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Abstract

To measure accurately the elastic modulus of a metal, E, can be a di�cult task when a specimen undergoes
plastic strains. Moreover, some failure criteria, such as those associated with Continuum Damage Mechanics,
require the change of elastic modulus with strain to de®ne a measure of damage, D, in a material or structure. Thus,
it is important to assess the possible geometrical in¯uence of a specimen on the measurement of the elastic modulus

at di�erent deformation levels. It is shown in this article, with the aid of a numerical simulation, that any plastic
strains induce important geometrical e�ects in the evaluation of E, which have a signi®cant in¯uence on the
evaluation of the scalar damage parameter, D. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Continuum Damage Mechanics (CDM) is sometimes
used to predict the phenomenon of failure in structures
loaded statically [6,7,12] and dynamically [11,14]. The

seminal idea of this method is due to Kachanov [16],
who introduced a damage variable, D, to model the
phenomenon of creep. Since then, many publications
have been produced on this subject and formal theories

embracing damage and plasticity [5,13] have been
developed.
In the simplest case of isotropic and homogeneous

damage, the damage variable, D, is related to the sur-
face density of micro-defects in the material. Clearly,

the successful use of CDM to predict failure is related

closely to accurate measurements of the damage.
The postulate of strain equivalence, due to Lemaitre

[18,19], states that a constitutive equation for a

damaged material can be obtained by replacing the
stress s in a virgin material by the e�ective stress
~s � s=�1ÿD�, where ~s is the force divided by the area
that e�ectively sustains the load. Thus, the damage

may be represented by an elastic modulus change

D � 1ÿ
~E

E
, �1�

where ~E is the elastic modulus of the damaged ma-
terial.
Another postulate, known as energy equivalence [8],

also relates damage to the change of the elastic modulu
but now through the equation
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D � 1ÿ
�����
~E

E

s
: �2�

Other expressions relating damage to the change in
elastic modulus can be found in Luo et al. [22].
Though other techniques can be used to estimate D

[1,2,20], it appears that the change in elastic modulus
is the most convenient one, both for metals [17,20] and
for composites [9,21,26].

Lemaitre and Dufailly [20] and Dufailly [10] were
the ®rst researchers to measure D through the degra-
dation of the elastic modulus. A specimen similar to

the one depicted in Fig. 1, which is called here a
damage specimen, was loaded in tension up to some
plastic strain recorded by tiny local strain gauges ®xed
at the minimum cross-section. The specimen is then

unloaded and the elastic modulus is obtained from the
slope of the unloading stress-strain curve. After some
level of deformation, typically producing strains less

than 0.10, the strain gauges fail and are replaced by a
new set. The specimen is loaded again to produce
further plastic strain and then unloaded to obtain a

new value for the elastic modulus. This process is
repeated until a visual crack is detected. For ductile
metals with failure strains of around one, it is necess-

ary to use at least ten pairs of expensive strain gauges,
which require a time-consuming installation.
The test specimens used by Lemaitre and Dufailly

[20] and Dufailly [10] had a radius (R0) of 80 mm

which restricts the plastic deformation and, conse-
quently, the damage to a small zone where any
changes in the elastic modulus can be monitored. It is

acknowledged by Dufailly [10] that this geometry leads
to a non-uniform stress ®eld, but it appears that no
further attention has been paid in the literature to the

in¯uence of this non-uniformity on the measurement
of the elastic modulus. Because most of the measure-
ments of D through the elastic modulus degradation

are made using similar specimen geometries, it is im-
portant to determine whether the measured change in

the elastic modulus is due only to material damage or
is due partly to specimen geometry e�ects.

To investigate this aspect, one could test several spe-
cimens from the same material with di�erent radii (R0)
and compare the measured elastic moduli at various

plastic strains. Alternatively, one could perform a nu-
merical simulation of such a test, investigating possible
geometrical e�ects on the accuracy of the elastic mod-

ulus measurement. This last procedure is followed here
and it is shown that the initial geometry and the distri-
bution of strains cause an error in the evaluation of

the elastic modulus.

