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The effects of stiffness strengthening nonlocal stress and 
axial tension on free vibration of cantilever nanobeams
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Abstract. This paper presents a new nonlocal stress variational principle approach for the transverse
free vibration of an Euler-Bernoulli cantilever nanobeam with an initial axial tension at its free end. The
effects of a nanoscale at molecular level unavailable in classical mechanics are investigated and discussed.
A sixth-order partial differential governing equation for transverse free vibration is derived via variational
principle with nonlocal elastic stress field theory. Analytical solutions for natural frequencies and
transverse vibration modes are determined by applying a numerical analysis. Examples conclude that
nonlocal stress effect tends to significantly increase stiffness and natural frequencies of a nanobeam. The
relationship between natural frequency and nanoscale is also presented and its significance on stiffness
enhancement with respect to the classical elasticity theory is discussed in detail. The effect of an initial
axial tension, which also tends to enhance the nanobeam stiffness, is also concluded. The model and
approach show potential extension to studies in carbon nanotube and the new result is useful for future
comparison.
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1. Introduction

With the rapid development of current technologies, miniaturized structures with nanoscale
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features can be precisely manufactured and applied in the so-called nano-electro-mechanical

systems (NEMS) (Cagin et al. 1996, Gao and Zhao 2006, Jonsson et al. 2008). Carbon nanotubes

and elastic beams with nanoscale thickness are most popular in these systems (Chen et al. 2008,

Sato and Shima 2008, Unnikrishnan Zhao et al. 2008, Aluru 2008). Besides the load bearing

capability, they can also be used as sensors and micrometers to detect the adsorption and to

measure the interaction of certain molecules on their surface. This is because the adsorption and

interaction may significantly alter the mechanical properties of the structures which will eventually

lead to changes in mechanical behavior of the elements, including deformation and free vibration.

Establishing an accurate model and relationship between load and vibration behaviour is thus a

key issue for NEMS designs. Unfortunately, the classical elasticity theory fails to give such a

relation because it lacks an intrinsic length scale and thus cannot capture the size-dependence

vibration, as observed experimentally for nanoscale nanobeams. That is the reason why much

attention has been paid to the analysis of classical structures with classical continuum mechanics, a

subject of intensive research recently (Oz et al. 2001, Na et al. 2003, Wang et al. 2005, Parker and

Orloske 2006).

There are molecular structures that can be modeled as nanobeams depending on geometry and

configuration. One of them is a cantilever nanobeam and it is, in fact, one of the most important

components in NEMS because it can be both a sensor as well as an actuator. Recently, there

exists intensive research on dynamic behavior of nanobeams because of their potential prospects

in NEMS or nano-machine components. Although nanobeams have found practical applications,

analysis in this field has been lacking in particular the dynamics and vibration of pre-tensioned

nanobeams.

The nonlocal elasticity theory was first developed by Eringen (1972, 1983) and Eringen and

Edelen (1972) in the early 1970s. In recent years, the nonlocal stress theory and modeling for

nanobeams have received increasing interest in nanomechanics research. This nonlocal continuum

theory regards the stress at a point as a function of the strain states of all points in the body while

the classical continuum mechanics assumes the stress state as only dependent uniquely on the strain

state at that same point. This is in accordance with the atomic theory of lattice dynamics and

experimental observations on phonon dispersion and so an internal size scale is introduced into the

constitutive equations as a material parameter. In the limit when the effects of strains at other points

are neglected, the nonlocal continuum theory reverts to the classical theory. The nonlocal elasticity

theory has been applied in nanomechanics including lattice dispersion of elastic waves, wave

propagation in composites, dislocation mechanics, fracture mechanics, surface tension fluids, etc.

(Yu 1985, Yakobson et al. 1996, Reddy and Wang 1998, Shibutani et al. 1998, Mikkelsen and

Tvergaard 1999, Sudak 2003, He et al. 2004, Zhang et al. 2005, Lu et al. 2006, Hu et al. 2008). In

recent work, Lim and Wang (2007) Pintroduced an asymptotic representation of the one-

dimensional nanobeam model via a variational principle approach and their nanobeam bending

solutions based on nonlocal stress model were useful to engineers who designed micro- or nano-

electromechanical devices. In another research by Tounsi et al. (2008), it was concluded that the

scale coefficient was radius dependent.

