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a b s t r a c t

The dynamic three-point bending behavior of double cylindrical tubes filled with closed-cell aluminum
foam core was studied experimentally and numerically. It is found that the deformation mode of this
new structure under impact loading is different to that under quasi-static loading. The load carrying
capacity of the structure subjected to impact remains at the level of that in the quasi-static situation.
Compared with traditional foam-filled single tubes, the specific energy absorption efficiency of this new
structure is much higher, and that of both foam-filled structures in the dynamic situation are higher than
that in static situation. A preliminary experimental study on the effect of profiles and span of the
structure were performed, and the result shows that these parameters affect the structure together.
Numerical simulation of the bending behavior was also executed with the explicit finite element method.
The mechanism of the dynamic response is revealed by comparison of the maximum strain history in the
simulation.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

During the past two decades, much research work on the axial
crushing behavior of thin-walled columns has been carried out to
find more effective energy absorbers [1e3]. On the other hand,
a study on the real world vehicle crashes presented by Kallina et al.
[4] in 1994 showed that up to 90% involved structural members
failed in bending collapse mode.

The bending resistance of an empty thin-walled column typi-
cally declines very significantly after reaching the peak force at
a small rotation. In order to achieve high bending resistance and
weight efficiency in energy absorption, ultra-light cellular metals
such as aluminum foams were introduced to fill in thin-walled
empty structures. The bending behaviors of such structures have
been studied by many researchers. Santosa and Wierzbicki [5] and
Santosa et al. [6] studied the effect of foam filling on the bending
resistance of thin-walled prismatic columns through numerical
simulations and quasi-static experiments. Their result shows that
the filling of foam improves the load carrying capacity by offering
additional support from inside and increases the energy absorp-
tion. Chen et al. [7] performed optimization for minimum weight
on foam-filled sections under bending condition. They showed the
potential of thin-walled columns filled with aluminum foams as
weight-efficient energy absorbers. Chen [8] studied the bending
behavior of hat profiles filled with aluminum foams and found that
x: þ86 551 360 6459.
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filling of aluminum foams increased the specific energy absorption
of the structures. Kim et al. [9] studied the bending collapse of thin-
walled cylindrical tubes filled with several pieces of foams exper-
imentally and numerically. Hanssen et al. [10] studied the bending
behavior of the foam-filled square extrusions experimentally and
found that the foam filler altered the local deformation patterns of
the beams significantly. Reyes et al. [11] presented numerical
analyses of foam-filled extrusions subject to bending. They found
that taking fracture in both the extrusion and the foam into account
in the analyses was very important, and the predicted behavior
depended on the choice of fracture criterion and its critical value
used for the foam, the statistical variation of foam density.

Most studies in the literature focused on the prismatic column
structures andmainly underquasi-static loading. In order to improve
the crashworthiness of foam-filled structures while keeping high
bending resistance under impact condition, the dynamic bending
behavior of a new composite structure, i.e. double cylindrical tubes
filled with closed-cell aluminum foams, is studied in detail in this
paper. Dynamic experiments and finite element simulations are
performed to explore the deformation and failure mechanism of the
structure. The results are compared with those under quasi-static
loading [12] and those of empty and foam-filled single tubes.

2. Experimental procedures

2.1. Materials and specimens

Three types of tube structures, i.e., empty tube, foam-filled
single tube and foam-filled double tube, were used in the
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Fig. 1. The sections of (a) empty tube, (b) foam-filled single tube and (c) foam-filled double tube.
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experiments. The cross-sections of different tube structures are
shown in Fig. 1. The tube material used in our experiments is
AA6063-T6 aluminum. The uniaxial tension test of tube material
with three kinds of thicknesses, i.e. 1.0, 1.6 and 2.0 mm, was carried
out. The engineering stressestrain curves have slight differences as
shown in Fig. 2, which may be caused by the different extrusion
ratio of the profiles. The closed-cell aluminum foam was provided
by Luoyang Ship Material Institute, CSIC, China and produced by
liquid state processing using TiH2 as foaming agent. The uniaxial
quasi-static compression test results of the foams are shown in
Fig. 3 where rf denotes the apparent density of the foam.

