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This paper presents exact, analytical solutions for the transverse vibration of simply supported
nanobeams subjected to an initial axial force based on nonlocal elasticity theory. Classical

continuum theory is inherently size independent while nonlocal elasticity exhibits size depen-

dence. The latter has signi¯cant e®ects on bending moment, which results in a conceptually

di®erent de¯nition of a new e®ective nonlocal bending moment with respect to the corre-
sponding classical bending moment. A sixth-order partial di®erential governing equation is

subsequently obtained. The e®ects of nonlocal nanoscale on the vibration frequencies and mode

shapes are considered and analytical solutions are solved. E®ects of the nonlocal nanoscale and

dimensionless axial force including axial tension and axial compression on the ¯rst three mode
frequencies are presented and discussed. It is found that the nonlocal nanoscale induces higher

natural frequencies and sti®ness of the nano structures.
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Notations

a Internal nanoscale characteristic length

A Cross-sectional area of the nanobeam

B Width of the nanobeam

C Constant
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e0 Material constant

E Young's modulus

H Thickness of the nanobeam

I Second moment of area

L Length of the nanobeam

M ; �M Dimensional and dimensionless nonlocal bending moment

Mef ; �M ef Dimensional and dimensionless e®ective nonlocal bending moment

n Order number

P ; �P Dimensional and dimensionless initial axial compression

Pcr; �Pcr Dimensional and dimensionless critical axial compression

qn Temporal function

Q Shear force

t; �t Dimensional and dimensionless temporal coordinate

T ; �T Dimensional and dimensionless initial axial tension

w; �w Dimensional and dimensionless transverse displacement

x; �x Dimensional and dimensionless axial coordinate

y Transverse coordinate

� Mass density

� Dimensionless nonlocal nanoscale

 n Vibration mode function

�n; !n Dimensional and dimensionless vibration frequency

�c
n Classical dimensional vibration frequency

1. Introduction

Nanotubes and nanobeams play key roles in many engineering devices at nanometer

scale, such as micro- or nanoelectromechanical systems (MEMS or NEMS).1,2

Although classical theories of linear and nonlinear vibration of strings and beams at

macroscales are well established, the vibration behavior of structures at nanoscale

which is signi¯cantly size dependent is far from being well understood. In an e®ort to

extend the classical theory for size dependent nanomechanics, the vibration of a

nanobeam is investigated herein based on the nonlocal elastic stress theory.

Owing to the scarcity of research in vibration of nanobeams subject to an axial

tension or motion, an account of research works at the macroscale and nanoscale are

described here. Simpson3 addressed the vibration frequency and mode function of

axially moving beams without initial tension and with clamped conditions at two

ends. The train-induced vibration of a parabolic tied-arch beam via an analytical

approach was investigated by Yau.4 Al-Bedoor and Khulief5 studied axially moving

beams with slow velocity and di®erent support conditions. Transverse nonlinear

parametric vibration of an axially accelerating viscoelastc string was introduced by

Chen et al.6 and the method of multiple scales was applied directly to the nonlinear
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partial di®erential equation to investigate the principal resonance. Oz et al.7 applied

the method of multiple scales to study dynamic stability of an axially accelerating

beam with small bending sti®ness. For a nanobeam, Guo and Zhao8 presented a

theoretical model to investigate the size-dependent bending elastic properties with

in°uence of surface e®ects. Lim and Wang9 constructed a complete and asymptotic

representation of nanobeams with nonlocal stress via an exact variational principle

approach.

The nonlocal beam models received increasing interest in the past few years.

Nonlocal continuum theories regard the stress state at a point as a function of the

strain states of all points in the body while the classical continuum mechanics

assumes the stress state at a given point is dependent uniquely on the strain state at

that same point. The static deformation of nanobeams based on a simpli¯ed nonlocal

model was obtained ¯rstly by Eringen10,11 and Kroner.12 The application of nonlocal

continuum theories to nanotechnology was revived recently by Peddieson et al.13 and

they paid particular attention to cantilever nanobeams which were often used as

actuators in small-scale systems.