2. Method of analysis

The specimen geometry in Fig. 1 was represented by
20 node isoparametric ®nite-elements with reduced in-
tegration type C3D20R, available in the ABAQUS

programme. A very ®ne mesh was used near the smal-
lest cross-section with the initial size of the smallest el-
ement being 0.3125� 0.05� 0.1875 mm3 (x,y,z ). Thus,

a quarter of the cross section includes 64 elements and
one-half of a strain gauge with a gauge length of 0.381
mm spans 8 nodes. Advantage was taken of symmetry

Fig. 2. Finite-element mesh of one-eighth of the damage speci-

men. (a) Overall mesh and (b) detail of the ®ne mesh.

Fig. 1. A typical specimen geometry used to measure the

damage parameter D. All dimensions in mm.
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to analyse only one-eighth of the specimen, as indi-
cated in Fig. 2.

The incremental theory of plasticity together with
the von Mises yield criterion was employed in this
study. Material strain hardening was taken as isotropic

with no kinematic hardening. Finite deformation or
geometrical nonlinearity is considered and the Cauchy
stress is used as the true-stress measure. The rate of de-

formation is used as the strain rate measure,

_e � sym�@v=@x�, �3�
where v is the velocity. It is assumed that the total

strain rate can be split into elastic and plastic parts.
Thus, the change of the total strain during a time step,
De, can also be divided in two parts, which are calcu-

lated according to the corresponding constitutive law.
The total strain measure used in ABAQUS code is

the integrated total strain calculated at each time incre-

ment as

en�1 � DR � en � DRT � De, �4�
where DR is the incremental rotation tensor. If the
principal directions remain ®xed in the material axes,

then the integrated total strain is equal to the logarith-
mic strain de®ned as

eL � ln V, �5�
where V is the left stretch tensor. Hence, the Cauchy
stress and the logarithmic strain curves measured in

tensile tests are used as true stress-true strain curves
for the numerical simulation. For more details, the
reader is referred to the ABAQUS Manual.

The input static equivalent stress±strain curve,
shown in Fig. 3, was obtained from a mild steel cylind-
rical tensile specimen having an elastic modulus and a

Poisson's ratio of 209.8 and 0.287 GPa, respectively.

Unlike an experimental test, the present numerical
model does not consider any material degradation, i.e.

no coupling occurs between plasticity and damage.
Thus, the accuracy in evaluating the elastic modulus
can be checked more easily. If a comparison is made

between the apparent elastic modulus with the actual
one measured on the material, or pre-speci®ed in the
numerical simulation, then any di�erences may be

safely attributed to geometric e�ects only.
It is assumed that any damage is isotropic and,

hence, that Poisson's ratio in the elastic regime is con-

stant throughout the simulation. This assumption is
supported partially by the data in Fig. 4 which was
obtained using specimens similar to that shown in
Fig. 1 and made of the same material used in this

simulation. The apparent constancy of Poisson's ratio
in Fig. 4 should be viewed with some reservation since
a transverse electro-mechanical extensometer was used

to measure the lateral elastic strains. The lateral strains
are not constant along x in Fig. 1, so that Poisson's
ratio is an average value rather than a local one at x

=0, as discussed later.
A linear displacement control function was applied

at the top of the specimen. The load path in the simu-

lation consists of nine steps after the initial one, as
indicated in Fig. 3. The specimen is loaded up to some
level of plastic strain and unloaded until the load is
zero. This procedure is repeated in the simulation up

to an equivalent strain of 1.02, which is similar to the
failure strain for the mild steel here simulated (1.04).
Residual stresses generated after unloading have been

taken into account in the numerical calculation since
any subsequent reloading is applied to the unloaded
con®guration keeping the calculated residual stresses.

The usual way to calculate the elastic modulus is to
measure the applied load, F, the elastic engineering
strain, ee and the current area, A, for each elastic

Fig. 4. Evolution of elastic Poisson's ratio with the equivalent

plastic strain measured by local axial strain gauges and width

contraction of the damage specimens.

Fig. 3. Static equivalent stress±strain curve for the mild steel

used in the simulation. The nearly vertical lines show the var-

ious loading±unloading paths applied to the specimen.
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unloading and use the expression

E � F

Aee
: �6�

This formula is valid provided the stress ®eld is uni-

axial and uniform across the area where the strain

gauges are attached. Subsequently, it will be shown

that this is not exactly the case in the specimens com-

monly used in Damage Mechanics since the specimen

radius introduces a certain degree of non-uniformity.

