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Abstract
This paper investigates the natural frequency, steady-state resonance and stability for the
transverse vibrations of a nanobeam subjected to a variable initial axial force, including axial
tension and axial compression, based on nonlocal elasticity theory. It is reported that the
nonlocal nanoscale has significant effects on vibration behavior, which results in a new effective
nonlocal bending moment different to but dependent on the corresponding nonlocal bending
moment. The effects of nonlocal nanoscale and the variation of initial axial force on the natural
frequency as well as the instability regions are analyzed by the perturbation method. It
concludes that both the nonlocal nanoscale and the initial tension, including static and dynamic
tensions, cause an increase in natural frequency, while an initial compression causes the natural
frequency to decrease. Instability regions are also greatly influenced by the nonlocal nanoscale
and initial tension and they become smaller with stronger nonlocal effects or larger initial
tension.

1. Introduction

In recent years, dynamics, stability and its control in
mechanical vibration has become a basic and inseparable
branch of study in applied mechanics and engineering due to
the rapid progress in engineering technology and increasingly
stringent design requirements. Although generally considered
as a harmful source to design components which should
be controlled and suppressed, mechanical vibration in many
circumstances is a useful phenomenon that can be utilized to
better serve human life.

With the advent of nanoengineering and nanotechnology,
nanotubes and nanobeams are now potential design candidates
which are likely to play key roles in many engineering devices
or components at the nanometer scale, such as micro- or nano-
electromechanical systems (MEMS or NEMS). Currently,
although classical mechanics theories for linear and nonlinear
vibrations of beam, plate or shell-like structures at macroscales
are well established, the vibration behavior and stability of
size-dependent structures at the nanoscale are far from being
understood. This is particularly true when the structures are
subjected to some variable axial forces.

Because of the scarcity of research in vibrations
of nanobeams subjected to a variable axial tension or
compression, an account of research work at the macroscale
and nanoscale is described here. Wicket and Mote [1]
summarized the previous studies on vibration and stability of
axially moving materials and later they made a further analysis
of the classical vibration of axially moving continua [2].
Subsequently, Öz et al [3] presented the nonlinear dynamics
and stability of an axially moving classical beam with a time-
dependent velocity. Transverse nonlinear parametric vibration
of an axially accelerating viscoelastic string was introduced
by Chen et al [4] and the method of multiple scales was
applied directly to the nonlinear partial differential equation to
investigate the principal resonance. Chen and Yang [5] studied
the steady-state response of an axially moving viscoelastic
beam with pulsating velocity by comparing two nonlinear
models. Recently, nonlinear parametric vibration and stability
of an axially moving Timoshenko beam were considered
for two dynamic models by Ghayesh and Balar [6]. For
a micro/nanoscale structure, Ukita et al [7] presented the
relation between photothermal deflection of a microbeam and
an antireflection-coated bimorph structure via an analytical
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approach. Guo and Zhao [8] proposed a theoretical model to
investigate the size-dependent bending elastic properties with
the influence of surface effects. Chen et al [9] investigated the
tip trajectories of a smart micro-cantilever beam consisting of
an atomic force microscope probe with an additional segment
of piezoelectric material on top of the probe.

The nonlocal nanobeam models have received increasing
interest in the past few years. Nonlocal continuum theories
regard the stress state at a point as a function of the
strain states of all points in the body while the classical
continuum mechanics assumes the stress state at a given
point to be dependent uniquely on the strain state at that
same point. The static deformation of nanobeams based
on a simplified nonlocal model was obtained firstly by
Eringen [10]. This nonlocal model received relatively limited
attention because the nonlocal stress was expressed in an
integral relation throughout the domain of concern and an
analytical constitutive relation was difficult to be solved. Using
an alternative differential nonlocal constitutive relation by
Eringen [11], the application of nonlocal continuum theories
to nanobeams was revived recently by Peddieson et al [12]
who focused on cantilever nanobeams which were often used
as actuators in nanoscale systems. The nonlocal theory of
elasticity was used to study applications in nanomechanics
including lattice dispersion of elastic waves, wave propagation
in composites, dislocation mechanics, fracture mechanics,
surface tension fluids, etc [13–26]. In a recent work, Lim
et al [26] established analytical solutions for the transverse
vibrations of a simply supported nanobeam with a constant
axial force based on nonlocal continuum theories. They
concluded, through the variational principle, some new results
for the natural frequency where the exact nonlocal effects were
taken into account. In particular, they derived an effective
nonlocal bending moment in an infinite series of nonlocal
bending moments [21, 23]. This new definition, instead of
the nonlocal bending moment, should be used to replace the
classical bending moment in the equilibrium equation or the
equation of motion of the classical model for a beam.

