upshifts the
frequency by a harmonic of the (relativistically mass shifted) cyclotron
frequency ncoc and reradiates. The observer sees this frequency Doppler-
shifted because of the electron's motion in the direction s, that is, divided
by( l - s -Pn) .

In the dipole approximation the coefficients an can be calculated
straightforwardly because KT\ • e is then independent of p. The result is

an - s A (s A e)Jn(k±v±/a)c) (7.4.10)

(see Exercise 7.10). In the fully relativistic case the Fourier coefficients
are much more cumbersome to evaluate, although this can be done
(Nee et al, 1969). In either case, the most convenient approach is not
to attempt to evaluate the appropriate integrals and sums directly, but
rather to proceed by reference to the scattering from an unmagnetized
plasma, as follows.

Suppose we consider the normal situation where co, and co are much
larger than coc. If we consider only the scattering that takes place during
a time interval T < l/coc, then during this time interval an electron
rotates by only a small angle about its guiding center. Thus the electron is
traveling approximately in a straight line for this duration. The frequency
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(a) (b)

Fig. 7.20. The scattering from a very short arc of an electron orbit in a magnetic
field is the same as that from a straight line orbit of an unmagnetized plasma
when both are averaged over angles.

resolution possible for such a short duration is given by Aco ^ 1/T so
that this thought experiment is equivalent to observing the spectrum with
a broad resolution Aco > coc, in which case all the harmonic structure is
averaged out. The angle of the electron in its gyro orbit will be random,
of course; therefore, the scattered spectrum from a magnetized electron,
when smoothed to remove the harmonic structure, will be just that from
an electron traveling in a straight line, but averaged over all orbit angles.
Figure 7.20 illustrates the point.

Incoherent scattering from a full velocity distribution of electrons can
be treated in just the same way, which demonstrates that smoothing out
the harmonic structure will lead to a spectrum precisely that obtained
by the unmagnetized plasma treatment (including, of course, the finite
resolution Aco effect). The requirement co > coc is necessary to allow the
harmonic smoothing to be possible without simultaneously smoothing
out all the frequency dependence of the unmagnetized spectrum, that is,
so that Aco can be chosen such that co >• Aco >• coc.

7.4.2 Presence of the harmonic structure
Unless rather specific precautions are taken, the incoherent

Thomson scattering from a plasma in which co; > coc will show no
difference from an unmagnetized plasma. In particular most experiments
employ a resolution Aco, determined usually by instrumental limitations
rather than finite pulse train T, which greatly exceeds coc. The question
arises, however, if one had sufficiently fine frequency resolution, would
the modulation be present? This depends very strongly on the scattering
geometry.

When scattering is observed from a full distribution of electrons the
frequency of the nth scattering harmonic cosn, given by Eq. (7.4.9), is
different for different electron velocities. This causes the harmonic to
have finite width Acon. If this width is significantly larger than the spacing
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Fig. 7.21. The frequency shift due to the Doppler effect on the incident frequency
{a) is usually larger than the shift of the cyclotron harmonics (b).

of the harmonics, cosn+i - cosn, then the harmonic overlap will cause a
smoothing of the spectrum so that the harmonic structure is washed out,
regardless of the available spectral resolution Aco.

Just as with cyclotron radiation, there are two broadening mechanisms:
Doppler effect and relativistic mass shift. The former is generally stronger
since it is of order /}, while the mass shift is of order p2. Unlike the
cyclotron radiation case, however, there are now two different frequencies
coi and n£l experiencing different shifts. Because cot is usually considerably
larger than co (and hence wQ), shifts in the (Dt term tend to be more
dominant in the broadening, as illustrated by Fig. 7.21.

Let us consider first, then, the condition necessary for the harmonic
structure to be visible, taking account only of the shift in the cot term.
Modulation will occur if

coa-coi<a (7A11)

for most electrons in the distribution. Putting j8t for the typical thermal
velocity vt/c, this requires

Q (7.4.12)
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and hence,

(S-i)'ift<QM (7.4.13)

(z is the direction of the magnetic field). This may be written as

V . ;$Q- (7A14)
In order to gain an impression of what this criterion involves, consider
the specific case of scattering of visible radiation (cot ~ 3 x 1015 s"1) in
a magnetic field of - 5 T (Q - 1012 s"1) so that O/CD,- - 3 X lO"4 and
in a plasma of temperature ~ 1 keV so that pt ~ 5 x 10~2, with angle
2n/3 between i and s so that k « k\. The condition we have derived then
requires the angle (j) between the scattering k vector and the magnetic
field to satisfy

£ j cos(/> = (s - i)-z < 1 — . (7.4.15)
"i / Pr <̂ i

Thus |0 —  7i/2| < 6 x 10~3. We require k to be perpendicular to Bo to
within - 0.3°.

Provided the scattering geometry satisfies this criterion, the Doppler
width due to parallel electron motion will be sufficiently small as to
allow the harmonic modulation to be present. Near the center of the
scattering spectrum (i.e., where n is small) the magnetic modulation will
appear provided the distribution is not highly relativistic. However, for
the modulation not to be smoothed out at large n requires, in addition to
this criterion, that the spread of the second, harmonic, term in Eq. (7.4.9)
be small enough. The tendency of this term to cause harmonic overlap is
greatest at greatest n and hence greatest a>. There will, therefore, always
be some n for which overlap occurs. However, the bulk of the scattered
spectrum will be modulated provided overlap is avoided out to co —  kvu
that is, for n < kvt/Q = (k/ki)Pt(Oi/Q. Substituting, therefore, the typical
thermal values, we find that overlap is avoided if

a (7A16)

The Doppler-broadening effect on the cyclotron harmonic frequency
(1 —  s • zpt)~l will be sufficient to cause overlap unless

(k/kt)s • z # W Q ) < 1, (7.4.17)

thus indicating that s (as well as s —i)  must be nearly perpendicular to B.
The angular constraint is less severe though: in our preceding example s
must be within about 6° of perpendicular.
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The broadening effect due to mass shift is unaffected by the scattering
geometry and so represents the irreducible minimum harmonic broad-
ening from a given distribution. It will be small enough to allow the
modulation to appear (when the other criteria are met) only if

< 1, (7.4.18)
which may also be written

T / O
me2 \a>i k

In the case of visible radiation and at 5 T magnetic field this becomes
T < 2.5(fcj//c)2//3 keV, which is satisfied in our example but would not be
for very much higher electron temperature.

A final effect that must be considered is the variation of Bo within the
scattering volume. In inhomogeneous magnetic fields the variation A2?o
across the scattering volume must satisfy

^r<l~T-T- (7-4-2°)
Bo n k cot pt

This places an upper bound on the dimensions of the scattering volume
in the direction of field inhomogeneity if modulation is to be observed.

7.4.3 Magnetic field measurement
In view of the discussion of the previous section it is clear

that the mere observation of the modulation provides extremely precise
information on the angle of the magnetic field, namely, it is perpendicular
to the scattering k direction (s —  i). This seems to be the most promising
application.

Early proof of principle experiments (Carolan and Evans, 1972) demon-
strated the presence of modulation and several individual peaks were
able to be resolved. Figure 7.22 gives an example. These were in low-
temperature high-density plasmas. For hot plasma applications when a
large number of harmonics are present (~ 150 in our example), the scat-
tered intensity in each harmonic is too low to be detectable, often less
than one photon per harmonic. Therefore, a multiplexing technique is
necessary. In an elegant experiment, based in part on an idea of Sheffield
(1972), Forrest et al. (1978) used a Fabry-Perot interferometer whose
free spectral range was equal to the cyclotron frequency (known because
\B\ was accurately known), which then allowed all the harmonics to
pass simultaneously, causing a brightening of the scattered image at the
scattering angle that satisfied the criteria previously discussed. This thus
gave the direction of the magnetic field from which the small poloidal
component, of great importance in tokamaks, could be deduced.



7.4 Scattering when a magnetic field is present 315

lA 1A

Fig. 7.22. Experimental observation of magnetic modulation [after Carolan and
Evans (1972)].

The practical difficulties of such experiments can hardly be overstated.
Perhaps this explains why the preceding experiment remains as yet the
only example of the use of the magnetic modulation of Thomson scat-
tering in fusion research.

7.4.4 Coherent scattering in a magnetic field
As we have seen, the effect of magnetization of the electrons is to

introduce cyclotron modulation into the spectrum. When one is interested
in the ion feature of coherent scattering, naturally the helical motion of
the ions introduces an ion cyclotron harmonic structure into the spectrum,
peaks spaced by Q; = ZieB/ntj. Moreover the dielectric properties of the
plasma, which determine the dressing of the particles, become anisotropic.
Despite the theoretical complications, and the practical difficulties in part
already discussed, the possibility of observing the distribution function of
confined energetic ions, such as fusion reaction products, has kept interest
alive in ion Thomson scattering for fusion plasmas. A brief outline of
the principles is therefore given here, based on a generalization of our
earlier treatment.

The scattering form factor S(k,co) for a magnetized plasma can be
calculated following a similar dressed particle approach to Section 7.3.2.
However, because the dielectric tensor c and the susceptibilities Xe and
Xi are anisotropic, a more comprehensive approach is necessary. We start
from the general wave equation with currents, (4.1.2), but regard those
currents as separated into two parts, the dielectric response, j , which
is expressed in terms of the dielectric tensor, and the currents jo of
the individual test particles. We move jo to the right-hand side of the
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equation, treating it as a source, and obtain an inhomogeneous form of
(4.1.6), namely

kk-fc21 + ^ - e ) -E = - i .

This is an equation that must be solved for the fluctuation field, E(k,<x>)
arising from the sources j 0 . Formally, we can write down the solution by
multiplying each side of the equation by the inverse of the dispersion ten-
sor, (kk — /c 21 + co2c/c2) . Having obtained the fluctuating field, E, we
can immediately derive the associated electron charge density fluctuation
as pe = V • Xe' £oE = soik • Xe' E.

Although this calculation can be carried out in full, the complexity
of the matrix inversion of the full dispersion tensor is discouraging. It
is also usually unnecessary, because ion Thomson scattering parameters
are practically always such that the phase speed of the fluctuations we
are scattering from, co/k, is much less than the speed of light. This phase
speed is, of course, the speed of the ions we are attempting to diagnose.
In such a situation, one can adopt the electrostatic (or longitudinal)
approximation, valid when kc/co > £i; for all of the coefficients stj of the
dielectric tensor. The electric field can be expressed as the gradient of
a scalar, E = — V(/>, and consequently it is purely longitudinal, E = k£.
Substituting into Eq. (7.4.21) and taking the k-component then reduces
it to a scalar equation:

2

%-k • £ • k £ = -icofjo k-]0 = i(co2fi0/k)po (7.4.22)
cl

and allows us to write down immediately the electron charge density
fluctuation attributable to the dielectric response, in other words the
particle dressing, as

A. A

pe(k, co) = —soikE k • Xe * k
If • V • t V
**• Ae **• AeL ( n A ^ ^ N

= —*  —Po —  Po- (7.4.23)
k • £ • k £L

Here we are using the subscript L to denote the longitudinal contraction,
k • £ • k = eL? etc.

Now we must obtain po(k, co) for the helical orbit of a particle. It takes
the form of the by now familiar Bessel function expansion. Following the
same analysis as Sections 7.4.1 and 5.2.1 we obtain

oo / k \
Po —  —2nq y ^  d(co —  feiit;|| —  ncoc)Jn ( ] , (7.4.24)

where q is the particle charge, coc is its (relativistically mass-shifted)
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cyclotron frequency, and parallel and perpendicular refer to the magnetic
field direction.

We substitute this expression and sum over particles for the bare
electrons, their shielding clouds, and the ions (to get their shielding
electrons), arriving at the generalization of Eq. (7.3.19). Then, as before,
we take the square magnitude and ensemble average. The cross terms drop
out and the sum over particles becomes an integral of the distribution
function over velocity and space. The resulting form factor is

S(k,co) = — 1 - XeL

+ XeL + XiL

XeL
+ XeL + XiL

where
oo

n=—oo

S(co — k\\V\\ —  ncoc) j B

V
f(\)d3v. (7.4.26)

The sum over cyclotron harmonics for the ions will be indistinguishable
from the unmagnetized expression in most situations. The reasoning is
just the same as we discussed for incoherent electron scattering in Sections
7.4.1 and 7.4.2. The harmonics overlap because of their Doppler width
unless fe|| = 0, and even then if we have insufficient resolution to separate
them we shall see a spectrum the same as if O; = ftk{co/k). However,
the electron harmonics are more widely separated than the entire ion
scattering spectrum. Therefore for electrons the opposite limit applies,
kj_v±/co < 1, allowing the sum to be approximated by the single term
n = 0, for which Jn = 1, because all the other Bessel functions are small.
The resulting approximation is

CO

XeL (7.4.27)

which represents the physics for a system in which the test electrons are
perfectly constrained to move only along the magnetic field, while the test
ions are unmagnetized. The sort of scattering spectrum one can expect to
see for a plasma consisting of electrons, thermal ions, and a population
of energetic alpha particles born at velocity va (corresponding to their
fusion reaction energy) then might look schematically like Fig. 7.23.
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Fig. 7.23. Schematic illustration of the different contributions to the scattering
form factor. In practice the alpha feature is much lower in amplitude, corre-
sponding to the smaller alpha density.

Although we shall not take time to derive it, the longitudinal sus-
ceptibility in a magnetized plasma is (Clemmow and Dougherty, 1969,
p. 307)

co — — nco c

For a nonrelativistic Maxwellian distribution this integrates to

d\. (7.4.28)

XjL =
co — nco r

(7.4.29)

where, for the j th species, s = k±Vj/coCj, ^n = (co — nco Cj)/k\\vtjyj2, In is
the Bessel function of imaginary argument, and w is the function defined
by (7.3.31). The approximations for % corresponding to those of equation
(7.4.27) are that the ion susceptibility reverts to the unmagnetized form
(7.3.30), while the perfectly constrained electron response retains only the
n = 0 cyclotron harmonic to give

(7.4.30)*i a2 fdfv
k2 meokii J co —
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which is a factor kj/k2 times the unmagnetized expression [Eq. (7.3.27)]
modified by substituting k\\ for k. Or, putting it another way, it is the
same as the unmagnetized expression (7.3.30), except that the argument
of the function w is £o = co/k\\vtjsj2, using k\\ rather than k. This outcome
can alternatively be derived directly from the physical approximations,
rather than via cyclotron harmonic expansion.

This calculation shows that the ion scattering term is significantly
affected by the magnetic field only through the changes to the electron
susceptibility. Those changes, for near perpendicular k, lead to additional
resonances. The most important corresponds to weakly damped lower
hybrid waves, at co and k satisfying sL « 0, where there is enhanced
scattering. Normally that resonance should be avoided experimentally
because its sensitivity prevents an unambiguous deduction of//. Avoiding
the lower hybrid resonance requires that the k\\ should not be too small,
that is, the direction of k should not be too close to perpendicular. The
electron scattering term is similarly enhanced by any resonance effects.
It is also narrowed in frequency and enhanced in magnitude by the
factor k/k\\. This effect is usually important only for ensuring that the
electron scattering is small enough not to obscure the ion scattering we
seek.

In order to obtain sufficient spatial resolution, by avoiding extreme
small angle scattering, experiments are forced to use long wavelength
radiation to obtain the required value of k. Recent energetic particle di-
agnostics have used gyrotrons, whose frequency is only the same order of
magnitude as the electron cyclotron and electron plasma frequencies of
the plasma being diagnosed. For these experiments, then, the approxima-
tion that the incident and scattered radiation can be treated as if in free
space fails. Considerable complications in the scattering theory ensue.
Scattering has to be treated as the excitation of a scattered plasma mode
by the nonlinear coupling of the incident wave and a plasma fluctuation.
The scattered wave can then be derived from an anisotropic wave equa-
tion with sources, namely Eq. (7.4.21) but replacing jo with the nonlinear
current of the beating of the two initial waves (and of course solving
the equation using the parameters of the scattered wave). Refraction also
affects the propagation of incident and scattered rays, making it a non-
trivial practical matter even to ensure the beams overlap, and affecting
the relationship between power-flow and electric field. The theory has
been developed in great detail (Bretz, 1987; Hughes and Smith, 1989;
Bindslev, 1993). The changes can be expressed in terms of an additional
multiplying factor, often called the "geometrical factor", which has been
calculated for a range of cases relevant to the experiments. The scattering
power is then given by Eq. (7.3.11) times the geometrical factor, with the
scattering form factor from (7.4.27).
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Further reading
Many of the details of the theory and practice of Thomson

scattering are addressed in a monograph devoted to the subject:

Sheffield, J. (1975). Plasma Scattering of Electromagnetic Radiation. New York: Academic.

In addition to articles on Thomson scattering in the review compendia
mentioned previously, the theoretical aspects are reviewed in:
Bernstein, I., Trehan, S. K. and Weenink, M. P. (1964). Nucl. Fusion 4:61.

Both theory and experiment are discussed in the excellent review:

Evans, D. E. and Katzenstein, J. (1969). Rep. Prog. Phys. 32:207.

Of the basic plasma physics texts, a substantial discussion of various
aspects of scattering is included in:

Krall, N. A. and Trivelpiece, A. W. (1973). Principles of Plasma Physics. New York:
McGraw-Hill.

Bekefi, G. (1966). Radiation Processes in Plasmas. New York: Wiley.

Exercises
7.1 Obtain Eq. (7.1.8) from the formulas in the text.

7.2 It is possible in principle to measure the electric current density j
in a plasma by using incoherent scattering to determine the appropriate
moment of the distribution function. Show how this might be done, and
in particular show how to choose the scattering geometry in order to
measure a specific geometrical component of the current density. If the
order of magnitude of the current is j ~ 0.1neevte and we may ignore
noise arising from background plasma light, how many scattered photons
would have to be detected in order to measure j to an accuracy of 10%?

7.3 Obtain Eq. (7.2.28).

7.4 Suppose we measure electron temperature Te by observing only
the short wavelength side of an incoherent scattering spectrum and do
not account for relativistic effects but simply fit a straight line to a plot
of log [dP/dcu] versus co2, for 0 < a) < 2kvte, and obtain Te from its
slope. By what approximate percentage shall we be in error if the true
temperature is (a) 100 eV; (b) 1 keV; (c) 5 keV?

7.5 In a certain incoherent Thomson scattering experiment the stray
light arises primarily from scattering from the vacuum windows. Suppose
these are such that a fraction F of the light passing through them
is scattered isotropically in all directions, the rest of the beam passing
through unaffected. The windows are flush with a spherical vacuum vessel
wall. They are directly visible, one from another, and are arranged so
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that the laser beam crosses a diameter before reaching the exit window.
The scattering angle is 90° and the laser input beam polarization is
perpendicular to the scattering plane. Show that the ratio of stray light
to Thomson scattered light (in the whole scattering spectrum) is equal to
at least

1 F2d

where d is the laser beam diameter in the scattering volume, R is the radius
of the sphere, ne is the plasma density, and re is the classical electron
radius. Evaluate this ratio for ne = 1019 m~3,R = 0.2 m, d = 10~3 m, and
F = 10~2, and comment on the viability of this scattering experiment.

7.6 Prove Eq. (7.3.7).

7.7 Obtain Eq. (7.3.35).

7.8 Show that the total scattered power Ps from a coherent density
fluctuation ne cos(kx — cot)  propagating perpendicular to an incident laser
beam of power P* and k vector fcj such that hi >> k is

Ps = Pi\r1
en2

el2
iL\

where re is the classical electron radius, X[ = 2n/ki, and L is the length
of the scattering region along /c,. How will this result change if k ~ fcj?

7.9 Coherent scattering is to be used to measure a broad turbulent
density fluctuation spectrum. The k resolution required of the he(k,co)
measurement is fixed as A/c. The plasma size (and hence scale length) is
D such that AkD ^> 1 and the anticipated width of the ne(k)k spectrum is
kw (̂ > A/c). Calculate the spatial resolution (along the beam) achievable
when measuring fluctuations he(kw) as a function of the incident radiation
k vector kf.

7.10 Obtain Eq. (7.4.10).

7.11 Suppose Thomson scattering is performed with a CO2 laser
(1 = 10.6 jim) on a plasma with electron temperature approximately
1 keV.

(a) If the angle of scattering is 90°, up to roughly what plasma density
can one take the scattering to be incoherent?

(b) If one wanted instead to measure the ion temperature by collective
scattering and the density were 1020m~3, what scattering angle would be
approximately optimum and why?
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Diagnostics based on manipulating neutral atoms in the plasma
are particularly important for magnetically confined plasmas because,
unlike the charged ions, the atoms travel freely across the field. As a
result, it is possible to use atoms that are emitted from the plasma to
provide information about the plasma interior. It is also possible to send
a beam of atoms into the plasma in a controlled way so as to produce
a particular desired diagnostic configuration. This active probing often
uses other phenomena, such as line radiation induced by the presence
of the beam, to complete the diagnosis. However, because the beam
propagation and related atomic processes are such a critical part of the
diagnostic implementation, we gather together discussion of all these
diagnostics within the present chapter.

8.1 Neutral particle analysis
Although most hot plasmas are almost completely ionized, there

are, nevertheless, neutral atoms that are continually being formed within
the plasma. Because these travel straight across any confining magnetic
field, significant numbers can escape from the plasma without suffering a
collision. These atoms then carry information out of the plasma about the
state of the inner regions. They are called fast neutrals to distinguish them
from the more numerous neutrals that tend to surround even a relatively
hot plasma and that are edge particles, providing no information about
the interior.

8.1.1 Collision processes
The proportion of fast neutrals that can reach the plasma edge

(and hence be detected) without suffering a collision depends upon the
collision cross sections for the various possible collisions. The most
significant types of collisions are generally:

1. Ionizing collisions with electrons;
2. Ionizing collisions with ions;
3. Charge-exchange collisions.

The relative importance of these depends on the velocity of the neutral.
For definiteness and because it is the most frequent case, let us consider
a neutral hydrogen atom in a proton-electron plasma.
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Electron Energy
101 10* eV

Proton or Atom Energy
10° eV

Fig. 8.1. Cross sections for electron loss. Electron-impact ionization oe; ion-
impact ionization ap; charge exchange oe for hydrogen atoms in an electron-
proton plasma. The electron-impact ionization can be regarded as for a stationary
electron and moving atom (bottom scale) or a stationary atom and moving
electron (top scale).

Electron-impact ionization has already been considered in Chapter 6.
For a stationary ion the cross section (oe) is zero for electron energy less
than the ionization potential Ry, rises rapidly to a value of the order of
na\ as the electron energy rises above Ry, and then falls off slowly at
much higher energy as illustrated in Fig. 8.1.

Because electrons move generally more rapidly than ions the motion
of the atom will not affect this type of collision until the translational
energy of the atom exceeds that of the electrons by a factor (mi/me)
(~ 1800 for H). One can thus usually approximate the ionization rate as
independent of atom velocity. This leads to an effective cross section (per
electron) for an atom moving through a distribution of electrons

\OeVe) /Q 1 1 \
0-eff = ? (0.1.1J

where (<reve) is the electron ionization rate coefficient with ve the electron
velocity and va the atom velocity. (Note the change of notation from that
in Chapter 6: ae instead of at to avoid confusion with ionic processes.)

Ion-impact ionization requires the ejection of the atomic electron by the
colliding ion. Consider, again, a stationary atom. If we think of the ion as
simply a point charge moving past the atom at velocity vi then it will have
approximately the same ionizing effect as an electron moving past at the
same velocity. Of course, when this imagined electron is at an energy near
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the threshold (Ry) it does not simply move in a straight line, so the effect
will be different from that of our ion, but for reasonably high velocities
the comparison is a good one. Thus the proton-impact ionization cross
section is approximately equal to the electron-impact cross section except
that the proton must have energy nii/me higher. Figure 8.1 shows a fit to
experimental results from a very useful summary of relevant cross section
data by Freeman and Jones (1974). The scaling argument works quite
well for proton energy above about 50 keV. Below that energy, the cross
section falls, though not as abruptly as for the electron since there is still
sufficient energy for ionization. (The experimental data at lower energies
is rather sparse.)

Charge-exchange refers to collisions in which the captive electron is
transferred from the atom to an ion. The two nuclei largely retain the
energy they had prior to the collision, but the nucleus of the old atom is
now trapped by the magnetic field whereas the new atom, which departs
from the scene in a direction virtually random compared to the initial
atom's direction, carries away its "memory" of life as an ion in the
vicinity of the collision.

Charge-exchange collisions, such as the one we are considering, in
which the nuclei involved are identical, are termed symmetric. Because
the atom formed is of the same species as the incident atom, the process
need involve no change in the energy of the bound electron other than the
translational energy change associated with the different atomic velocities.
Since the ions move more slowly than electrons by the ratio me/mt, this
translation will be a small effect for collision energies less than about
Ry(nii/me). The importance of the transfer being possible between atomic
levels (usually the ground state) with the same energy is that the charge-
exchange process is then resonant.

The resonance phenomenon can only be properly understood quantum-
mechanically. One may think of the wave functions of the electron at-
tached to one or the other of the protons as being oscillators with
frequency E/h. Because of the equality of energies, these two oscillators
have the same frequency: they are in resonance. As a result, the oscillator
of the initial atom, which initially has unity amplitude corresponding
to 100% probability of the electron being attached to it, can gradually
transfer oscillation amplitude to the second oscillator (which initially
has none). This resonant transfer can take place even if the coupling is
extremely weak, such as will be the case if the nuclei are considerably
further apart than a0, the Bohr radius. Calculation of the transfer proba-
bility can be performed quite accurately based on this coupling approach
[see Exercise 8.1 and, e.g., Gurney and Magee (1957)] and shows that
the transfer can occur with large probability in slow encounters even for
distant collisions with impact parameter up to perhaps 5 to 10 times
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ao. Moreover, the cross section increases logarithmically as the collision
energy decreases because the nuclei are close for a longer time, allowing
greater transfer. Thus, the resonant charge-exchange cross section can
be as much as 50nal, much larger than the ionization cross sections.
Figure 8.1 shows the experimental form of the cross section. Note the
dramatic drop in oc as the velocity exceeds the electron orbital velocity
(at ~ 20 keV energy, Rymi/me) and the translational effect breaks the
resonance.

For ion-impact ionization and charge exchange, the relevant parameter
is the relative velocity of ion and atom. Therefore, if we are dealing with
deuterium rather than hydrogen, the cross sections are essentially the
same at similar velocities. The energy scale must then be interpreted as
energy per nucleon, often expressed as per atomic mass unit (amu).