In this paper, we attempt to investigate the nonlocal stress effects on a cantilever nanobeam with

an axial tension and subsequently the study of its transverse free vibration. The model is described

by a new sixth-order partial differential equation in dimensionless quantities via an exact variational

principle approach. It is found that the presence of an initial tension and nonlocal stress do play

significant roles in the free vibration behavior of a cantilever nanobeam in which the structural
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stiffness is greatly enhanced. The results are useful for designing nanoscale devices as components

in NEMS.

2. Problem Definition and Modeling

Consider a uniform cantilever nanobeam with axial coordinate x, fixed at x = 0 and an initial axial

tension N at the free end. The length of the nanobeam is L and the transverse deformation is w. The

governing equation for transverse free vibration can be obtained by variational principle as follows.

For free vibration of a nanobeam without dissipation, energy changes from strain to kinetic forms

and vibratory motion sustains at its natural frequency. The strain energy density u at an arbitrary

point of a deformed nanobeam is given by (Lim 2008)

(1)

where  is the dimensionless coordinate,  the nonlocal nanoscale parameter, E the

Young’s modulus,  the normal strain in axial direction and  a constant dependent on each

material, a an internal characteristic length (e.g. lattice parameter, C-C bond length, granular

distance, etc.) (Eringen 1983). The total strain energy in the deformed body is

(2)

Following the variational principle, the variation of strain energy can be finally expressed as

(3)

where , dA is the cross-sectional area moment of inertial and y is the transverse

coordinate. In the presence an axial tension N at the free end, the work done is

(4)
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Variation of the work above is given by

(5)

For a nanobeam in free vibration, the kinetic energy due to transverse motion is

(6)

where  in which t, T are the time coordinate and period of vibration, respectively, and ρ is

the density per unit length. Then, variation of the kinetic energy is given by

(7)

For static equilibrium, the variational principal requires that

(8)

which results in

(9)

Since  cannot vanish, hence the governing equation of motion from Eq. (9) is

(10)
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(11)

To investigate the nonlocal stress effect, the first nonlocal terms in Eqs. (10) and (11), which are

the most important terms reflecting the nonlocal effects, are retained. The governing equation of

motion with the most significant nonlocal terms are obtained as

(12)

and the corresponding boundary conditions are

(13)
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time-dependent transverse deformation of nanobeam can be represented by

(14)

where  is the dimensionless vibration amplitude,  denotes the vibration mode

2n 3–( )τ 2 n 1–( )∂ 2n 1+( )
w

∂x
2n 1+( )

-------------------- N–
∂w

∂x
------- ρ–

∂w

∂ t
-------

n 1=

∞

∑ 0= or w 0=

2n 3–( )τ 2 n 1–( )∂2n
w

∂x
2n

----------- 0=
n 1=

∞

∑ or
∂w

∂x
------- 0=

2n 1–( )τ 2n∂ 2n 1+( )
w

∂x
2n 1+( )

-------------------- 0=
n 1=

∞

∑ or
∂2

w

∂x
2

--------- 0=

2nτ
 2 n 1+( )∂2 n 1+( )

w

∂x
2 n 1+( )

-------------------- 0=
n 1=

∞

∑ or
∂3

w

∂x
3

--------- 0=

2n 1–( )τ 2 n 1+( )∂ 2n 1+( )
w

∂x
2n 1+( )

-------------------- 0=
n 1=

∞

∑ or
∂4

w

∂x
4

--------- 0=

2n 1–( )τ 2 n 2+( )∂2 n 1+( )
w

∂x
2 n 1+( )

-------------------- 0=
n 1=

∞

∑ or
∂5

w

∂x
5

--------- 0=

2n 1–( )τ 2 n 3+( )∂ 2n 3+( )
w

∂x
2n 3+( )

