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Abstract

In the Maugis–Dugdale model of the adhesive contact of elastic spheres, the step cohesive stress σ0 is arbitrarily chosen to be the theoretical
stress σth to match that of the Lennard-Jones potential. An alternative and more reasonable model is proposed in this paper. The Maugis model
is first extended to that of arbitrary axisymmetric elastic objects with an arbitrary surface adhesive interaction and then applied to the case of a
power-law shape function and a step cohesive stress. A continuous transition is found in the extended Maugis–Dugdale model for an arbitrary
shape index n. A three-dimensional Johnson–Greenwood adhesion map is constructed. A relation of the identical pull-off force at the rigid limit is
required for the approximate and exact models. With this requirement, the stress σ0 is found to be k(n)�γ/z0, where k(n) is a coefficient, �γ the
work of adhesion, and z0 the equilibrium separation. Hence we have σ0

.= 0.588�γ/z0, especially for n = 2. The prediction of the pull-off forces
using this new value shows surprisingly better agreement with the Muller–Yushchenko–Derjaguin transition than that using σth

.= 1.026�γ/z0,
and this is true for other values of shape index n.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The behavior of frictionless adhesive contact between two
elastic spheres has been well quantitatively analyzed by sev-
eral continuum mechanics models. A comprehensive review
is available in the monograph by Maugis [1]. The significant
concepts and relations involved in these models have advanced
the development of contact mechanics. The core of the contact
mechanics problem is characterizing the consistent relation of
the deformation and the interaction. The original treatments of
this relation and the important contributions of the models are
briefly reviewed below. We aim to provide a supplement to the
Maugis model [2].

In 1971, a model based on the balance of the elastic, mechan-
ical potential and surface energies was introduced by Johnson
et al. [3], who treated the adhesive contact problem of elastic
spheres similarly to that of a Griffith crack. This model is the
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first successful adhesive contact model, known as the Johnson–
Kendall–Roberts (JKR) model. Its maximum adhesive force,
i.e., the pull-off force −Pc, was immediately determined as
1.5πR�γ , with R = (1/R1 + 1/R2)

−1 being the equivalent
radius of spheres and �γ being the work of adhesion. Later,
assuming a mode I stress intensity factor at the edge of the con-
tact, Maugis and Barquins [4] applied the fracture mechanics
principle to the contact mechanics field and showed that the
same result as that of the JKR model can be obtained by ap-
plication of the Griffith relation G = �γ , where G is the strain
energy release rate.

In 1975, an alternative model based on a “thermodynamic”
method was introduced by Derjaguin et al. [5], who assumed
that molecular attractions act on a ring-shaped zone around
the contact but are unable to change the profile, which re-
mains Hertzian. This model is known as the Derjaguin–Muller–
Toporov (DMT) model. In this model the attraction force is
2πR�γ at point contact but decreases rapidly to πR�γ with
the increase of the approach, which was recognized to be in-
correct [6,7]. Later, a direct “force” method was employed by
Muller el al. [6] to attempt to correct the DMT model. The
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model based on this new method is usually called the improved
DMT (IDMT) model. At this time, the attraction force increases
from 2πR�γ with the increase of the approach [7]. This new
result was also concluded to be incorrect. In fact, the two meth-
ods do not satisfy the consistent relation of the deformation and
the surface interaction. In further research, a constant attraction
force 2πR�γ during approach was revised by Maugis [2], who
again applied the fracture concepts.

In the later 1970s, the apparent discrepancy between the
DMT and JKR models with regard to the pull-off force caused
a sharp debate, which was finally clarified by introducing a di-
mensionless parameter [8], known as the Tabor number, and
verified with a Muller–Yushchenko–Derjaguin (MYD) transi-
tion [9,10]. The Tabor number is interpreted as the ratio of
the elastic deformation resulting from adhesion to the effective
range of surface forces,

(1)μ = (
R�γ 2/E∗2z3

0

)1/3
,

where z0 is the equilibrium separation and E∗ = [(1−ν2
1 )/E1 +

(1 − ν2
2)/E2]−1 is the reduced elastic modulus, with Ei and νi

(i = 1,2) being Young’s modulus and Poisson’s ratio, respec-
tively. The two models apply to the opposite extremes of the Ta-
bor number. A continuous transition was first found by Muller
et al. [9,10] with a full self-consistent model (FSCM) based on
the Lennard-Jones potential. Another restricted self-consistent
model (RSCM) was also employed to recover the JKR and
DMT limits by Hughes and White [11,12]. Comprehensive be-
havior of the load–displacement curves can be quantitatively
analyzed with these self-consistent models, which depend on a
good numerical method of iterations [13–17].