8.1.2 Neutral transport
We now have in hand the important processes affecting the

passage of a neutral out of the plasma. If the mean number of collisions
per unit path length is a, then the probability of an atom surviving from
a point A in the plasma interior to a point B at the edge, say, without
suffering a collision is

PAB=exp\-J a(l)dl\ (8.1.2)

(just as for the problem of radiation transport; see Section 5.2.4).
In evaluating a, account must be taken, in general, of the velocity of

the background plasma particles as well as the atom. The rate at which
collisions occur between a species j and a stationary atom is given by
the usual expression:

= f (8.1.3)

Now if the atom is moving at velocity va the cross section is a function
only of the relative velocity of atom and ions so (ignoring relativistic
effects) the collision rate becomes

nj((Tv)Va = [a(\y-ya\)\\-va\f(\)d3y (8.1.4)

or, writing u = v —  vfl,

((jv}Va = (l/rij) [<r(u)ufj{u + Ya) d\. (8.1.5)

Thus, the rate coefficient we require to obtain the collision rate for a
specific process is that corresponding to a shifted distribution of particles.
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Fig. 8.2. The shifted distribution over which integration must be performed for
shifted rate coefficients, {a) The shift is small so one obtains approximately the
unshifted coefficient, (b) The shift is large so one obtains approximately o(va)va.

For example, if / is Maxwellian, we require the rate coefficient for a
shifted Maxwellian distribution, not simply the normal Maxwellian rate
coefficient. This is illustrated in Fig. 8.2.

Two limits are particularly simple to deal with. First, if va is much
smaller than the typical particle thermal velocity, it may be ignored and
we recover the unshifted (Maxwellian) rate coefficient. Second, if va is
much larger than the thermal speed, then the thermal motion may be
ignored and the rate coefficient becomes simply a(va)va.

The general form for the attenuation coefficient a due to the three
processes we are considering is

a = —[{o eve)Vane
va

(<rcVi)Va)ni]9 (8.1.6)

where ae, <rp, and oc are, respectively, the electron ionization, proton (ion)
ionization, and charge-exchange cross sections. The electron collisions are
almost always in the first limit va < vte. The ion processes may require
the general shifted rate coefficient to be calculated, but in the case of
most diagnostic interest va is significantly greater than vti and it is often
reasonable to approximate a by

—  (<reve)one + (<TP (8.1.7)

for fast neutrals.
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Fig. 8.3. The electron loss rates appropriate when vti < va < i?te. The electron
rate coefficient is plotted versus electron temperature.

Because of the l/va dependence, the electron term is important only
at low atom velocities. It is less than the charge-exchange term when
°c(va)va > (<Jeve) (assuming quasineutrality nt = ne). The Maxwellian rate
coefficient {<reve) has a broad maximum near Te = 100 eV with peak
value about 3 x 10~14 m3 s"1; this value is exceeded by the charge-
exchange rate for atom energy greater than ~ 20 eV. Figure 8.3 shows
the relevant rates for the three processes, but note that the graph is
versus electron temperature not atom energy for the electron ionization
process.

For most of the relevant atom energy range, therefore, the electron
ionization is smaller than the other effects (although not by a very large
factor) so that a « m(ap + oe) and the transmission becomes

PAB « exp -(op +...H- (8.1.8)

Inspection of the cross section magnitudes plotted in Fig. 8.1 reveals
the fact that in many cases of interest the absorption depth / a dl is
large and hence PAB rather small. For example, at 10 keV energy and
1020 m~3 density the attenuation length is about 0.1 m, so that only
shallow depths of this order into such a plasma can be diagnosed. In
short, the applicability of fast neutral analysis is limited to plasmas for
which / m dl < 1019 m~2 or a few times larger.
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8.1.3 The fast neutral spectrum
In order to calculate the fast neutral spectrum to be observed

we must consider the number and sources of neutrals in the plasma
interior. Clearly, one source is the radiative recombination of electrons
with the plasma ions. We have already obtained an estimate of this rate
[Eq. (6.3.7)] based on our knowledge of radiative recombination. In the
absence of other neutrals due to transport, the neutral density would be
obtained by setting the recombination and ionization rates equal:

neni((jrve) = nena((Teve). (8.1.9)

We ignore proton collisional ionization for this estimate, and charge
exchange, of course, does not create or remove additional neutrals; it
involves only a "change of identity". If we substitute typical values for
these rate coefficients in the expression for the neutral/ion density ratio
(orve)/{oeve), we obtain extremely small numbers for virtually all electron
temperatures significantly above Ry. For example, na/nt ^ 5 x 10~8 at
Te ~ 1 keV. This is because radiative recombination is much slower than
ionization (by a factor of the order of the fine structure constant a cubed;
see Exercise 8.3).

Because this equilibrium neutral density due to recombination is so
small, in most cases where the plasma attenuation depth is small enough
to allow observable numbers of neutrals to escape out to the plasma edge,
it is not recombination but the transport of neutrals inward from the edge
to the center that is the most important neutral source there. Naturally, a
neutral arriving at the center from the edge carries information about its
existence as an ion at the edge. If it subsequently passes on and emerges
without a collision at the opposite side of the plasma it will not provide
the information we seek about the interior. If, on the other hand, it suffers
a charge exchange with an ion in the interior, the neutral formed will be a
fast neutral appropriate for diagnosis of interior ion parameters. Because
charge exchange is usually the most important source of fast neutrals,
this type of diagnostic is sometimes called charge-exchange analysis.

Consider then a typical diagnostic experiment. Figure 8.4 shows schem-
atically the typical configuration. The neutrals emerging from the plasma
along a specific collimated path are allowed to pass through a stripping
cell (outside the magnetic field of the plasma confinement region) where,
by collisions with an appropriate stripping gas, they are ionized. The ions
may then be analyzed, using either a magnetic or electric field to cause
their orbits to depend on their energy, thus allowing specific energy to
be selected. Often both electric and magnetic analysis are used, enabling
the mass as well as the energy of the ions to be resolved.

A typical fast neutral energy spectrum is shown in Fig. 8.5. Qualita-
tively, we may understand its shape as follows. For E ^> T* the variation
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Fig. 8.4. Schematic configuration of a typical fast neutral analysis experiment.
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Fig. 8.5. Typical fast neutral spectrum from a tokamak plasma (courtesy C.
Fiore).

is dominated by the inverse exponential dependence of the number of
ions (and hence fast neutrals) in a thermal distribution. At these high
energies it is the high temperature parts of the plasma in the line of
sight that tend to give the greatest contribution. The logarithmic slope
is thus roughly characteristic of the highest temperature visible. At lower
energies E < TJ the spectrum rises above a straight line fitted to the
higher-energy part. The reason is that the lower temperature parts of the
plasma are contributing a significant number of particles to the spectrum
so that the total flux at this lower energy is correspondingly greater.

To interpret quantitatively such a spectrum, suppose that the area and
solid angle viewed are A and Q5 so that the etendue is AQS. Then the
particle flux to the detector per second in the energy interval dE is

J—a L Jx
(x(l)dl\ S(x,\)dx. (8.1.10)F(E)dE =v2dvAa

Here the plasma is supposed to extend from —a to a and  S(x,\)d3\ is
the total birth rate of neutrals of velocity v in the velocity element d3\ at
a position x. That is, S includes, in general, all processes by which ions
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are converted into neutrals. We normally assume that charge exchange
dominates S (although recombination could be included if significant).
So let us write S as

S(v,0 = /»(•,-) j crc(\\a ~ v,-|)|vfl - Vi|/fl(v«) d3va

= fi(Vi)(VcVa}Vina, (8.1.11)

where {Gcva)Vi is the rate coefficient over the neutral atom distribution (va)
shifted by the ion velocity \t. Naturally vt = (2£/m)1/2 in the direction
along the viewing chord toward the detector: the subscript i refers to the
ion that becomes the neutral detected; a refers to the atom from which
it gains the electron.

The velocity distribution of neutrals /a(vfl) is usually difficult to cal-
culate since it involves a random walk of a rather small number of
steps whereby the bound electron, coming in from the edge, is charge-
exchanged, possibly several times, before arriving at the position x. Some
treatments calculate fa by computer modeling with assumed plasma pro-
files using a Monte Carlo technique [e.g., Hughes and Post (1978)] or,
for plasmas of greater attenuation depth, a diffusion approach. However,
let us obtain a useful approximation by considering escaping neutrals
that started life as ions with energy much larger than the typical neutrals
inside the plasma. In other words, we may take the atom and ion veloci-
ties prior to the charge exchange to be such that |va —  Vj| « vt. Then the
neutral velocity distribution is unimportant and

S(v») « fi(vi)<rcvina, (8.1.12)

where acvt is to be taken at energy E. Hence,

F(E)dE « vfdvtAQs[ac(E)vt(E)]

x J" exp \-J\(l,E)dl\ na(x)fidx. (8.1.13)

This equation is naturally insufficient to determine fi(vi, x) without many
further additional assumptions (or knowledge) about ft;(x), na(x), and so
on.

Suppose, first, that we assume /,- to be thermal, that is,

m \ 3 / 2 / F

and ask: at what position does the maximum contribution to the integral
of Eq. (8.1.13) occur? To discover this we must find the maximum of the
integrand. Differentiating the integrand with respect to x and setting the
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result equal to zero we find that the maximum occurs when

where primes denote x differentiation. The first term here comes from the
attenuation factor and the last from the thermal exponential exp(—E/T).

If now we choose to observe at very high energy E ( > T), then the
final term will dominate all the others and the condition will become
T1 = 0. That is, the maximum contribution to the integral will arise
from the position where T is maximum, as noted qualitatively before.
Moreover, the width of this maximum in the integrand may be estimated
by noting that since the exponential term is dominant, the integrand will
have decreased by e"1 when E/T has increased by 1, that is, when

^ - 7 ^ = 1 (8.1.16)

which leads to

T « Tmax(l - Tmax/£) (8.1.17)

(TmSLX/E < 1 by supposition). Thus, virtually all the contribution to the
integral occurs from points where T is within a small fraction Tmax/£
of its maximum value Tmax.

This fact allows us to obtain a simple approximate relationship between
the slope of the flux spectrum and this maximum temperature; for, if we
differentiate the expression for the flux [Eq. (8.1.13)] with respect to E
(noting Vi oc £1/2) we find (Exercise 8.4) that

flad/l-^ln|a|. (8.1.18)
(TCE Tmax \L dE

This expression depends on the approximation that nt, na, T, and x
can be taken as equal to their values at the position xm where the
integrand is maximum (i.e., the hottest part of the plasma). Recalling
that a « ni((jp + oc) is a rather weak function of E in the energy region
below about 20 keV, if the attenuation depth is small we may ignore the
last term. Then the temperature may be obtained as the reciprocal of the
slope of a plot of In \F/(<JCE)\ versus E. Often, additional approximations
to ac are made, such as taking ocv (oc acy/E) to be constant. The
appropriate combination to be plotted is then ln\F/y/E\. The fractional
error in temperature deduced, caused by this approximation, will be at
most of the order of Tmax/2£, for E < 20 keV, and hence small. This
approximation is adopted in Fig. 8.5. Thus, for cases where absorption is
modest, a rather simple analysis yields reasonably accurate estimates of
the peak ion temperature in the line of sight.
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8.1.4 Dense plasma cases
Now let us consider what happens when the absorption depth

is greater than 1. Returning to the question of where the maximum
contribution to the flux at energy E comes from, if the absorption depth
is significant then the first two terms in Eq. (8.1.15) may not be negligible.
Generally, these two terms will be of the same order of magnitude because
they arise from the attenuation of neutrals on their way out of the plasma
(first term) and on their way in (second term). Their effect will be to shift
the position of maximum contribution away from the point T = Tmax
(where T' = 0) to the point where

FT' W
+ a + ^= 0 . (8.1.19)

T2 na

Expanding the temperature profile about its maximum as the first two
terms of a Taylor series T « Tmax(l —  x2/b2) and denoting

0L + nrJna = l/)i (8.1.20)

so that X will be of the order of (half) the atom mean free path, one may
readily show (Exercise 8.5) that the maximum contribution to the flux
occurs from a point where

1 -
b

E 2X
(8.1.21)

Therefore, determining the temperature from the logarithmic slope as
before will reflect not the maximum temperature but a somewhat smaller
temperature, as given by this equation, corresponding to a point closer
to the observation position.

The second term on the right-hand side of Eq. (8.1.18) may also be
significant and needs to be accounted for. Fortunately, its effect is to give
greater flux at higher energy because the cross section for attenuation is
decreasing with energy; therefore, it increases the apparent temperature
deduced simply from the logarithmic slope. This fractional increase is
approximately (Exercise 8.6)

M/1J (8.1.22)

and in many cases substantially cancels the correction due to the po-
sition of maximum contribution, so that the simple analysis, ignoring
attenuation depth, fortuitously gives quite accurate results.

In sum, for thermal plasmas, by looking at energies considerably
greater than the thermal energy one can deduce the maximum tem-
perature along the line of sight from the logarithmic slope of the flux
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Fig. 8.6. Fast neutral spectrum from a nonthermal neutral-beam heated plasma
showing the slowing down spectrum of the ions [after Equipe (1978)].

spectrum in cases where the attenuation depth is small. When the depth
is considerable, corrections to the simple analysis should be applied ei-
ther in the fashion we have discussed or using more elaborate specific
numerical modeling of the various effects. Fortunately, these corrections
tend to cancel so that the simple analysis is often still effective.

8.1.5 Nonthermal plasmas
Since the preceding approach is based on observations of energies

rather greater than the thermal energy, the results will be very sensitive to
any deviations of the tail of the distribution function from Maxwellian.
From the viewpoint of determining bulk temperature this is a serious
handicap. However, in situations where the high-energy nonthermal part
of the distribution is of direct interest, fast neutral measurements allow
considerable information to be gained.

As an example, in plasmas with additional heating by energetic neutral
beams, the capture and slowing down of the beam particles can be
diagnosed. This is done by observing the fast neutrals arising from nuclei
that enter the plasma in the energetic neutral beam, are ionized (usually
by charge exchange with thermal ions) and hence trapped by the magnetic
field, and then undergo charge exchange a second time to exit the plasma.
Figure 8.6 shows the fast neutral spectrum during neutral-beam injection
heating of the TFR tokamak. The region below about 33 keV shows
a flat spectrum representing the classical slowing down of the fast ions
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in the plasma. At half the nominal injection energy, there is a jump
corresponding to the substantial proportion of the heating beams that
have half the accelerating energy (because they are accelerated as D̂ ~
ions). These too have a flat slowing down spectrum until the bulk thermal
part is reached. Obviously, in such a case there is only a rather narrow
energy range in which the thermal temperature is reflected by the slope.
Thus, the ion "temperature" measurement is somewhat less certain.

Another case where nonthermal ion diagnosis is important is when
radio frequency heating of ions is used. This also can often create ion
tails.

In either case it is sometimes possible to obtain a more reliable bulk
temperature measurement by observing a mass species not affected by the
nonthermal effects. For example, deuteron neutral injection into hydrogen
plasmas allows the bulk temperature to be deduced from hydrogen charge
exchange. Alternatively, ion cyclotron heating of hydrogen minority in
deuterium majority plasmas can be diagnosed to give bulk temperature
from deuterium charge exchange [see, e.g., Hosea et ah (1980)].

8.1.6 Neutral density measurement
So far we have discussed deducing the ion temperature from

what is essentially the relative shape of the fast neutral spectrum. How-
ever, measurements of the absolute magnitude of the fast neutral flux
provide additional information. Referring to Eq. (8.1.13), we see that
the flux through a specified etendue {A£ls) at energy E is proportional
to a weighted integral along the line of sight of the product of neutral
atom density and ion density at energy E; that is, naft. Usually the ion
total density, nu is rather well known via measurements of ne and the
principle of quasineutrality. If, in addition, the ion temperature (profile)
is known, then from this knowledge the factor ft can be calculated. What
a measurement of the absolute fast neutral flux then, in principle, tells
us is the value of na.

In a uniform plasma the deduction of na from the flux measurement
is more or less trivial. However, practical plasma measurements require
spatial variation to be accounted for. The difficulties arise in trying to
deconvolve the spatial profiles of na from flux measurements that give
an integral over the line of sight. In some cases these difficulties can be
overcome and reasonably reliable na measurements obtained.

The case when the plasma is thin (i.e., f adl < 1) is easiest to deal
with because then the flux is proportional to

P(E) = [na(x)fi(E9x)dx, (8.1.23)

where we ignore for the moment the space-independent factors v9 oc, and
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so forth. If the ions are Maxwellian with density and temperature nt(x)
and T;(x), then this becomes

= Jna((x)ni(x) ( ^L_) 3 / 2
e x p ( - | ) dx. (8.1.24)

Now suppose we consider an energy E substantially larger than T. As
we saw in Section 8.1.3, the dominant variation in the integrand becomes
the exponential factor; therefore, we may approximate the other factors
as being constants equal to their values at the place where T is maximum
and take them outside the integral

( ™i  V / 2 f r
T(x)

dx. (8.1.25)

To evaluate the integral, take \/T to be given by the first two terms of
its Taylor series expansion about its minimum \/T(x) « (1/Tf

max)(l +
x2/b2). (The b here is, to relevant order, essentially the same as that
in Section 8.1.4.) With this substitution we obtain a simple Gaussian
integral that gives

so the fast neutral flux is

\2F^ 1/2 hdF f —F \
F(E) dE = AQsac(E) — — — exp — - ) n tna, (8.1.27)

[mi] 27cTmax V^max/

where we have restored the energy-dependent factors and written v\ in
terms of E. Thus we have an explicit equation that allows us to deduce
the neutral density at the place where T = Tmax from F(E). For this we
need to know Tmax, the ion density ni9 and the width of the temperature
maximum b.

The dense plasma case can be analyzed similarly including the addi-
tional factor exp[— J adx]. The discussion of Section 8.1.4 has already
indicated that for E > T the position of maximum contribution (xm) is
shifted outward from the peak temperature position. In the neighborhood
of xm we make the approximation

naexp - / adxl = K exp[(x - xm)/X] (8.1.28)
L J J

[equivalent to Eq. (8.1.20)] and account only for the variation of this
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quantity and the temperature exponential. That is, we take

m X\
(8.1.29)

Completing the square in the exponent we get a simple Gaussian integral
again, in which the exponent is

E (x xm) E „ .m a A

-* max & •*• m a x

and we have used the condition for xm to be truly the point at which the
exponent is maximum:

u 1 max / n ^ ~ + N
Xm = ^ET- ( 8L31)

Performing the integral and substituting as before we get the flux

F(E)dE =AQs(jc

x exp

2 £ l b dE Tmax

(8.1.32)

This equation confirms that the slope of F is characteristic of the tem-
perature T(xm) at the point of maximum contribution. It shows also that
we obtain an equation for the magnitude of the flux that replaces nf and
na by their values at xm and accounts for the attenuation by the factor
corresponding to this position, exp(— J^ ocdl).

Information on the spatial profile of na is, in principle, obtainable
from the shape of the F(E) spectrum at lower energies [assuming the
shape of Tt(x) to be known, which it often is not]. This is indicated in
an approximate way by Eq. (8.1.32). The contribution to the flux comes
from progressively further out toward the colder edge of the plasma as E
is lowered. More often, however, a numerical model is used that includes
a priori theoretical ideas of the way in which the neutral density is liable
to diffuse into the plasma. The parameters of this elaborate model may
then be adjusted to get consistency with the low-energy shape of the fast
neutral spectrum. Nevertheless there remain considerable ambiguities in
the neutral profile deduced.

8.2 Active probing with neutral particles
As with other types of particles, it can be fruitful to use active

neutral-beam probing techniques, as well as merely passive detection of
plasma emission, as a diagnostic tool. Many important and sophisticated
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possibilities exist. They all depend on the ability to produce energetic,
and preferably intense beams of neutrals and inject them into the plasma
with controlled geometry. Fortunately, this ability is precisely what is
needed for plasma heating by neutral beam injection. Therefore, the
technology of these beams has become extremely advanced without
the need for specific effort from diagnosticians. There have been some
experiments where the neutral beam was specifically devoted to diagnostic
purposes, but more often the diagnostics use heating beams for the
neutral source and focus their attention on the measurements that become
possible.

8.2.1 Neutral-beam attenuation
One obvious possibility is to measure the attenuation of a beam

of neutral particles transmitted through the plasma. The hope here (not
entirely fulfilled) is that one can thereby obtain information on the ion
density. This is of interest in plasmas with unknown composition (because
of impurities, for example) since then there is no simple relationship
between ion density and the electron density measured by, for example,
an interferometer. But in any active beam application, the attenuation
of the beam is important because it determines the feasibility of the
measurement and the beam intensity variation in the plasma.

The attenuation of a neutral beam by the plasma is given by our earlier
equation (8.1.2),

I(B) = I (A) exp I"- / a(f) dl\ , (8.2.1)

where a(Z) is the attenuation coefficient and / the intensity. Now we are
interested in situations with more than one relevant ion species, so we
write

vaot = (<jeve)vene + Yl \kGiivj)vanj\> (8.2.2)
j ions

where we abbreviate o\j = GP + GC as the total (ion-induced) electron-loss
cross section for the yth ion species. Of course, this measurement is a
chordal one, so we shall only gain information about chord averages
unless a detailed Abel inversion can be carried out using many chords.
However, we shall not worry about that complication here, but simply
take equations appropriate for a uniform plasma. Evidently a measure-
ment of the attenuation then gives us directly the value of a. Incidentally,
one advantage of the neutral transmission technique is that, unlike an
interferometer, it does not have to keep track of any phase ambiguity, so
it has no need of information about past (or future) plasma history. This
advantage is rarely of overwhelming importance, though.
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For a single ion species plasma, for which the relevant cross sections
are known, knowledge of a allows us immediately to deduce nt (and
ne). Suppose, now, that the plasma has two ion species and that an
independent measurement of ne is available. Can we deduce the two ion
densities n\, n2 from a? Yes we can, in principle, provided we know the
relevant rate coefficients. We can obtain two simultaneous equations for
the densities:

+Z2n2 = ne,
{oi2v2)Van2 = <*va - (aeve)Vane. (8.2.3)

The first of these comes from the quasineutrality condition of course.
These equations can generally be solved to give n\ and n2. The exception
to this statement is when the determinant formed from the coefficients
on the left-hand side of the equations is zero. When this is the case no
unique solution is possible because the equations are linearly dependent.
In practice, even if the determinant is not exactly zero but it is small, an
attempt at solution will give a result extremely sensitive to small errors
in the coefficients (or ne or a). In such a case the equations are said to be
ill conditioned and solutions will be unreliable. The conditioning of the
Eqs. (8.2.3) is determined by the quantity

Cj = (vijVj)vJZj. (8.2.4)

Provided Cj is different for the different species, a reasonable solution
will be obtained. If the Cj are nearly equal then the equations are ill
conditioned.

Suppose we do not have just two species of ions but more, N say.
Clearly, we do not have enough information in just two equations to
deduce all rij. However, the rate coefficients appearing in the equations
are dependent on particle velocity va (or, equivalently, energy), so the
obvious thing to do is to measure the attenuation a for different neutral-
beam energies. If we choose a total of N —  1 energies we shall have N
equations for N unknowns. (Actually we could regard ne as unknown and
then use N energies giving N -f 1 equations with N + 1 unknowns.) Again
the conditioning problem arises, only this time rather more stringently
in that all the equations must be linearly independent. This requires not
only that the C,-s be different (for some energy), but also that they vary
differently with energy.

It is evident that in order to make any real progress, we must have some
knowledge of the relevant rate coefficients. These have been reviewed by
Janev et al. (1989) for example, who give the following empirically fitted
formula for the electron loss cross section for collisions of hydrogen with
fully stripped ions of charge Z, as a function of the scaled parameter E
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which is the collision energy in keV/amu divided by Z.

1 2 754 1
+ l ( l + 1.270E)J[ 1 2 754

^ + *r ln(l + 1.270E)
1+0.08095E 64.58 + E J

xKT2 Om2. (8.2.5)

This expression fits the data to within 5% in the energy range 1 to 10000
keV/amu for carbon, oxygen and iron, and in the energy range above
10 keV/amu for helium. The reason why a rather universal expression
is possible is that one can identify a simple scaling of the collision cross
section as follows.

Provided we can ignore any atomic structure of the ion, the collision of
a charged ion with a hydrogen atom is determined simply by the electric
field of the ion at the atom. (Compare Section 6.3.3 although now we are
dealing with straight-line collisions.) The electric field at the atom for a
collision with an ion of charge Z\ at an impact parameter b\ and velocity
v\ will be identical for all time with that from an ion of charge Z2, impact
parameter bi and velocity V2 if Z\/b\ = Zijb\ (so the field magnitudes
are equal) and v\/b\ = vi/bi (so the time variation is the same), in which
case vj/Z\ = v\/Zi. The combination v2/Z is proportional to the scaled
collision energy E. Consequently, there is a theoretical scaling law for
any cross section o for these collisions:

I = S(£), (8.2.6)

for all ions Z. The function S is undetermined by this scaling argument,
but Eq. (8.2.5) is of this form and gives S for electron loss.

In the case where va > vtj, so that the (velocity shifted) rate coefficient
is proportional to oy/, this leads to

Cj oc S(E). (8.2.7)

For practical experiments where the neutral beam energy E < 100 keV,
the scaled energy E is in the low energy region where S(E) is virtually
independent of E for all multiply charged ions. Thus Cj is approximately
constant, independent of ion species. The result is disastrous for our
hopes of being able to deduce nj because the system is ill conditioned
for all rij.

Physically, one can summarize the situation by saying that if one
replaces an ion of charge Zj with Zj/Zk ions of charge Z^ (hence keeping
ne constant) it makes very little difference to the attenuation. There is a
silver lining, though. The proton-hydrogen charge-exchange cross section
is substantially larger than Eq. (8.2.5) primarily because the process is
symmetric, and hence resonant at energies < 30 keV. Our scaling law is
broken because the atomic structure of the ion can no longer be ignored:
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after the charge exchange it has formed a hydrogen atom. Therefore,
the attenuation will be mostly caused by protons despite any impurities
present. One can therefore take the attenuation as indicative of the proton
density, or, more properly, return to the two species equations (8.2.3) and
lump all impurity effects into the second species n2> taking its cross
section to be given by Eq. (8.2.5) or some other appropriate form. Then
one can solve for n\ the proton density.

To conclude, then, neutral hydrogen beam attenuation gives a rea-
sonable measurement of proton density. Unfortunately, the difference
between the proton density and the electron density is a less sensitive
measurement of impurities than Zeff. For a single impurity of charge Z,
the proton density is given by np = ne(Z —  Zeff)/(Z —  1) (see Exercise 8.7).
This relative insensitivity to low levels of impurity, the availability of
interferometry for electron density, and the complexity of neutral-beam
systems largely explain the fact that neutral-beam attenuation is very
infrequently used as a diagnostic.