Moreover, experimental results and the present nu-

merical simulation, do show that the specimen thick-

ness distorts for high plastic strains, as shown in Fig. 5.

This suggests even more important non-uniformities in

the stress ®eld and, hence, additional errors in the cal-

culation of the elastic modulus if evaluated from Eq.

(6). In fact, the elastic modulus given in Eq. (6) is only

a material property if the stress and strain ®elds are

uniform otherwise it becomes a geometrically depen-

dent stress±strain ratio which is here called apparent

elastic modulus, X.

3. Results

An initial numerical simulation was carried out for

the specimen in Fig. 1 but with an in®nite radius, i.e.

R0=1. This specimen was loaded and unloaded elasti-

cally and the output load, area and strain on the exter-

nal surface were used to calculate the elastic modulus

in the usual way. As in a parallel strip with no initial

plastic deformation, the stress ®eld is uniform and the

calculated elastic modulus must coincide with the input

value. This is exactly what was obtained, leading to

the conclusion that any value for the elastic modulus

di�erent from the input value, in specimens with a lat-

eral radius other than in®nity, must be due to geo-

metrical e�ects only since no damage is considered in

the simulation.

Subsequently, the same simulation was performed

but with the specimen in Fig. 1, which is called here a

damage specimen and three di�erent apparent elastic

moduli were obtained.

The ®rst one is obtained using the average value of

the elastic strains calculated at the nodes within a

length of 0.1905 mm1 along the central longitudinal

axis in the current loaded con®guration (x= 0,

z=t/2). That is, during the ®rst loading step, the elastic

strains are recorded at these nodes and the ®nal value

of the elastic strains is obtained by averaging these

elastic strain increments to give an elastic modulus for

the ®rst elastic loading simulation Xs=214.5 GPa. As

the elastic modulus Xs is di�erent from the input one

of E = 209.8 GPa it is called here an apparent elastic

modulus.

Additionally, two other strain de®nitions were used

to evaluate the elastic modulus. They use the width

and change of width (at the middle thickness of the

minimum cross-section, y=z = 0 in Fig. 1) and thick-

ness and change of thickness (at the middle minimum

width, x=y = 0 in Fig. 1) to evaluate the elastic con-

traction strains ew and et, respectively. Using these

strain de®nitions, it is possible to de®ne two extra ®cti-

tious elastic moduli Xw and Xt, respectively. These

strain de®nitions are easier to obtain than strain gauge

data because the width and thickness contractions of a

specimen can be measured more easily with an extens-

ometer. Strictly speaking, any change in Poisson's

ratio with plastic strain is required in order to obtain

the axial elastic strain, which is necessary for the evalu-

ation of the elastic modulus from the width or thick-

ness change. However, as previously stated, the value

of Poisson's ratio is assumed to be invariant, Fig. 4.

Thus, the elastic moduli using these two strain de®-

nitions in the ®rst elastic loading simulation for the

damage specimen are Xw=221.9 GPa and Xt=208.1

GPa, again to be compared with E=209.8 GPa.

If further loading±unloading cycles of the specimen

Fig. 5. A detail of the deformed mesh showing the distortion

of the mesh in the region of the minimum cross-section of the

specimen.

1 Commercial high elongation small strain gauges have a

gauge length of 2� 0.1905=0.381 mm.
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are conducted at the steps shown in Fig. 3, then Fig. 6
shows the results for the apparent elastic moduli.

These are calculated at each step using the current
cross-sectional area calculated from the current coordi-
nates of the boundary nodes of the cross-section under
the assumption that the line connecting two neighbour-

ing nodes is straight. It is evident that the apparent
elastic moduli di�er from the material value regardless
of the de®nition of strain. This shows that the tech-

nique used to measure E is an important issue if accu-
rate values are sought.
One of the sources of the error in Fig. 6 is due to

the non-uniformity of the strain ®eld, as shown in
Fig. 7 for the axial elastic strains across the minimum

cross-section of the damage specimen. This variation
in an actual specimen is more important for the higher

plastic strains, when critical damage would occur.
The apparent elastic moduli in Fig. 6 were plotted

against the true axial plastic strain, es
p, at x = 0 and

z=t/2 which is averaged over a gauge length of 0.1905

mm1. Within this gauge length, the true axial plastic
strain along the longitudinal axis of symmetry of the
specimen is almost constant for all the steps here con-

sidered (Fig. 8). This means that small errors in posi-
tioning the strain gauges along this axis are not critical
for the evaluation of plastic strains at the minimum

cross-section, at least within the range shown in the
®gure.