Table 1 gives the dimensions of the cylindrical tubes in the
experiments. The parameters of specimens are listed in Table 2. In
this paper, specimens are named according to the following rule.
The first letter in the specimen named “D6D21a” means the
experiment is under dynamic loading condition, and for the static
test, the first letter does not exist, e.g. “6D21a”. The number
following the first letter denotes the ratio of the span L0 to the
diameter D of the outer tube. The third letter means the arrange-
ment or filling status that E means empty tube, S means foam-filled
single tube and D means foam-filled double tube structure. The
fourth and fifth numbermeans the types of the outer tube and inner
tube respectively, detailed dimensions of which are listed in Table 1.
The last letter is the serial number of test.

2.2. Arrangement of experiments

The dynamic three-point bending tests as illustrated in Fig. 4
were conducted on a drop weight machine. The mass of the
hammer was 24.23 kg and the drop height was 141.8 cm. The initial
impact energy is about 336 J, which is enough to destroy the spec-
imens in the experiments. The diameter of the cylindrical punch and
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Fig. 2. The uniaxial tensile stressestrain curves of profile material.
supports is 10 mm. The angle between two wedged sides of the
upper punch is 34.6 degree. The span length L0 of different
arrangements depends on the ratio L0/D and the diameterD of outer
profiles. The total length of the structure L1 is 190 mmwhen L0/D is
4, and 270 mmwhen L0/D is 6. Two rubber bands were used on the
two sides of the specimen to avoid jump of the specimen on the
vertical direction.

2.3. Definitions

The total energy absorbed by a structure before failure is
calculated by

Et ¼
ZUf

0

Fdu;

where F is the bending force, u the displacement of the upper
punch, and Uf the displacement of the upper punch at failure of the
structure, when the force sharply falls down. The mass efficiency of
the energy absorption for a structure is defined by
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Fig. 3. The uniaxial compression stressestrain curves of aluminum foams.

Table 1
Dimensions of outer and inner cylindrical tubes.

Outer profiles Inner profiles

Diameter (mm) Thickness (mm) Diameter (mm) Thickness (mm)

1 38 1.0 20 1.2
2 38 1.6 24 1.2
3 38 2.0 22 1.4



Table 2
Measured parameters of specimens.

Specimen Profiles (outer tube/inner tube) Aluminum foam mt (g) Uf (mm) Et (J) Es (J/g)

Thickness (mm) Mass (g) Mass (g) Density (g/cm3)

D4E20a 1.6/0 124.6/0 e e 124.6 e e e

D4E20b 1.6/0 124.5/0 e e 124.5 e e e

D4E20c 1.6/0 124.4/0 e e 124.4 e e e

D4S20a 1.6/0 124.3/0 118.2 0.46 170.6 23.2 151.8 0.89
D4S20b 1.6/0 124.4/0 97.7 0.38 156.3 22.6 117.4 0.75
D4S20c 1.6/0 124.4/0 120.4 0.47 172.3 21.8 141.8 0.82

D4D21a 1.6/1.2 124.6/42.4 69.6 0.40 166.5 52.7 333.6 2.00
D4D21b 1.6/1.2 124.2/42.3 75.1 0.44 170.0 50.5 304.4 1.79
D4D21c 1.6/1.2 124.4/42.4 70.5 0.41 167.0 56.9 331.2 1.98

D6E20a 1.6/0 124.5/0 e e 124.5 e e e

D6E20b 1.6/0 124.5/0 e e 124.5 e e e

D6E20c 1.6/0 124.4/0 e e 124.4 e e e

D6S20a 1.6/0 124.5/0 103.1 0.40 227.6 21.2 91.5 0.40
D6S20b 1.6/0 124.5/0 121.4 0.47 245.9 17.4 80.5 0.33
D6S20c 1.6/0 125.5/0 119.0 0.46 243.5 18.8 85.2 0.35

D6D21a 1.6/1.2 124.5/42.4 82.3 0.48 249.2 43.2 190.5 0.76
D6D21b 1.6/1.2 124.5/42.4 77.1 0.45 244.0 47.1 205.5 0.84
D6D21c 1.6/1.2 124.5/42.4 71.3 0.41 238.2 45.5 186.0 0.78