8.2.2 Active charge exchange
As we have seen, one of the problems with neutral particle

analysis of emitted charge-exchange neutrals is that when the plasma is
dense, the energy spectrum obtained reflects the temperature along the
line of sight in a complicated way. Thus uncertainty and ambiguity arise
in the interpretation. An effective way to alleviate this problem is to use
an active neutral beam to enhance the neutral particle emission locally.
Using a view across the active (doping) beam, one can then achieve much
better localization and a less ambiguous spectrum.

In Fig. 8.7 are shown energy spectra with and without an active
beam. The characteristically curved spectrum without doping becomes
essentially straight with the active beam on because then only a single
temperature is represented.

A complication with this technique is that the enhancement of emission
occurs not merely by a single charge exchange between a plasma ion and
the probing beam but also by several charge-exchange events. The point
is that in a thick plasma the beam is surrounded by a diffusive "halo"
of neutrals formed by charge exchange from the beam. The size of the
halo will be of the order of the mean free path of the neutrals and the
enhanced emission may well be dominated by the halo rather than by
direct exchange with the beam. Thus, the localization perpendicular to
the beam is not quite as good as might first be thought. Nevertheless,
active charge exchange is used to advantage in various experiments,
despite the obvious added difficulty (relative to passive charge-exchange
analysis) of operating the doping beam.
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Fig. 8.7. Fast neutral spectra (a) without and (b) with an active doping beam
to remove the ambiguity of the interpretation [from tokamak PLT, Goldston
(1982)].

8.2.3 Doping species, lithium beams
There are some situations in which it can be extremely useful

to use neutral beams consisting of atoms other than those typical of
the plasma as a whole. One advantage that these have is that they are
relatively easily distinguished from the plasma species, usually spectro-
scopically, and thus they can be used as tracers in the plasma. This
is the principle behind the laser blow-off technique. A suitable species
of atoms is deposited on a glass slide, which is then placed facing the
plasma. At an appropriate moment a powerful pulsed laser is fired onto
the slide, causing ablation of the tracer atoms that are sprayed into the
plasma. They can be tracked by their line radiation and provide valuable
information about the ion transport properties of the plasma.

Another advantage to be gained with doping beams is that the atoms
may be chosen so as to make possible some spectroscopic technique that
the majority species does not allow. An atom of particular importance in
this respect is lithium. The difficulty with many atoms, especially hydro-
gen, is that the transitions to and from their ground state are sufficiently
energetic as to involve ultraviolet rather than visible radiation. Because
of the greater difficulties of ultraviolet techniques, some applications are
presently impossible with these transitions. Lithium, though, has a very
convenient line to the ground state (X = 670.8 nm), which lies in the
visible.

As an illustration of the potential and also some of the difficulties of
using a lithium doping beam we consider the attempts to measure the
internal magnetic field direction using the Zeeman effect on a lithium
beam. In one form (West, 1986) this experiment involves a configuration
such as that illustrated in Fig. 8.8. A high-energy lithium ion beam is



342 8 Neutral atom diagnostics

> Collection
^ Optics

Lithium Ion Beam 7 Neutralizer

Dye Laser Beam

Rotating Polarization

Fig. 8.8. Schematic diagram of the lithium beam Zeeman effect measurement of
magnetic field direction.

steered so as to be collinear with a CW dye laser. It is then neutralized
and both lithium and laser beams are sent into the plasma. Inside the
magnetic field of the plasma, the lithium line of interest is split by
the Zeeman effect (see Section 6.6.2) into symmetrically shifted (o) and
unshifted (it) lines whose polarization, for perpendicular propagation, is
perpendicular and parallel to the magnetic field, respectively.

The energy of the neutral lithium beam (typically up to ~ 100 keV)
must be very carefully controlled so that the broadening of the split
lines due to the Doppler effect does not cause them to overlap. (Here
already is an advantage with a doping beam: thermalized atoms in a
hot plasma generally experience so much Doppler broadening that the
Zeeman structure is very hard to see.) The dye laser is tuned to have
a frequency that coincides with one of the Zeeman components (e.g.,
the n line) but not the others. It thus causes fluorescence by populating
(via absorption) the upper level, which then emits a photon in decaying
back to the ground level. The photon can be detected by a spectrometer
viewing the beam line from the side. This then provides good spatial
localization of the measurement (another advantage of doping beams).

The input polarization of the laser beam is caused to rotate rapidly.
When it points parallel to the local field, excitation of the n line can
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occur. However, when it is perpendicular no excitation occurs because
of the polarization properties of the Zeeman components. The signal
detected by the spectrometer is therefore modulated at the frequency
of the polarization rotation. The phase of this modulation provides the
information we seek on the direction of the magnetic field.

The main difficulties with this type of experiment are mostly associated
with obtaining sufficient fluorescence signal and hence giving adequate
signal to noise. The intensity available from CW dye lasers is not suf-
ficient to pump the transition into saturation; therefore, the signal is
approximately proportional to laser power. Normally, it is easier to con-
trol the laser beam diameter than the lithium beam diameter, so we may
assume that the laser beam is entirely within the lithium beam. Therefore,
the fluorescence from any specified length of beam is proportional to the
lithium density and the laser power. Naturally, the lithium density is
proportional to beam current (at fixed energy), so a high current beam
is required. However, the density is also inversely proportional to the
beam cross sectional area. Therefore, the beam quality is also of great
importance. A low-angular-divergence beam is required. A very great
deal of the effort involved in attempting this type of experiment has
been devoted to obtaining high power lithium beams of sufficiently low
divergence.

A final major difficulty should be mentioned, since it appears to be
a fundamental restriction on the plasmas that may be diagnosed by
this technique: that is, beam attenuation by the plasma. Just as with
fast neutrals or hydrogenic beams, the lithium beam is attenuated by
ionization and charge-exchange processes. There is a limit, therefore,
on the plasma depth that can be probed. Estimates of the attenuation
coefficient may be made using known values of the various cross sections.
Ionization by hydrogen ions has a cross section of about 10~19 m2 at
typical (100 keV) energy, and electron ionization may contribute at most
about the same, the exact value depending on electron temperature.
Charge exchange with hydrogen contributes rather more to the total
electron-loss cross section. Experiments on proton beams in lithium
vapor (Gruebler et al, 1970) indicate the charge-exchange cross section
is about 6 x 10~19 m2 at 5 keV proton energy, falling to 1.5 x 10~19 m2

at 15 keV (the error bars are large, nearly a factor of 2). These results
correspond to lithium beam energies of 35 and 105 keV, respectively.
Hence, the total electron-loss cross section (07) will be typically between
~ 8 x 10~19 and ~ 3 x 10~19 m2, depending on the lithium beam energy.

The characteristic depth / ne dl of plasma to which the beam penetrates
is then 1/(7/ ~ 1 to 3 x 1018 m~~2. For example, at the center of a plasma
of 0.25 m radius, using 90 keV beam energy, this estimate predicts e"1

attenuation when the density is ne = 1/(7/r ~ 1019 m~3. In practice,
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however, experiments have shown rather greater attenuation (by a factor
up to ~ 2) than this estimate indicates. One reason is that ionization
takes place more readily by a stepwise process of collisional excitation of
the atom followed by ionization of the excited state. The laser pumping
itself is believed to enhance this multistage ionization problem. At any
rate, the consequences of the enhanced attenuation are very serious for
practical diagnosis of the larger denser plasmas of interest in fusion.
The limitation to small plasma depths (less than ^ 4 x 1018 m~2) for
acceptable beam attenuation considerably detracts from the usefulness
of the technique.

8.3 Charge-exchange spectroscopy
In the interior of hot plasmas, spectroscopic diagnostics us-

ing relatively low charge-number species, so-called light impurities, are
handicapped by the fact that most of the ions are fully stripped of their
electrons and so give rise to no line radiation. A neutral beam can over-
come this handicap by forming hydrogen-like (one electron) ions through
charge exchange with the impurities. The sorts of reactions we have in
mind are

H°+AZ+^H++A*Z-V+, (8.3.1)

where the ion A might be oxygen, carbon, boron, or some other light
impurity. Reactions like this are often called charge-exchange recombina-
tion, since the ion is partially recombined. The extra word recombination
is not really necessary. An unfortunate diversity of acronyms has been
used in the literature of diagnostics based on this process, including
CXRS, CXS, CHERS; they all refer to the same thing.

The hydrogen-like ion is produced in an excited state, as indicated
here by an asterix. This is helpful because it means that one or more
photons are emitted promptly by the atom without the need for collisional
excitation. Moreover, as we shall see, the photons emitted tend to be of
longer wavelength than the resonance lines to the ground state for this
ion, so, especially if they are visible or near ultraviolet, they are easier
to measure. There are then three major advantages for charge-exchange
spectroscopy. (1) It causes otherwise fully stripped impurities to radiate,
(2) it causes them to radiate locally where the beam intersects the plasma,
giving crossed-sight-line localization, and (3) it causes them to radiate at
convenient wavelengths.

The volumetric emissivity of charge-exchange lines is naturally pro-
portional to the density of the impurities, the flux density of the neutral
beam, and an effective cross section for production of that line. The ef-
fective cross section must take into account the charge-exchange capture
cross section into the upper level of interest as well as the branching ratio
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Fig. 8.9. Schematic layout of beam and sight-lines for charge-exchange spec-
troscopy.

of the subsequent radiative deexcitation. In other words, what fraction of
the excited state population decays by emitting the photon of interest?
In addition, cascade processes are important, whereby a charge-exchange
places an electron in a high level which subsequently populates the upper
level of the line of interest by a radiative deexcitation into that upper
level.

The angular momentum state, /, of the upper level is critical in deter-
mining the branching ratio and cascades, because of the selection rule
A/ = +1 for radiation, which prevents decay of high / states direct to
the ground state. The charge-exchange cross sections must therefore be
known as a function of both the principal (n) and angular momentum
(7) quantum numbers. There are practically no independent experimen-
tal measurements of the relevant cross sections, so one must rely upon
theory. The theoretical calculations are rather difficult and discrepancies
sometimes as large as 50% remain in the values obtained by different
approximations. The calculations show that the charge-exchange reac-
tions predominantly populate high / states, which is the reason why the
convenient long-wavelengths are relatively intense.

Figure 8.9 illustrates schematically a typical layout of the neutral beam
and multiple sightlines. Using views in different directions, poloidal and
toroidal here, allows the measurement of different components of the
plasma flow velocity from the Doppler shift. The ion temperature is
obtained from the Doppler width.

8.3.1 Charge-exchange cross sections
Important scalings of the capture cross sections can be obtained

from approximate semiclassical treatments of the collision problem, which
we outline here. By the way, many of the best full-scale calculations use
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what are essentially semiclassical approaches; so they should by no means
be regarded with contempt. Here we follow approximately the treatment
of Briggs (1985) which in turn is based on Bohr and Lindhard (1954).
Consider the collision between a fully stripped ion of charge Z\ and a
single-electron atom of nuclear charge Zv in which the electron is in
principal quantum level np. Of course we are mostly concerned with
Zp = 1, np = 1, the ground state of hydrogen (or its isotopes), but excited
states of hydrogen (np > 1) are also of potential importance, because the
neutral beam particles may be colhsionally excited during their passage
through the plasma.

The two nuclei are treated entirely classically, and can be adequately
approximated as passing at constant velocity v along straight-line tra-
jectories, with impact parameter b. As they do so, their potential wells
interact, and so the electron is moving in the joint potential of the two
centers of force separated by a distance R(t). Consider, initially, colli-
sions in which the ion velocity v is much smaller than the velocity of
the electron in its atomic orbit ve « (Zp/np)y/2Ry/me. If we are inter-
ested in a final state in which the electron is transferred to the principal
quantum level nt of the ion Zl? then, apart from the accidental coinci-
dence Zp/n2 = Zi/nf, there is generally no equality of energy between
the initial and final states of the electron, when the ions are far from one
another. In other words there is no resonance between the atomic states
at large separation. However, as the nuclei approach one another, there
is a resonance, often called a "level crossing", at a particular separation
Rr which we write dimensionlessly as Rr = rrao. The resonance occurs
because the energy of the electron bound to one nucleus is lowered by
the potential of the other. The total electron energies are equal when

It is when the ions are a distance rr apart that the exchange reaction can
occur. Figure 8.10 illustrates a projection of the potential, plotted on the
vertical axis in the plane of the collision (x and y positional axes).

Because the nuclear separation is changing during the collision, the
time duration of this resonance will generally be too short to allow the
transfer to take place unless there is enough perturbation to the atomic
orbitals at the time of resonance. The size of the perturbation will be
large enough if the saddle point in the potential between the wells of
the two nuclei is approximately equal to (minus) the electron's binding
energy, Eq. (8.3.2). Elementary algebra shows that the potential at the
saddle point of the barrier between the two nuclei when separated by rr is

Zi)2lrr- We can then solve these equations simultaneously
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Saddle Point

Fig. 8.10. Projection in two dimensions of the combined potential well of colliding
ions. Atomic orbitals localized to each ion couple strongly if the electron has
sufficient energy to cross the saddle.

for rr and n,, regarding the captured states as continuous, to obtain

In] ^-2
rr = — T ^ P  ~^~ 2

V

and

(8.3.3)

(8.3.4)

Finally, we suppose collisions that approach closer than Rr have equal
probability of emerging with the electron attached to either atom. More
distant collisions are taken to experience no exchange. So the cross
section is

1
* ~ 2 7 (8.3.5)

In this regime, then, the charge-exchange capture cross section is in-
dependent of collision energy. For large values of Zi/Zp it scales pro-
portional to npZt/Zp and the state into which capture occurs scales as
nt ~ np(Zi/Zp)3/4, proportional to the 3/4 power of the ion charge, for
ground-state hydrogen beam atoms.



348 8 Neutral atom diagnostics

The final angular momentum (/) state dominantly preferred in these
collisions may be understood by considering that the electron enters
the potential well of the ion over the saddle, localized in azimuthal
angle. Consequently, quantum states localized in azimuth, that is with
the highest /, « nt —  1, are preferred.

When the ion collision velocity becomes comparable to the electron
velocity in the atom, the resonance is broken and the change in the
translational energy of the electron in transferring from the atom to the
ion becomes the dominant factor. As with the symmetric charge exchange
discussed in Section 8.1.1, the cross section falls rapidly with increasing
energy in this regime. For intermediate energy collisions, which cover
most of the applications to diagnostics, the cross section can be estimated
as follows. The double potential well of the nuclei evolves quite rapidly
during the collision. As the electron crosses the potential energy saddle,
it has to have at least enough kinetic energy, in the rest frame of the
atom, to match the speed of the ion moving past; otherwise it could not
keep up with the motion of the saddle. Therefore, that saddle needs to be
lower than before; it has to be at least ^mev2 deep. This naturally requires
the impact parameter to be at most b = ao(s/Z^+ ^fZ'i)22Ry / (\mev2) or
approximately b = a^Z{2Ry I {\mev2) if Zt > Zp. Not all such collisions
lead to capture. Bohr and Lindhard postulated (not entirely convincingly)
that the probability of electron capture is approximately the duration of
the close encounter, b/v, times a capture rate equal to the atomic speed

2 / n^)of the electron divided by the atomic radius: ~ (Z2 / n^)(^2Ry / mpi p
Such an estimate leads to a capture cross section equal to nb2 times this
probability, giving

Since it is the relative velocity of the ions, v, that determines the
cross section, the energy of the collision is usually expressed as kinetic
energy per atomic mass unit. We denote the quantity \mev2/2Ry by S. It is
equal to the collision energy per amu, divided by 2Rymproton/me = 25 keV.
When $ = 1, the speed v is equal to the speed of the electron in the
hydrogen ground state. Also, since we showed that in the low energy
region o ~ Z(n^ this scaling is probably best written in dimensionless
form as

a = —^- 2 « 8 (?£) = 8 S-1'2. (8.3.7)
Z<al \z4/7
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Then the low and intermediate energy estimates can be combined in a
simple interpolation formula

(8.3.8)

which agrees with various full calculations (Knudsen et al, 1981; Cor-
nelius et al., 2000) rather better than one might expect: within about a
factor of 2 for 0.02 < $ < 2 and a range of Zt up to at least 10 and np
up to 4.

This formula is for the sum of exchanges to all final levels. We showed
that in the low energy regime the resonant final state is n\ oc ZxJ .
At low energy, we expect one or two principal quantum levels near
this value to dominate the cross section. At intermediate energies, this
resonance is broadened substantially, populating levels above and below
the preferred nt, and leading to partial cross sections for off-resonant
capture that increase with energy until the <f~7/2 scaling takes over. In
other words, if one is interested in states somewhat above Z 3 , as is
the case if visible photons are desired, then it is advantageous to go to
normalized beam energies approximately $ = 1. That is, approximately
25Z- keV per amu. Fortunately this energy approximately coincides
with the beam energies used for heating with positive-ion-based neutral
beams. Note however, that the high-energy negative-ion-based beams
under development for next step fusion experiments, are too energetic
and will give small charge-exchange cross sections for light impurities.

The energy of the longest wavelength photons emitted by the preferen-
tially populated state scales very weakly with Z; (oc Z-~ ). Consequently,
if one wants to use photons in the quartz ultraviolet, so that fiber optics
and other convenient optical technology are possible, then states with
nt up to a factor of two above the preferentially populated level are of
interest, over the entire range of possible light impurities. It turns out
that the preferred / state remains approximately Z 3 / 4 even for principal
quantum levels above the preferred nt, in the intermediate regime.

What one really wants for diagnostic purposes is the cross section for
production of the particular photons chosen for diagnosis. The emission
of these photons is constrained by the usual selection rules. However, the
excited state populations are determined by the cascades corresponding
to allowed optical transitions and also by a process called collisional
mixing. This mixing process consists of the coupling between electron
states of different angular momentum / which have coincident energy
levels because they have equal total (spin plus orbital) momentum j .
Such mixing is caused by the Stark effect, notably of electric fields
corresponding to collisions. If it is fast enough, mixing causes the electrons
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Table 8.1. Fitting coefficients for charge-exchange photon production rates,
Eq (8.3.10). Density ne = 3 x 1019 m~3, which determines mixing. From
von Hellerman et al. (1995).

Transition

H e + 1 ( 4 -
Be+3(5 -
B+ 4(6 - •
B+4(7 -+
C+ 5(7 -+
C+ 5(8 -+
O+ 7(8 -*
O+ 7 (9 ->

*3)
• 4 )
5)
6)
6)
7)
7)
8)

Wavelength
(nm)

468.52
253.00
298.20
4946.0
343.37
529.05
297.58
434.06

(<">)o
(lO-^m^-1)

9.24
49.7
57.9
21.6
55.1
23.7

135.0
65.9

sm
(keV/amu)

36.3
43.1
40.9
41.5
48.5
49.2
57.5
58.1

P

2.34
1.89
2.41
3.00
2.42
3.05
2.40
2.92

q

4.65
3.93
4.25
4.61
4.29
4.76
4.86
5.27

in a principal quantum level to become equally distributed among the
angular momentum states, regardless of which state they initially arrived
in. Its importance depends on the rate of mixing compared with the rate
of spontaneous allowed decay. Since the spontaneous transition rates
decrease rapidly for the high-rc (and /) states, high states are collisionally
mixed while low states are less affected. A rule of thumb (Sampson, 1977)
is that the levels are mixed if the electron density satisfies

ne > 1021Zl5/nf5 nT3. (8.3.9)

(An unfortunate clash of notation here is that nt is the principal quantum
level of the upper state.) At typical tokamak densities, states near the
preferred rii generally are not mixed, but the higher states responsible
for visible photons are mixed above a density of about 1020 m~3. Mixing
affects the whole cascade, of course, and so can change the effective
emission cross section of a state through mixing of higher levels which
cascade into it. Generally, mixing lowers the effective emission cross
section for the high / mixed states by a factor of roughly two. These
questions are helpfully reviewed by Isler (1994).

Von Hellerman et al. (1995) have given a useful interpolation formula
to describe the photon production rate for visible photons as

GV = (av)0Xp/(l + Xq), (8.3.10)

where X = S/Sm is the normalized collision energy, and the fit is
described by specifying for each line the values <fm, approximately the
collision energy of maximum rate, (GV)O, approximately twice the peak
rate, and p and q which are numbers in the approximate ranges of
2 —• 3 and 4 —>  5 respectively. A small subset of the strongest lines with
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Fig. 8.11. Rates for production of photons by charge-exchange according to the
approximations of Table 8.1.

wavelength longer than 210 nm is shown in Table 8.1 (where we express
Sm in dimensional units, keV/amu, to avoid ambiguity). Figure 8.11
shows how these photon production cross sections peak quite strongly at
an energy of typically about 50 keV/amu.

Excited states of the hydrogen beam might become important under
some circumstances. Generally, however, the fraction of the beam in the
np — 2 state is small, less than 10~ 2, as will be discussed in Section 8.4.1.
For high rii capture in the intermediate energy range, the charge-exchange
cross section for excited hydrogen is smaller than that for ground-state
hydrogen according to the scaling equation (8.3.6). Thus excited state
charge-exchange is important only in the low energy regime $ < 1 where
a oc rip. At most this would give a fractional increase in the total exchange
rate of about 24 = 16 times the fraction of np = 2 atoms. The level that is
preferentially populated from the np = 2 state, namely twice the preferred
n\ from the ground-state, may be very significantly enhanced relative to
its population by ground-state exchange. However this effect is important
only at lower beam energies than are normally of interest.

8.3.2 Diagnostic applications of charge-exchange spectroscopy
The first challenge that a diagnostic application faces is to iden-

tify the charge-exchange signal. One needs to distinguish the prompt
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charge-exchange emission from background photons that may enter the
collection ray path from places other than its intersection with the neu-
tral beam. The background consists of bremsstrahlung from the entire
plasma ray path, coincident lines (if any) from other species, and lines
from the hydrogen-like states of the impurity of interest arising from
collisional excitation. The collisional excitation background comes in
part from the naturally occurring single-electron state population. This
component can be separated from the desired signal by beam modula-
tion or by its narrower linewidth because it occurs in colder edge zones,
indicated by the line labelled "Edge" in Fig. 8.9. A complication is that
beam charge-exchange capture increases the hydrogen-like impurity pop-
ulation throughout the hot core regions of the plasma. The beam causes
recombination of the fully stripped ions. They decay to the ground state
and before they can be reionized they stream along the magnetic field
to places on the collection ray path that are not intersecting the neu-
tral beam and radiate there as a result of collisional excitation. This
last, beam-dependent, population is the most difficult to discriminate
against because modulation of the beam will modulate this population
too. Fonck et al. (1984) have modelled this "plume" effect in detail for
some typical geometries, and show that the plume-to-prompt emission
ratio is typically less than 10% for oxygen ions but is roughly one for
visible helium lines. The plume emission, if it is strong, compromises the
spatial localization.

The observation of charge-exchange line emission allows diagnosis of
essentially the same plasma parameters as passive spectroscopy: impurity
density, temperature and flow velocity.

For impurity density measurements, the absolute beam intensity is
needed, together with quantitatively accurate photon yield cross sections,
and absolute spectrometer calibration. The beam intensity is not alto-
gether straight-forward, since there is generally substantial plasma atten-
uation of the beam, and even if its total particle current is well known, the
species mix, arising from acceleration of singly charged molecules prior to
neutralization, and the spatial profile of the beam, are quantities that need
to be measured and may depend on the beam operating conditions. All of
these factors combine to make the use of charge-exchange spectroscopy
for absolute impurity density measurements difficult. Moreover, the use of
visible bremsstrahlung gives a technically far easier method to determine
the density of the light impurities as a whole that dominate Zeff. Only for
impurities that give subdominant contributions to bremsstrahlung and
yet are light and so give no natural core plasma radiation, does charge-
exchange spectroscopy normally give sufficient additional information to
justify its use for density measurements. A particular case in point is
helium, whose transport is of fundamental importance in fusion, because
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it is the main charged fusion reaction product. It has so low a charge
that even at significant densities its contribution to Zeff may be masked
by other impurities.

The great power of charge-exchange spectroscopy lies in impurity
temperature and flow measurements. These depend only on the relative
width and position of the line, not on its intensity; so they bypass all
the difficulties associated with density measurements. Provided there is
enough signal, its absolute magnitude has little effect on the measurement.

If the charge-exchange cross section could be taken as independent of
the impurity velocity, then the emitted spectrum would be proportional to
the impurity velocity distribution function. There are, however, sometimes
significant distortions that arise from the dependence of the cross section
on relative velocity of the impurity and beam ions. If the reaction rate,
av, is Taylor-expanded in the vicinity of the beam velocity, then the term
linear in v gives rise to a shift of the line approximately proportional
to the cosine of the angle between beam and viewing directions and to
the impurity temperature, because of the preferential weighting of the
side of the line corresponding to higher ov. The second derivative of
(TV with respect to v gives a change in linewidth, that is, a perturbation
in apparent temperature. Analytic estimates of these perturbations have
been given by von Hellerman et al. (1995). They show that at Tt = 20 keV
the temperature perturbation can be as high as 15% and the spurious
apparent flow velocity as high as 70 km/s for beryllium ions. Their
calculations ignore any effects of the magnetic field, and hence predict
to lowest order no line shift when the viewing direction is perpendicular
to the beam. More recently, however, it has been realized that the finite
lifetime of the excited ions is sufficient that they emit during a significant
fraction of a gyro orbit. The direction of their velocity when emitting the
photon is therefore not necessarily the same as the direction when the
charge-exchange occurred, because they are at a different phase in their
helical orbit. Substantial spurious line shifts can then still occur even
when the view and beam directions are perpendicular, if they both have
components perpendicular to the magnetic field.

Another important consideration is the influence on the spectrum of the
fine structure of the captured electron levels. Most emission lines consist
of multiplets that are unresolved in the final spectrum. If the emission
linewidth is interpreted as purely Doppler broadening, an error will then
result. Fonck et al. (1984) have calculated this effect and shown that it
most strongly affects the shorter wavelength (vacuum ultraviolet) lines.
The natural fine structure splitting and to a lesser extent the Zeeman effect
(Section 6.6.2) are the dominant influences. Since they both give shifts
that are independent of temperature, their influence is most important
relative to the thermal Doppler effect at low temperatures. Down to ion
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Fig. 8.12. Profiles of temperature Tc, density UQ, and perpendicular and toroidal
velocity v± and t;^, of C6 + from the DIII-D tokamak, measured using spec-
troscopy of the 529.05 nm charge-exchange line. The dashed vertical line at
radius ~ 2.95 m indicates the position of the last closed flux surface at the
edge of the confined region. These measurements are sufficient to reconstruct the
edge radial electric field which plays a crucial role in determining confinement.
(Courtesy K. Burrell, 2001)

temperatures of 100 eV, this additional broadening is less than about
20% for visible lines of carbon and oxygen, but is sufficient to require
correction for the most accurate results.

An example of the state of the art in charge-exchange spectroscopy is
shown in Fig. 8.12.