The nonlocal theory of elasticity was used to study applications in nanomechanics

including lattice dispersion of elastic waves, wave propagation in composites, dislo-

cation mechanics, fracture mechanics, surface tension °uids, etc.14�20 Of all the

nanostructures, the mechanical behaviors of nanotubes and nanobeams have been

most widely investigated.21�28 For example, Challamel and Wang27 considered the

small length scale e®ect for a nonlocal cantilever beam while Zhang et al.28 applied

such a model and considered higher-order boundary conditions related to a vari-

ational principle for generalized loading situations, including vibration and buckling.

There exist repeated conclusions that nonlocal nanoscale results in lower vibration

frequency and such conclusions should be carefully revisited because they imply that

nonlocal size e®ects cause nanostructural sti®ness to decrease.13�16,18,19,21�28 Some

authors believe that the consequence of reduced or increased structural sti®ness is

due to di®erent choices of higher-order boundary conditions which appeared in the

nonlocal nanobeam model. However, such opinions are still being investigated and

could not be concluded in the current state.

With respect to the conclusion and belief above, it was discovered recently by

Lim29�32 that the reverse trend of nonlocal nanoscale e®ect which induces increased

nanostructural sti®ness should take place. In this paper, a new approach to the

nonlocal model is presented and the nonlocal e®ects of a nanobeam subject to an

initial axial force are investigated. First, the e®ective nonlocal bending moment is

established as an in¯nite series via the energy variation principle. Considering only

the ¯rst nonlocal term which carries the most signi¯cant nonlocal e®ect, a sixth-order

partial di®erential equation and six higher-order, nonclassical boundary conditions

are derived.29�40 Subsequently, an analytical method is developed to derive exact

solutions for free vibration frequencies and mode shapes which satisfy the higher-

order, nonlocal classical boundary conditions. The e®ects of initial axial force and

Analytical Solutions for Vibration of Simply Supported Nonlocal Nanobeams 259



nonlocal stress on vibration behavior of nanobeams are discussed and some

numerical examples of a silicon nanobeam are presented to show the di®erences due

to the presence of a nonlocal nanoscale.

2. Nonlocal Equations of Motion

Consider a nanobeam with an initial axial tension T at the ends and length L. The

force equilibrium diagram of an element of the nanobeam is illustrated in Fig. 1.

In Fig. 1 Mef , to be de¯ned in due course, is the e®ective nonlocal bending

moment29�32 according to the nonlocal elasticity theory, T the internal axial force, Q

the shear force, x the axial coordinate, and y the transverse coordinate. Considering

linear vibration with only small deformation, the dynamic equation of motion for the

element can be obtained based on Newton's second law of motion and the moment

equilibrium condition as

@ 2Mef

@x2
þ T

@ 2w

@x2
� �A

@ 2w

@t2
¼ 0; ð1Þ

where � is the material mass density, A the cross-sectional area of nanobeam, and w

the transverse displacement and the e®ective nonlocal bending moment29�32

Mef ¼ M � 2
X1
n¼1

ðe0aÞ2n
@ 2nM

@x2n
ðn ¼ 0; 1; 2; . . .Þ; ð2Þ

in which the nonlocal bending moment

M ¼ ðe0aÞ2
@ 2M

@x2
� EI

@ 2w

@x2
; ð3Þ

and EI is the °exural rigidity. Two other quantities e0 and a represent the nonlocal

e®ects are, respectively, a constant dependent on material and an internal charac-

teristic length nanoscale.11 Terms of higher-order partial derivatives in Eq. (1) are

ignored and the internal axial force is assumed to equal to the initial tension T .