-------------------- 0=
n 1=

∞

∑ or
∂6

w

∂x
6

--------- 0=

or ⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

x 0 1,=
… …

τ
2∂6

w

∂x
6

---------
∂4

w

∂x
4

--------- N
∂2

w

∂x
2

--------- ρ
∂2

w

∂ t
2

---------+ + +– 0=

∂3
w

∂x
3

--------- τ
2∂5

w

∂x
5

--------- N–
∂w

∂x
------- ρ–

∂w

∂ t
-------+– 0= or w 0=

∂2
w

∂ x
2

---------– τ
2∂4

w

∂x
4

---------+ 0= or
∂w

∂x
------- 0=

τ
2∂3

w

∂x
3

--------- 3τ
4∂5

w

∂x
5

---------+ 0= or
∂2

w

∂x
2

--------- 0=
⎭
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎫

at x 0 1,=

w x t,( ) Wn x( )e
iωn t

=

Wn x( ) n 1 2 3 K, , ,=



228 C. W. Lim, C. Li and J. L. Yu

number and  is the dimensionless natural frequency. Substituting Eq. (14) into Eq. (12), the

equation of motion becomes

(15)

Further substituting Eq. (14) into Eq. (13), the boundary conditions become

(16)

For free vibration, the deflection of a nanobeam can be represented by

(17)
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(20)

Substituting Eq. (19) into Eq. (20), the equations can be expressed in a matrix form as

(21)

For nontrivial solutions, the determinant of matrix (21) must be zero, or
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By combining Eqs. (18) and (22), the seven unknown quantities  and 

can be solved. Subsequently, substituting the results into Eqs. (21), the analytical solutions of nth

vibration mode  in Eq. (19) and transverse deformation  in Eq. (14) can be solved to the

extent of an arbitrary constant, for instance .

For comparison with the classical elasticity theory, the natural frequency for free vibration of a

classical cantilever beam without initial tension is (Liu et al. 1998)

(23)
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theory and  can be obtained from the following transcendental equation
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Fig. 2 Effects of nanoscale and initial tension on the first two natural frequencies for ρ 0.03=
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(24)

where L is the length of the classical cantilever beam. Solving Eq. (24), the first two dimensionless

natural frequencies are approximately

;  (25a,b)

Effects of nanoscale parameter and initial tension on the first two natural frequencies are shown in

Fig. 1 for . The classical solutions in Eq. (25a,b) are also presented and compared.

Similarly, the relationships for  and  are illustrated in Figs. 2 and 3,

respectively, to indicate the nonlocal effects as well as varying dimensionless density on the first

two natural frequencies.

It is observed that the nanoscale and initial axial tension affect the natural frequencies very

significantly. The nonlocal effect enhances nanobeam stiffness and thus causes higher frequencies as

compared with the classical solutions. Specifically, the first two natural frequencies increase with

increasing τ, which indicates that stronger nonlocal effects cause higher natural frequencies.

Similarly, it is also observed that stronger initial axial tension induces higher nanobeam stiffness and

thus higher vibration frequency. In general, with certain increase in τ or N, the first two vibration

frequencies presented in Figs. 1 to 3 could be more than double of their original values.

In these three figures, the classical vibration solutions  and , as defined in Eq. (25),

assume identical values because these are dimensionless parameters are not only independent of

nonlocal effects but also invariant for varying density. However, for a cantilever nanobeam with

nonlocal effects, it is obvious that a larger density ρ leads to a lower frequency by comparing

Figs.1, 2 and 3. This observation shows the unique features of vibration characteristics which are

size-dependent and not noticeable in classical vibration theory.

λnL( )cos λnL( ) 1+cosh 0=

ω1( )
c

λ1

2
L

2
ω1( )

c
L

2 ρ

EI
------ 1.875

2
= = = ω2( )

c
λ2

2
L

2
ω2( )

c
L

2 ρ

EI
------ 4.694

2
= = =

ρ 0.01=

ρ 0.03= ρ 0.05=

ω1( )
c

ω2( )
c

Fig. 3 Effects of nanoscale and initial tension on the first two natural frequencies for ρ 0.05=
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4. Conclusions

In this paper, the free transverse vibration of a cantilever nanobeam with initial axial tension is

solved based on a new nonlocal stress field theory. A high-order partial differential equation which

governs the vibration behavior is obtained via the variational principle. Applying a numerical

method, the effects of nanoscale parameter, initial tension, as well as the dimensionless density on

natural frequencies are investigated in detail. It is found that the nanoscale parameter and initial

tension induce higher frequencies as compared with the classical beam solutions while the

dimensionless density results in lower frequencies. Stiffness of a nanobeam is greatly enhanced by

the presence of a nanoscale as well as an initial axial tension. In summary, unique and significant,

size-dependent vibration characteristics not present in classical vibration theory are noted in

nonlocal nanobeam vibration.
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