8.4 Emission from beam atoms
The hydrogen atoms of the beam itself radiate, as a result of

their interaction with the plasma, the usual Lyman and Balmer series
lines. The lines are Doppler shifted by the component of the beam veloc-
ity along the detection line of sight. This Doppler shift is advantageous
because it enables one to distinguish between the often intense back-
ground hydrogen emission from the edges of the plasma and the desired
beam emission. However, since the beam atom velocity is independent
of the plasma ions, the line profile does not contain the Doppler infor-
mation about the plasma ion velocity distribution that charge-exchange
spectroscopy provides. Instead, information is contained in the intensity
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of the line, which is a measure of plasma density, and in the polariz-
ation of the different components of the line, which gives information
about the magnetic field, through what is called the motional Stark
effect.

8.4.1 Beam emission spectroscopy
Beam emission spectroscopy, often denoted BES, refers to the

observation of the spatial and temporal variation of the hydrogenic
radiation from the beam for purposes of measuring density perturbations.

It is normally carried out in a geometry virtually the same as the
toroidal view of Fig. 8.9, except that the view needs to intercept the
beam as far as possible at a point of tangency to the flux surfaces
(because the perturbations are approximately aligned along field lines).
To accomplish this alignment and to provide beam Doppler shift, it is
therefore advantageous for the beam to be directed somewhat tangential
to the field, in other words, with a toroidal component of velocity. The
Balmer alpha line at 656.3 nm is practically always used because it is the
brightest line not in the vacuum ultraviolet.

At its simplest, the idea of the technique is that the line intensity is
determined by impact excitation in collisions with electrons, plasma fuel
ions (hydrogen isotopes) and impurity ions. So if a coronal description
applied, the intensity would be approximately proportional to the plasma
density. By simultaneously viewing many different positions, the spatial
structure of density perturbations can then be reconstructed, provided
that sufficient time-response is available to follow the rapid fluctuations.
Obtaining sufficient time-resolution amounts to requiring large enough
photon flux. Thus a premium is placed upon using large etendue in the
optics and high beam flux.

In all but the lowest density plasmas, however, the coronal approx-
imation does not apply. Instead, the population of the excited state is
determined by a combination of the excitation from the ground-state and
spontaneous decay (as in the coronal model) plus collisional transitions
to and from other electron states. It is also important to keep track of
the evolution of the ground-state beam intensity as it is attenuated by
the plasma.

A general solution to the problem of the propagation of the different
states through the plasma can be obtained for a simplified set of equations
as follows. Detailed discussion of the collision rates and justification
of the present approach is presented in Appendix E. We use for our
independent variable the distance into the plasma divided by the constant
atom velocity, or in other words, the time since particles passing the point
of interest were launched: t. All we need to solve for if we are considering
La or Ha emission are the number of particles respectively in the first,
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second and third principal quantum levels, N\, N2, and N3. The equations
governing them can be written approximately as

- D2N2, (8.4.1)

dt
dNi =
dt

m =
dt

Here D\ is the total loss rate of the ground-state particles, due predom-
inantly to charge-exchange and ionization, Ptj is the rate at which the
excited state j is populated from state i, and D7 is its total depopulation
rate. All coefficients may be functions of t. In writing the equations in
this lower triangular form we are taking advantage of the fact that it
is a good approximation that the net rate of downward transitions into
a level is a negligible contribution to its evolution. Therefore the N2
evolution depends on the N\ evolution, but not the other way around,
and the N3 evolution does not significantly affect N\ or N2. This situa-
tion is a consequence of the magnitudes of the rate coefficients and the
fact that recombination is negligible. It amounts to a recognition that
for beam neutrals when collisions dominate, the most important process
for electrons in excited states is a stepwise upward cascade, n —• n + 1,
until they are lost. So, once an electron is excited above one of the lower
levels, as far as that level is concerned, it is removed from the system.
See Hutchinson (2002) and Appendix E for further discussion.

These partly decoupled equations can be solved exactly by sequential
substitution. They are forms of the transport equation that we have
encountered earlier in Section 5.2.4 so the solution is reminiscent of
those previous situations. It can best be written

N2(t) = [
yo

- / •

Jo

f^hih ~ t2W2 + e~
Ni(0)J

(8.4.2)

Uo
where t2 and t3 are transformed dimensionless time variables, tj =
with Tj = l/(Dj —  Di), and fj is the fractional population of level j , that
is, Nj/Ni, obtained for a uniform plasma, but evaluated for the local
plasma values. Explicitly

h = Pn/(D2-D1l (8.4.3)
h = (Pn + Pi3N2/Nl)/(D3 - DO, (8.4.4)
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with N2/N1 given in terms of the rates by the right-hand side of
Eq. (8.4.2). These general integral expressions are valid for any ^-variation
of P, Di, and D (and hence T,).

We can assume that the last term in the N2 and JV3 expressions, arising
from the initial conditions, is negligible either because tj is large or
because AT/(O) = 0. The remaining term says that the local excited state
fraction, Nj/N\, is determined by the value of fj during the previous time
period of approximately T7 ; or equivalently that the influence of the value
of / ; on the excited state fraction decays with time (and hence space) as
exp(—t/xj\ that is, with a scale length v/(Dj  — D\). This length defines
the smallest possible spatial resolution of the diagnostic application.

Notice, though, that the leading factor N\ in the solution for N2
and N3 carries with it the memory of the loss rate D\ integrated over
the entire path of the beam prior to t. It thus causes an unwanted
nonlocal sensitivity of Nj and hence the observed signal. If the beam
attenuation is significant, then this nonlocal effect can swamp the sought
localized fluctuating response. Care must be exercised to account for this
polluting effect, otherwise spuriously long correlation lengths in the beam
propagation direction will be observed.

In Fig. 8.13 are shown the solutions for / 3 and f2 for a wide range of
plasma parameters. The overall shapes of the curves of the excited state
fractions are remarkably similar for all temperatures and energies. This
fact results in the logarithmic derivatives of fj lying almost on a universal
curve. The beam energy noticeably shifts the absolute values of fj but
negligibly changes d\nfj/d\nne. The temperature variation produces a
slight shift in the horizontal direction of the logarithmic derivative curves
and the time-constant (12,13) curves as a result of the modest increase of
the collisional rate coefficients at lower Te.

When dealing with density fluctuations, which is the most important
application of beam emission, the relative sensitivity of the emission
to density changes is given by the logarithmic derivative. That is, small
changes in emission signal, AS, and in density, Ane, are related by AS/S =
d\nf/d\nne x Ane/ne.

The time-constants, TI and T2 determine the intrinsic time- (and hence
space-) resolution of the diagnostic. They cross at a density of about
1020 m~3 because the level 3 collisional depopulation becomes large.
However, above that density, the population of level 3 is predominantly
via excitation to level 2 and subsequently to 3. Therefore it is the higher
of TI and T2 that determines the effective resolution.

In Fig. 8.14 is shown an example of what can now be obtained from a
beam emission spectroscopy experiment. By observing simultaneously the
emission fluctuation signals from volumes spaced in a two-dimensional
array covering the directions along (poloidal) and across (radial) the
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Fig. 8.13. Solutions for the excited state fractions, fi and fot of hydrogenic
neutrals for beam energy (per amu) indicated in the legend and two extremes
of plasma temperature. The time-constants for relaxation of these levels are %2
and 13.

flux surfaces, a two-dimensional correlation coefficient of the density
fluctuations can be constructed. In this case, 32 sample volumes are
used. It can be seen that the correlation is different in the radial and
poloidal directions, so the turbulence is not isotropic. Rather, it tends to
be oscillatory in the poloidal direction (the correlation reverses sign), and
in the form of individual blobs in the radial direction (the correlation
does not reverse sign). Such characteristics are important reflections of
the underlying turbulence mechanisms.

8.4.2 Motional Stark effect
So far in our discussion of beam emission we have ignored the

fine structure of the hydrogen energy levels and considered the total
emission corresponding to transitions between principal quantum levels.
In practice, as Fig. 8.15 illustrates, the beam emission has a rather
complicated structure. Some of this structure arises from the presence
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Fig. 8.14. Two-dimensional correlation coefficient of density fluctuations mea-
sured using beam emission spectroscopy. (McKee et al, 1999)
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Fig. 8.15. Spectrum of beam emission from a neutral beam on the Textor
tokamak after Soetens et al. (2000). The beam produces the three groups of lines
labelled E, E/2 and E/3 from the different beam energy components. The edge
plasma radiation has far smaller shift from the normal Ha wavelength.
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of different proton energy components in the beam. Those components
cause considerable complication of the spectrum. The complication is,
in principle, avoidable if technological means were used to remove the
half- and third-energy components. Even if present, one can often, as
in the case shown, separate out the emission from fractional energy
components because their velocity and hence Doppler shift is different
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from the full energy component. This separation is an important practical
consideration when choosing a viewing geometry. In general it requires
the viewing direction not to be perpendicular to the beam, but to have
a significant component along the beam. Full separation is not always
possible, in which case more complicated fitting is required, e.g. Mandl
et al (1993).

The dominant contribution to the spectral structure of a single-energy
component of the beam arises from what is called the "motional Stark
effect" (MSE). This effect is no different from the regular Stark effect,
mentioned in the context of line broadening (Section 6.4.3). However, the
electric field in question is not here that of the nearby plasma particles.
Instead it arises from the motion of the atom across the magnetic field.
As is well known from elementary electromagnetic theory, the electric
and magnetic fields, E and B are different in different frames of reference,
related by the Lorentz transformation. In particular, a particle moving at
a (nonrelativistic) velocity v experiences an electric field in its own frame
of reference equal to v A B. For the energetic atoms of a neutral beam
this electric field produces very large Stark shifts. We need to mention a
few more details about the Stark effect to understand the fundamentals
of the motional Stark effect.

The Stark effect has two main regimes. For the majority of atoms the
Stark effect is quadratic, i.e., the energy shift is proportional to the square
of the electric field. This is because the electric dipole moment, p say, of
the atom is proportional to the applied field and the energy perturbation
is p E. However, for electric fields strong enough that the energy shift is
comparable to the splitting of the energy levels in the unperturbed atom,
saturation of the magnitude of p occurs. In such a situation the Stark
effect is linear. The linear regime is only very rarely reached in most atoms.
However, hydrogenic atoms have "accidental" degeneracy between states
of different angular momentum. That is, the different substates of their
principal quantum levels coincide in energy for an unperturbed atom
(ignoring the Lamb shift). Therefore hydrogenic atoms exhibit a linear
Stark effect even for small electric fields and, consequently, their Stark
effect is also much stronger than that of other atoms. At strong enough
electric fields the hydrogen Stark effect eventually becomes quadratic
because the perturbation becomes comparable to the energy difference
of the principal levels, but the field strengths we consider are not this
large.

The linear Stark shift of energy of components of principal quantum
level n, in a hydrogenic atom of nuclear charge Z is (Traving, 1968;
Cowan, 1981)

AS) = 3nk - ^ ,Ry forfc = 0, ± 1 , . . . , ± ( n - l ) . (8.4.5)
Ze/4ne0al
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Fig. 8.16. The theoretical Stark splitting pattern of the Ha line. Relative intensity
is shown by bar length. The o components are rilled and the n components empty
bars. Lines with very small intensity are omitted.

Since this splitting applies to both the upper and lower levels, there are
quite a lot of different components even for low level transitions like the
Balmer Ha (15 actually but only nine have significant line strength).

The extra diagnostic potential of measuring the Stark components
separately is that, since Stark shifts depend on electric polarization of the
atom, the photons emitted in different Stark shifted lines have different
polarization. The n components (from Am = 0) are polarized parallel
and the a components (Am = ±1) perpendicular to the local electric
field, somewhat like the Zeeman effect in its relationship to the magnetic
field, but with the distinction that for propagation parallel to the electric
field the Stark components become unpolarized, rather than circularly
polarized like the Zeeman components. The advantages that the motional
Stark effect has compared with the Zeeman effect are that a hydrogen
beam can be used, rather than a lithium beam, and that the Stark shifts
can be made substantially larger than the Zeeman shifts. For example,
a 50 keV proton beam crossing a 1T magnetic field experiences an
electric field of 3.1 xlO6 V/m. This field Stark shifts the emission lines
by 60rc/c GHz (c.f. Eq. 8.4.5), typically roughly 10 times the Zeeman
shift. Motional Stark effect measurements thus benefit from their ability
to use the emission from standard (hydrogen or deuterium) heating
neutral beams and generally observe very well separated, and hence well
polarized, components.

The Ha line is generally used. Figure 8.16 shows the structure of the
Stark components and their polarization. See for example page 232 of
Bethe and Salpeter (1977) for more details.
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Fig. 8.17. Example of magnetic field angle measurement by motional Stark effect
(Levinton, 1999). The points with error bars are the measurements, extending
from the plasma edge at R « 3.4 m inward to just beyond the magnetic axis
(at 2.7 m). Magnetic reconstruction that best fits the measurements gives the
magnetic pitch angle line, and the safety factor, which is nonmonotonic in this
case.

The most important diagnostic application is for the measurement
of the field direction. In a tokamak this provides information directly
about the internal magnetic field structure such as the safety factor,
and indirectly the plasma current density. Because of the high degree
of polarization observed, the direction of that polarization, and hence
of the magnetic field, can be obtained to a small fraction of a degree,
which is enough to give accurate measurements of the small poloidal
component of the magnetic field. The most widely used technique for
measuring the polarization follows the original implementation of Levin-
ton et a\. (1990) using photo-elastic modulators. The modulator consists
of a birefringent medium whose refractive indices are modulated by a
piezoelectric transducer. Light passing through the modulator has its
polarization modulated by an amount proportional to the sine of twice
the angle between the input polarization and the axis of birefringence.
Using a second modulator with axis at an angle of 45 degrees to the
first, and a different modulation frequency to enable the effects to be
separated, both the sine and cosine of the polarization angle can be de-
duced from modulation amplitudes. Figure 8.17 shows an example from
the tokamak TFTR. The magnetic pitch angle data is used to constrain
MHD equilibrium reconstructions, providing a comprehensive model of
the magnetic structure.

Under some circumstances, the conventional Stark effect interferes
with motional Stark effect diagnostics. Some plasmas develop very strong
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radial electric fields as part of their equilibrium. The magnitude of the
laboratory-frame radial electric field can be as high as 105 V/m in some
tokamaks. Although this is only about 3% of the motional electric field
estimate above, it is enough to perturb the polarization direction by an
amount that is equivalent to a major fraction of the poloidal magnetic
field. Recent experiments have sought to overcome this perturbation
and measure separately the motional and static electric fields by using
two different views of the beam (Rice et al., 1999). With appropriate
geometry, the two views allow the direction of the total electric field to
be deduced. Since the motional and static fields have directions that are
close to perpendicular, they can then be separately deduced. Another
possible way to separate the static and motional electric field effects is to
use the different energy components of the beam (Levinton, 1999). They
experience the same static field but different motional fields because of
their different velocities. This approach has the advantage that it does
not require a second view of the beam but the disadvantage that the
fractional energy beam components have shorter penetration distances
into the plasma.

8.5 Other neutral particle diagnostics
8.5.1 Rutherford scattering

A neutral beam can be used to probe the ions of a plasma
directly by observing the scattering of the beam particles from those
ions. The predominant scattering process is Rutherford scattering: the
scattering arising from the Coulomb interaction of the nucleus of the
neutral particle with an ion. This process is governed by the famous
differential cross section per solid angle Qs for scattering by an angle 9
in the center of mass frame:

d(J
 = Ho (ocU

dQs 4sin4(0/2)' { }

where bgo is the 90 degree impact parameter, bgo = ZiZie1 /4n£omrv2,
with mr the reduced mass, m\m2/{m\ + mj) and v the relative collision
velocity. In view of the inverse sin4 6 dependence, the cross section is
large only for small scattering angles.

The main incentive for this diagnostic is that the energy of the emerging
beam particles is shifted as a result of the collision by an amount that
differs for different initial velocities of the target ions. For a particular ion
species there is a one-to-one correspondence between the component of
the prior ion velocity in a particular direction, and the emergent energy.
Therefore, the energy spectrum of the scattered neutrals from a mono-
energetic input beam provides a measure of the distribution function
of the plasma ions. This sensitivity to the majority ion species is an
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important potential advantage relative to spectroscopic measurements
that give only the impurity distribution function. However, since the
cross section is proportional to the square of the ion charge, impurities
with densities large enough to contribute to Zeff also contribute to the
scattering. Their different mass leads to different scattered energy and
thus they must be carefully considered.

The mathematical relationships between scattered energy and the ion
velocity depend only on the kinematics of the interaction. That is, they can
be derived from conservation of energy and momentum alone. The form
of the scattering cross section weights the proportion of the collisions
that occur at different angles and energies, and so enters at a secondary
level. Details are given by Abramov et al. (1972), who also report a
demonstration of temperature measurements of hot gases.

Despite the attractive features of Rutherford scattering as an ion
diagnostic, there has to date only been one major experiment (Donne
et al, 1987; van Blokland et ah, 1992) on a tokamak trying to take
advantage of it. The reasons are primarily the extreme practical difficulty
of the measurement and the limited applicability. The difficulties include
the need for an extremely well-collimated beam (since a small scattering
angle must be used and the angle must be well defined); very good beam
energy regulation; excellent energy resolution of the scattered beam,
requiring elaborate spectrometers and detectors; and the relatively low
intensity of the scattered signal, placing a premium on high beam intensity
and favoring helium rather than hydrogen beams. The predominant
fundamental limitation to applicability is that the beam attenuation by
the plasma must be modest. The large experimental facilities, which are
the ones that might have the resources to mount the experiment, tend
to have too great an absorption depth for Rutherford scattering to be
appropriate. In addition, access to the plasma for beam and detection
sight lines nearly but not exactly opposite one another is often difficult
to obtain. In this respect, Rutherford scattering, like all neutral particle
diagnostics, surfers significantly in comparison with, for example, optical
diagnostics whose emission can be directed by mirrors, prisms or optical
fibers, thus helping to overcome problems of access.

8.5.2 Pellet injection
It is possible to introduce high densities of desirable neutral

atoms into a plasma transiently by injecting high velocity (~ 1 km/s)
solid pellets. It is by no means a nonperturbing technique. In tokamak
experiments the average global electron density rises owing to the fuelling
effect of the pellet, often by as much as a factor of two. Similarly the
temperature decreases both globally (in an energy conserving way) and
even more dramatically in the local region around the pellet. However
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Fig. 8.18. Predicted and observed line profiles for the Zeeman-split lithium
(670.8 nm) line emitted from a pellet cloud. The individual components are
taken as having (Lorentzian) width 0.13 nm (Terry et al., 1990).

some plasma parameters may reasonably be expected to be unperturbed
during the time-scale (~ 1 ms) of the pellet's flight. The current profile and
consequent poloidal field profile, for example, is governed by magnetic
diffusion and appears to be unaffected on the time-scale of the pellet
penetration and ablation.

As the pellet flies through the plasma it is surrounded by a small, high
density cloud of ablated pellet material. Spectral lines emitted from this
cloud are very bright and well localized in space. The pellet cloud plasma
temperatures are far below those of the plasma into which it is injected,
which is favorable for many purposes.

Two main applications of pellets for diagnostics have been developed.
The first uses pellets of lithium (Marmar et al, 1989). An example of
a spectrum of the dominant neutral lithium line observed is shown in
Fig. 8.18. The Zeeman split components are quite substantially broadened,
primarily by the Doppler broadening, indicating an ion temperature in
the emitting region of about 10 eV. Another contribution to the line
width, particularly in the wings of the line, is from Stark broadening (see
Section 4.5). Its observation allows one to estimate the local density as
~ 1023m~3 within the ablation cloud. The Stark broadening of hydrogen
lines is very much greater than that of other species, and prevents the
polarization from being observable for hydrogen pellets. Even in the
case shown, the Zeeman components are not totally separated. However,
sufficient polarization remains for the magnetic field to be measured by
measuring the direction of polarization. The underlying principles are the
same as discussed in Section 8.2.3 but the techniques for the polarization
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measurement are different because of the short duration of the pellet's
flight (Terry et al, 1990).

An alternative approach to obtaining the magnetic field direction from
an impurity pellet injection is based instead on the observation that the
impurity ions stream out from the pellet, as it is ablated, predominantly
along the magnetic field. The emission from charged species therefore
comes from an elongated "cigar-shaped" region aligned with the magnetic
field. By measuring the direction of the cigar, the field direction can be
obtained. This approach has the disadvantage of relying on the field-
alignment of the ablation cloud, which might under some circumstances
be perturbed by other flows. But it has the advantage, compared with the
Zeeman technique, of working at low field, where the Zeeman components
are not well separated, and of requiring less sophisticated optics.

The second important diagnostic application of pellet injection takes
advantage of the very high density of atoms in the pellet and ab-
lation cloud, compared with the local plasma. The pellet therefore serves
as a highly localized source of neutrals with which the plasma par-
ticles can charge-exchange. The most important extra capability that this
high-density "pellet charge-exchange" provides is that it induces double
charge-exchange in helium ions (alpha particles).

In reasonably hot plasmas, helium ions are fully stripped, requiring
two electrons to neutralize them. In the presence of hydrogenic (or
other) neutrals, charge-exchange reactions take place with a rate that is
somewhat less than the resonant charge-exchange between a hydrogen
atom and a proton, but still very substantial. However, a single charge-
exchange with helium produces not a neutral, but a singly charged helium
ion, which is still confined by a magnetic field. In order to generate a
diagnostic signal in the form of energetic neutral helium atoms that can
promptly escape from the plasma, the singly charged helium atom has to
experience a second charge-exchange during the brief period before its
first electron is removed by ionization. If the neutral density is much less
than the electron density, as is the case, for example, in the neutral beam
path within a hot plasma, and even more so in an unperturbed plasma,
then only an extremely small fraction of the helium atoms will experience
double charge-exchange. Most will simply be reionized. A pellet and its
ablation cloud, however, has extremely high neutral density, up to solid
density of course. Therefore a helium ion traversing the pellet has a
reasonable probability of experiencing two charge-exchanges, to produce
a neutral atom.

A particular application of importance in fusion plasmas is to diagnose
the alpha particles that are the fusion products (Fisher et al, 1995). Pellet
charge-exchange is able to produce detectable signals that provide infor-
mation on the distribution function of the alphas in the plasma, in much
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the same way that hydrogen charge-exchange does for the bulk plasma
ions. Because the alphas are energetic, their slowing down time in the
plasma is long - longer than the pellet flight time. Therefore although the
pellet is a strong perturbation, it measures the alpha distribution function
characteristic of the plasma immediately before the pellet's injection.

Further reading
The subject of electronic and ionic collisions is a vast and com-

plicated one. Refer to such encyclopedic works as:
Massey, H. S. W., Burhop, E. H. S., and Gilbody, H. B. (1974). Electronic and Ionic Impact

Phenomena. 2nd ed. London: Oxford.

Atomic collisions in the fusion context are reviewed in:
McDowell, M. R. C. and Ferendeci, A. M., eds. (1980). Atomic and Molecular Processes in

Controlled Thermonuclear Fusion. New York: Plenum.

Reviews of neutral process diagnostics can be found in:
Stott, P. E. et al., eds. (1982). Diagnostics for Fusion Reactor Conditions, Proc. Int. School

Plasma Phys., Varenna. Brussels: Commission of E.E.C.
Sindoni, E. and Wharton, C. (1978). Diagnostics for Fusion Experiments, Proc. Int. School

Plasma Phys., Varenna. London: Pergamon.

Exercises
8.1 The purpose of this exercise and the next is to obtain an estimate

of the resonant charge-exchange cross section. The perturbation theory
of quantum mechanics shows that the probability of finding an electron
in state 2 (attached to ion 2) at a time t after it was initially in state
1 (attached to ion 1), in the situation in which ions are treated as
stationary, is

Pl2 =

where xpuWi are the wave functions and V the perturbation Hamiltonian.
In our case of interest where we have two protons, if we take the origin
at proton 1 and let the position vectors of the electron and proton 2 be
r and R, respectively, then

1
rl/2.

—r
a0

Wi = exp
r-R|
a0

V =

xpi and \p2 are the ground-state wave functions for hydrogen. By evalu-
ating the overlap integral using these formulas show that the transition
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probability is

12 -
t2

h2
e2

4ne0

1
a0 \a0

L 1 l fx—R/ao

h l j e
8.2 Now we consider actual collisions with impact parameter b and

velocity v. We can calculate what happens in such cases by approximating
the collision as an encounter between the two ions of time duration
t = b/v at constant distance b. If the collision is distant (b > 00X^12 will
be small. As b becomes smaller, Pn increases. Obtain an equation for the
critical impact parameter (bc) at which Pn = \. For impact parameters
less than bc the electron may, with roughly equal probability, emerge
attached to either ion, so write the cross section as approximately

a = \nb2
e.

From your bc equation evaluate (by some simple numerical solution) o
for proton-hydrogen charge exchange at 100 eV collision energy and
compare it with Fig. 8.1.

8.3 Using the following identities for the atomic parameters,
2 ( e2 \ m 4n£o h2e2 _ ( e2 \ m

e2 (2Ry\V2 2Rya0
i 1 ) «c a= ac, a = ,
\ m J he

show that if the ionization coefficient is taken as (<Jeve) « na^lac then
the ratio of recombination to ionization rates is approximately

8.4 Obtain Eq. (8.1.18).

8.5 Show that the temperature at which maximum contribution to
the fast neutral flux occurs is given by Eq. (8.1.21).

8.6 Prove that the increase in apparent temperature due to attenuation
is given by Eq. (8.1.22).

8.7 Consider a plasma with two ion species: protons and a single
type of impurity with charge Z. From the definition of Zeff show that
the proton density is given by



Fast ions and fusion products

In the previous chapter, we saw that neutral atom processes
are important for diagnostics because neutrals can readily escape from
magnetized plasmas. The other type of neutral particle that is often
encountered is the neutron. It is generated from fusion reactions in
the plasmas of interest to fusion research. Other ions can also escape
directly from the plasma carrying their diagnostic information, if they
are energetic enough. Such ions arise from fusion reactions, but can
also be deliberately injected into the plasma for diagnostic purposes.
Naturally, the fusion products give important information about the
fusion reactions. But both the fusion products and other fast ions can
provide information about the background plasma itself.

9.1 Neutron diagnostics
9.1.1 Reactions and cross sections

Nuclear reactions (the primary objective of fusion research) oc-
curring within the plasma can be used as a convenient diagnostic for the
ions. For this purpose the reaction product of most immediate interest
is the neutron because, being uncharged, it is able to escape immediately
from the plasma and hence be detected.