In 1992, two independent relations, i.e., the condition of no
singularity and the Griffith relation G = �γ , were employed
by Maugis [2] to establish an analytical model based on the
Dugdale approximation, i.e., step cohesive stress distribution.
This model is named as the Maugis–Dugdale (M–D) model,
in which self-consistent numerical calculations were avoided
and the transition from DMT to JKR was again found, with a
transition parameter defined as

(2)λ = σ0(9R/2π�γE∗2)1/3,

where σ0 is the step cohesive stress in the Dugdale approxi-
mation. To match the Lennard-Jones potential, this stress was
chosen to be the theoretical stress σth

.= 1.026�γ/z0, which
corresponds to λ

.= 1.157μ. However, this is somewhat arbi-
trary [18], but no other suggestion is presented in the literature.
In 1998, some other approximations, such as the linear approx-
imation, the parabolic approximation and the exponential inter-
action, were employed by Barthel [19], who concluded that the
transition from DMT to JKR is barely sensitive to the nature of
the interaction potential.

In 1997, Johnson and Greenwood [18] carried out an ex-
tensive comparison among these models. Based on the M–D
model, they constructed an adhesion map with two coordinates,
i.e., the transition parameter λ (or the Tabor number μ) and the
dimensionless load P/πR�γ , to indicate the appropriate use
of the Hertz, Bradley, DMT, JKR, and M–D models.
These adhesive contact models can be extended to a more
general surface shape, as shown by many researchers. For ex-
ample, according to the shapes of atomic force microscope
(AFM) tips [20,21], nano-indenters [22] and biological attach-
ments [23], a power-law function is employed to describe the
surface profile. In 1996, Carpick et al. [20,21] extended the
JKR model to derive the analytical load function for an inte-
ger shape index. In 2001, Goryacheva and Makhovskaya [24]
derived an extended M–D model for an even shape index. In
2004, Borodich and Galanov [22] extended the JKR and IDMT
models for an arbitrary shape index.

In this paper we propose a new suggestion for the stress σ0.
With this aim, we first generalize an adhesive contact model
for arbitrary axisymmetric elastic objects with an arbitrary sur-
face adhesive interaction from the Maugis model. Then, an
extended M–D model for power-law axisymmetric elastic ob-
jects is obtained and simplified under several limit conditions.
Subsequently, the adhesive contact models are summarized in
a three-dimensional adhesion map. Finally, the requirement of
an identical rigid limit of the approximate and exact models is
discussed and a more reasonable value of σ0 is deduced for the
sphere contact problem.

2. A generalized Maugis theory

We consider the frictionless adhesive contact between two
axisymmetric elastic objects, which are schematically repre-
sented in Fig. 1. Under the assumption of small deformation,
the distribution of the stress and deformation fields of the elastic
objects can be regarded as that of an elastic half-space, which
can be performed with a Hankel transform. All efforts are made
to derive the load–displacement relation that characterizes the
contact behaviors. It can be shown that the problem is equiv-
alent to that of frictionless adhesive contact between a rigid
axisymmetric indenter and an elastic half-space, which can be
solved with a linear combination of solutions derived by Sned-
don [25] and Lowengrub and Sneddon [26]. The surface shape
is described by

(3)f (�) ≡ z(r) = z1(r) + z2(r), � = r/a,

Fig. 1. Schematic representation of the deformation of two axisymmetric elastic
objects, denoted as Solids 1 and 2. Solid curves represent the deformed surfaces
and dashed curves represent the undeformed surfaces.
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with f ′(�) � 0 and f (0) = 0, and the surface deformation and
stress are equivalent by

(4)