Fig. 1. Force and moment equilibrium for an element of the nanobeam.
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Considering n ¼ 1 for Mef , in which the most signi¯cant nonlocal e®ect is

retained, and further substituting into Eq. (1) yields

@ 2M

@x2
� 2ðe0aÞ2

@ 4M

@x4
þ T

@ 2w

@x2
� �A

@ 2w

@t2
¼ 0: ð4Þ

From Eqs. (3) and (4), the governing equation of motion for a nanobeam subjected

to an initial axial tension can be derived as

�A
@ 2w

@t2
� T

@ 2w

@x2
� e0að Þ2 2EI

@ 6w

@x6
þ �A

@ 4w

@x2@t2
� T

@ 4w

@x4

� �
¼ �EI

@ 4w

@x4
: ð5Þ

The relation between nonlocal bending moment and transverse displacement is also

obtained according to Eqs. (3) and (4) as

M ¼ ðe0aÞ2�A
@ 2w

@t2
þ ½EI � T ðe0aÞ2�

@ 2w

@x2
þ 2EIðe0aÞ2

@ 4w

@x4
: ð6aÞ

From Eqs. (2) and (6a), one gets

Mef ¼ðe0aÞ2�A
@ 2w

@t2
þ ½EI � T ðe0aÞ2�

@ 2w

@x2
þ 2EIðe0aÞ2

@ 4w

@x4

� 2ðe0aÞ2 ðe0aÞ2�A
@ 4w

@x2@t2
þ ½EI � T ðe0aÞ2�

@ 4w

@x4
þ 2EIðe0aÞ2

@ 6w

@x6

� �
;

ð6bÞ
where n ¼ 1 is adopted in Eq. (2). Introducing the following dimensionless par-

ameters and variables

�x ¼ x

L
; �w ¼ w

L
; �t ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

�AL4

s
; � ¼ e0a

L
; �T ¼ TL2

EI
; �M ¼ ML

EI
: ð7Þ

Equations (5), (6a), and (6b) can be expressed in dimensionless terms as

@ 2 �w

@�t 2
� �T

@ 2 �w

@�x 2
þ @ 4 �w

@�x 4
� � 2

@ 4 �w

@�x 2@�t 2
þ �T� 2

@ 4 �w

@�x 4
� 2� 2

@ 6 �w

@�x 6
¼ 0 ð8Þ

�M ¼ � 2
@ 2 �w

@�t 2
þ ð1� �T� 2Þ @

2 �w

@�x 2
þ 2� 2

@ 4 �w

@�x 4
ð9aÞ

�M ef ¼ � 2
@ 2 �w

@�t 2
þ ð1� �T� 2Þ @

2 �w

@�x 2
þ 2� 2

@ 4 �w

@�x 4

� 2� 2 � 2
@ 4 �w

@�x 2@�t 2
þ ð1� �T� 2Þ @

4 �w

@�x 4
þ 2� 2

@ 6 �w

@�x 6

� �
; ð9bÞ

where the non dimensional nanoscale parameter � < 0:2 for most materials.

For linear free vibration of a nanobeam, the method of variables separation can be

applied. The solution for Eq. (8) can be assumed as

�wnð�x; �tÞ ¼ C nð�xÞqnð�tÞ; ð10Þ
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where C is an arbitrary constant,  nð�xÞ is the vibration mode function, qnð�tÞ the

temporal function with respect to �t and n ¼ 1; 2; 3; . . . denotes the mode number. By

substituting Eq. (10) into Eq. (8), one obtains an ordinary di®erential equation as

d2q

d�t 2
þ !2

nq ¼ 0 ð11aÞ

�!2
n n þ ð� 2!2

n � �TÞ d
2 n

d�x 2
þ ð �T� 2 þ 1Þ d

4 n

d�x 4
� 2� 2

d6 n

d�x 6
¼ 0; ð11bÞ

where !n is dimensionless vibration frequency. Obviously, qnð�tÞ ¼ ei!n
�t is obtained

from Eq. (11a), where !n ¼ �n

ffiffiffiffiffiffiffiffiffi
�AL 4

EI

q
is the dimensionless natural frequency, in

which �n is the physical dimensional frequency.