In mixed deuterium-tritium (D-T) plasmas the neutron-producing
reactions are

D + T -> (4He + 3.5 MeV) + (n + 14.1 MeV), (9.1.1)
D + D - • (3He + 0.82 MeV) + (n + 2.45 MeV), (9.1.2)
T + T -+ (4He + 3.8 MeV) + {In + 17.6 MeV). (9.1.3)

In burning plasma devices the tritium reactions are dominant, but the D -
D reaction has also been a valuable diagnostic tool, and is applicable to
plasmas that do not use tritium fuel. In some experiments deuterium has
been used as the plasma constituent in preference to hydrogen specifically
for diagnostic purposes. We shall concentrate on this reaction, though
much of what is said will be applicable, mutatis mutandis, to the other
reactions.

The cross section for the neutron D-D reaction has been measured
with considerable accuracy down to about 12 keV energy. At the lower
end of the energy range these results are reasonably well fitted with
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Fig. 9.1. Neutron-producing fusion reaction cross sections (stationary target).

the expression

71 / 44
cn = — exp -

ED
1/2 b, (9.1.4)

where ED is the incident energy (in the laboratory frame) of a deuteron in
keV colliding with a stationary target deuteron [a barn (b) is 10~28 m2].
The form of this expression is that obtained from an approximate theor-
etical treatment (Gamow and Critchfield, 1949; see Exercise 9.1), but
with the coefficients modified slightly to fit experiment. Using this form,
which has good theoretical justification, is expected to provide reason-
able accuracy even extrapolated to lower energies than the experimental
results. Figure 9.1 shows how rapidly the cross section increases with
energy up to around 50 keV.

For a Maxwellian ion distribution, the rate coefficient for this reaction
may be evaluated by integrating the cross section over the velocity distri-
bution. Again, it is usually convenient to use an analytic approximation
guided by theory, but with the coefficients adjusted to give a more accu-
rate fit of the numerically integrated results. One convenient form (see
Exercise 9.5) is

3.5 x 10-20 / 20.1
exp -.2/3 1/3 m's"1 (9.1.5)
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Fig. 9.2. Fusion reaction rate in (equal temperature) thermal plasma.

(Hively, 1977), which is accurate to about 10% for deuteron temperatures
TD from 1 to 80, expressed in keV. Again, for temperature below about
20 keV this rate coefficient is an extremely strong function of temperature,
as illustrated in Fig. 9.2.

The rate at which neutrons are produced per unit volume by this
reaction is then

S = \n2
D(onv) n r 3 s"1. (9.1.6)

(The factor \ is required in order to count all possible reactions only
once for like particles.)

On the one hand, the strong dependence of (<rnv) on TD is helpful in
providing an estimate of temperature that is very insensitive to uncer-
tainties in either the cross section or the deuteron density. On the other
hand, however, we must note that this strong dependence is a reflection
of the fact that the neutrons are produced mostly by reactions of ions on
the tail of the Maxwellian distribution. For TD < 50 keV we shall show
in Section 9.1.3 that the mean energy of the reacting particles (in the lab
frame) is approximately

(keV). (9.1.7)
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Thus, for example, at 1 keV temperature the neutron production is from
ions with mean energy 4.3 keV.

As a result, the neutron production rate is sensitive to deviations of the
ion distribution from Maxwellian. Any enhanced tail on the distribution
can lead to an overestimate of TD. Conversely, tail depletion (for example,
due to enhanced loss of high-energy ions) can lead to an underestimate.
Note, however, that this dependence of the measurement on high-energy
particles is actually less pronounced than for fast neutral analysis, in
which it is not uncommon to depend upon particle energies 5 to 10 times
the temperature.

9.1.2 Complicating factors
One source of uncertainty in deducing deuteron temperature

from neutron production rate arises because of the need to know the
density no, which enters into the rate as a squared power. The unavoid-
able impurities present in hot plasmas dilute the number of deuterons.
This effect can be estimated, as we have seen before, from the Zeff of
the plasma. If Zeff is significantly greater than 1 (values of 2-5 are not
uncommon in fusion experiments) then that indicates that nD may be dif-
ferent from ne, the density whose value is usually best known. Although
nD is often quite uncertain (by up to perhaps a factor of two), fortu-
nately the strong dependence of neutron rate on temperature reduces
the consequent TD uncertainty to manageable proportions. For example,
our previous equations show that at 1 keV the percentage error in TD
caused by nj) uncertainty is 0.3 times the percentage error in n^ (see
Exercise 9.6).

Nonfusion neutrons are another source of possible error in the tem-
perature estimates. The primary cause of processes that produce such
neutrons is high-energy electrons. These electrons can be created in
toroidal devices by electron runaway along the magnetic field. Runaway
is a process in which the decreasing electron collision cross section at
higher energy allows sufficiently energetic electrons to accelerate continu-
ously in an applied electric field up to very high energy. Radio frequency
heating schemes (for example, electron cyclotron resonance heating) can
also create very energetic electrons.

Nonfusion neutrons can arise from these high-energy electrons in sev-
eral ways. They can cause disintegration of deuterons either directly, by
the reaction D(e, e'n)H or by producing energetic photons (gammas) by
bremsstrahlung, which then cause photodisintegration by the reaction
D(y,rc)H. [Nuclear reactions are conventionally written A(x,y)B where A
and x are the reactants and B and y are the products.] The former pro-
cess occurs throughout the plasma volume, but the latter is concentrated
primarily in those locations where the energetic electrons can collide
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with solid structures at the plasma edge, since the photons are produced
most copiously by thick-target bremsstrahlung in solids. Both of these
deuteron disintegration processes have threshold energy (below which
no reactions will occur) equal to the binding energy of the deuteron
(2.2 MeV).

There are other processes of neutron production that are usually
more important. They involve nuclear reactions not of deuterium but
of the material from which the edge structures are made (with which
the electrons can collide). These are sometmes refractory metals such as
molybdenum or tungsten for which reactions such as 97Mo(e,e'n)96Mo or
97Mo(y, rc)96Mo are possible. Subsequent observation of activation of the
structures due to the radioisotopes produced can confirm these processes.

In order to distinguish the nonfusion neutrons from the component that
is to be used for TD diagnosis one requires, in general, an energy spectrum
of the neutrons to be measured. It is sometimes possible to discriminate
against locally-produced nonfusion neutrons (due to solid interactions)
by virtue of their localization. However, for volumetric processes such as
the e-D direct disintegration, one must appeal to the distinctive energy
spectrum of D-D neutrons (namely peaked at 2.46 MeV), compared to
the endoenergetic disintegration reactions, which produce spectra usually
falling monotonically with energy. Figure 9.3 illustrates an interpretation
of an observed spectrum in which the D-D fusion peak is only a relatively
small fraction of the total neutron yield.

Of course, if it can be established by these and other cross checks that
the neutrons observed are dominantly D-D, then subsequent spectral
measurements are not required and an observation of simply the total
neutron rate may be sufficient to determine the ion temperature.

Assuming then that the fusion neutrons can be unambiguously dis-
tinguished, to obtain a local ion temperature requires the calculation of
the local neutron production rate in the plasma from measurements of a
detection rate at some point(s) outside the plasma. It is rather difficult
to obtain collimated neutron measurements along a specified viewing
path. Instead, more often, an uncollimated detector, sensitive to the total
neutron production rate, is used. To deduce the absolute neutron rate
then requires the details of the machine and plasma geometry to be taken
into account. This is usually done by in situ calibration using appropriate
calibrated neutron sources inside the actual machine itself.

Evidently the temperature and density profile effects are also rather
important and need to be modeled before a temperature can be deduced.
Fortunately, the strong dependence of the neutron rate on temperature
helps in two ways. First, it means that one is sensitive mostly to the peak
temperature (normally at the plasma center). Second, the temperature
deduced is not very sensitive to the (assumed) temperature and density
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Fig. 9.3. An experimentally observed neutron spectrum (points) with its interpre-
tation in terms of various competing production processes in a tokamak plasma
with appreciable high-energy electron component [after Strachan and Jassby
(1977)].

profile widths. As a result, a quite reliable continuous measurement of
ion temperature is often possible. Figure 9.4 shows an example.

9.1.3 Neutron spectrum
Apart from the important role of distinguishing fusion from

nonfusion neutrons, measurements of the energy spectrum can, in princi-
ple, provide a more direct measurement of the (thermal) deuteron energy.
The reason for this is that the exact neutron kinetic energy depends
on the kinetic energy of the reacting deuterons in a way that can be
determined by analyzing the particle kinetics of the reaction. We shall
continue to speak of the D-D neutron-producing reaction in the follow-
ing analysis but it should be noted that the results are completely general
for a reaction that produces only two product particles. Thus D-T reac-
tions and proton-producing reactions are also covered by this treatment.
In the center-of-mass frame of two reacting deuterons the conservation
of momentum requires that for the neutron (subscript n) and the 3He
(subscript a) emerging from the reaction the total momentum is zero,
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Fig. 9.4. The neutron rate and the ion temperature derived from it (using other
data also) for a case with negligible nonfusion neutron production (Alcator C
tokamak, courtesy R. Granetz). The sharp decrease at about 300 ms is due to a
pellet of solid deuterium injected into the plasma for fueling purposes. It cools
the plasma.

ua = 0, (9.1.8)

where u is particle velocity. Conservation of energy then gives

(9.1.9)Q + K = -mnu2
n + 2m*ul = 2m»un ( '

where Q is the total energy released in the reaction and K is the relative
kinetic energy of the reacting deuterons, and we have used Eq. (9.1.8).
Now we consider the center of mass to have velocity V in the lab frame
and so the neutron velocity in the lab frame is

yn = V + un

and its kinetic energy is

En = \mnvl = \mn{V2 + u2
n + 2V • un).

Substituting for un we get

(9.1.10)

(9.1.11)

2
2mnm(X

1/2

(Q+K)\ cos0, (9.1.12)
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where 6 is the angle between V and uw, and is hence random. When
we take the mean value of this expression over all possible reaction
configurations the cos 6 term averages to zero provided the deuterium
distribution is isotropic:

En = \mjn + m a (Q + K). (9.1.13)

The term in Q represents the usual fraction of_the fusion yield that goes
to the neutron (2.45 MeV for D-D), while the V2 and K terms represent
a small shift in mean energy.

The displacement in energy of any specific observed neutron from the
mean neutron energy is

En-En = \mn{V2 - 72) + ma (K - K)
2 m + m2 a + n

\ ^ ^ 1 / 2 2V cosO. (9.1.14)

Now provided the temperature is much less than g, which will almost
always be true since Q is so large (3.3 MeV for D-D), this equation will
be completely dominated by the final term and may be written

£,-£„* fe^fV cos 0. (9.1.15)
[ma-\-mn\

Since Fcos0 represents simply the component of V in the direction
of un, the distribution of En — E n directly reflects the distribution of
V in one dimension (viz., along uw, which is approximately along \n).
However, it is important to realize that the number of reactions that
occur with a given neutron energy will naturally be weighted by the
neutron-producing reaction rate <JV, where v is the relative velocity. All
the averages denoted by an overbar in this section must be interpreted
as integrals of the quantity in question times <JV. Thus, the distribution
of V reflected in the energy spectrum is weighted by ov toward those
deuterons that contribute most to the reaction rate.

Now we must explore the averaging process over the velocity distri-
butions of the reactants in order to determine the distribution of V and
hence of En. First we note that the total reaction rate coefficient for two
species 1, 2 (which we treat as distinct now to maintain generality) may
be written

nw2(<Tv) = j /Vflvi —  v2|)|vi - v 2 | / i ( v 1 ) / 2 ( v 2 ) J V ^ 2 . (9.1.16)

We may change the variables in this integration to express it in terms of
the cm. velocity V and the relative velocity v = vi —  v2. The Jacobian of
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the transformation is unity (see Exercise 9.2) so the result is

x/2 (V ——v ) d\ d 3V. (9.1.17)

Clearly, then, the contribution to the reaction rate from collisions with
cm. velocity V in the velocity element d3V is

d3V LvU (y + - ^ - y ) h (y - - ^ ^ y ) d\. (9.1.18)
J \ m\ + m2 J V mi + m2 )

To the extent that Eq. (9.1.15) is a good approximation, it shows that
neutrons of a specific energy arise from collisions in which the component
of V in the neutron emission direction (z say), VcosO, has a specific
value. The number of neutrons with this energy is obtained by a partial
integration over the components of V perpendicular to this direction, as
well as the integration over v. This integration can be done (numerically)
for any general forms for f\ and f2, so that the deuteron energy spectrum
provides some (limited) information on the distribution shape.

When / i and f2 are equal temperature Maxwellians the V and v
dependences separate, because then

/ 2 ( M y l m i ) 2 \ ,0 1 1<»
( 9 ' L 1 9 )

where M = m\ + m2 is the total mass and m — m\m 2/(m\ + m2) is the
reduced mass (see Exercise 9.3), so that

M \ 3 / 2 ( MV2\ ,, f ( m x 3 / 2

^ ^ V (9.1.20)

Since dEn cc dVz (taking \n to be in the z direction) we can therefore
identify immediately the neutron-production energy distribution [P(En)]
as also having a Gaussian shape:

P(En)dEn x exp [ - ^ ) dEn (9.1.21)

oc J£n exp -M(En - E^)2

The potential advantage of basing a temperature on this energy spec-
trum width rather than an absolute measurement of neutron intensity is
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that it removes the necessity for absolute calibration. Also uncertainties
arising from deuteron density are removed. On the other hand, to obtain
a neutron spectrum with sufficient resolution to determine a width of the
order of the geometric mean of Q and T at energy Q is rather challenging,
especially since neutrons scattered from the various material structures
surrounding the plasma must be excluded. (Their energy is degraded by
the scattering.)

Moreover, it should be clear, from the comments above, that using the
energy spectral width does not avoid the difficulties with non-Maxwellian
distributions that arise because neutron production comes mostly from
the tail of the distribution. Instead, the spectral width will reflect roughly
the tail temperature.

In one example of measurements based on the details of the neutron
spectrum, Strachan et al. (1979) observed the energy shift of the neutron
peak due to directed motion of injected energetic deuterons in a neutral-
beam heated tokamak. The absence of shift when only protons were
injected indicated that no directed motion of the deuterium background
plasma then occurred.

Temperature measurements based on the spectral width were begun on
tokamaks with large neutron rates in the 1980s [e.g., Fisher et al. (1984)
or Jarvis et al (1986)]. Experiments using D-T fuel in the past decade
have provided opportunities to exploit neutron spectra more extensively.

In inertial confinement (laser fusion) experiments the neutron emission
occurs only for the very brief (100 ps) period of "burn". The most
convenient way to obtain the spectrum is then to use a time-resolved
neutron detector located far (perhaps 40 m) from the imploded plasma.
The arrival time of the neutrons is then determined by their velocity,
and thus their energy. This "time-of-flight" spectrometer thus deduces
the neutron energy spectrum from the time-dependent neutron intensity.

To complete our discussion of the neutron spectrum we demonstrate
our previous formula for the mean energy of reacting particles. From
Eq. (9.1.20) integrated over all V we have

/2

= (-L) (±] j^ aexp[---l-)KdK, (9.1.22)s ) (r
where, as before, K is the relative energy ^mv2. As a convenient shortcut
to obtaining the mean energy (Brysk, 1973) we note also that

(
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This may be verified by direct differentiation of the previous equation
(see Exercise 9.4). Now we take a rate coefficient in the form of Eq. (9.1.5),

(av) oc T~2/3 exp(-C/T1 / 3 ) , (9.1.24)

and it follows that

dT[ J ~ 6 + 3 ' [ }

Now the mean energy attributable to center-of-mass motion is

\MV2 = \T, (9.1.26)

which must be added to K to give the total mean kinetic energy of the
reacting particles. This energy is shared between the two particles, so the
mean per particle is

as previously stated [Eq. (9.1.7)].

9.1.4 Collimated neutron measurements
Neutrons scattered from the experiment structures lose energy

during the scattering. These scattered neutrons tend to be so intense that
they cannot be entirely suppressed, but experiments to measure neutron
spectra try to suppress them. A major part of that suppression is to
collimate the view that the detectors have of the experiment to be as far
as possible directly along a well-defined line of sight.

Collimation of neutrons is far more difficult than collimation of light
or even of x-rays, because of the long penetration distance of neutrons in
essentially all materials. Consequently, neutron collimators must be large
so as to obtain effective extinction of neutrons that are not traveling
in the collimated direction. Figure 9.5 shows an elevation view of the
multichannel neutron collimator used on TFTR.

In addition to supporting spectral determination, collimated neutron
measurements also, of course, offer the opportunity to obtain spatially
localized information about reaction rates. In the most elaborate experi-
ments on magnetic fusion neutrons to date, the evolution of the neutron
spatial profile was reconstructed on the JET experiment (Jarvis, 1994)
using two orthogonal views, to produce a "tomographic" reconstruc-
tion. There the reaction rate changes were predominantly caused by ion
temperature changes.

Since the reaction rate is often enhanced by super-thermal ions, such
a spatially resolved measurement can give information about those ions.
Similarly, when traces of tritium are injected, since the D-T reaction rate
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Fig. 9.5. The neutron collimator on Tokamak TFTR. Large distances are nec-
essary for shielding. Different types of detector can be used on the same view.
After Roquemore et al. (1995).

is roughly 200 times the D-D rate, the neutron emission is a sensitive
measure of the distribution of the tritium inside the plasma. By observing
the evolution of the collimated neutron signals, the diffusion of the tritium
across the magnetic surfaces can be diagnosed. Figure 9.6 shows results
obtained with the TFTR collimator.

9.2 Charged particle diagnostics
9.2.1 Charged reaction products

Thermal-energy ions in magnetically confined plasmas are, by
design, unable to escape readily from the plasma. However, sufficiently
energetic ions can have Larmor radii comparable to or greater than the
plasma size, or, in electrostatic confinement schemes, sufficient energy
to overcome the potential barrier. In that case it is possible to perform
diagnostics by observing these particles outside the plasma.

The Larmor radius is, of course, mtVi/ZeB, which may be written in
terms of (perpendicular) particle energy W (in MeV), mass }i (in units of
the proton mass), and magnetic field B (in tesla) as

Pi = O.H4(inW)l/2/ZB m. (9.2.1)

For a 14 MeV proton (fi = 1,Z = 1) in 1 T field the radius is about
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Fig. 9.6. Time evolution of D-T neutron emission profile following a puff of
tritium. The filling in of the initially hollow emission profile can be analyzed to
give the tritium diffusion coefficients (Efthimion et ai, 1995).

0.5 m, which can be comparable to plasma dimensions. Thus, it is possible
under some circumstances to use charged nuclear reaction products for
diagnosis.

The reactions of interest, in addition to those mentioned in Section 9.1,
which of course produce charged products such as 4He in addition to
neutrons, include

D + D -> (T + 1 MeV) + (p + 3 MeV)

and particularly

D + 3He -* (4He + 3.6 MeV) + (p + 14.7 MeV),

(9.2.2)

(9.2.3)

as well as other reactions involving tritium and other light nuclei.
The D-D proton-producing reaction has a very similar cross section

and energy release to the neutron reaction. It was used in one of the
earliest studies of (controlled) fusion product energy spectra. In this work
(Nagle et al, 1960) the plasma configuration was a "#-pinch", which has
open field lines along which the charged particles can easily escape.
Detection and energy resolution is much easier for charged particles
than it is for neutrons because the charged particles have short stopping
lengths in, for example, emulsions, semiconductor detectors, and ioniz-
ation chambers. In the 0-pinch studies, consistent ion temperatures were
deduced from the energy spectral widths. Later work on plasma config-
urations, where the charged particles do not easily escape, has tended to
concentrate on the neutron branch of the reaction, although continued
use has been made of the charged particles in open field configurations
[e.g., Foote (1979)].
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Fig. 9.7. Spectrum of proton fusion products escaping from a laser compressed
deuterium-He3 plasma. The peak is upshifted from the theoretical energy of
maximum yield indicated by the arrow (Hicks et ai, 2000).

In inertial confinement plasmas, charged fusion products are lost im-
mediately from the plasma. Their energy spectrum can show evidence of
slowing down by collisions in the pellet plasma if its density p and radius
r are large enough. In that case, the spectrum provides a measurement
of the product pr of the plasma, which is the key parameter determining
the fusion energy gain of the pellet. Recent measurements (Hicks et al,
2000) have shown a different effect. They employ a fast particle spec-
trometer based on magnetic deviation of the ions, essentially the same as
the spectrometers used for fast neutral analysis (see Fig. 8.4) except that
the particles all arrive within an extremely short period and are detected
by their damage sites in plastic witness material. Figure 9.7 shows an
example spectrum where, rather than being slowed down by collisions,
the average particle energy has been increased. This acceleration seems
to be caused by a very large positive potential appearing on the pellet
plasma, which is believed to be the result of the loss of fast electrons
generated by the laser beam.

In plasmas with 3He as a major ion component the option of diag-
nosing this component with neutrons is not open because 3He has no
neutron-producing reactions (except with T and that has a much smaller
cross section). Moreover, the cross section for the production of a neutral
3 He atom by charge-exchange is small since the 3He nucleus needs to
acquire two electrons. Double charge-exchange is much less probable
than single. Therefore, passive charge-exchange fast neutral analysis of
3 He is very difficult. Because of these difficulties there has been consid-
erable motivation to employ the D-3He reaction proton as a diagnostic
of the 3He population. Some measure of success in this direction has
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been achieved by using particle detectors at the plasma edge (Chrien and
Strachan, 1983) appropriately collimated to intercept the large ion orbits.
Energy spectra have been obtained, although they are not yet sufficiently
free of scattering and other spurious effects to provide an independent
measurement of thermal temperatures.

Fusion research is likely to continue to focus on diagnosis of the alpha
particles produced by the D-T reaction in proposed ignition experiments.
The ultimate success of such experiments hinges on the behavior and
particularly the confinement of these alphas, so naturally their diagnosis
assumes considerable importance.

As we have noted, in open field configurations, and even more ob-
viously, in inertially confined plasmas, the charged particles can escape
immediately. These prompt escaping particles carry out the information
about their birth, which, by analysis identical to that in Section 9.1.3 for
neutrons, can give ion-temperature information. On the other hand, the
charged particles that do not escape immediately gradually slow down by
collisions on the bulk plasma. During this slowing down process, some
fraction of them may escape and be able to be detected at the plasma
edge. Therefore, a measurement of the energy spectrum of the escaping
particles should give information about the slowing down process and
the confinement of particles during slowing down.

Whether a fast particle undergoes prompt loss or is confined depends
on its orbit, which in a practical machine is usually very complicated;
however, a brief elementary introduction to this subject is given in the
next section.

9.2.2 Orbits of energetic charged particles
We began our discussion of charged particle diagnosis by a

consideration of the size of the Larmor radius p,. To lowest order, the
particle orbit consists of a gyration about the magnetic field lines, with
this radius, plus a motion along the field given by the parallel velocity v\\.
However, in nonuniform fields it is well known that there are, in addition,
slower drifts of the center of the gyro-orbit across the field lines. These
drifts are fast enough that unless they lead to gyrocenter motion of only
limited extent they will constitute a loss mechanism that is essentially
prompt. Thus a fast particle will be confined only if both the gyroradius
and also the size of the drift orbit motion of the gyrocenter are smaller
than the plasma. Because the gyrocenter drift orbit is usually larger than
the gyroradius, the drift orbit is usually the dominant effect.

Drift orbit analysis depends strongly on the magnetic field geometry.
We consider here the case of a tokamak, both as a conveniently simple
illustration of some of the principles and as the configuration of greatest
current interest as far as controlled fusion ignition is concerned.
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Fast particle orbits can be taken to be given by an approximate
adiabatic analysis, ignoring collisions. [The reader not familiar with
particle drift analysis may find a discussion in any elementary plasma
text, e.g., Chen (1984).] Because of the helical form of the magnetic field
lines and the toroidicity, the magnetic field strength varies along the field
line; B is approximately inversely proportional to the major radius R.
As a result of this variation and the conservation of magnetic moment
[i = \mv\/B, some of the particles are mirror trapped in the outer lower-
field regions of the plasma. The others, which have a small enough pitch
angle between their velocity and the field, can stream continuously in
one direction along the field. They are sometimes called passing particles.
All the particles experience a cross-field drift due to the bending of the
field lines. Since the total magnetic field in a tokamak is mostly toroidal
and only weakly influenced by the plasma currents, the drift is quite well
approximated by

Vd = qB,R = —OR—  {92A)

for a particle with charge q, mass ra, and parallel velocity v\\. The direction
of Vd is vertical (i.e., in the z direction).

The drift orbit is determined by a superposition of the drift motion
and the parallel motion along the field lines. The field lines orbit around
the flux surfaces l/qs times the short way (poloidally) for each revolution
the long way (toroidally), where qs is the safety factor. Therefore, the
t? II motion produces an effective rotational velocity in the poloidal cross
section, v̂  « (B^/B^)^, which is added to vj. For simplicity we shall
consider only a circular cross section so that Bp = BQ and qs = rB^/RBg,
although the principles remain similar for shaped cross sections.

In the poloidal cross section, then, the equation of motion of the
gyrocenter is

v = \d + vp = vdz + vp0. (9.2.5)

This may be written in terms of minor radius r as

1 dr Vd sin 9
r d6 vdcos9 + vp'

(9.2.6)

For passing particles it is reasonable to approximate vd and vp as constant
to lowest order. We can then solve this orbit equation to get

+ - c o s fll , (9.2.7)
V J
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Fig. 9.8. The projection in the poloidal plane of orbits of energetic particles in a
tokamak. Passing particles have shifted approximately circular orbits. Trapped
particles have larger banana orbits.

where ro is the drift orbit minor radius when 6 = n/2. This orbit is
approximately a circle shifted in the major radius direction by a distance

A = r0— = r 0-

= qs Qi;,.
(9.2.8)

The direction of this shift depends on the relative signs of vj and vp,
and hence on the direction of v\\ with respect to the plasma current. A
positive ion, moving in the same direction as the current, shifts outward.
In the opposite direction the shift is inward. The v± = 0 case gives the
smallest shift for particles of given total energy. Then A = qspu which
will generally be substantially larger than p; since tokamaks operate with
qs near the plasma edge typically ~ 3. Thus even for passing particles the
drift orbit size substantially exceeds the Larmor radius (which we regard
in this section as defined using the total particle energy: p,- = m\\\/ZeB).

Mirror trapped particles have even bigger drift orbits and, more partic-
ularly, orbits with a very different shape. As illustrated in Fig. 9.8, unlike
the approximately circular orbits of passing particles, mirror trapped par-
ticles have orbits that are banana shaped, as they bounce back and forth
between their mirror reflection points. To calculate the orbits analytically
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from the drifts is quite difficult for trapped particles. However, an appeal
to the constants of the motion enables one to write down quite quickly
the equations governing the orbit: they are the conservation of magnetic
moment //, the conservation of total energy \mvl + \iB, and finally a
new conservation equation [which arises because of the ignorability of
the toroidal (</>) coordinate], the conservation of the toroidal canonical
momentum

R(nw\\ + qAf) = constant. (9.2.9)

The toroidal component of the vector potential A^ is directly related to
the poloidal flux (see Section 2.2) by inRA^ = \p.