⎧⎨
⎩

w(�) ≡ u
(1)
z (r,0) + u

(2)
z (r,0),

σ (�) ≡ σ
(1)
z (r,0) = σ

(2)
z (r,0),

τ (�) ≡ τ
(1)
rz (r,0) = τ

(2)
rz (r,0),

where r is the radius, a the contact radius, and superscripts (1)
and (2) correspond to the two objects, respectively. The surface
in contact is divided into three regions: an intimate contact re-
gion r < a, a cohesive region a < r < c, and a noninteraction
region r > c. The mixed deformation and stress boundary con-
ditions can be written as

(5)

{
w(�) = δ − f (�), � < 1,

σ (�) = −p(�), � > 1,

τ (�) = 0, � � 0,

where δ is the displacement and p(�) the surface pressure, with
p(�) = 0 at � > m = c/a.

For the case of no adhesive interaction out of the contact
area, i.e., σ(�) = 0 at � > 1, the Sneddon method [25] has
solved the surface deformation and stress as

(6)

⎧⎨
⎩

wS(�) = ∫ 1
0

χ(t)√
�2−t2

dt, � > 1,

σS(�) = −E∗
2a

( χ(1)√
1−�2

− ∫ 1
�

χ ′(t)√
t2−�2

dt
)
, � < 1,

where χ(t) is defined as

(7)χ(t) = 2

π

(
δ − t

t∫
0

f ′(�)√
t2 − �2

d�

)
.

And for the case of w(�) = 0 at � < 1, the Lowengrub and
Sneddon method [26] shows that

(8)

⎧⎨
⎩

wLS(�) = 4
πE∗

∫ �

1
g(t)√
�2−t2

dt, � > 1,

σLS(�) = 2
πa

( g(1)√
1−�2

+ ∫ ∞
1

g′(t)√
t2−�2

dt
)
, � < 1,

where g(t) is defined as

(9)g(t) = a

∞∫
t

�p(�)√
�2 − t2

d�.

Finally, the problem in the boundary conditions (5) can be di-
rectly solved by a linear combination of solutions in Eqs. (6)
and (8):

(10)

{
w(�) = wS(�) + wLS(�),

σ (�) = σS(�) + σLS(�).

Till now, the adhesive contact problem is not completely
solved. Further physical conditions should be supplemented.
The first relation is the condition of no singularity [1,2]:

(11)lim
�→1

√
2πa(1 − �)σ (�) = 0.

Substituting Eq. (10b) into this relation and associating Eq. (9),
we have

(12)χ(1) = 4

πE∗ g(1) = 4a

πE∗

∞∫
�p(�)√
�2 − 1

d�.
1

Then we derive

σ(�) = −E∗

πa

1∫
�

ς∫
0

(�f ′(�))′√
(ς2 − �2)(ς2 − �2)

d�dς

(13)+ 2

π

∞∫
1

�p(�)

�2 − �2

√
1 − �2

�2 − 1
d�, � < 1,

w(�) = 2δ

π
arccsc� − 2

π

1∫
0

f ′(�) arctan

√
1 − �2

�2 − 1
d�

(14)

+ 4a

πE∗

�∫
1

∞∫
ς

�p(�)√
(�2 − ς2)(�2 − ς2)

d�dς, � > 1.

The second one is the Griffith relation [1,2],

(15)G ≡ −
m∫

1

p(�)
([

w(�)
])′

d� = �γ,

where the gap [w(�)] is given by

(16)
[
w(�)

] = −δ + f (�) + w(�).

The displacement can be determined from Eqs. (7) and (12):

δ =
1∫

0

f ′(�)√
1 − �2

d� + π

2
χ(1)

(17)=
1∫

0

f ′(�)√
1 − �2

d� + 2a

E∗

∞∫
1

�p(�)√
�2 − 1

d�.

Substituting Eqs. (5b) and (13) into

(18)P = −2πa2

∞∫
0

σ(�)� d�,

we have the load

P = 2E∗a
1∫

0

�2f ′(�)√
1 − �2

d�

(19)+ 4a2

∞∫
1

�p(�)

(
1√

�2 − 1
+ arcsec�

)
d�.

Hence, the load–displacement relation of the generalized Mau-
gis model is obtained in Eqs. (17) and (19) together with
Eq. (15).