3. Analysis, Results, and Discussion

To illustrate the e®ects of nonlocal nanoscale � and dimensionless axial tension �T on

the vibration behavior of a nanobeam, a simply supported nanobeam is considered.

The higher-order, nonclassical boundary conditions corresponding to the generalized

stress and displacement conditions are29�32

�M efð0; �tÞ ¼ 0 �M efð1; �tÞ ¼ 0

�wð0; �tÞ ¼ 0 �wð1; �tÞ ¼ 0

@ 2 �w

@�x 2
ð0; �tÞ ¼ 0

@ 2 �w

@�x 2
ð1; �tÞ ¼ 0

ð12Þ

These conditions are regarded as nonclassical because of the existence of higher-order

boundary conditions. According to the classical beam theory, the ¯rst two boundary

conditions are zero classical bending moment and zero de°ection. However, the last

boundary condition, which is the point of in°exion, is not required in the classical

theory. Furthermore, according to the classical beam theory, the ¯rst and the last

boundary conditions are the same because the zero classical bending moment con-

dition is equivalent to the condition for point of in°exion. However, in the nonlocal

beam theory, �M ef 6¼ �M 6¼ @ 2 �w=@�x 2 as indicated in Eqs. (9a) and (9b).

The substitution of Eqs. (9b) and (10) into Eq. (12) and simplifying the

expressions yields

�T
d4 n

d�x 4
ð0Þ � 2

d6 n

d�x 6
ð0Þ ¼ 0 �T

d4 n

d�x 4
ð1Þ � 2

d6 n

d�x 6
ð1Þ ¼ 0

 nð0Þ ¼ 0  nð1Þ ¼ 0

d2 n

d�x 2
ð0Þ ¼ 0

d2 n

d�x 2
ð1Þ ¼ 0:

ð13Þ

For a sixth-order partial di®erential equation and six boundary conditions, it is

rather complicated to obtain analytical solution directly. Considering an inverse
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solution where the vibration mode shape function is assumed as

 nð�xÞ ¼ sinn��x ðn ¼ 1; 2; 3; . . .Þ; ð14Þ
which satis¯es the boundary conditions in Eq. (13). The substitution of Eq. (14) into

Eq. (11b) yields the dimensionless natural frequency as

!n ¼ n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�T þ �T� 2 þ 1ð Þn2�2 þ 2� 2n4�4

1þ n2�2� 2

s
; ð15Þ

which, in dimensional form, is

�n ¼ n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TL4 þ n2�2½TL2ðe0aÞ2 þ EIL2� þ 2n4�4EIðe0aÞ2

�AL4½L2 þ n2�2ðe0aÞ2�

s
; ð16Þ

where n ¼ 1; 2; 3; . . . The analytical solutions in Eqs. (15) and (16) can be easily

shown to reduce to the classical solutions41,42 for vanishing nanoscale � . Hence, the

validity of the inverse solution is established.

Taking the ¯rst mode frequency as an example, a comparison of frequency based

on nonlocal stress theory and classical vibration theory is shown in Fig. 2 while the

¯rst three vibration mode shapes are shown in Fig. 3. The nonlocal nanoscale is

observed to signi¯cantly a®ect the vibration frequencies. Apparently, frequencies for

a nonlocal nanobeam are signi¯cantly higher than the corresponding solutions based

on classical vibration.

The e®ect of � on the vibration frequencies is illustrated in Figs. 4�6, respect-

ively. From the ¯gures, it is observed that the free vibration frequencies increase with

increasing � . Hence, the sti®ness of nanobeam increases for higher � and the rate of

increase is particularly marked for higher vibration modes. A possible explanation is

that larger nonlocal nanoscale indicates stronger intermolecular interaction con-

straints and thus higher sti®ness.