Knowing A^ the conservation equations provide an equation for the
orbit, given initial values of v§ and v±. These are still difficult to solve
in general but by considering just the points where the orbit crosses
the midplane we can rapidly estimate the drift orbit dimensions. Denote
quantities by the suffixes 1 and 2 at these points. Then the <p momentum
conservation equation may be written

-q(R\Ai - R2A2) = m(RiVi - R2v2). (9.2.10)

Now for trapped particles, the two points are both on the outside of
the machine so we write

- R 2 A 2 = f ^-(RA<j))dR = [
J2 GR J2

R1A1-R2A2= f ^-(RA<j))dR = [ RBzdR = RS^AR, (9.2.11)
J GR J

where z is the vertical component, which is also the poloidal component
on the midplane. Also the signs of R\v\ and R2v2 are opposite (since
the v\\ is opposite), so denoting their mean magnitude by Rv\\ we get the
width of the banana orbit as

m mv\\
\AR\ = -^=2Rvll « 2 — \ (9.2.12)

qRB0 " qBe
where the averages are now left implicit. The trapping condition shows
that a typical value of v\\/v is ~ (r/R)1^2. If we substitute this value and
express Be in terms of the safety factor qs, we get

AR - 2qs{R/rf2
Pi. (9.2.13)

Incidentally, one can calculate the orbit shift A of passing particles
by the same technique. In this case the quantity R\A\ — R2A2 must be
written as « RBQ2A, recognizing that the midplane points are now on
opposite sides of the axis. Also v\ and v2 have the same sign, so

^ - R 2 ^ 2 ) . (9.2.14)
2qKt>Q
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Fig. 9.9. Escaping charged fusion product spectrometer.

If the perpendicular velocity v± is negligible, then v\ = V2 and so, since
R1-R2 = 2r, we get

mv\\ r (9.2.15)

as before. The more general expression for nonzero v± [Eq. (9.2.8)],
may be obtained by accounting for the v§ variation (see Exercise 9.7).
Physically, the drift integration and momentum conservation are entirely
equivalent.

Summarizing, then, the drift orbits are substantially larger than the
Larmor radius, by a factor that for trapped particles may be typically

V2 ~ 8.

9.2.3 Lost charged particle orbit diagnosis
There is substantial prompt loss of charged particle fusion prod-

ucts in most magnetic confinement experiments. Moreover, if the pitch
angle of the escaping particle can be measured, then one can calculate
the trajectory of the drift orbit by numerical integration of the drift (or
adiabatic conservation) equations. This then gives information on the
birth position of the detected particle.

Experiments have been performed to obtain what amounts to the vel-
ocity distribution function of the escaping fast particles using specially
designed instruments located at the edge of the plasma. Figure 9.9 shows
the principles of the spectrometer used on TFTR (Darrow et aL, 1995).
The parallel and perpendicular velocities of the particle determine where
it impacts a two-dimensional scintillator detector. The image is trans-
mitted by optical fibers to external detectors, providing a time-resolved
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partial reconstruction of the fast ion distribution function in two velocity
dimensions.

Experiments like this in D-T plasmas experience strong bombardment
by the escaping fusion neutrons and the gamma rays they induce by
capture reactions in the structures of the experiment. Therefore the
detectors must be robust and, as far as possible, insensitive to these
other background interference effects. Indeed, a great deal of effort has
been expended in developing methods for "hardening" all the different
types of plasma diagnostics against interference and damage from fusion
reactions in fusion ignition experiments. A charged particle spectrometer
is particularly susceptible because it must be positioned immediately next
to the plasma.

9.2.4 Ion probing beams
In order to use active charged particle beams injected into the

plasma rather than passively observing the particles produced in nu-
clear reactions, it proves convenient to employ much heavier species.
This allows a sufficiently large Larmor radius to be obtained without
using excessive energy. For example, beams of singly charged thallium
ions (atomic mass 203 or 205) can be produced with conventional ion
accelerators with sufficient energy (up to ~ 1 MeV) to penetrate medium
sized tokamak plasmas. Other elements sometimes used include cesium,
sodium and rubidium. This diagnostic technique is usually called the
heavy ion beam probe (acronym HIBP).

Three plasma parameters are of primary interest in diagnostic mea-
surements with such heavy ion beam probes. The first, rather obviously,
is the magnetic field itself, which may be deduced from the trajectory of
the ion beam. Naturally, the emerging direction of the beam is deter-
mined by an integral over the beam path of the magnetic field, so that
a complicated integral deconvolution is normally required to determine
the spatial variation.

The most sensitive way to do this deconvolution is generally to observe,
in addition to the primary beam, the second beam (or rather array of
beams) generated by ionization in the plasma of the injected ions. For
example, in the tokamak (where it is the small poloidal field that is
of greatest interest, since the toroidal field is scarcely perturbed by
the plasma) the birth position of a Tl + + ion produced from a Tl+

primary beam can be deduced from the poloidal position of the orbit
(see Fig. 9.10). In principle, the poloidal field may then be deduced from
the toroidal orbit displacement.

The change in toroidal angular momentum of the secondary beam
has a particularly simple relationship to the magnetic field structure.
During the orbit of the primary beam up to the point of ionization, the
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Fig. 9.10. The orbits for ion beam probing are determined by the magnetic fields.
In this illustration B is mostly into the page.

time-integral of the moment of the toroidal force on the beam particle is
proportional to the integral along the trajectory of the product of major
radius times poloidal magnetic field ( / Rq(\ABp).(j)dt = —q J R(BpAAl).(j)).
This integral is precisely what defines the poloidal flux (per radian)
difference between the start and the end of the path. On the trajectory
of the secondary beam out of the plasma, the change in toroidal angular
momentum is given by a similar integral. Indeed, provided the poloidal
flux values can be taken equal at the start of the injected beam orbit
and the end of the emerging beam orbit, the integral along the secondary
beam path is exactly minus that along the primary path except that the
value of the particle charge is q = 2e on the way out and q = e on
the way in. Therefore, measuring flux relative to the external value, the
total change along the orbit of the angular momentum is just the charge
difference (e) times the flux at the point of ionization:

= exp(x) = (9.2.16)

where x is the position of ionization, and the flux or equivalently toroidal
vector potential, A^, are measured from a reference value at the exter-
nal position. Once again, this identity could have been obtained from
conservation of canonical angular momentum.

This exact relationship depends on the axisymmetry of the magnetic
configuration. Unfortunately non-axisymmetric perturbations, notably
those arising from toroidal field ripple, are large compared with the
small momentum changes to be measured. In practice then, although
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Fig. 9.11. The potential inside the EBT plasma as measured by an energetic ion
beam experiment [after Colestock et al. (1978)].

consistency with other estimates has been obtained, the uncertainties
accumulating from various field perturbations prevent this from being a
routine equilibrium poloidal field measurement.

Greater success attaches to measurements of the second plasma par-
ameter of interest, namely, the plasma potential. This is measured by
virtue of the energy change in the secondary beam (equal to eVp) due to
the additional electrostatic potential energy gain of the ion. The location
of the birth point is determined again by the orbit analysis and the
potential by subsequent energy analysis of the secondary beam. This is
naturally quite challenging since one is interested in energy changes of
the order of typically a few hundred electron volts or less at an energy
of 100 keV or above. Nevertheless, essentially complete radial profiles
of Vp have been obtained that no other noncontact diagnostic has been
able to provide. These measurements are of particular interest for mirror-
confined plasmas where the electrostatic potential plays a fundamental
role in particle confinement.

In Fig. 9.11 an example is shown of the space potential measured
in an Elmo bumpy torus plasma using a rubidium beam with energy
8-30 keV. The significance of these results is that the hollow potential
profile forms only for certain types of discharge with more favorable
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confinement properties. Many of the operational details of such an ion
beam potential measurement are discussed by Bienisek et al. (1980).

The third parameter of interest that a heavy ion beam probe can mea-
sure is the local plasma density at the position of ionization. Naturally
the ionization rate is proportional to the density, and so the secondary
signal is also proportional to density. The absolute value of the density
is difficult to obtain because of the uncertainties in overall beam attenu-
ation, cross sections and plasma composition, as well as the difficulties in
performing an absolute measurement of secondary beam intensity. Only
in rare instances is the beam probe used for absolute density measure-
ments. However, the localization of the beam sensitivity to the volume of
intersection of the primary and secondary beams, as well as the capability
of fast time resolution are features that make the beam technique very
appropriate for measuring density fluctuations (Crowley et a/., 1990).

In the measurement of fluctuations, the heavy ion beam has addi-
tional attractions too. It can simultaneously measure the fluctuations of
potential as well as density, thereby providing information on both of
the parameters that determine the properties of electrostatic fluctuations.
In fluctuation measurements, the absolute calibration is less important
than that for reconstructing the equilibrium quantities. The magnetic
flux measurements also benefit from this alleviation of the importance
of systematic errors, and have been shown to be capable of diagnosing
MHD perturbations (Crowley et a/., 1990). For the electrostatic and elec-
tromagnetic measurements, the fact that the beam diagnostic measures
the potential, not the field, means that the field requires a spatial deriva-
tive to be taken. Or, putting it the other way round, the measurement
is a spatial integral of the field. This is something of a disadvantage
because differentiating a signal with noise always tends to enhance the
noise level.

Further discouragement lies in the scale of the experimental installation
required to make the measurement. Often the accelerator and beam line
dwarf the plasma to be measured. This tends to be true even on large
plasmas, because as the plasma gets larger the beam energy must be
increased to enable the ions to penetrate the plasma, so the beam size
tends to scale with the plasma size. The lower the magnetic field in
the plasma, the more practical the heavy ion beam diagnostic becomes.
Despite the practical challenges, the information about fluctuations and
electrostatic potential continues to motivate the application of heavy ion
beams to present and future magnetically confined plasma experiments.

Further reading
Fusion reactions are discussed in most books on controlled

fusion, for example:
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Glasstone, S. and Lovberg, R. H. (1960). Controlled Thermonuclear Reactions. New York:
Van Nostrand.

Valuable reviews of ionic process diagnostics prior to the operation of
the major D-T experiments can be found in:

Stott, P. E. et al, eds. (1982). Diagnostics for Fusion Reactor Conditions, Proc. Int. School
Plasma Phys., Varenna. Brussels: Commission of E.E.C.

Sindoni, E. and Wharton, C. (1978). Diagnostics for Fusion Experiments, Proc. Int. School
Plasma Phys., Varenna. London: Pergamon.

A recent comprehensive review of neutron diagnostics is:

Wolle, B. (1999). Tokamak plasma diagnostics based on measured neutron signals, Phys.
Rep. 312:1.

Exercises
9.1 The Gamow cross section [Eq. (9.1.4)] is based on a calculation of

the probability that an incident nucleus can tunnel quantum mechanically
through the repulsive Coulomb barrier of another and so allow a nuclear
reaction to occur. A simple approximate way to do the calculation is to
use the one-dimensional Schrbdinger equation

where E is the total energy and the potential energy is taken as

e2

V(x) = for x > 0
4ne0x

= 0 for x < 0.

Show by a WKBJ solution that the probability of a particle, incident
from x = + oo, tunneling through this barrier is proportional to

e2 ->j2m n

Calculate the numerical value of the exponent for an energy of 1 keV.
How does it compare with Eq. (9.1.4)? (Note: the \/E term in on arises
because the real collision is three-dimensional and angular momentum
must be accounted for.)

9.2 Write the reaction rate as an integral over two velocity distri-
butions in the lab frame. Transform to velocity coordinates V and v
(the cm. and relative velocities, respectively) to obtain Eq. (9.1.16); in
particular show that the Jacobian of the transformation is unity.
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9.3 Consider the general problem of collisions of two particles mi, m^
whose (lab frame) velocities are vi,V2. Show that the total kinetic energy
of the system can be written

E = \mxv\ + \m2vl = \MV2 + \mv2\
where M = m\ + m^ and V = (mivi + m^y^Kmi + m-i) are the center-of-
mass mass and velocity, and m = m\m2/(m\ -\-rn2) and v = vi — V2  are the
reduced mass and the relative velocity, respectively. If the distributions
of particles 1 and 2 are Maxwellian with equal temperature T, show that
the reaction rate (per particle) is

1/2 / rp \ —  3/2

)

Here K = ^mv2 (a is independent of V, of course).

9.4 To calculate the mean energy E, weighted by the reaction rate,
show that the mean cm. energy (\MV2) is \T and that the mean relative
energy (K) is given by

^ r 2>
regardless of the form of o.

9.5 Substitute a Gamow form of the cross section
A ( -B

into the expression (9.1.22) for (GV). Evaluate the integral approximately
by expressing the total exponent in the integrand approximately as a
Taylor expansion up to second order about its maximum value to obtain

1/2 / D X V 3 ! T (B\V3 1

2) TV3

By using the values in Eq. (9.1.4) appropriately converted to SI units
and center-of-mass energy K (rather than stationary target energy ED),
obtain values for the coefficients in this expression and compare them to
Eq. (9.1.5).

9.6 Show from the expression (9.1.5) for the reaction rate that the
error AT in deduced temperature caused by an error AnD in deuteron
density nD is given by

AT 2 AnD
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9.7 Show that for a passing particle the conservation of energy and
magnetic moment leads to a difference in v\\ between the inner and outer
orbit midplane positions of

v2, r
t),| R

Hence approximate Eq. (9.2.14) on the basis Av\\ < v^ and AR <C R to
obtain Eq. (9.2.8).
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For a function f(t), defined for —oo < t < oo, we  define the Fourier
transform as

/•OO

F(v)= / Qimf(t)dt, (Al.l)

where it is convenient to write the angular frequency co = 2nv as the
variable in the exponent. We shall presume this integral to exist (in
some sense) for all the functions in which we are interested. The inverse
transform is

f(t)= / Q-ia)tF(v)dv.
J — 00

The rationale for the particular sign convention we are adopting is that
we can regard F(v) as the amplitude of the particular component of
f(t) that varies as exp(—icot).  We shall mostly be concerned with waves,
which it is convenient to regard as given by a variation exp i(k • x —  cot),
so that the wave propagates in the direction +k for positive co. That is
why we take the co component of/ to be proportional to exp(—icot)  (not
-\-icot). For spatial transforms we shall reverse the sign. F(v) is the mode
amplitude distribution per unit cyclic frequency, v.

The convolution of two functions F and G is defined as
/•OO

FxG(v)= / F(v')G(v-v')<*v'.
J— 00— 00

The convolution theorem of Fourier transforms states that the transform
of the convolution of two functions is the product of the transforms.
That is,

[e~icotFxGdv= IVtot j F{v')G{v-v')dvrdv

= I f Q-^-^Q-^Fiv'Mv -V')dv' dv

= I\-i0}ltF{vr)dvf /Vto/lfG(v")dv"
= f(t)g(t).

A particular example of recurring interest is when one has a sample
of the function f(t) over only a finite time duration T. One can consider
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this as defining a new function f'(t) that is equal to f(t) for — T/2 < t <
+ T/2, but zero otherwise. Clearly

fit) = f(t)g(t), (A1.5)

where

g(t) = 1, -T/2 < t < +T/2,
= 0, otherwise. (A1.6)

The Fourier transform of / ' , say F\ is then immediately given by the
convolution theorem as

POD

Ff(v) = FxG= / F(v')G(v - v')dvr.
J — oo

Now the Fourier transform of g may be readily evaluated:
/•oo pT/2

G(v)= / etotg(t)<fo = / eimtdt
J—x J-T/2

_ 2sin(coT/2) _ sin(7tvT)— — ,
co nv

whose shape is illustrated in Fig. Al.l . The central lobe of G(v) has a
full width at half maximum approximately equal to the distance to the
first zero, viz. v ~ 1/T. The effect of the convolution upon the spectrum
is that features in F(v) are smoothed out over a range of the order of
the width of G(v). Thus, a very narrow feature on F(v), say a single line,
acquires a finite width, its shape being that of G but centered on the line
center. This is the basis for the general principle that a wave train of
finite duration has a finite frequency width of order 1/T. The principle
is equally valid for any shape of g(t) of some finite width, though the
detailed shape of G(v) will obviously be different.

Since FxG and/g are transform pairs we may write down the transform
in the form

J e t o7( t )g( t ) dt= f F(v')G(v - vf) d

As a special case of this relationship we can take v = 0, in which case
we obtain a form of Parseval's theorem,

Jf(t)g(t)dt = J F(v)G(-v)dv. (A1.10)

The more usual form of this relationship is obtained by noting that

G(-v) = Jc-ia"g(t)dt= \Jeiang*(t)dt\ , (Al.ll)
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2sin(coT/2)
(A)

-M

Fig. Al. l . The function 2 sin(coT/2)/co, which is the Fourier transform of the box
function. It acts as the convolution shape when dealing with Fourier transforms
of finite duration T.

where the asterisk denotes complex conjugate. Therefore, if we replace
the function g(t) by g*(t) (and vice versa) in both sides of the expres-
sion (A1.10) we get

(A1.12)

(A1.13)

and in particular, putting g = / ,

r \f(t)\2dt= r
J—co J—c

The importance of this result arises when / is some physical quantity
such as electric field, for which |/ | 2 corresponds to an energy or power
(density). If / is a physical quantity it is real, and one may readily
demonstrate then that F(-v) = F*(v) and hence that \F(-v)\2 = \F(v)\2.
We then can write Parseval's theorem in the form

r \f{t)\2dt=i r\F(v)\2dv
J-OD JO

(A1.14)

by combining together the positive and negative frequencies. In fact,
positive and negative frequencies in a physical quantity are never distin-
guishable. For, suppose they were - suppose for example, that we could
construct a "super spectrometer" that filtered out all but the positive fre-
quency v; then the output of this spectrometer would be F(v)exp(—icot),
a complex quantity. But physical quantities are real. Therefore, this is
impossible. (One should not confuse the common practice of regarding a
physical quantity as being represented by a complex number as implying
that the quantity itself is complex. This representation is shorthand for
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the quantity being the real part of the complex number. In our present
discussion f(t) is the quantity itself, so if a complex representation is be-
ing used, the real part must be taken before applying Parseval's theorem
in its final form.)

Naturally, one can construct spectrometers or filters that allow only a
passband dv at frequency +v to pass (v a positive number). The output
of such a filter may be denoted /'(£), that is,

f'(t) = [ [F(vf) Qiajft + F(-v ' )
Jdv

Then applying Parseval's theorem to the filtered signal, we find that it
has a total "energy"

/»oo

dW = \f(t)\2 dt = 2\F(v)\2 dv. (A1.16)
J — 00

Thus the energy dW contained in f(t) in the frequency element dv is
2\F(v)\2dv. That is, the spectral density of the energy is

^2\F(v)\\ v > 0 . (A1.17)
dv

This then demonstrates that once having written down Parseval's theo-
rem, one may identify the energy at a given frequency with the frequency
integrand in this natural manner.

When Fourier transforms in space as well as time are taken, the
requirement that the quantity be real imposes still only one symmetry
relation on the transform, viz.

F( -k , -co) = F*(k, co). (A1.18)

(It is common to indicate Fourier components as being functions of k and
co. However, within the present normalization convention, they should
be regarded as spectral distributions per unit value of 1/'X — k/2n and
v = co/2n.) When accounting for the symmetry in Parseval's theorem
we may again combine positive and negative frequencies. However, k
may then range over all possible directions. This is a way of saying we
can distinguish the direction of propagation of a wave even though we
cannot distinguish positive and negative frequencies.

The topic of generalized functions, sometimes called distributions, arises
frequently in using Fourier transforms. They are most easily understood
as a singular limit of a sequence of (ordinary) functions. As the most
important example, consider the Dirac delta function, whose defining
property can be considered to be that its convolution with any func-
tion gives just the function itself: FxS = F. The delta function arises
naturally from our previous discussions of the box function g(t) defined
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in Eq. (A1.6). The Fourier transform of the box is the sine function
G(v) = 2sin(a>T/2)/co. If we now let T -» oo, the width of the sine
function -> 0 but its height simultaneously —• oo in an area-preserving
manner. Denote the limit of G as T —• oo by G^. Then, since clearly in
the limit Eq. (A1.7) becomes

Ff(v) = FxG -> F(v), (A1.19)

we have

F(v) = f F(vf)G^(v - v')dv'. (A1.20)
J — oo

But this is just the property required of the delta function. Thus,
fT/2

(5(v) = Goo(v) = lim / emtdt. (A1.21)

Frequently, the notation is simplified by putting ±00 as the limits of
integration, and we say that the Fourier transform of a constant is a delta
function. Note that for any variable x and constant c, 5(x/c) = cd(x).

Sometimes, when computing power, we need the "square of a delta
function". This must be understood in terms of these limiting processes.
Consider

/•oo /»oo

lim
- 0 0 J — 00

Since G becomes more and more localized at v = 0 as T —>  00 it is
clear that if h(v) is any function sufficiently well behaved at a> = 0 this
becomes

/•oo

lim / \G\2h(v)dv = f 52(v)h(v)dv. (A1.22)
J-) > 0 0J—  00 J-00

/

/•GO

S2(v)h(v)dv = lim h(0) / \G\2 dv
T-+cc J_o0

f
J—c

= lim MO)/ \g(t)\2dt

= lim [h(0)T]
T—>oo

= I lim T 8(v)h(v)dv, (A1.23)
J—00 ^ - * ° °

where we have used Parseval's theorem. Thus we must identify

52(v) = lim [T 8(v)]. (A1.24)
T—>oo

Naturally, the nonconvergence of this limit is associated with the fact
that integrating a constant power over an infinite time leads to infinite
energy. More often than not one is interested in the mean energy per
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unit time. This will involve S2(v)/T, which naturally has a perfectly good
(generalized function) limit 3.

When dealing with periodic functions having period T, say, the con-
tinuous Fourier transform gives rise to a series of delta functions at
frequencies <x>n = Inn/z, where n is an integer. It is then often more
convenient to work in terms of Fourier series (rather than being involved
in the mathematical complexities of the generalized functions). These are

1 fT •

* JO
f(t)dt9

0 0

f(t) = V e-to»'FB. (A1.25)
n=—oo

Sometimes it is preferable to use sine and cosine series rather than
complex series. These are

2 f
Cn = - cos(cont)f(t)dt9

Sn = - [sm(cont)f(t)dt, (A1.26)

C °°
f(t) = - y + ^2{Cn cos cont + Sn sin cont).

Note on changes in frequency convention
In the first edition, I adopted the approach familiar from many

influential texts on electromagnetic theory, including Jackson's definitive
work (Jackson, 1999), of expressing spectral densities per unit angular
frequency, co. However, I could not bring myself to adopt simultaneously
the Fourier transform notation of writing F(co) = f F(t)exp(—icot)dt
(as most texts do), because that leads to the unintuitive notation that
F(co)/2n is the amplitude of the co spectral component. Instead I adopted
the consistent definition F(co) = (l/2n) J F(t)cxp(—icot)dt so that F(co)
is indeed the amplitude of the co component.

Two factors convinced me to adopt a different frequency convention
in the second edition, and in particular to express spectral densities
universally per unit cyclic frequency (v). The first is that most practical
measurements, instruments, and so on are expressed in cyclic units (Hz
for frequency), and I have observed that students often fail to recognize
the difference between dP/dco and dP/dv, using the former where they
should use the latter in a practical situation. The constant 2n is not of
order unity! The second reason is that, as Press et al. (1989) point out,
adopting cyclic frequencies is the most natural choice when discussing
Fourier transforms, because then factors of 2TT do not appear in front
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of either the forward or inverse integrals. Admittedly, the harmonic
factor Qxp(i2nvt) is more cumbersome than exp(zcot). This awkwardness
is presumably the reason for the choice of the co convention in most
electromagnetic theory literature. And in plasma physics there is an even
more compelling reason to maintain the co reference to frequency, namely
that the important frequencies in a plasma, cop, Q, and so on are always
expressed as angular frequencies.

My solution for this edition is to regard from the outset co = 2nv as
relating two alternative and equivalent ways of expressing frequency. In
harmonic expressions such as exp icot, the co form is used for compactness,
while in spectral densities or Fourier transforms the spectral frequency
element is always dv.

This approach amounts to returning to the same Fourier transform
convention as the classic text books, and requiring some algebraic ad-
justments in the equations. However, I would argue that this convention
is here consistent, because spectral densities are per unit cyclic frequency
(unlike the classic texts). As this appendix shows, a fully compact nota-
tion in which significantly fewer 2ns have to be remembered is the result.
The only remaining disadvantage is that the reader has to recognize the
implicit v-dependence of co, and co-dependence of v.
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The errors that can enter into any kind of measurement, and so limit its
accuracy, may be classified into two main types.

First, systematic errors arise from inaccuracies in calibration or the gen-
eral performance of experimental instruments. The errors are systematic
when they are consistent and reproducible. For example, in measuring
the length of an object using a ruler whose own length markings are, say
1% too close together, a consistent overestimate by 1% will be obtained.
The measurement may be repeated many times using the same ruler,
but will give the same error. Of course, in the complicated electronic
and mechanical systems used in sophisticated diagnostics, many more
complicated possibilities exist for systematic errors to arise. Nevertheless,
the principle remains that these errors cannot be revealed by repeated
measurement with the same instrument. There is very little to be said in
the way of general analysis of systematic errors except that the best way
to reveal them is to compare measurements of the same quantity using
different instruments (or even different techniques). In the absence of
such a check, the experimenter must attempt to estimate the systematic
uncertainties from a fundamental knowledge of how an instrument works
and what potential flaws there are, or else from his own experience.

The second type of error is random or statistical. There are many
possible sources of such errors. In our length measurement example they
may arise from slight misreadings of the scale due to misalignment or
parallax, for example. The governing principle here is that statistical er-
rors are revealed by repeated measurements with the same instrument.
Therefore, it is possible, in principle, to overcome them in part by re-
peated measurement. Also considerable insight into their effect is possible
through a general statistical analysis, some key features of which will be
summarized in a moment.

It should be noted that a third possible category of error, all too
familiar to most of us, is a plain blunder or mistake, such as writing
down the wrong number or doing arithmetic incorrectly. We assume
hereafter that care or self-correction can exclude such mistakes.

A major source of statistical uncertainty is the fluctuation of physical
quantities involved in the measurement. Fluctuations may be present
in the quantity to be measured (for example the temperature), in the
physical property used for the measurement (for example the radiation
intensity), or in the measuring instruments (for example the detector or
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amplifying electronics). In the present discussion we shall lump these all
together, even though when the fluctuations are genuinely in the quantity
to be measured, we may be "correct" when we get different results from
succeeding measurement. (In other words the temperature, for example,
really did change.)