3. An extended Maugis–Dugdale theory

We have extended the Maugis model for the frictionless ad-
hesive contact of arbitrary axisymmetric elastic objects with an
arbitrary surface adhesive interaction. For simplicity, we con-
sider the power-law shape function and the adhesive interaction

zjzheng
插入号
-
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of the Dugdale approximation. The power-law shape function
is described by

(20)f (�) = an�n/nQ,

where n and Q are two shape parameters. The shape index n is
almost valid for all positive number, such as n = 1 for a cone,
n = 2 for a sphere, and n → ∞ for a flat punch. The dimension
of Q is Ln−1, with L being the length dimension. If n = 1,
then Q = tanϕ, with ϕ being the semiangle; otherwise Q is
usually denoted as Rn−1, with R being the equivalent radius.
The Dugdale approximation is the approximation of the step
cohesive pressure distribution,

(21)p(�) = −σ0, 1 < � < m,

where σ0 is a constant stress.
Substituting the surface shape function (20) and the surface

adhesive interaction (21) into Eqs. (17) and (19), we have the
displacement and load formulas,

(22)δ ≡ δH + δa = 1
2 B

(
n
2 , 1

2

)
Q−1an − (

2σ0a/E∗)√m2 − 1,

P ≡ PH + Pa = B
(

n
2 + 1, 1

2

)
E∗Q−1an+1

(23)− 2σ0a
2(m2 arcsecm +

√
m2 − 1

)
,

where B(α,β) is the Euler beta function; subscripts “H” and “a”
are referred to the corresponding contributions of the surface
shape function and the surface adhesive interaction, respec-
tively. The parameter m is determined from the Griffith relation
(15), which is rewritten as

σ0a
n

nQ

[
mn

(
1 − Im−2

(
n+1

2 , 1
2

)) − n
π

B
(

n
2 , 1

2

)
arcsecm

]
(24)+ 4σ 2

0 a

πE∗
(√

m2 − 1 arcsecm + 1 − m
) = �γ,

where Ix(α,β) ≡ Bx(α,β)/B(α,β) is the regularized beta
function with Bx(α,β) being the incomplete beta function. For
given material properties (E∗, �γ , and σ0) and shape parame-
ters (n and Q), the load–displacement relation is determined
from Eqs. (22)–(24). For n = 2 and Q = R, these formulas re-
duce to those in the original M–D model [2], which have been
extended for any positive even shape index by Goryacheva and
Makhovskaya [24]. Now, the M–D model is extended for an ar-
bitrary n > 0. For convenience, we denote this extended M–D
model as “M–D–n,” with n being the shape index.

We introduce the dimensionless parameters as follows:

(25)ã ≡ a/(Q2�γE∗−1)1/(2n−1),

(26)δ̃ ≡ δ/(Q�γ nE∗−n)1/(2n−1),

(27)P̃ ≡ P/π(Q3�γ n+1E∗n−2)1/(2n−1),

(28)Λ ≡ σ0(Q�γ 1−nE∗−n)1/(2n−1).

For n = 2 and Q = R, a difference in the coefficients is noticed
between our notations and those defined by Maugis [2], for ex-
ample, λ = (9/2π)1/3Λ

.= 1.127Λ, but it does not cause any
essential change. With our notations, the dimensionless load–
displacement relation leads to

(29)δ̃ ≡ δ̃H + δ̃a = 1 B
(

n , 1)
ãn − 2Λã

√
m2 − 1,
2 2 2
P̃ ≡ P̃H + P̃a = 1
π

B
(

n
2 + 1, 1

2

)
ãn+1

(30)− 2
π
Λã2(m2 arcsecm +

√
m2 − 1

)
,

with the Griffith relation in dimensionless form,

1
n
Λãn

[
mn(1 − Im−2

(
n+1

2 , 1
2

)
) − n

π
B

(
n
2 , 1

2

)
arcsecm

]
(31)+ 4

π
Λ2ã

(√
m2 − 1 arcsecm + 1 − m

) = 1.

4. The transition from DMT-n to JKR-n

It is not difficult to solve the extended M–D model with a
numerical calculation. For some limit conditions, it can even be
simplified to a completely analytic form.