Fig. 6. Change of the apparent elastic moduli, X and associated errors against the actual axial plastic strain es
p and the strain

inferred from the area reduction eA=In(A0/A ), where A0 and A are the initial and current areas. Xs, Xt and Xw use the elastic

changes in the axial, thickness and width directions, respectively. XA is evaluated using Eq. (12) and is obtained applying the Bridg-

man correction factor to Xt.

Fig. 7. Numerical results for the elastic axial strains on the

surface at the minimum cross-section of the damage specimen

( y= 0, z=t/2) in Fig. 1 at each loading step (referred to the

initial con®guration).

Fig. 8. Numerical results for true axial plastic strain distri-

bution at the various loading steps along the longitudinal axis

of symmetry and on the surface of the current con®guration

(x=0, z=t/2).
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4. Discussion

It is evident that the specimen geometry in Fig. 1,

which is traditionally used to measure the degradation
of the elastic modulus, induces non-uniformities in the
stress ®eld. Thus, the ratio F/(Aee) has a magnitude

di�erent from the actual elastic modulus for the ma-
terial. This non-uniformity is illustrated in Fig. 7; the
elastic strains at the middle of a specimen (x = 0) are

lower than at the boundary (x = 5 mm) for the ®rst
four steps. This makes the apparent elastic modulus, at
those plastic strains, higher than the actual value when
strain gauge information from the longitudinal axis of

symmetry is used. As the plastic strains increase, the
elastic strains at the middle exceed those at the bound-
ary, lowering the apparent elastic modulus.

This strong non-uniformity of the elastic strains
make the measurement of them through the width con-
traction quite unrealistic. In fact, the error in the

apparent elastic modulus Xw is unacceptable in Fig. 6,
even for small plastic strains.
On the other hand, the contraction in thickness is a

good candidate for an easy and relatively accurate

technique for measuring the change in elastic modulus
since the maximum error is 7.7%, as indicated in
Fig. 6. Also, the error evolves in an almost linear

fashion in contrast with the strain gauge method. This
error can be further reduced to nearly zero when using
the Bridgman correction factor, as discussed in the

Appendix.
Moreover, the results in Fig. 7 show that within the

range x21 mm, the elastic change of the thickness is

almost constant, which allows some error in the posi-
tioning of a strain sensor.
Other practical reasons also make this method more

suitable for the measurement of the elastic modulus. In

a typical experiment using strain gauges, a ductile spe-
cimen is subjected to around one hundred loading±
unloading cycles [24]. At least 20 strain gauges are

required and for them to sustain high plastic strains
the adhesive needs to be polymerised for several hours
in an oven (typically for 3 h). Another di�culty with

the use of strain gauges is that the gauge factor
changes with the plastic strains [15]. Thus, if strain
gauges are used to measure elastic strains after pre-
vious plastic deformation, the results must be inter-

preted with care. The use of an extensometer appears
to remove these di�culties without introducing any im-
portant problems.

Continuum Damage Mechanics requires not only
the damage value, D, but the evolution with defor-

mation. Hence, the importance of measuring accurately
the local plastic strains. The use of strain gauges might

give acceptable results, but similar information can be
obtained from the thickness contraction recorded by
an extensometer.

It is assumed that2

e p
t � e p

w � e p
s � 0 �7�

is a good approximation for the damaged material. To
calculate an average value for es

p at x = 0 and z=t/2,
here called es '

p , the strains et
p and ew

p are required, where

e p
t � ln

t0
t

�8�

and

e p
w � ln

w0

w
, �9�

so that

je p
s 0 j � e p

t � e p
w : �10�

It is evident from Fig. 9 that es '
p , as calculated from

Eq. (10), is a good estimate of es
p calculated numeri-

cally. It follows that the parameters obtained normally
from the strain gauge results might be obtained easier

and more accurately with an extensometer.
The calculation of the elastic modulus requires the

measurement of the current cross-sectional area which
is not straightforward since the area distorts as a result

of plastic straining, as indicated in Fig. 5. To avoid
such di�cult measurements, a common practice [10,24]
is to estimate the actual area from the expression

A � A0 expÿe
p
s , �11�

i.e. the local plastic strains measured by the strain
gauges are used together with the hypothesis of volume

Fig. 9. Comparison between the numerical results for the true

axial plastic strain at x= 0 and z=t/2, as evaluated from the

gauge length, es
p and from the thickness and width contrac-

tion, es '
p , Eq. (10), versus the axial head displacement.