Fig. 2. Comparison of vibration frequency obtained from nonlocal theory and classical theory.
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On the other hand, comparison with a nanobeam without axial force shows that

the vibration frequencies increase when an initial axial tension is present. Similarly, it

can be observed that de°ection decreases or sti®ness increases due to axial tension. In

addition, the vibration frequencies are higher for a larger axial tension. Through a

similar analytical procedure, it can be predicted that the vibration frequencies

decrease if an axial compression is present and furthermore, the vibration frequencies

decrease with increasing compression, which can be readily predicted from Eq. (15)

by substituting a negative value for �T . The prediction agrees with the results of

classical vibration theory.

Fig. 3. First three vibration mode shapes.

Fig. 4. E®ect of nonlocal nanoscale � on ¯rst mode vibration frequency for increasing dimensionless axial

tension �T .
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From Eq. (15), the natural frequency of a simply supported nanobeam subjected

to an initial axial compression is given by

!n ¼ n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� �P þ 1� �P� 2ð Þn2�2 þ 2� 2n4�4

1þ n2�2� 2

s
; ð17Þ

where �P ¼ � �T is de¯ned as a dimensionless compression parameter. The axial

compression satis¯es

�P � n2�2ð1þ 2� 2n2�2Þ
1þ n2�2� 2

: ð18Þ

Fig. 5. E®ect of nonlocal nanoscale � on second mode vibration frequency for increasing dimensionless

axial tension �T .

Fig. 6. E®ect of nonlocal nanoscale � on third mode vibration frequency for increasing dimensionless axial

tension �T .
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Therefore, the dimensionless critical axial compression for n ¼ 1 is derived from

Eq. (18) as

�Pcr ¼
�2ð1þ 2� 2�2Þ

1þ �2� 2
¼ �2ð1þ � 2�2 þOð� 4ÞÞ: ð19Þ

If the nonlocal nanoscale vanishes, the dimensional form of Eq. (19) becomes

Pcr ¼
�2EI

L2
; ð20Þ

which is consistent with the classical buckling theory for columns. Figure 7 shows the

relations between the dimensionless critical axial compression and the nonlocal

nanoscale. Nonlocal nanoscale enhances the critical axial compression signi¯cantly.

When � ¼ 0:15, the critical compression increases by 18.2% with respect to the

classical buckling load.

From Eqs. (10), (11a), (14), and (15), the time history mode shapes with respect �x

and �t can be obtained.

4. Further Examples with Numerical Solutions

In this section, a silicon nanobeam is considered in order to demonstrate the di®erence

in nonlocal and classical natural frequencies. From the classical theory, the free

vibration frequency of a simply supported beam with an initial axial tension is given

by41,42

�c
n ¼ n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�2EI

�AL4
þ T

�AL2

s
ðn ¼ 1; 2; 3; . . .Þ; ð21Þ

where the notations have been standardized which those de¯ned in this paper. Note

that Eq. (21) can be also derived from Eq. (16) when the nonlocal nanoscale vanishes,

Fig. 7. Critical compression versus the nonlocal nanoscale.
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i.e., � ¼ 0. The deduction of classical solution from the nonlocal solution indirectly

con¯rms the consistency of the newmodel in the case of vanishing nanoscale e®ect. This

indicates the validity of the model and results presented in this paper again.

4.1. Example 1

To make a comparison between Eqs. (16) and (21), an example of a silicon nanobeam

is presented here. For a silicon nanobeam with length L ¼ 1�m, thickness

H ¼ 100 nm, width B ¼ 300 nm, Young's modulus E ¼ 160GPa, mass density

� ¼ 2400 kg=m3, and initial axial tension �T ¼ 20, the solutions are obtained from

Eqs. (16) and (21) and are presented in Fig. 8 for comparison. It shows again that �

causes vibration frequency to increase. Furthermore, the di®erence is more distinct

for higher modes.