In this paper, the nonlocal nanobeam with variable initial
axial force effects is investigated. Based on the work by Lim
et al [26], we consider an initial axial tension which varies
with respect to time. Subsequently, the perturbation method is
developed to determine the stability for transverse vibrations.
The effects of variable initial axial force and nonlocal stress on
the vibration behavior of nanobeams are discussed in detail.

2. Equations of motion based on exact nonlocal
elasticity

Considering transverse linear vibrations with small deforma-
tion for a nanobeam with an initial axial tension N at the ends,
the non-dimensional governing equation of motion obtained
based on the D’Alembert principle and a new exact nonlocal
stress model [26] can be expressed as

∂2w̄

∂ t̄2
− N̄

∂2w̄

∂ x̄2
− τ 2 ∂4w̄

∂ x̄2∂ t̄2
+ (τ 2 N̄ + 1)

∂4w̄

∂ x̄4
− 2τ 2 ∂6w̄

∂ x̄6
= 0

(1)

where

x̄ = x

L
, w̄ = w

L
, t̄ = t

√
E I

ρ AL4
,

τ = e0a

L
, N̄ = N L2

E I
.

(2)

In equations (1) and (2), x is the axial longitudinal coordinate,
t time, w transverse displacement, ρ mass density, A cross-
sectional area, L length of nanobeam and E I flexural stiffness
in which E is the Young’s modulus and I the area moment
of inertia. Two other quantities e0 and a which represent
the nonlocal effects are, respectively, a constant dependent on
material and an internal characteristic length, e.g. for lattice
parameter, carbon–carbon or C–C single bond length.

Most of the previous studies assumed the initial axial force
to be absent or a constant [12, 15, 16, 20, 22, 26]. In fact, the
axial force may vary with respect to time. In this work, the
initial axial tension is assumed to vary as

N = N0 + αN1 cos �t (3)

where α is a small dimensionless parameter, N0 and N1 are
the amplitudes of the static and dynamic load, respectively,
and � is the frequency of the applied load. Substituting the
dimensionless form of equation (3) into (1) yields

∂2w̄

∂ t̄2
− (N̄0 + α N̄1 cos �̄t̄)

∂2w̄

∂ x̄2
− τ 2 ∂4w̄

∂ x̄2∂ t̄2

+ [τ 2(N̄0 + α N̄1 cos �̄t̄) + 1]∂
4w̄

∂ x̄4
− 2τ 2 ∂6w̄

∂ x̄6
= 0 (4)

where the dimensionless quantities are �̄ = �

√
ρ AL4

E I , N̄0 =
N0 L2

E I and N̄1 = N1 L2

E I .
Similarly, the non-dimensional forms of nonlocal bending

moment M̄ and effective nonlocal bending moment M̄ef are
given by, respectively,

M̄ = τ 2 ∂2w̄

∂ t̄2
+ [1 − τ 2(N̄0 + α N̄1 cos �̄t̄)]∂

2w̄

∂ x̄2
+ 2τ 2 ∂4w̄

∂ x̄4

(5)

M̄ef = τ 2 ∂2w̄

∂ t̄2
+ [1 − τ 2(N̄0 + α N̄1 cos �̄t̄)]∂

2w̄

∂ x̄2
+ 2τ 2 ∂4w̄

∂ x̄4

− 2τ 2

{
τ 2 ∂4w̄

∂ x̄2∂ t̄2
+ [1 − τ 2(N̄0 + α N̄1 cos �̄t̄)]∂

4w̄

∂ x̄4

+ 2τ 2 ∂6w̄

∂ x̄6

}
(6)

where M̄ = M L
E I and M̄ef = Mef L

E I , in which M and Mef are
the physical nonlocal bending moment and effective nonlocal
bending moment, respectively. It is noticed that the effective
nonlocal bending moment, first proposed by Lim [21, 23],
contains the nonlocal effects through an infinite series of the
nonlocal bending moment as