2 Experimental tests on many metals suggest that the

volume of voids present in a damaged material is rather

small, which supports this assumption [4,25].
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conservation to estimate the current cross-sectional
area. Thus, another apparent elastic modulus, XA, may

be de®ned

XA � F

A0 expÿe
p
s es

, �12�

which has been used by Lemaitre and Dufailly [20]

and Dufailly [10]. If the ®nite-element results are sub-
stituted into Eq. (12), then the curve XA in Fig. 6 is
obtained and has a relatively large positive error.

Figure 10 shows the axial plastic strain distribution
at the surface (z=t/2) across the width of the mini-
mum section ( y = 0) of the specimen here studied nu-

merically. It is evident that the distribution is not
uniform, as observed previously for the elastic strains.
This, in turn, introduces an error in the value obtained
from Eq. (11).

Now, de®ne the errors in the measurement of the
elastic modulus, erE and of the damage variable
obtained from the change of the elastic modulus, erD,

as

erE � Ei

Ec
ÿ 1 �13�

and

erD � Di

Dc
ÿ 1 �14�

respectively (the subscripts i and c stand for incorrect

and correct values, respectively). Moreover, the follow-
ing relations hold:

Di � 1ÿ Ei

E0
�15�

and

Dc � 1ÿ Ec

E0
, �16�

where it is assumed that the initial elastic modulus E0

is correct. By substituting Eqs. (13) and (15) into Eq.
(16) and this into Eq. (14) with the notation Di chan-

ged to Dl yields

erD � erE�Dl ÿ 1�
erE �Dl

, �17�

where Dl is the current published damage data inferred
from the change in the elastic modulus through Eq.

(1). The correct damage value is obtained by substitut-
ing Eqs. (13) and (15) into (16)

D � Dc � Dl � erE
1� erE

: �18�

Eqs. (17) and (18) show that if the damage is small
the error tends to be quite large. This error is even

more important if experimental errors are considered
as well as the fact that some published data are based
on specimens with radii smaller than the one here ana-
lysed. As an example, an error of 10% in the elastic

modulus for a damage Dl=0.20 would yield Dc=0.27,
an error in D of ÿ26%. This error is reduced to ÿ2%
if Dl=0.80, again for erE=10%. Here, a negative error

indicates that the actual damage is larger than Dl.
It is now possible to plot D and Dl against the plas-

tic strains. To this end, a linear evolution law is

selected for the relationship between Dl and the plastic
strain es

p at x = 0 and z=t/2 [18]. This damage beha-
viour inferred from the change in the elastic modulus
is corrected in Fig. 11 according to the error function

associated with XA. It is evident that a large discre-
pancy occurs for low critical damage values. A similar

Fig. 11. Evolution of the assumed (thick lines) and corrected

(thin lines) damage variable inferred from the change in the

elastic modulus versus the actual axial plastic strain at x = 0

and z=t/2, for critical damage values. Ð: Dl=0.1, - - -:

Dl=0.3 and ±�±�±: Dl=0.8. The error function erE is associ-

ated with XA.

Fig. 10. Numerical value for true axial plastic strain distri-

bution at the various steps along the width at the specimen

surface (z=t/2) (referred to the current con®guration).
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procedure, but now correcting the linear damage evol-
ution using the error curve associated with XB, is

depicted at Fig. 12. The error in this case is reduced
by a signi®cant factor, which strongly supports the
technique herein proposed.

It should be noted again that the possible actual
damage in the specimen and its interaction with plastic
deformation are not considered in the current numeri-

cal simulation. Hence the in¯uence of damage on the
distribution of stress and strain is not taken into
account. Further investigation is necessary to evaluate

the importance of this e�ect.