D6D11a 1.0/1.2 83.6/42.4 98.4 0.52 224.4 29.9 104.6 0.47
D6D11b 1.0/1.2 83.6/42.4 96.1 0.51 222.1 33.3 115.0 0.52
D6D11c 1.0/1.2 83.6/42.4 96.9 0.51 222.9 27.6 109.4 0.49

D6D31a 2.0/1.2 153.4/42.4 85.4 0.53 281.2 56.5 298.6 1.10
D6D31b 2.0/1.2 153.4/42.4 83.7 0.52 279.5 61.5 306.7 1.10
D6D31c 2.0/1.2 153.4/42.4 86.5 0.54 282.3 50.0 242.5 0.88

D6D22a 1.6/1.2 124.8/51.4 61.1 0.45 237.3 69.6 286.3 1.20
D6D22b 1.6/1.2 124.8/51.4 71.0 0.53 247.2 75.0 290.4 1.17
D6D22c 1.6/1.2 124.8/51.4 64.0 0.48 240.2 83.9 300.6 1.25

D6D23a 1.6/1.4 124.7/59.5 75.7 0.49 259.9 50.0 256.5 0.99
D6D23b 1.6/1.4 124.7/59.5 75.6 0.49 259.8 48.3 239.0 0.92
D6D23c 1.6/1.4 124.7/59.5 77.0 0.50 261.2 42.3 226.7 0.87

Fig. 4. (a) Setup and (b) the model of the dynamic three-point bending tests.
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Es ¼ Et=mt ;

where mt is the total mass of the structure.

2.4. Reproducibility of experiments

In the experiments, three samples of each structure were
executed. The reproducibility for each type of structure is shown in
Fig. 5. There aremore or less differences for each type of specimens,
which may be caused by the scatter of the foam density and
different imperfections of each specimen. In order to make the
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Fig. 5. The reproducibility of bending tests of (a) empty tubes, (b) foam-filled single
tubes and (c) foam-filled double tubes.
comparisons for different structures easier, only one curve of each
structure will be chosen and used in comparisons thereafter.

3. Experimental results and discussion

3.1. Deformation and failure mode

Typical deformation and failure of foam-filled structures after
impact are shown in Fig. 6. The crack of the foam-filled single tube
occurs almost underneath the hammer but that of the foam-filled
double tube is located at one side of the hammer, which consists
with the observation in quasi-static tests [10]. It was also observed
that the foam-filled single tube ruptured completely but the inner
tube of the foam-filled double tube structure was still undamaged
while the structure ruptures.

A comparison of the failure mode of the foam-filled double
tubes under static and dynamic loads is shown in Fig. 7. Two cracks
are found on the outer profile in the quasi-static test, but only one
leads to the final failure of the structure. On the other side, the
situation is not so obvious in the dynamic case. Under impact
conditions, theouterprofile of the foam-filled double tube ruptures
at one side from the center, but there are more than two cracks
inside the foam, spreadingwidelyalong thedownpart in the center
region, which may lead to an increase in energy absorption. The
difference in failure mode between the static and dynamic cases
will be discussed later in detail in the section on numerical
simulation.

3.2. Load carrying capacity and energy absorption

Comparisons of the forceedisplacement curves of different
structures with two values of span under impact bending condition
are shown in Fig. 8. For both spans, the load carrying capacity of the
empty tube declines seriously but that of foam-filled double tube
structure is much steadier, especially with L0/D ¼ 4. Compared
with that of the traditional foam-filled single tube, the force of the
foam-filled double tube with L0/D ¼ 4 is lower but almost the same
level of force is found for both structures with L0/D ¼ 6. The foam-
filled double tube fails much later and its failure displacement Uf is
about twice as that of the foam-filled single tube, indicating that
more impact energy can be absorbed. It can also be observed that
the curves of foam-filled structures with L0/D ¼ 6 oscillate more
seriously than that with L0/D ¼ 4. But the force oscillation of the
foam-filled double tube with L0/D ¼ 6 decreases rapidly as the
displacement increases.