When the load is sufficiently high, the adhesive component
may be neglected, i.e., |Pa/P | � 1. In this case, one may have
δ̃ = δ̃H and P̃ = P̃H in simplicity. This is an extended Hertz
theory (denoted as Hertz-n) for power-law axisymmetric elastic
objects.

When Λ is large, m → 1 and Eq. (31) leads to

(32)m2 − 1 	 π/(2Λ2ã).

Then the load–displacement relation is simplified as

(33)δ̃ ≡ δ̃H + δ̃a = 1
2 B

(
n
2 , 1

2

)
ãn − √

2πã,

(34)P̃ ≡ P̃H + P̃a = 1
π

B
(

n
2 + 1, 1

2

)
ãn+1 − 2

π

√
2πã3.

This is an extended JKR theory for an arbitrary n > 0, denoted
as JKR-n. For n = 2 and Q = R, these formulas reduce to those
by Johnson et al. [3]. For n → ∞ and Q = Rn−1, these formu-
las reduce to those by Kendall [27]. For n = 1 and Q = tanϕ,
these formulas reduce to those of Maugis and Barquins [28].
The load formula has also been presented by Carpick et al.
[20,21] for any integer n > 0, and by Borodich and Galanov
[22] for an arbitrary n > 0. Compared to the extended Hertz the-
ory, an infinite stress at the edge of the contact is found, which
corresponds to a mode I stress intensity factor KI = √

2�γE∗.
The pull-off force can be obtained as

(35)−P̃ JKR-n
c = 2(2n − 1)

(n + 1)
√

2π

(
3
√

2π

nB(n
2 , 1

2 )

)3/(2n−1)

,

which has been presented by several researchers [22,23].
When Λ is small, m → ∞, and Eq. (31) shows that

(36)m 	 (n/Λ)1/n/ã.

In this case, we have the dimensionless load–displacement re-
lation as

(37)δ̃ ≡ δ̃H + δ̃a = 1
2 B

(
n
2 , 1

2

)
ãn − 2n1/nΛ(n−1)/n,

(38)P̃ ≡ P̃H + P̃a = 1
π

B
( 1

n
+ 1, 1

2

)
ãn+1 − n2/nΛ(n−2)/n.

For n = 2, we have δ̃a = −√
8Λ → 0 and P̃a = −2, which are

the revised DMT results suggested by Maugis [2]. For conve-
nience, we take the nomenclature of “DMT” and denote this
limit case as DMT-n. The pull-off force is obtained at zero con-
tact radius as

(39)−P̃ DMT-n
c = n2/nΛ(n−2)/n.
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Fig. 2. Variation of the dimensionless pull-off force with the transition parame-
ter for special cases of n = 1, 1.5, 2, and 3.

Fig. 3. The adhesion map for special cases n = 1, 1.2, 1.5, 2, 3, and 5.

For an arbitrary n > 0, as the dimensionless parameter Λ

continuously changes from zero to infinity, a transition from
DMT-n to JKR-n is apparent. So the dimensionless parame-
ter Λ is named as a transition parameter. In Fig. 2, the variation
of the dimensionless pull-off force −P̃c with the transition pa-
rameter Λ is plotted for several special cases, n = 1, 1.5, 2,
and 3. At the small-Λ extreme, the dependence of the dimen-
sionless pull-off force on the transition parameter Λ is negative
for n < 2 and positive for n > 2. But at the large-Λ extreme, the
dimensionless pull-off force −P̃c is independent of the transi-
tion parameter Λ for an arbitrary n. For n = 1, 1.5, 2, and 3,
the limits of −P̃c at the large-Λ extreme are 5.471, 1.932, 1.5,
and 1.320, respectively. Only for n = 2, the pull-off force −Pc
at both extremes is independent of the elastic modulus.

5. A three-dimensional adhesion map

It may be valuable to indicate the appropriate use of the con-
tact models. For n = 2, as shown in Fig. 3 with a solid line,
an adhesion map has been constructed by Johnson and Green-
Fig. 4. The three-dimensional adhesion map.

wood [18]. The thought can be extended to that of an arbitrary
n > 0, based on the extended M–D model. For the Hertz-n
zone, the boundary condition is |Pa/P | < ξ , where ξ � 1 is an
arbitrarily chosen fraction. For the JKR-n zone, |δa/δt| > η1,
where η1 
 1 and δt = �γ/σ0 is the crack-opening displace-
ment, while for the DMT-n zone, |δa/δt| < η2, where η2 � 1.
For the rigid zone, the condition is |δH/δt| < ζ , where ζ � 1. It
should be noticed that the rigid model has not been presented,
but it will be discussed in Section 6.