The expression "accuracy" is used technically to mean the overall re-
liability of a measurement value, accounting for both systematic and
random errors. "Precision", on the other hand, expresses how repro-
ducible a value is; that is, to what extent random errors have been
minimized, regardless of the effect of systematic errors. Thus a precise
measurement may not necessarily be particularly accurate.

Suppose we make a series of measurements of some statistically varying
quantity x. Let the number of measurements be N and the result of the
ith measurement be xt. We call this set of measurements a sample, and
then the mean value of the sample is

and the standard deviation of the sample is

1/2

(A2.2)

The standard deviation obviously represents the spread of the different
measurement values about the mean (N > 2).

Intuitively we can see that as N becomes very large the values of IIN
and aN will tend to constants. (We make no pretence of rigor here.)
It is sometimes helpful to think of the measurements as being random
samples drawn from a large population of possible results. The limiting
values of \i and a are then the population mean and population standard
deviation, respectively. From the viewpoint of attempting to obtain reli-
able measurements of some quantity subject to random errors, the usual
presumption is that the required value is the population mean \i. Then
the statistical uncertainty to be attributed to a single measurement Xk is
approximately the population standard deviation a.

Of course, if we have N measurements and take their mean fiN, we
actually have considerably greater confidence that this is close to \i
than we would have in a single measurement. In other words, we may
regard \iN as a random variable, different for different measurement
sets, itself distributed with a certain mean and standard deviation, and
the standard deviation of fiN is smaller than a. How much smaller
is determined by the central limit theorem of statistics. It states that
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for large enough N the quantity fiN is a random variable distributed
with a Gaussian probability distribution having a standard deviation
o/ sjN. The standard deviation of the sample means is usually called the
standard error of the measurement, since it is an estimate of the statistical
uncertainty in attributing the correct value (/i) to the sample mean (/ijv).
We normally don't know what the population standard deviation a is.
The obvious estimate to use instead is aN, which we do know. Using this
estimate it is usual to write the standard error as

1/2

(A2.3)
JV(JV-1

To summarize, if we attempt to estimate the mean value of a population
(of measurements) using the mean of a sample of N measurements,
the standard error in the estimate decreases as the square root of N.
Eventually, of course, if time allows us to increase N sufficiently, the
statistical error will become small enough that systematic errors will
dominate. At that point no further accuracy is gained even though the
estimate becomes more precise.

The probability distribution p(x) of a population gives the probability
that the result of a single measurement will lie in the range dx at x as
p(x) dx. Two specific forms of probability distribution are of dominant
importance in error and fluctuation analysis.

The first is the Gaussian distribution

(A2.4)

where o is the population standard deviation. It gains its importance
in part from the central limit theorem, as mentioned earlier, which
shows that any quantity that is the mean of a large enough sample of
independent measurements will be distributed with Gaussian probability
distribution. The ubiquity of this form is recognized in the practice by
statisticians of referring to the Gaussian as the normal distribution.

The second very important distribution is the Poisson distribution.
It is a discrete distribution for counting; the variable can take integral
values k with probability

Pk = ^ f • (A2.5)

The Poisson distribution governs situations in which events of some type
occur at a constant rate, but independent of one another. For example,
the number of radioactive decays observed in a given time interval in a
large sample of radioactive material is governed by a Poisson probability
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distribution, or the number of photons arriving in a certain time from
a source of constant intensity. As implied by the notation already, the
mean of a Poisson population is ^, the value of the exponent. Another
property, which may be verified by elementary summation, is that the
standard deviation of the Poisson distribution is

<r = y/ji. (A2.6)

For our purposes, the most important application of the Poisson distri-
bution is in discussing the fluctuations in detected signal attributable to
the statistical arrival of uncorrelated electromagnetic radiation quanta,
that is, photon statistics. Suppose we have a source of constant intensity
that we wish to measure. We observe for a time T and (in effect) count
the number of photons detected, /c, say. If the mean photon arrival rate
per unit time is v, then if the photons are uncorrelated, k has a Poisson
distribution with mean }i = vT. The standard deviation in k will give us
the uncertainty in our estimate of v from a single measurement. It will
be G = Jji. Notice that when we know that the photons are Poisson-
distributed, one measurement allows us to estimate both fi and G. (This
may be thought of as arising from the fact that photon counting is adding
up lots of little time duration elements into the duration T; so, in a way,
we have already done many measurements.) The relative uncertainty in
our estimate of the intensity (in other words, of v) is, therefore,

—  « - = — «  -4=- (A2.7)

The relative error is inversely proportional to the square root of the
total number of photons counted. The longer the time duration T, the
larger ft, and so the more accurate the estimate of v.

When, as is often the case, errors arise in different ways at different
stages in the measurement process, one usually assumes that they are
independent. That being so, the total estimate of uncertainty is obtained
as the square root of the sum of the squares of the error in the final value
arising from each individual error process. Specifically, if the quantity
required, (x), is a sum of other quantities (XJ),

X = ^TXJ, (A2.8)
j

then
1/2

(A2.9)



406 Appendix 2 Errors, fluctuations, and statistics

Whereas, if x is a product

x = (A2.10)

then we express each Xj as having a difference A; from its mean \i^
Xj = fij + Aj, and then retain only the lowest order terms in the A7,
so that

(A2.ll)

We can, therefore, regard x as approximately a sum of random variables
HxAj/fij and, hence,

1/2

( A l l 2)

Summarizing, the error in a swm of independent variables is the square
root of the sum of the squares of the individual errors. The fractional
error in a product is approximately the square root of the sum of the
squares of the individual fractional errors.
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The purpose of this appendix is to provide a brief overview of the tech-
nology of radiation detection and generation. Through this material an
impression may be gained and guidance obtained on what is technically
feasible in terms of plasma experiments. The tables of detectors and
sources are far from complete and give only representative examples of
what was available at the time of writing of the first edition (1985).
In a few areas, technological progress has made the examples obsolete,
but in most cases, the progress has been predominantly in integration,
permitting, for example, multiple detector imaging where previously only
single-channel detectors might have been used, and in convenience and
reliability. Naturally, complete design of experiments requires much more
detailed information, which is usually available only from manufacturers
of the equipment. In the Further reading section some guidance is given
on how to go about obtaining the details one needs as well as references
to more general texts and reference works on radiation technology.

Detectors
The performance of detectors of electromagnetic radiation may

be characterized by a variety of parameters. These parameters are not
all independent and are not all appropriate for describing any specific
detector, but the more important of them are described in the following.

The most immediate question concerning a detector's operation is
what frequency of electromagnetic radiation it is sensitive to. This may,
of course, also be specified in terms of wavelength X or photon energy,
the latter being more appropriate for radiation, such as x-rays, in which
the photon energy is large.

A second parameter is the speed of response to a change in the radiation
intensity. This may be expressed as a response time or as a (video)
bandwidth. The (video) bandwidth is usually not the same as the width
of the radiation frequency spectrum of the detector sensitivity (although
it cannot be greater).

The responsivity describes the detector signal output (volts) per radia-
tion power input (watts). This is important in optimizing the connection
to preamplifiers and other signal conditioners. It sometimes determines
the signal-to-noise performance although most detectors are packaged
with amplifying electronics so that the responsivity is of less fundamental
significance for system design.
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The noise equivalent power (NEP) is a fundamental parameter of de-
tector performance, defined as that radiation power that would produce
a signal equal to the root mean square (r.m.s.) noise level of the detector.
The noise usually consists of a broad spectrum across the video band-
width of the detector with the result that the mean square noise is equal
to the integral of the mean square noise power spectrum over the video
passband of the conditioning electronics. A wider passband thus leads
to higher noise level, so the NEP must be defined in terms of the mean
square voltage per unit frequency. Since for most video detectors the
signal voltage (not voltage squared) is proportional to radiation power,
this means that the NEP is equal to the square root of the mean square
noise voltage spectrum divided by the responsivity. Thus it is expressed
in watts per ^/Hz. An exception to this is when heterodyne radiation de-
tection is used, because then the signal (for fixed local oscillator power)
is proportional to the square root of the radiation power. Therefore, the
NEP for a heterodyne system is in the form of watts per hertz. Note,
however, that the heterodyne NEP depends on local oscillator power so
that it is a property of an entire receiver system not just of the detector
alone. In heterodyne detection there is a direct relationship between the
bandwidths of the radiation and of the intermediate frequency (IF) at
least prior to any subsequent second detector and smoothing. There-
fore, the signal to noise at the first IF is proportional to the radiation's
spectral power density (watts per hertz). A heterodyne system generally
responds to a single electromagnetic mode, and as a result has an etendue
equal to X1. Blackbody radiation at a temperature T [see Eq. (5.2.37)]
then would give rise to a power accepted by the system of T dv (watts)
in a frequency bandwidth dv(= dco/2n). Therefore, the noise equivalent
power (in watts per hertz) can be expressed as a noise temperature Tn,
where Tn(l) — NEP (W Hz" 1). (If Tn is expressed instead in degrees, it
must be multiplied by Boltzmann's constant in this formula.) The noise
temperature is the temperature a blackbody must have if its radiation is
to give unity signal to noise.

Naturally, for improving signal to noise, the lower the NEP the better.
In order to have a parameter for which "bigger is better" one defines
the detectivity, D as the inverse of the NEP. Its units are therefore
hertz1/2 watts"1. (Detectivity is rarely used for heterodyne systems.) For
many types of detector, the detectivity is inversely proportional to the
square root of the area of the detector. The basic reason for this is
that the effective mean square noise voltage produced by the detector
is proportional to its area while the responsivity is effectively constant.
These scalings are only approximate and only appropriate when the
noise is dominated by the detector element (or background radiation);
nevertheless it is useful to define a parameter D*, equal to the product of
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D times the square root of the area, which is called the specific detectivity.
When comparing performance of different detectors, D* is often used. Its
units are usually centimeters1/2 hertz1/2 watts"1 (SI not withstanding).

Detectors of more energetic photons for the visible or shorter wave-
lengths tend increasingly to be limited not by noise arising from thermal
fluctuations in the detector or electronics, but by photon statistics and re-
lated fluctuations. For these detectors the most convenient figure of merit
describing their performance is the quantum efficiency (QE). In such de-
tectors, many of which work by electron multiplication, a single photon,
if detected, causes a macroscopically measurable signal. The quantum
efficiency is simply the proportion of photons striking the detector that
are detected. For high-energy photons this can be made close to unity.
In most plasma applications the noise levels in such photon detectors
are dominated by the photon statistics of the plasma "light". However,
in very low-level detection situations, the limiting noise is the fluctuation
in the dark current, which is the current signal in the absence of any
photons.

Many of the photon-counting detectors for higher photon energy work
well also for the detection of charged elementary particles (such as pro-
tons) with similar characteristics to photon detection. More specialized
detectors are necessary for detection of neutrons because their interac-
tions are much weaker. In either case the detection efficiency is the key
parameter, like the photon efficiency for photon detection.

Table A3.1 summarizes representative examples of the types of detec-
tors that have been used in plasma diagnostic applications. The list is
by no means exhaustive or complete. It merely attempts to give an in-
dication of the typical wavelength/photon energy range, NEP/quantum
efficiency, and response speed of available detectors. These parameters
are the most crucial in determining the appropriateness of a detector in
a specific application.

Coherent sources of electromagnetic radiation
In almost all plasma diagnostics that use externally generated

radiation to probe the plasma, the source used is of a coherent type. The
reason for this is that more often than not the radiation is required to
be both intense and narrow band. Thermal broad band sources, such as
lamps, rarely meet these requirements satisfactorily.

Broadly speaking, one may divide the sources available into continuous
wave (CW) and pulsed sources. Table A3.2 summarizes some illustrative
examples of CW sources from millimeter wavelength down to the shortest
wavelength readily available. The different types of sources are briefly as
follows.
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Table A3.1. Radiation detectors.

Type

Rectifiers
Point contact
Schottky

Josephson 4.2 K
Thermal bolometers
Thermopile
Pyroelectric

Bismuth
microbolometer

Thermistor
bolometer

Composite 4.2 K
bolometer

InSb hot-
electron 4.2 K

Photoconductors
Germanium 4.2 K

various dopings
HgCdTe 77 K

Silicon photodiode
(various
configurations)

Silicon
avalanche

Si(Li)

Type

Wavelength
(urn)

> 300
> 100

> 300

Broad band
< 103

< 103

Broad band

< 3 x 103

1OO-3.1O3

2-160
2-20

x-ray
T o ~ l

0.4-1

1 keV-15 keV
Res. ~ 0.5 keV
@4keV

Photon
energy

lonization/electron multipliers/scintillators
Phototubes

MicroChannel/
plate

CCD
Proportional

counter

Multiwire

Visible

NEP
(W Hz-i/2)

10-9
io-i°
104 K

(heterodyne)
to 10-i2

to 10-9
10-9
io-7

10-9

10-9

IO-13

10-13

10-3

10-3-10-n

IO-12

(50% QE)

10-13

(40% QE)
100% QE

Quantum
efficiency

< 10% QE

Characteristics similar to phototubes
but provides imaging capabilities at
high speed and sensitivity

Res: 0.7 keV (< 10%
@5 keV ~

QE)

For high spatial resolution imaging,
proportional counter

Scintillators,
e.g., Nal(TI)

Emulsions
Neutron detectors
BF3/long counter

He3+ moderator

He3

Scintillator
(NE213 proton
recoil)

Res: 4 keV @50 keV
50 keV @1000 keV
Various types and uses

0.1-3 MeV
~ 50 keV res

0.17 MeV @2.5 MeV
0.6 MeV @ 14 MeV

100% QE

0.1% typical

similar

0.01%

Speed

Fast
Depends on

IF and
matching

to ~ 10 GHz

3 Hz typical
@ 100 Hz
@ 1 MHz

1 MHz

@ 30 Hz

@ 100 Hz

200 kHz

1 MHz
1 MHz to

1 GHz

@ 1 MHz
to 500 MHz

300 MHz

< 1 MHz
count

Speed

To 1 GHz

Pulse-height
< 1 MHz
rate

etc.

Pulse-height
< 1 MHz

< 1 MHz
counting
< 1 MHz

Comments

Fragile
Most used

rectifier

Fragile

Arrays possible

To GHz with
special matching

Various alloys
for different X

Arrays possible;
also particle
detection

Pulse height
spectrometer

Comments

Various
photocathodes

Also particles and
noncounting
mode

Also particles and
noncounting mode

Counters with
moderator
for total flux
measurement

Energy spectrum

Energy spectrum
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Table A3.2. Coherent sources: CW.

Type

Electron tube
Klystron

Backward wave
oscillator

Gyrotron

Wavelength
(urn)

- 1 0 4

- 2 0 0 0

3000
1000
> 1000

Solid state microwave
Gunn diode

oscillators
Impatt diode

oscillator

> 104

3000
104

- 1 5 0 0
FIR optically pumped lasers
CH3F
HCOOH
C2H2F2
C2H2F2
CH3OH

1222
394
261
184
119

Discharge gas lasers
HCN
DCN
H2O
CO2

HeNe

HeCd
Argon

337/(311)
195/190
119
9-10.6

0.6328

0.4416
0.4880/

0.5145

Power
(mW)

To > 1000
<ioo
< 1000
<ioo
> 1000

^ 100
> i o
- 2 0 0
- 1 0

< 10
< 5 0
< 2 0
^ 150
<400

;$ 100
< 300
< 5 0
< 105

1 to 103

1 to 40
To 104

Mechanical
tuning

- 1 GHz

( - 30%)

- 100%

Not usual
Not usual

- 5 MHz
- 5 MHz
- 5 MHz
- 5 MHz
- 5 MHz

- 2 MHz
- 4 MHz
- 5 MHz
50 MHz

Not usual

Not usual
Various lines

Comments

Frequency sweep
- 100 MHz

Frequency sweep
- 3 0 %

High power (tunable
nonproduction)

Sweep - 100 MHz

Sweep to - 20%
State of art

Various lines
available with
different gases

Various line
selection and
control techniques

Also lines at
1.15 and 3.39 urn

from
0.35 to 0.5 urn

Electron tube types, notably klystrons, backward wave oscillators (car-
cinotrons), and gyrotrons use free-electron beams in vacuum resonators
for the wave generation. They tend to be cumbersome and expensive but
give high power and, in some cases, good tunability and stability.

Solid state microwave type generators based on high frequency oscil-
lations in semiconductors include Gunn diodes and Impatt diodes. They
are more compact and robust. Gunn diodes are not easily tunable. Impatt
diodes are tunable over appreciable ranges, but suffer from greater levels
of frequency and amplitude noise fluctuations.
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Table A3.3. Coherent sources: pulsed.

FIR (D2O)
CO2

Neodymium

Ruby
Dye
Nitrogen
Excimer

(e.g., XeCl)

Wavelength
(urn)

385
9-11

1.06

0.6943
Visible tunable
0.337
0.308

Energy

50 mJ
50 J

1 J

10 J
To 1 J
3mJ
0.5 J

Pulse
duration

100 ns
100 ns

20 ns

50 ns
To 1 JIS
8 ns
25 ns

Comments

CO2 pumped
Various possible

high power lines
Repetitive

(~ 50 Hz)
Nonrepetitive
Repetitive
Repetitive
Repetitive

In the far infrared (FIR) there are many different optically pumped
laser possibilities. However, only relatively few lines give reasonable
power. The CO2 laser is used almost universally for pumping. These
lasers may be tuned somewhat, within the linewidth of the transition
(~ 5 MHz typically).

Gas discharge lasers are available at a variety of wavelengths from
337 urn to short visible wavelengths.

In general the CW sources find their major use in interferometers,
CW scattering from density fluctuations, and as local oscillators for
heterodyne receivers.

Table A3.3 gives examples of pulsed sources that find use primarily in
incoherent (and collective) scattering diagnostics, resonance fluorescence,
and similar experiments requiring high peak power. In addition to the
parameters listed, other important source characteristics include repeti-
tion rate, beam divergence, and bandwidth. These may be obtained from
manufacturers or from the references given in Further reading.

Further reading
As a general introduction to optical detectors see, for example:

Budde, W. (1983). Optical Radiation Measurements: Physical Detectors of Optical
Radiation. Vol. 4. New York: Academic.

Kingston, R. H. (1978). Detection of Optical and Infrared Radiation. Berlin: Springer.

Various reviews of far infrared detector technology are available, for
example:

Blaney, T. G. (1978). J. Phys. E: Sci. lustrum. 11:856.
Putley, E. II. (1973). Phys. Technol. 4:202.
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The principles of laser operation are described by:
Siegman, A. E. (1971). An Introduction to Lasers and Masers. New York: McGraw-Hill.

Available lasers are surveyed in:
Weber, M. J., ed. (1982). Handbook of Laser Science and Technology. New York:

CRC Press.

Microwave techniques are discussed, for example, by:
Ginzton, F. I. (1957). Microwave Measurements. New York: McGraw-Hill.

For detection of energetic photons and nuclear particles one may
consult a book such as:
Tsoulfandis, N. (1983). Measurement and Detection of Radiation. Washington: Hemisphere.

Detailed information on the performance of detectors, sources, or
other radiation components is usually obtained most easily from the
manufacturers themselves via catalogues, data sheets, specifications, and
application notes. Locating appropriate manufacturers is usually done
through trade journals and advertisements. Perhaps the most useful and
wide ranging review, which includes some information on product speci-
fications, is the annual "Buyer's Guide" in Laser Focus. Littleton, Mass.:
Pennwell Publishing.



Appendix 4 Definitions and identities of
fundamental parameters

Term

Principal constants
Speed of light
Proton mass
Electron mass
Electron charge
Planck's constant
Boltzmann's constant

Vacuum permeability
Vacuum permittivity
Plasma parameters
Debye length
Plasma frequency
Thermal (electron) speed
Cyclotron frequency
Larmor (gyro) radius
Ion sound speed (Tt = 0)
Beta

Symbol

c
mp
me
e
h = 2nh
k

(Ope

Vte
CD

P

P

Equivalent form

2.998 x 108 ms"1

1.673 x 10~27 kg
9.109 x 10"31 kg
1.602 x 10-19 C
6.626 x 10-34 J s
1.381 x 10-23 J K"1

= 8.617 x 10-5 eV K"1

4TT x 10~7 H m-1

8.854 x 10-12 F m"1

(e0Te/e2ney/2

(nee2/some)V2

(Te/me)V2 = XDcope
eB/m
v/Q = mv/eB
(Te/mi)l/2 = ^Btopi
2^p/B2

Radiation and atoms
Classical electron radius re

Thomson cross section aT
Blackbody (Rayleigh-Jeans)

intensity B(v)
Rydberg energy Ry

Bohr radius ao
Fine structure constant a

e2/47is0mec2 = 2.818 x 10~15 m
4nnere = cojjc2

87ir2/3 - 6.652 x 10~29 m2

(me/2)(e2/4ne0h)2 =
2.180 x 10"18 J - 13.61 eV

h47i80/e2me = 5.292 x 10~n m
e2/4ns0hc = 1/137.04

Atomic identities: mec2 = 2Ry/cc2 re = a^cn2

me = 2Ry/((xc)2 e2/4nso = 2Ryao h = 2Rya§/oic
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The processes determining the rates that govern beam excitation have
been reviewed by Janev et al. (1989, 1993), who provide useful fitted
expressions for the collision rate coefficients. We summarize the physical
considerations here, together with quantitative expressions for the rate
coefficients that are of comparable accuracy to those of Janev et al.
Comparisons of the different calculations of the excited state populations,
including those based on the present coefficients, have been published in
Hutchinson (2002).

Ion-induced collisions essentially all take place at the velocity of the
beam, as long as the plasma ion temperature is not comparable to the
beam energy. Therefore the rate coefficient is simply the cross section
times the velocity. We express the beam energy, as we did for Eq. (8.3.7),
as S, the energy per amu divided by 25keV, and the rates in units of
nalocc = 1.92 x 10~14 m~3s. Note that ac is the speed of the electron at
energy lRy, and is equal to the collision velocity at $ —  1.

To show the predominant behavior of the rates, we can obtain the
proton cross section by scaling from our electron ionization and excita-
tion cross sections, Eqs. (6.3.24, 6.3.25). The atomic energies £o (being
respectively xt ° r Ey) and £ + are negligible compared with the proton
energy, so terms simplify: (E — xd/(E + E+) —> 1, exp(—sE/Eo) -> 0.
Wherever else the energy appears in the expressions, namely in the lead-
ing denominator and in the logarithm, it represents \mev\, where v\ is
the collision velocity and the electron mass refers to the target electron.
Therefore, for ion collisions we need simply to replace the E factor by
O JP
Ky0 .

Multiplying by the velocity, occ-sj$, we obtain the proton collision rate
coefficient

nalocc to ^Jg

where the forms for G would become G; = 1 +/eff In \g4Ry/xi\ for ioniza-
tion and Gij = IRy/njEij + / , ; In \gRy/Etj\ for excitation. However, since
there is no relevant threshold cut-off for ion collisions, both the impact
(first) and the dipole (second) terms must be corrected at low velocity,
$ < Xi/Ry The dipole term can never physically become negative, and
the impact approximation can also not validly be pursued to velocities
less than the electron velocity in the atom. A semiempirical correction is
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to add a term of order unity to the argument of the logarithm and to mul-
tiply the whole resulting expression by a factor that attenuates the cross
section at low energy. The factor exp(—lA[xi/R y$2]0'6) gives agreement
with the calculations adopted by Janev and Smith (1993) within their
claimed uncertainty (which is about 30% for nt > 1) above an energy
of about lOkeV/amu. [A scaling Qxp(—lA\xi/R y$]L2), that is, a function
of Xi/$> seems more physically reasonable but does not reproduce the
Janev and Smith (1993) values.] The adjusted G-factors are

= fl+/effln

*R..\ ( r v, i a 6 \
. (A5.3)

In beam emission diagnostic applications at beam energy above about
30 keV/amu, the threshold corrections are large only for the hydrogen
ground state. And even there the total loss cross section, including
charge-exchange, is well approximated without the low-energy correction
factor.

Impurity ions with charge Z give rates that are adequately described
by scaling from the proton rates on the basis of Eq. (8.2.6),

^ z ^
nafac na^occ Eo J

Therefore, if the energy dependence of G can be ignored, which is not
always the case, then the total ion contribution is proportional to Zeff
except where proton charge exchange is important. Electron collisions
are governed by the Maxwell-averaged rate coefficient at the electron
temperature, Eqs. (6.3.26, 6.3.27).

These rate coefficients of processes most important for Ha beam emis-
sion are summarized in Fig. A5.1. The rather daunting number of different
rates needed is somewhat ameliorated by the fact that the electron and
ion rates are similar. The energy scale, $ = £/25keV per atomic mass
for the beam, or Te/Ry for the electrons, corresponds to the square of
the collision speed. Generally the beam energy per amu must be chosen
in the range of about 20 to 100 keV (S = 0.8 to 4) for reasons of pene-
tration and practicality. The electron temperature depends on the plasma
being diagnosed, but by presumption corresponds to a velocity much
greater than the beam velocity, Te/Ry >• S. The applicable electron rate
is therefore generally somewhat lower than the corresponding ion rate,
because of the fall-off with energy.
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Fig. A5.1. Rate coefficients for the collisional processes important for Ha beam
emission spectroscopy in units of na^ac = 1.925 x 10~14 m3/s. Ion collisions
are given as cross section times velocity, and electron collisions as Maxwellian
average rate coefficients. Labels indicate the principal quantum levels. Typical
ranges for the beam energy per amu and the electron temperature are indicated.

The rate equations governing the populations Nj of principal quantum
number n = j can be written in matrix form as

^1 =\^MkjNk, (A5.5)

where Mkj is a matrix of rates governing the transitions from levels k
to j . The diagonal of M is equal to minus the total rate for transitions
out of the level j to all other states, including states where the electron
is lost by ionization or charge-exchange. We write the independent vari-
able as time t for convenience, but for a monoenergetic beam this is
equivalent to space: x = vt where v is the beam velocity. Radiative and
collisional processes are both included in M but the collisional processes
are proportional to plasma density while the radiative processes are not.
Therefore it is convenient to separate out these two contributions and
write Mkj = neXkj + Rkj, where the off-diagonal terms of R are the Ein-
stein coefficients, Rkj = Akj, regarded as a matrix, and again losses are
summed on the diagonal. The electron and ion collision contributions to
the collisional excitation (and deexcitation) rate coefficients, Xkj, will be
treated together. Typically the electron contribution is about one third of
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the ion contribution, but it is the variation of the electron rates with Te
that causes the weak, but not completely negligible, electron-temperature
dependence of the solution. No distinction will be drawn here between
electron density (ne) and ion density.