The forceedisplacement curves of the foam-filled structures
under impact bending are also comparedwith those in quasi-static
cases, as plotted in Fig. 9. It shows that the load carrying capacity of
the foam-filled structures in dynamic cases is almost at the same
level as that in the corresponding quasi-static cases, or even
slightly higher for some structures. However, the failure
displacement, Uf, subjected to an impact load is larger than that
subjected to a quasi-static load for all foam-filled single and double
tubes. As the deformation mode reveals, more energy under the
impact condition may be absorbed by the upper part of
the structure and the foam inside, so less energy was dissipated on
the lower profiles, which leads to the delayed failure of foam-filled
structures under the impact condition. And the direct mechanism
may be the slightly delayed strain evolution of the lower outer
profile under dynamic loading, which will be proved in the
numerical simulation later.

Comparisons of the energy absorption of different structures
under quasi-static and dynamic loading are shown in Fig. 10.
Results of the empty tubes are not included because their force
drops rapidly without obvious failure point. It should be mentioned



Fig. 7. Comparisons of the deformation and failure of foam-filled double tube D6D21c in (a) quasi-static [12] and (b) dynamic tests.
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Fig. 8. Comparisons of the forceedisplacement curves of different structures with different spans under impact condition: (a) L0/D ¼ 4 and (b) L0/D ¼ 6.

Fig. 6. The dynamic deformation and failure of (a) foam-filled single tube D6S20a and (b) foam-filled double tube D6D21a.
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that the mass of the foam-filled double tube is almost the same as
the traditional foam-filled single tube, as shown in Table 2. With
both spans, the total energy absorption and the mass efficiency of
the foam-filled double tubes are much higher than those of the
traditional foam-filled single tubes, no matter in quasi-static cases
or under the impact condition. And the energy absorption of all the
foam-filled structures in dynamic tests is higher than that in the
corresponding quasi-static ones. The total energy absorption and
the mass efficiency of the foam-filled double tube in dynamic cases
are about twice of the foam-filled single tube with L0/D ¼ 4 and
nearly thrice for L0/D ¼ 6. The advantage in energy absorption for
the foam-filled double tube structure comes from the larger failure
displacement due to the special geometry.

3.3. Effect of outer tube thickness

Three kinds of outer tubes in different thicknesses, as shown in
Table 1, were tested to study the effect of the outer tube thickness
on the impact responses of foam-filled double tube structures. The
forceedisplacement curves are plotted in Fig. 11. It shows that
thickening the outer tube increases both the load carrying capacity
and the failure displacement, Uf, and the oscillation of the force
remains at the same level.
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The effect of the outer tube thickness on the energy absorption
capacity of the foam-filled double tube was also studied and the
results are shown in Fig. 12. It can be found that thickening
the outer tube increases the total and specific energy absorption of
the structure, in the parameter range of current experiments.
3.4. Effect of the inner tube

Three types of inner tubes shown in Table 1 were used in the
impact tests to investigate the effect of the inner tube diameter and
thickness on the impact responses of foam-filled double tube
structures. The forceedisplacement curves are plotted in Fig. 13.
With the increase of the inner tube diameter, the load carrying
capacity decreases but the failure displacement becomes larger and
the oscillation of the force becomes smaller. Thickening the inner
tube increases the load carrying capacity but reduces the failure
displacement.

Within the current experiment range, enlarging the inner tube
increases the total energy absorption, as well as the mass efficiency
of the structure, as shown in Fig.14. Thickening the inner tube is not
as effective as enlarging the inner tube in increasing the mass
efficiency of the energy absorption. Nevertheless, the detailed
effect of the inner tube is needed to be studied in the future since
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only limited inner tube types were studied in the present experi-
mental investigation.

4. Numerical simulation

In order to explore the mechanism of deformation and failure,
numerical simulation of the foam-filled double tube structure
D6D21, as well as the foam-filled single tube D6S20, were con-
ducted using the explicit finite element code ABAQUS. The material
parameters used in the simulation were obtained from the exper-
iments [12]. The elastic-plastic model with isotropic strain hard-
ening and associated flow rule was used for the profiles. The
engineering stressestrain curves obtained from the experimental
results have been transformed to the true stress-plastic strain
curves. The crushable foam model developed originally by Desh-
pande and Fleck (2000) are used for the aluminum foam core. The
detailed material parameters are shown in Table 3. The impact
Table 3
The material parameters in detail.

r (g/cm3) E (GPa) n np k

Tube 2.7 59 0.3
Foam 0.43 0.625 0.1 0 1.732
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As shown in Fig. 15, the dynamic simulation results are in good
agreement with the experimental results. Since no failure criterion
of the foam and tube material was considered in this simulation,
the results differ from the experimental results at the late stage
when the structure starts to fracture in the experiment.