The map with two coordinates, i.e., a transition parameter Λ

and a dimensionless load P̃ , is divided into five zones corre-
sponding to the appropriate use of the Hertz-n, JKR-n, DMT-n,
M–D–n, and rigid models. For the same numbers (ξ = 0.05,
η1 = 20, η2 = 0.05, and ζ = 0.05) as those chosen by Johnson
and Greenwood [18], several special cases, i.e., n = 1, 1.2, 1.5,
3, and 5, are also plotted in Fig. 3. For an arbitrary n > 0, we
extend the adhesion map to a three-dimensional one in Fig. 4
with an additional coordinate of the shape index n.

6. Matching a specific interaction

In this section, using the Dugdale approximation to match
a specific interaction is discussed. For the adhesive contact of
spheres, the step cohesive stress σ0 was chosen to be the theo-
retical stress σth to match the Lennard-Jones potential [2]. It is
somewhat arbitrary [18], but no other suggestion is found in the
literature. Here, we propose an alternative one.

As the common one, we first consider the case of the
Lennard-Jones potential,

(40)p∗(h) = 8�γ

3z0

[
(h/z0)

−9 − (h/z0)
−3],

where h is the local separation, which is related to the gap
by h(r) = z0 + [w(r/a)]. Based on this interaction, the FSCM
can be performed to obtain the load–displacement curves [9,10,
13–17]. A numerical method of iteration is used with several
improvements, a variable-spacing technology, a central sepa-
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Fig. 5. A comparison of the DMT-n and Bradley-n pull-off forces.

ration control, a Newton–Raphson method of iterations, and a
Riemann–Stieltjes integral, to avoid the singularity pointed out
by Greenwood [15]. For an arbitrary n > 2/3, it is found that
there is an extended MYD transition from Bradley-n (see Ap-
pendix A) to JKR-n, varying with an extended Tabor number
defined as

(41)μ ≡ (
Q�γ n/E∗nz2n−1

0

)1/(2n−1)
.

The Bradley-n pull-off force is

(42)−P
Bradley-n
c = πφ(n)(nQz0)

2/n(�γ/z0)

(see Eq. (A.5) for α = 9 and β = 3), where

(43)φ(n) = 32

9n − 2
B

(
3 − 2

n
, 2

n

)(
168B

(
4 − 2

n
,6

))(3n−2)/6n
.

The JKR-n pull-off force is given in Eq. (35).
In Section 4, a transition from DMT-n to JKR-n is men-

tioned in the M–D–n model. Since the DMT-n model is an elas-
tic contact one, this transition should be a part of the extended
MYD transition. When the contact radius is zero, the DMT-n
model does not have any elastic deformation, so it should be
identical with the Bradley-n model. For n = 2, it is well known
that the DMT and Bradley pull-off forces are both 2πR�γ ,
which was usually used without discrimination in the literature.
For an arbitrary n, the DMT-n and Bradley-n pull-off forces are
presented in Eqs. (39) and (42), respectively, so their ratio can
be derived as

(44)
P DMT-n

c

P
Bradley-n
c

= 1

φ(n)

(
σ0

�γ/z0

)(n−2)/n

.

For n = 2, we have φ(2) = 1 and P DMT-n
c /P

Bradley-n
c = 1 for

arbitrary σ0. It seems that there is no unitary value for the
stress σ0 in this case. A suggestion presented by Maugis [2]
for the stress σ0 is the theoretical stress σth. No evidence has
been shown that this selection is better than anything else. For
other n, we will find that this selection is not wise. As clearly
shown in Fig. 5 with the dashed line (σ0 = σth), the value of
P DMT-n

c /P
Bradley-n
c increases from zero at n = 2/3 to a max-

imum of 1.162 at n = 4.210 through one at n = 2, and then
Fig. 6. The coefficient k(n) involved in the Dugdale approximation to match
the Lennard-Jones potential.

decreases with further increase of n to approach a limit of one
at n = ∞.