What permits a great simplification of the problem is that the 7 —• 7 + 1
rate plus the direct loss term are the most important collisional processes
depopulating any level. Then to a first approximation we can ignore the
rate of change of a level j that arises from transitions from all states
higher than j . Physically this is equivalent to the approximation that if
an electron is excited to a level > j then it is effectively lost as far as
state j is concerned. This is the limit of the upward cascade. Actually
some corrections to this slight oversimplification are necessary but easy
to apply. The rate equations can then be written in extremely simple
lower-triangular form, and only for the first three levels of interest, as

dt
dN2

~df
dN3

= P12N1-D2N2, (A5.6)

= Pi3N1+P23N2-D3N3.dt
Here Pkj is the rate at which the excited state j is populated from state
/c, and Dj is its total depopulation rate. All coefficients may be functions
oft.

The following expressions for the coefficients indicate what explicit
transition effects are best included. This choice gives extremely good
agreement (to within a few percent) with a full-scale calculation using
the entire transition matrix M.

D3 = (X34 + X35 + X32 + L3)ne + A3,
D2 = (X23 + X24 + X21 + L2)ne + A2,
Di = (X12[l - (X21ne + R21)/D2] + Xi3 + U)ne, (A5.7)
P12 = (X12 + Xl3(X32ne + R32)/D3)ne,
Pn = (Xi3 + Xu(X43ne + R43)/D4)ne,
Pi3 = (X23)ne.

Here L7 denotes the direct electron loss rate, ionization plus charge-
exchange, from level y, Aj denotes the total radiative transition rate to all
levels below j , and D4 = (X45 + X43)ne + A4 is an approximation to the
depopulation rate for level 4. The terms in these equations that are of the
form (Xkj-ne + Rkj)/Dk are corrections to account for the most significant
downward transitions that would otherwise be omitted. In D\ that term
corresponds physically to prompt deexcitation of electrons from level 2
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back to the ground state. It is negligible in calculating N2 and N3 but
slightly alters D\ and hence the beam attenuation rate. In Pu and P13
it corresponds to a correction to the population necessary to account
for downward cascades; this correction to P would be needed even in
a coronal approximation and indeed is important only at low density,
where it increases N3 by an amount in the neighborhood of 10%.



Glossary

For each of the following symbols its meaning (or meanings) and the
main subsection in which it appears with that meaning are indicated.

a

a0
A
A
*P
As

Aij
b
b
bgo
B,B
B(co)

c
Cs

C

d
D
D
D
D
D\\
D±
e

e

E
E, E
f

fa

plasma minor radius
probe (dimensions) radius
Bohr radius
area (generally)
vector potential
probe area
sheath area
spontaneous i —• j transition probability
impact parameter
magnetic field perturbation
90° scattering impact parameter
magnetic field (generally)
blackbody spectral intensity
induced i —• j transition probability
speed of light
sound speed
bremsstrahlung coefficient
mth Fourier cosine coefficient
beam diameter
deuterium
plasma dimension
electric displacement
diffusion tensor
parallel diffusion coefficient
perpendicular diffusion coefficient
electronic charge (magnitude)
(as subscript) electron
base of natural logarithms
unit vector in toroidal direction
particle energy
electric field
distribution function
volumetric quantity
oscillator strength

2.1.4
3.1.3
6.2.5, A4

5.1.1
3.2.2
3.2.1
6.1
5.3.1, 6.3.2
2.4.1
5.3.1
2.1.1
5.2.4
6.1
A4
3.3.3
7.2.4
2.2
4.2.4, 7.2.4
9.1.1
7.2.4
7.3.2
3.3.3
3.3.3
3.3.3
1.2.2
1.2.2
4.1.1
2.2.2
8.1.3, 8.3.1
1.3
1.2
4.4
6.1
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F

Fe

gi
g

G
h
h
i

i
I
I (co)
hi

jm

J
k
k,k
K

u
L

m

Mk

M
n

N

particle energy spectrum
chord integral measurement
polarization discriminant
Klimontovich distribution function
statistical weight
distribution-averaged Gaunt factor

Gaunt factor
Planck's constant
Planck's constant (-=-27r)
square root of —1  (generally)
(as subscript) ion
(as subscript) incident
unit vector in incident direction
electric current
intensity of radiation
electric current density

radiant volumetric emissivity
cyclotron emissivity, frequency-integrated

over the mth harmonic
total particle current
Boltzmann's constant
propagation wave vector
kinetic energy in cm. frame
number of electrons
mean free path
path length
internal inductance
length of collection region
total path length (difference)
distance
number of states
mass of particle (generally)
harmonic number
angular momentum states
fcth moment of distribution
total mass
particle density (generally)
toroidal harmonic number
turns per unit length
number of turns in coil
refractive index

8.1.3
4.4
4.3.3
7.3.1
6.1
5.3.3, 6.3.1-

6.3.3
5.3.1, 6.3.1
6.1, A4
5.3.2, A4

1.2.2
7.1
7.1
2.1.3, 3.1.1
5.2.4
1.2.2, 2.1.4,

4.1.1, etc.
5.2.2

5.2.3
3.1.1
A4
4.1.1
9.1.3
6.2.2
3.1.3
2.1.1,4.1.3, etc.
2.3
3.3.3, 7.2.4
4.2.3
4.2.6
6.2.2

2.2, 5.2.1
6.1
1.2.1
9.1.3
1.2.1
2.4.1
2.1.3
2.1.1
4.1.1
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Ne

P
P
P
dP/dco
d2P/da)dQs
P
q

Q
Q

r
r
re
R
R
Ry
s

s
S

s,s
S(k,co)

t

tf

T

T
U90

Urn
y,v
V
\,V
w

Klimontovich particle density
number of atoms in state j
pressure tensor
scalar pressure
power
spectral power density
spectral power density per unit solid angle
electric polarization
particle charge
polarization ratio
magnetic field safety factor
heat flux tensor
fusion energy release
quantum efficiency
(minor) radius (generally)
position vector (of charge)
classical electron radius
(major) radius (generally)
position vector (of field point)
Rydberg energy (of H ground state)
ray path distance
(as subscript) sheath
(as subscript) scattered
unit vector in scattering direction
source rate
(generalized) recombination

rate coefficient
Poynting vector
scattering form factor
line strength
time (generally)
(as subscript) thermal
retarded time
temperature
time period
Maxwell stress tensor
nondimensionalized frequency
cyclotron radiation E field vector
velocity (generally)
electric potential, voltage
(mean) cm. velocity
wall thickness
plasma susceptibility function

7.3.1
6.1
1.2.1
1.2.1
2.1.4
5.3.1
5.2.1
7.3.2
9.2.2
4.3.3
9.2.2
1.2.1
9.1.3
7.2.4
2.2
5.1.1
5.3.1, 7.1.1, A4
2.2
5.1.1
5.3.2
5.2.4
3.2.1
7.1.1
7.1.1
3.3.2, 8.1.3

6.2.4
5.1.1, 7.2.3
7.3.1
6.1

A4
5.1.1
1.2.1
7.2.2
2.2
5.3.1
5.2.1

2.1.1, 3.1.2
1.2.1, 9.1.3
2.4.1
7.3.2
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W
x
x
X
y
Y
z
Z
Zeff
a

am(co)

y
f, r
F
3
S(x)

c, stj

rj

t]j

0

energy (radiated)
position vector (generally)
coordinate (generally)
plasma wave parameter (co2/co2)
coordinate (generally)
plasma wave parameter (Q/co)
coordinate (generally)
ion charge number
effective charge number
fine structure constant
absorption coefficient
attenuation coefficient
diffraction angle
ionization coefficient
(1/MD)
cyclotron absorption coefficient

(as a function of frequency)
cyclotron absorption coefficient

(frequency-integrated over
mth harmonic)

velocity in units of c
ratio of plasma kinetic to

magnetic pressure
relativistic (mass increase) factor
particle current density
Salpeter shape function
(as prefix) change in (generally)
Dirac delta function
Kronecker delta
(as prefix) change in (generally)
plasma displacement
orbit displacement
dielectric constant (relative

permittivity)
dielectric tensor
permittivity of free space
reciprocal of Euler's constant, 1.78
normalized electric potential
fraction of power in each mode
generalized (free state)

quantum number
(poloidal) angle
ray deviation angle

5.1.2

4.1.2

4.1.2

1.2.2
5.3.6
5.3.1
5.2.4
8.1.2
4.2.4
6.2.4
7.3.2

5.2.4

5.2.4
5.2.1

2.2.1
5.2.1
3.1.1
7.3.2

Al
4.1.1

2.2.2
9.2.2

4.1.1
4.1.1
A4
5.3.1
3.3.2
5.2.5

5.3.2
2.2
4.2.4
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K Doppler shift factor 5.1.1
X wavelength (generally)
XD Debye length 3.1.2
A field asymmetry factor 2.2.2

argument of Coulomb logarithm 2.1.4
[i magnetic permeability 2.1.3
\x magnetic moment 9.2.2
/i0 permeability of free space A4
v (periodic) frequency (generally) 6.1
£ argument (co/kvty/2) of dispersion

function 7.3.2
n ratio of circumference

to diameter of circle

n
9
P(v)
G

a
Cross section for:

oc
Gd

Gt

Gn

Op

Or

Gtj

T

(j)

0
1
\p
CO

coc
COp

Q
Qs

polarization tensor in scattering
Larmor radius
energy density of radiation
conductivity
cross section (generally)
Thomson cross section
conductivity tensor

charge exchange
dielectronic recombination
electron ionization
(electron) ionization
D-D neutron reaction
proton ionization
(radiative) recombination
excitation i —• j
time duration or time constant

(generally)
optical depth
(toroidal) angle
electric potential
wave phase
magnetic flux
electric susceptibility
poloidal magnetic flux function
angular frequency (generally)
(Q/y) relativistic cyclotron frequency
plasma frequency
(rest) cyclotron frequency
solid angle

7.2.2
3.3.1
6.1
2.1.3

7.2.11
4.1.1

8.1.2
6.3.4
8.1.1
6.3.2
9.1.1
8.1.2
6.3.1
6.3.3

5.2.4
2.1.4
5.1.1
4.2.1
2.1.3
7.3.2
2.2.2

5.2.1
4.1.2
4.1.2
5.1.2
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V
A
+
—
II
_L
0
[ ]

X

gradient operator
vector product (e.g., A A B)
(as subscript) ordinary mode
(as subscript) extraordinary mode
(as subscript) parallel
(as subscript) perpendicular
mean value
retarded value

convolution operator

4.3.2, 5.2.5
4.3.2, 5.2.5
5.2.1
5.2.1

(in 5.1 and
7.1-7.2.2 only)

Al
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Abel, 141
Abel inversion, 141
Abel transform, 143
Abel's equation, 76
absorption coefficient

definition, 166
absorption depth, 327
accuracy, 403
allowed transitions, 232
alpha particles

pellet charge exchange of, 366
Ampere's law, 15, 40
angular momentum state, 345
anisotropic pressure, 29
Appleton-Hartree formula, 109, 134
asymmetry factor, A, 29
atomic dipole moment, 220
attenuation coefficient

of neutrals, 325
autoionization, 224, 241
axisymmetric plasma, 30

baffles, 287
Balmer alpha Stark components, 361
Balmer series, 220
banana orbit, 385
beam emission, 354
Bessel function, 160

small argument approximation, 163
Bethe approximation

in atomic collisions, 236
binary encounter approximation, 232
birefringence, 134
blackbody radiation, 166, 219
Bohm criterion, 64, 84
Bohm current, 77
Bohm formula, 65
Bohr orbit, 233
bolometer, 262
bolometric probe, 98
Boltzmann distribution, 219
Boltzmann factor, 61, 70, 73
branching ratio, 344
bremsstrahlung, 158, 186

absorption, 204
background in Thomson scattering, 287
Born approximation, 197
classical, 186
emissivity, 196, 200

nonthermal, 210
relativistic, 212
temperature measurement, 201
thick-target, 212, 372

broadening
cyclotron emission due to

inhomogeneity, 174

canonical angular momentum
conservation, 386, 389

cascade, 345
Cerenkov emission, 158, 176, 183, 301
charge-exchange, 324

active, 340
charge-exchange analysis, 328
charge-exchange cross section, 345, 349
charge-exchange recombination, 245
charge-exchange spectroscopy, 344
charged reaction products, 380
Child-Langmuir, 66
"cigar" measurement of field, 366
classical electron radius, 188
classical impact approximation, 232
coherence, 122
coherent scattering, 280, 293

magnetized plasma, 315
cold plasma approximation, 107
collective scattering, 280
collimated neutron measurements, 379
collimation

in analysers, 97
collision strength, 240
collisional mixing, 349

condition for, 350
collisional transitions, 224
collisional-radiative model, 228
collisions

and electric probes, 58
Coulomb, 19

complete thermal equilibrium, 221
Compton scattering, 273
conductivity

AC plasma, 107
cold plasma, 108
for plasma waves, 107
plasma, 18
Spitzer, 19
tensor, 105

conductivity temperature, 20
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confinement time
energy, 24

convolution, 395
of shape functions, 251

coronal equilibrium, 225
breakdown of, 355

Cotton-Mouton effect, 137
Coulomb collisions, 19
Coulomb logarithm, 20
cross section

nuclear, 369
crystal x-ray spectroscopy, 258
current

plasma, 17
current density, 6
current density measurement, 40
cutoff

density, 116
of wave propagation, 116

cyclotron absorption, 182
nonrelativistic coefficient, 167

cyclotron emission
shape function, 164
spectral power from single electron, 162

cyclotron harmonic structure
of Thomson scattering, 311

cyclotron radiation, 158
nonthermal, 179
polarization, 179

cyclotron resonance condition, 181

dark current, 409
de Broglie wave number, 192
Debye length, 58
Debye shielding, 57
Debye sphere, 59
density

definition, 3
density fluctuations

scattering from, 304
depolarization factor, 285
detectivity, 408
deuterium, 369
deviation of interferometer beam, 125
diamagnetic loop, 23
diamagnetism, 22
dielectric effects

on cyclotron emission, 169
dielectric tensor, 105
dielectronic recombination, 224, 241
differential cross section

Thomson scattering, 277
diffraction grating, 132
diffusion

parallel, 78
perpendicular, 78

dilution of deuterium ions, 372

dipole approximation
for atomic collisions, 234
to Thomson scattering, 276

Dirac delta function, 398
dispersion relation, 106
dispersion tensor, 316
distribution anisotropy, 182
distribution function, 3

and Thomson scattering, 282
near probe, 60

distributions, 398
Doppler broadening, 247

of cyclotron emission, 163
Doppler shift

in scattering, 280
Doppler temperature measurement, 258
double charge exchange, 366
double probe, 90
dressed particles, 296
Druyvesteyn

probe analysis method, 98

E A B drift, 87
EFIT, 35
eikonal approximation, 110
Einstein coefficients, 218
electric field measurement, 41
electrodisintegration, 372
electron cloud, 297
electron cyclotron frequency, 108
electron impact

excitation, 224
electron plasma waves, 300
electron saturation current, 57
electron shell, 199
electron temperature

from bremsstrahlung, 201
electron tubes, 411
electron-impact ionization, 322
electrostatic approximation

for plasma waves, 316
ellipticity

of polarization, 137
Elwert

bremsstrahlung Gaunt factor, 194
embedded probe, 92
emissive probe, 93
emissivity

cyclotron, 162
cyclotron, nonrelativistic, 164

energy analyser
retarding field, gridded, 94

equilibrium
toroidal, 26

equilibrium reconstruction, 35
error analysis, 402
etendue, 168
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Euler's constant, 191
evanescent wave, 116
excitation cross section, 237
excitation rate coefficient, 240
excited states

in beams, 351
exponential integral function

approximate numerical expression, 240
definition, 231

extraordinary wave, 112

far field, 157
far infrared lasers, 411
Faraday effect

in fibers, 15
Faraday rotation, 134
Faraday's law, 41

application to coil, 11
fast neutrals, 322

distribution, 331
from nonthermal distribution, 333

field
poloidal, 30

field reconstruction
equilibrium, 35
external, 33
vacuum, 32

fine structure constant, 188
finite transit time effect, 281
floating potential, 56
flow

of impurity, 353
flow velocity

Doppler measurement, 259
fluctuations, 402

and reflectometry, 148
electric probe measurements, 92
magnetic, 45

flush probe, 92
flux

poloidal, 30
flux density

at sheath edge, 85
flux function

magnetic, 45
flux loop, 23

poloidal, 31
flux surfaces, 36
forbidden lines, 256
forbidden transitions, 232
form factor

scattering from magnetized plasma, 317
Fourier analysis, 395

of image, 132
of magnetic field, 21
of wave fields, 105

fractional energy components of beam,
358, 363

Fraunhofer limit, 123
frequency convention, 400
frequency modulation, 118
frequency spectrum

of single particle radiation, 157
full-wave solutions, 111
fusion product energy spectrum, 374

Gaunt factor, 191
in atomic collisions, 235

Gaussian distribution, 404
Gaussian optics, 122
Gaussmeter, 14
generalized functions, 398
geometrical factor

for Thomson scattering, 319
geometrical optics, 110
Grad-Shafranov equation, 31
Green's function, 155
grid

of energy analyzer, 95
gridded energy analyzer, 94
group delay, 145
Gundestrup probe, 89
gyro radiation, 158
gyroradius, 73
gyrotron, 411

Hall effect, 13
Hall sensor, 13
halo, 340
Hankel function, 187
hard x-rays, 212
headlight effect, 212, 283
heat flux tensor, 4
heavy ion beam probe, 388
helical perturbation, 46
helicity

of modes, 48
helium-3 diagnosis, 382
heterodyne

interferometer, 119
heterodyne receiver, 177, 408
high-resolution x-ray spectroscopy, 258
homodyne

interferometer, 119
Huygens construction, 123
hypergeometric function, 194

imaging
interferometric, 127

impurities
effect on conductivity, 20

impurity transport, 341
incoherent scattering, 276, 280
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conditions for, 277
inductance

energy, 18
internal, 18
internal nondimensional, 29

inertial confinement, 378
integrator, 11
interference fringes, 128
interferometer

Fabry-Perot, 114
frequency choice, 126
Mach-Zehnder, 113
Michelson, 113
two color, 127
vibration, 126

interferometry, 112
intermediate frequency (IF), 119, 408
internal inductance

nondimensional, 29
ion acoustic waves, 300
ion collision

excitation, 415
ionizing, 415

ion probe beams, 388
ion saturation current, 57
ion Thomson scattering, 280, 303
ion-electron collisions, 78
ion-impact ionization, 323
ionization cross section, 237

classical, 233
ionization degree, 223
ionization rate-coefficient, 240
ionization stage of impurities, 255
isotropic plasma

waves, 106

Kirchoff's law, 167
Klimontovich distribution function, 293
klystron, 411
Kramer's formula for bremsstrahlung, 188

Landau contour, 299
Landau damping, 301
Langmuir probe, 55
Larmor radius, 73
laser blow-off, 341
laser fusion, 378
laser induced fluorescence, 264
level crossing, 346
LIDAR, 291
Lienard-Wiechert potentials, 156
LIF, 264
light gathering power, 168
line broadening, 245
line intensity diagnostics, 253
line ratios, 256
line strength, 220

linear Stark effect, 360
lithium beam, 341

attenuation, 343
local thermal equilibrium, 221

condition to attain, 223
longitudinal approximation, 316
longitudinal contraction, 316
longitudinal polarization, 106
longitudinal susceptibility, 317
Lorentz gauge, 155
Lorentzian line shape, 246
lost energetic particles, 387
lower hybrid waves, 319
Lyman series, 220

Mach probe, 82
perpendicular velocity, 86

magnetic coil, 11
magnetic diffusion, 48
magnetic field

effect on electric probe, 72
effect on wave, 134
internal, 361

magnetic loop, 11
magnetic modulation

of Thomson scattering, 309
magnetic moment, 384
magnetic penetration, 48
magnetic presheath, 86
magnetic probe

construction, 37
internal, 37
perturbation, 39

magnetized electrons
scattering from, 308

magnetometer, 15
maser

Cerenkov, 185
mass increase

relativistic, 159
Maxwell stress tensor, 21
mean, 403
mean free path, 59, 78
MHD

equilibrium, 20, 26, 31, 43
microchannel plate, 292
Mirnov coils, 48
mirror trapping, 384
misalignment of interferometer, 123
mixing

in charge-exchange spectra, 349
mode structure, 46
modified Bessel function, 285
moments

of distribution function, 3
motional Stark effect, 358
multiple reflection, 182
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multistep ionization, 343

N, 109
natural line broadening, 246
neodymium laser, 291
neutral atoms, 322
neutral beams, 336

attenuation, 337
neutral collisions, 322
neutral density, 334

in hot plasma, 328
neutral halo, 340
neutron, 369
neutron collimator, 379
neutron hardening of diagnostics, 388
neutron spectrum, 374
noise equivalent power, 407
noise temperature, 408
nonthermal ion distribution, 333
normal distribution, 404
nuclear reactions, 369

oblique propagation, 170
Ohm's law, 18, 105
optical depth, 166
optical thickness, 166
orbit shift

passing particles, 385
orbit-limited collection, 68
orbits

around probes, 67
of energetic particles, 383

ordinary wave, 112
oscillator strength, 220

parabolic collision, 189
paramagnetic, 24
parasitic radiation, 286
Parseval's theorem, 397

and spectral intensity, 157
particle drifts, 383
particle flux

random, 56
passing particles, 385
pellet charge exchange, 366
pellet injection, 364
permittivity, 106

tensor, 105
phase ambiguity, 117
phase contrast, 122

condition to maintain, 126
phase contrast interferometry, 132
phase delay, 145
phase modulation, 118
phase runaway in reflectometry, 148
phase shift

determining, 116

of interferometer, 115
photoemission, 89
photoionization, 224
photomultiplier, 287
photon production rate

in charge-exchange, 350
photoneutrons, 372
Planck radiation formula, 167
plasma dispersion function, 300
plasma frequency, 109
plasma potential, 56
plasma source, 253
plasma velocity

probe measurement, 82
plasma waves, 104
plume effect in charge-exchange, 352
Poincare sphere, 137
Poisson distribution, 404
Poisson's equation, 63
polarization

longitudinal, 106
of cold plasma waves, 137
of dielectric medium, 297
transverse, 106

polarization operator, 278
poloidal flux

measured by HIBP, 388
polychromator, 177
position measurement, 24
Poynting flux, 18
Poynting vector

of radiation, 156
Poynting's theorem, 17
precision, 403
preferred state for charge exchange, 347
presheath, 74

collisions, 97
presheath length, 78
pressure

anisotropic, 4, 24, 29
tensor, 4

pressure broadening, 247
probability distribution, 404
probe

bolometric, 98
collisionless, 60
construction, 89
embedded, 92
emissive, 93
fluid treatment, 82
in magnetic field, 72
oblique collection, 86
on spacecraft, 90
reciprocating, 92
trapping, 99

probe characteristic, 56, 70
probe interpretation, 70
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proton density measurement, 340
pulse-height analyzer, 201

quadrature, 117
quantum efficiency, 290, 409
quasineutrality, 5, 64

radar, 145
radial electric field

and motional Stark effect, 362
radiation field, 155, 156
radiation temperature, 175, 177, 178
radiation transport, 166

equation, 166
radiation trapping, 184
radiative recombination, 230
radiative transitions, 224
rate coefficient, 225

for beam processes, 415
for nuclear reaction, 370
recombination, 231
shifted, 326

rate equations, 355, 417
ray refractive index, 168
Rayleigh-Jeans approximation, 167
reabsorption of spectral lines, 252
reciprocating probe, 92
recombination edge, 199
recombination radiation, 197

emissivity, 199, 200
reduced mass, 377
reduction factor

for collisional probes, 81
reflectometry, 144
refraction

of interferometer beam, 124
refractive index, 107

cold plasma, 109
difference between characteristic waves,

137
ray, 168

refractive index perturbations, 133
relativistic y factor, 159
relativistic broadening, 163
relativistic equation of motion, 274
resistance

plasma, 17
resonant charge-exchange, 324
resonant fluorescence, 263
resonant layer, 174
resonant MHD modes, 46
responsivity, 407
retarded time, 156
retarding field analyser, 94
reversed field pinch, 38
Rogowski coil, 15
pr measurement in inertial fusion, 381

ruby laser, 290
runaway electrons, 372
Rutherford scattering, 363
Rydberg energy, 193

safety factor, 384
Saha distribution, 222
Salpeter approximation

to collective scattering, 302
saturation current

electron, 57
ion, 57

scattering k vector, 279
scattering cross section

differential, 277
from relativistic Maxwellian, 284

scattering form factor, 295
coherent scattering, 298

scattering frequency, 279
scattering from magnetized electrons, 308
schlieren imaging, 129
screening

of nucleus, 199
secondary electrons, 94
secondary emission, 89
shadowgraphy, 129
sheath, 60

area, 65
edge, 63, 77
expansion, 68
thickness, 65

shells of different ionization stage, 256
shielding

magnetic fields, 48
shielding cloud, 279
signal-to-noise

in Thomson scattering, 290
sine function, 396
slow waves, 183
Sommerfeld formula for bremsstrahlung,

194
space-charge

in analyzers, 95
limited current, 66

spectrogram, 217
spontaneous transition probability, 218
standard deviation, 403
standard error, 404
Stark broadening, 247
Stark effect, 360
Stark shift, 360
Stark width, 250

density measurement, 261
state equations, 225
statistics, 402
straight-line collision, 189
stray light, 286
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streak-camera, 292
stress tensor, 21
submillimeter lasers, 307
susceptibility, 296

for Maxwellian distribution, 300
synchrotron radiation, 158
systematic errors, 402

temperature
measurement from neutron rate, 371
of impurity, 353

temperature equilibration rate, 257
temperature fluctuations, 179
temperature profile

from cyclotron emission, 177
thermal equilibrium, 219
Thomson cross section, 277
Thomson ionization cross section, 232
Thomson scattering, 273

incoherent, 276
scattered field, 275, 278

three-body recombination, 224
time-at-particle, 157, 162, 281
tomography

computer aided, 207
x-ray, 206

trajectory
in Coulomb collision, 186

transformer, 17
transition probability, 218
transport equation

radiation, 166
transverse polarization, 106
trapped particles, 385
trapping probe, 99
triple probe, 91
tritium, 369

diffusion, 380
TV Thomson scattering, 290

ultraviolet catastrophe, 192, 198

vacuum tubes, 411
velocity

definition, 3
of impurity, 353

velocity distribution, 3
video bandwidth, 407
viewing dump, 182, 287
viscosity

and mach probes, 83
Vlasov equation, 299
Voigt profile, 251
voltage loop, 17

poloidal, 23
Volterra equation, 142

wave equation, 104, 155
waves

in plasma, 104
whistler mode, 183
WKBJ approximation, 110

X, 109
x-ray imaging, 206

Y, 109
YAG laser, 291

Zeff, 203
Z-meter, 203
Zeeman effect

on pellet emission, 365
Zeeman splitting, 266
Zernicke polynomials, 209