In order to understand the deformation and failure mechanism
of the foam-filled structures subjected to impact loading, the
maximum equivalent plastic strain 3m at the lower part of the outer
profile near the center is checked in the simulation. The curves of
the maximum equivalent plastic strain 3m to the displacement Uu of
the upper punch for foam-filled structures are shown in Fig. 16.
With the increase of the upper punch displacement, the maximum
strain 3m of the foam-filled single tube increases muchmore rapidly
than the foam-filled double tube. In other words, having the same
equivalent plastic strain in the lower part of the outer profile, the
deflection of the foam-filled double tube structure is much larger
than the traditional foam-filled single tube. So, it could absorb
much more energy than the traditional foam-filled single tube.

As the experiments reveal, the failure displacement Uf of foam-
filled tube structures under dynamic loading is larger than that
under quasi-static loading. In order to understand the mechanism,
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double tube D6D21 under static and dynamic loading conditions
are compared in Fig. 17. It shows that the maximum strain 3m in
dynamic case increases slower than that in static case, which may
be a reason for the failure displacement in dynamic case being
larger than that in static case (Fig. 1) (Fig. 19).

The deformation of the foam in the foam-filled double tube
structure is shown in Fig. 18. In order to investigate the failure
mechanism of the foam under impact loading, the deviatoric
stresses of the foam with the span L0/D ¼ 6 were studied in the
simulation and their distributions along the lower line of Fig. 18 are
shown in Fig. 19. The deviatoric tensile stress in the axial direction,
Fig. 18. The deformation of the foam insid
s33, is high and almost constant in a wide region (about 70 mm)
near the center, which differs from the quasi-static case where two
peaks occur in both sides. This may be a possible explanation for
the spread multi-cracks in the foam found in the experiments. For
comparison, the distribution of deviatoric stresses in a foam-filled
single tube is shown in Fig. 20, which explains the difference in
failure mode between the two kinds of structure (Fig. 3).
e the foam-filled double tube D6D21.
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5. Conclusions

Dynamic bending responses of foam-filled double tube structures
were studied experimentally and numerically in this paper. In
comparison with the traditional foam-filled single tube, this new
structure has a steadier load carrying capacity and much higher
energy absorption efficiency, which is a great potential as an energy
absorber under bending conditions. The effect of profiles and the
span on the dynamic responses for this structure was also investi-
gated in the experiments. Results show that they affect the structural
response in conjunction with each other. With proper parameters,
a steady load carrying capacity and high-energy absorption effi-
ciency can be achieved.

Under the impact condition, the maximum equivalent plastic
strain increases with the displacement of the upper punch of this
new structure much slower than that of the foam-filled single tube,
as found in the simulation. This increases its ability of energy
absorption. In comparisonwith the quasi-static case, the maximum
equivalent plastic strain of the foam-filled tube structures under
dynamic condition increases slower, which gives a reason for the
difference of the displacement before failure between the quasi-
static and dynamic results.

Experiments show that failure of the foam-filled double tube
structure under impact loading results from multiple cracks
spreading in the foam, followed by outer profile failure,which differs
from the quasi-static case where only two cracks were found in the
foam. As pointed by Reyes et al. [11], taking fracture in both the
profile and the foam into account in the numerical analyseswas very
important. However, a reliable or well accepted failure criterion of
aluminum foamhas not been identified yet, especially for the case of
multi-axial deformation. Hence we did not take any failure criterion
in the numerical simulation, and the results are not suitable for the
later response and can not be used to predict the failure of the
structure. Nevertheless, a nearly constant deviatoric stress distri-
bution in the axial direction of the foam is found in numerical
simulation, which may explain the finding of multi-cracks in the
foam, and high-energy absorption capacity of the foam-filled double
tube found in the impact tests. Of course, further study on the failure
criteria should be done both experimentally and numerically.
Restricted to the types of tubes, the effects of the parameters on
the energy absorption property of the new structure have not been
fully explored in current experiments. More detailed experiments
need to be conducted in the near future.
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