For an arbitrary n > 0, in order to keep

(45)−P DMT-n
c = −P

Bradley-n
c

(Fig. 5 with solid line), we should have

(46)σ0 = k(n)�γ/z0,

where the coefficient k(n) is defined as

(47)k(n) = (
φ(n)

)n/(n−2)
,

which is plotted in Fig. 6 with the solid line. It is transparent
that an exclusive value for the stress σ0 is required for an arbi-
trary n. The coefficient k(n) increases with the increase of n.
When n → ∞, it approaches its maximum 1.026, which corre-
sponds to the theoretical stress σth, as plotted in Fig. 6 with the
dashed line. When n = 1, 1.5, 2, and 3, we have k(n) = 0.347,
0.499, 0.588, and 0.696, respectively. It should be noted that
the value of k(n) for n = 2 is derived by calculating the limit,
and its exact form is

(48)lim
n→2

k(n) = exp(−223/420)
.= 0.588,

which can be directly obtained with the aid of mathematical
software. Hence, our alternative suggestion for the stress σ0 in
the case of n = 2 is 0.588�γ/z0 (

.= 0.603σth). A comparison of
the pull-off forces determined from the models is carried out for
n = 2, as shown in Fig. 7. The pull-off forces of the M–D model
using the stress σ0 suggested by us (σ0 = 0.588�γ/z0) and
by Maugis (σ0 = 1.026�γ/z0) are plotted. As is well known,
the pull-off force of the M–D model with σ0 = 1.026�γ/z0 is
smaller than that of the FSCM for the moderate value of the
Tabor number μ. It is surprising to find that the result by our
suggestion is so close to the FSCM pull-off force, i.e., the MYD
transition. This improvement is comprehensive. For example, in
the case of μ = 1 shown in Fig. 8, the load–displacement curve
of the M–D model with σ0 = 0.588�γ/z0 (corresponding to
Λ = 0.588μ, i.e., λ = 1.127Λ = 0.663μ) is closer to that of
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Fig. 7. Variation of the pull-off force with the Tabor number for the special case
of n = 2.

Fig. 8. Load–displacement curves for the special case of n = 2 and μ = 1.

the FSCM than that of the M–D model with σ0 = 1.026�γ/z0
(corresponding to λ = 1.157μ). A more extensive comparison
of the pull-off forces determined from the models is carried out
for n = 1, 1.5, 2, and 3, as shown in Fig. 9, in which the dimen-
sionless pull-off force is defined as

(49)−P̄c ≡ −Pc/π�γQ2/nz
(2−n)/n

0 .

For n = 1, 1.5, 2, and 3, our suggestions for k(n) are 0.347,
0.499, 0.588, and 0.696, which correspond to Λ = 0.347μ,
0.499μ, 0.588μ, and 0.696μ, respectively. The figure shows
that the pull-off forces of the M–D–n model are well agreeable
with those of the FSCM. Although our suggestion of the iden-
tical pull-off force is only for the rigid limit, a good agreement
over the whole transition is found.

For a more general relationship of the Lennard-Jones poten-
tial [10],

p∗(h) = (α − 1)(β − 1)�γ [
(h/z0)

−α − (h/z0)
−β

]
,

(α − β)z0
Fig. 9. Variation of the pull-off force with the Tabor number for n = 1, 1.5, 2,
and 3.

(50)α > β > 1,

one may have the pull-off force at the rigid limit in Eq. (A.5),
and then have Eq. (46) with the coefficient k(n) in the more
general form

k(n;α,β) =
[

2(α − 1)(β − 1)

(αn − 2)
B

(
β − 2

n
, 2

n

)

(51)

×
(

B(β + 1 − 2
n
,α − β)

B(β,α − β)

)(βn−2)/(α−β)n]n/(n−2)

,

where n > 2/β . It is worth presenting the special cases of n = 1,
2, and ∞,

(52)lim
n→1

k(n;α,β) = (α − 2)(β − 2)

2(α − 1)

(
β − 1

α − 1

)(β−2)/(α−β)

,

lim
n→2

k(n;α,β) = exp

[
α − 1

α − β

(
γ + ψ0(β)

)

(53)

− β − 1

α − β

(
γ + ψ0(α)

) − αβ − 1

(α − 1)(β − 1)

]
,

(54)lim
n→∞ k(n;α,β) = (α − 1)(β − 1)(ββ/αα)1/(α−β),

where γ is the Euler constant and ψ0(α) ≡ �′(α)/�(α) is the
digamma function, with �(α) being the Euler gamma function.
If α is an integer, then ψ0(α) = −γ + Hα−1, where Hα−1 is the
harmonic number.