Mef = M − 2
∞∑

n=1

(e0a)2n ∂2n M

∂x2n
(n = 0, 1, 2, . . .) (7)
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where the nonlocal bending moment can be obtained from the
differential nonlocal stress relation [11] as

M − (e0a)2 ∂2M

∂x2
= −Mcla (8)

where the classical bending moment is

Mcla = E I
∂2w

∂x2
. (9)

3. Perturbation method

Because analytical solutions are almost impossible, the
perturbation method is employed to solve equation (4) for
asymptotic approximate solutions. A first-order uniform
approximation of the transverse displacement is assumed
as [27]

w̄(x̄, t̄; α) = w̄0(x̄, T̄0, T̄1) + αw̄1(x̄, T̄0, T̄1) + · · · (10)

where T̄0 = t̄ is a fast timescale characterizing the motion
occurring at a specific natural frequency of the corresponding
unperturbed system (with an invariant axial force) while T̄1 =
αt̄ is a slow timescale characterizing the modulation of the
amplitudes and phases due to possible resonance caused by the
variation of the initial axial force. Hence, it is obvious that

∂

∂ t̄
= ∂

∂ T̄0
+ α

∂

∂ T̄1
+ O(α2) (11a)

∂2

∂ t̄2
= ∂2

∂ T̄ 2
0

+ 2α
∂2

∂ T̄0∂ T̄1
+ O(α2) (11b)

where terms of the order of O(α2) and higher are neglected.
By use of equations (10), (11a) and (11b), and equating
coefficients of like powers of the small parameter α in the
resultant equations from the governing equation (4), one
obtains

∂2w̄0

∂ T̄ 2
0

− N̄0
∂2w̄0

∂ x̄2
− τ 2 ∂4w̄0

∂ x̄2∂ T̄ 2
0

+ (τ 2 N̄0 + 1)
∂4w̄0

∂ x̄4

− 2τ 2 ∂6w̄0

∂ x̄6
= 0 (12a)

∂2w̄1

∂ T̄ 2
0

− N̄0
∂2w̄1

∂ x̄2
− τ 2 ∂4w̄1

∂ x̄2∂ T̄ 2
0

+ (τ 2 N̄0 + 1)
∂4w̄1

∂ x̄4

− 2τ 2 ∂6w̄1

∂ x̄6
= N̄1 cos �̄t̄

∂2w̄0

∂ x̄2
− τ 2 N̄1 cos �̄t̄

∂4w̄0

∂ x̄4

+ 2τ 2 ∂4w̄0

∂ x̄2∂ T̄0∂ T̄1
− 2

∂2w̄0

∂ T̄0∂ T̄1
. (12b)

In the vibration theory, it is well known that, if the
variable frequency �̄ is close to twice the natural frequency
of unperturbed system (12a), the sub-harmonic resonance may
occur [28], namely

�̄ = 2ω̄n + αυ (13)

where ω̄n is the dimensionless natural frequency for the
nanobeam subjected to a constant initial axial force, υ

represents a detuning parameter which quantifies the deviation

of �̄ from twice the frequency 2ω̄n . The solution of
equation (12a) can be approximated as

w̄0 = An(T̄1) exp(iω̄n T̄0)ϕn(x̄) + cc (14)

where i is the imaginary unit, n = 1, 2, 3, . . . denotes the mode
number, An is a complex function related to T̄1 and cc stands
for the complex conjugate of all the preceding terms on the
right-hand side.