4.2. Example 2

Another comparison for the e®ects of length on the natural frequencies is presented

in Table 1. Note that many studies show the mechanical properties, such as Young's

modulus is size dependence and the value varies depending on the external

Table 1. Comparison between nonlocal and classical frequencies for a silicon nanobeam with

varying length.

� (GHz) L (nm)

80 100 120 140 160 180 200 300 500

�1 12.206 8.038 5.771 4.400 3.505 2.887 2.440 1.346 0.706

�c
1 12.173 8.025 5.765 4.397 3.503 2.886 2.439 1.346 0.706

�2 47.213 30.339 21.229 15.754 12.206 9.776 8.038 3.909 1.741

�c
2 46.671 30.116 21.122 15.696 12.173 9.756 8.025 3.906 1.741

Fig. 8. Comparison between nonlocal and classical frequencies for a silicon nanobeam with varying � .
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characteristic scale (i.e., the length or thickness of beam),43 especially when it is

below 20 nm. Here, for a silicon nanobeam with thickness H ¼ 4 nm, width B ¼
10 nm; T ¼ 10�3 �N, Young's modulus E ¼ 100GPa,43, e0a ¼ 2:0 nm, and all other

parameters are identical to those in Example 1. Table 1 shows a comparison with

respect to varying length of the nanobeam.

Both nonlocal and classical theories imply higher frequencies for a very small

length of the nanobeam. The natural frequencies increase quickly with decreasing

length of the nanobeam, especially for nanobeams with a minute length and

nanoscale e®ect. Equivalently, a nanostructure with nonlocal e®ect possesses higher

vibration frequencies as compared to an identical nanostructure without nonlocal

e®ect. For instance, when the silicon nanobeam decreases from 500 nm to 200 nm in

length, the ¯rst nonlocal and classical frequencies increase by 2.456 times and 2.454

times, respectively, and the di®erence is not obvious. On the other hand, when the

nanobeam decreases from 500 nm to 80 nm, the ¯rst nonlocal and classical fre-

quencies increase by 16.29 times and 16.24 times, respectively. Consequently, the

classical theory without nonlocal nanoscale e®ect undervalues the vibration fre-

quency for nanostructures.

Because the nonlocal e®ect on vibration frequency is signi¯cant, it is indispensable

in nanostructural modeling and the classical continuum theory has to be amended. It

is also observed that with the increasing length of the nanobeam, the nonlocal and

classical continuum theories agree with each other very well. This demonstrates

that nonlocal model is consistent with classical model when the structures are at

macroscale.

5. Conclusions

Considering nonlocal elasticity theory, the free vibration of a nanobeam subjected to

an initial axial force is solved via an exact, analytical approach. Exact free vibration

frequencies and mode shapes are derived and presented. The nonlocal nanoscale and

dimensionless axial force induce signi¯cant e®ects on vibration frequencies. For a

simply supported nanobeam, increases in nonlocal e®ect and axial tensile force cause

the vibration frequencies to increase which imply higher nanobeam sti®ness.

Additionally, an increase in axial compression results in lower natural frequency.

Numerical examples show the results are reduced exactly to the classical vibration

solutions for vanishing nonlocal nanoscale.

The paper also concludes the governing equation of motion for a nonlocal nano-

beam can be formed by replacing the bending moment term in the classical equation

of motion with an e®ective nonlocal bending moment as presented herewith. The

result is no longer a fourth-order partial di®erential equation but an in¯nite order

di®erential equations with in¯nitelymany higher-order boundary conditions. The latter

can be simpli¯ed into a sixth-order di®erential equation with six corresponding higher-

order boundary conditions if only the most signi¯cant nonlocal term is considered.

The nonlocal elasticity approach is very convenient and, to a certain extent,
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indispensable in the continuum approach for modeling, simulation, and analysis of

size-dependent nanotubes.
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