With the relation of the identical pull-off force at the rigid
limit, we can use the Dugdale approximation to nearly match a
specific interaction. Its validity can be verified by an extensive
comparison with that of FSCM. This supplementary relation
to the Maugis model may make it more efficient to fit data in
practice.

7. Conclusions

In this paper, the Maugis model of the frictionless adhesive
contact of spheres is extended to contact of arbitrary axisym-
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metric elastic objects with an arbitrary surface adhesive inter-
action, named the generalized Maugis model. Applying this
model to the power-law axisymmetric objects and using the
Dugdale approximation, we obtain an extended M–D model,
which can be solved easily with a numerical calculation. Under
some limit conditions, it can even be simplified to a completely
analytic form. At the small-Λ extreme, it is simplified to the
extended DMT model. It should be noticed that the “DMT”
nomenclature is referred to the revised DMT model but not the
original or improved one. At the large-Λ extreme, the extended
M–D model is simplified to the extended JKR model. A contin-
uous transition from the extended DMT model to the extended
JKR model is found for an arbitrary shape index. Based on
the extended M–D model, a three-dimensional adhesion map
is constructed with the dimensionless coordinates of the tran-
sition parameter Λ, the dimensionless load P̃ , and the shape
index n.

Using the Dugdale approximation to match a specific inter-
action, for example the Lennard-Jones potential, is discussed.
It is found that the suggestion of the theoretical stress σth

.=
1.026�γ/z0 for the step cohesive stress σ0 in Ref. [2] is too
large for an arbitrary n < ∞. An alternative one, k(n)�γ/z0,
where k(n) is a coefficient related to the shape index n, is de-
termined from the requirement of identical pull-off force at
the rigid limit. For the limit case of n = 2, the stress σ0 is
0.588�γ/z0 (

.= 0.603σth). This result shows better agreement
with the MYD transition than that of 1.026�γ/z0. The stress σ0
for the Dugdale approximation to match the general Lennard-
Jones potential is also presented.

Two independent relations, the condition of no singularity
and the Griffith relation, employed by Maugis lead the elastic
adhesive contact problem to an analytic model. In this paper, a
supplementary relation of the identical pull-off force at the rigid
limit is employed to make the approximate model to match the
exact one. The model involving these three relations is simple in
numerical calculations and efficient for fitting data in practice.
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Appendix A. The Bradley-n pull-off force

The applied load is derived by integrating the surface inter-
action

(A.1)P =
∞∫

0

p∗(h(r)
)

2πr dr.

For power-law axisymmetric objects, if the material is rigid, the
surface separation is given by

(A.2)h(r) = z0 − δ + rn/nQ.
Thus, we have

(A.3)n(2−n)/nQ2/n
(
h(r) − z0 + δ

)(2−n)/n
dh(r) = r dr.

Considering the surface interaction in the general Lennard-
Jones potential, Eq. (50), we immediately obtain the Bradley-n
equation,

P = 2π(α − 1)(β − 1)�γ

(α − β)nz0
(nQz0)

2/n
[
B

(
α − 2

n
, 2

n

)

(A.4)

× (1 − δ/z0)
−α−2/n − B

(
β − 2

n
, 2

n

)
(1 − δ/z0)

−β−2/n
]
,

and its pull-off force,

(A.5)−P
Bradley-n
c = πφ(n;α,β)(nQz0)

2/n(�γ/z0),

where

φ(n;α,β) = 2(α − 1)(β − 1)

αn − 2
B

(
β − 2

n
, 2

n

)
(A.6)×

(
B(β + 1 − 2

n
,α − β)

B(β,α − β)

)(βn−2)/(α−β)n

.
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