5. Conclusions

Apart from experimental errors, the technique cur-
rently used to measure the damage variable, D,
through the degradation of the elastic modulus, su�ers

from some limitations. The specimen geometry is such
that it introduces an error even during the ®rst elastic
loading due to a nonhomogeneous strain ®eld. This

error is not large but it grows as the plastic strains
increase.
Di�erent strain measures were de®ned and used for

the evaluation of D. The data gives strong support to
the use of an extensometer rather than strain gauges to
measure the elastic modulus. Accurate values for E are
obtained when using the elastic strains measured

during the contraction of the thickness. For the present
simulation, such a technique yields a maximum error
in the elastic modulus of 7.7%, near the rupture strain.

An error in the evaluation of E has an important
e�ect on the value of the associated damage parameter.
This suggests that the current accepted damage values

should be corrected by a positive factor, i.e. the actual

damage parameter values as de®ned by 1ÿ ~E=E are
larger than the values published in the literature.
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Appendix

Stress triaxiality correction

It is noted in the literature that the damage variable
measured by the degradation of the elastic modulus is

Fig. 13. Numerical prediction for the triaxiality at the (a)

middle (z=0) and (b) surface (z=t/2) of the minimum cross-

section ( y = 0) of the damage specimen across the width

(referred to the initial con®guration).

Fig. 12. Evolution of the assumed (thick lines) and corrected

(thin lines) damage variable inferred from the change in the

elastic modulus versus the actual axial plastic strain for criti-

cal damage values. Ð: Dl=0.1, - - -: Dl= 0.3 and ±�±�±:
Dl=0.8. The error function erE is associated with XB.
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associated with a uni-dimensional stress ®eld having a
hydrostatic to equivalent stress ratio of sh/seq=1/3.

Hence, the published values of the critical damage par-
ameter are considered to be uni-dimensional. Unfortu-
nately, this is not the case for the present specimen

geometry and material. Fig. 13 shows the variation of
the triaxiality on the middle plane and at the surface
of the damage specimen along the width of the mini-

mum cross-section. It turns out that, for large strains,
the triaxiality is around twice that for the correspond-
ing uniaxial stress state; a high value typically found in

notched cylindrical specimens [23].
Qualitatively, this triaxiality pro®le resembles the

one which occurs in a parallel strip after necking in
tension, according to Bridgman [3]. This suggests that

a Bridgman correction for the stress ®eld might be
applied to the present problem bringing the values of
the apparent elastic moduli closer to the actual ones.

Moreover, the correction would have the additional
advantage of allowing a correlation to be made
between damage and stress triaxiality.

To obtain the peak axial stress at the middle of an
in®nitely thick sheet, the average stress F/A is multi-
plied by [3]

f �

1� ln �1� �w=4R�������������������������
1� �4R=w�p

ln �1� �w=2R� � ����������������������������������������w=R��1� �w=4R��p � ÿ 1

�A:1�

where w and R are the current width and lateral neck-
ing radius at the minimum cross-section.

The Bridgman equation is based on an in®nitely
wide sheet and uses the through-thickness necking
radius. In the present case, however, necking occurs in
both directions but it is more serious on the width (lat-

eral) plane. Thus, instead of using the through-thick-
ness radius, the lateral one on the width plane is used
in Eq. (A.1).

It should be noted that, for the specimen in Fig. 1,
the stress state and the deformation of the cross-sec-
tion are more complicated than those in a parallel ¯at

strip. Also, the assumptions in Bridgman's analysis are
no longer valid and the method of correction here pro-
posed is essentially approximate. Nevertheless, it is
possible that the correction method is reasonable for

other specimen materials and geometries since the
main factor, i.e. the curvature of the neck, is con-
sidered.

The geometrical parameters necessary to apply the
correction factor given by Eq. (A.1) may be obtained
readily since all the node displacements are available.

It is applied to the calculation of the apparent elastic
modulus obtained from the thickness contraction Xt.
This de®nition, calculated from equation

Xt � Fv

Aet
, �A:2�

is selected because it is the most accurate in Fig. 6 for
large plastic strains.
The ratio F/A is an average value for the axial stress

which is multiplied by f, following Bridgman, to obtain
another apparent elastic modulus de®nition

XB � f
Fn
Aet
� f

saven
et
� fXt: �A:3�

This ®ctitious elastic modulus XB changes with the
axial plastic strain as shown in Fig. 6. Clearly, it yields

a better accuracy than the results traditionally
obtained via strain gauges.
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