For free vibration, the natural frequency and vibration
mode function of a simply supported nanobeam can be
expressed as [26]

ϕn(x̄) = sin(nπ x̄) (15)

ω̄n = nπ

√
N̄0 + (N̄0τ 2 + 1)n2π2 + 2τ 2n4π4

1 + n2π2τ 2
. (16)

Substituting equations (13) and (14)–(16) into equation (12b)
and expressing the trigonometric functions in exponential form
yields

∂2w̄1

∂ T̄ 2
0

− N̄0
∂2w̄1

∂ x̄2
− τ 2 ∂4w̄1

∂ x̄2∂ T̄ 2
0

+ (τ 2 N̄0 + 1)
∂4w̄1

∂ x̄4

− 2τ 2 ∂6w̄1

∂ x̄6
= cc + NST +

[
2iω̄n

dAn

dT̄1

(
τ 2 d2ϕn

dx̄2
− ϕn

)

+ N̄1

2
Ân

(
d2ϕn

dx̄2
− τ 2 d4ϕn

dx̄4

)
exp(iυ T̄1)

]
exp(iω̄n T̄0)

(17)

where Ân is the complex conjugate of An and NST represents
the terms that will not bring secular terms into the solution.
Equation (17) has a bounded solution only if a solvability
condition holds. The solvability condition demands the
orthogonal relations as [27]〈
2iω̄n

dAn

dT̄1

(
τ 2 d2ϕn

dx̄2
− ϕn

)
+ N̄1

2
Ân

(
d2ϕn

dx̄2
− τ 2 d4ϕn

dx̄4

)

× exp(iυ T̄1), ϕn

〉
= 0 (18)

where the inner product is defined as

〈u, v〉 =
∫ 1

0
uv̂ dx̄ . (19)

Application of the distributive law of the inner product to
equation (18) yields

− (τ 2n2π2 + 1)

[
iω̄n

dAn

dT̄1
+ n2π2

4
N̄1 Ân exp(iυ T̄1)

]
= 0.

(20)

3.1. Natural frequency of perturbed system

The solution of equation (20) can be determined as

An(T̄1) =
[
(1 + i) exp

(
1

4ω̄n

√
n4π4 N̄2

1 − 4υ2ω̄2
n T̄1

)]
× exp(iυ T̄1/2). (21)

3
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Figure 1. The first two mode natural frequencies with respect to
nonlocal nanoscale and static tension for N̄1 = 1.

Figure 2. The first mode natural frequency with respect to nonlocal
nanoscale and dynamic tension for N̄0 = 10.

Furthermore, a particular solution of equation (12b) without
the secular terms may be given by

w̄1 = 0. (22)

By combining equations (10), (14), (21) and (22), the natural
frequency of such a perturbed system is obtained as

� = ω̄n + αυ

2
− i

α

4ω̄n

√
n4π4 N̄2

1 − 4υ2ω̄2
n . (23)

It is a complex frequency and the natural frequency is adopted
as the extraction of the quadratic sum of the real part and
imaginary part, namely

ω̄vn =
√

ω̄2
n + αυω̄n + α2n4π4 N̄2

1

16ω̄2
n

(24)

where ω̄vn represents the n-mode dimensionless natural
frequency of the nanobeam subjected to a variable tension.

Effects of nonlocal nanoscale and the axial tension on the
frequency (24) are shown in figures 1–3, where α = υ = 0.5
is assumed.

Figure 3. The second mode natural frequency with respect to
nonlocal nanoscale and dynamic tension for N̄0 = 10.

It is observed that the natural frequencies increase
with increasing nonlocal nanoscale, namely the stiffness of
nanobeams increases for higher nonlocal nanoscales. The rate
of increase is particularly marked for higher vibration modes.
A possible explanation is that a larger nonlocal nanoscale
indicates stronger intermolecular interaction constraints and
thus higher stiffness. On the other hand, the natural frequencies
increase with a larger initial axial tension, for both static
and dynamic tensions. However, the effects of dynamic
force are weaker than those of static force. Through a
similar analytical procedure, it can be predicted that the
vibration frequencies should decrease if an axial compression
is present. Furthermore, the vibration frequencies decrease
with increasing compression.

When the nanobeam is subjected to a variable axial
compression, defined as P = P0 +αP1 cos �t and substituting
the dimensionless compression P̄ = −N̄ into equations (16)
and (24) directly, one gains the relation between critical
dynamic compression and nonlocal nanoscale as

P̄1cr =

4

√√√√
4

(
(1−P̄0τ 2)π2+2τ 2π4− P̄0

1+π2τ 2

)2

+ 1

π

(
(1−P̄0τ 2)π2+2τ 2π4− P̄0

1+π2τ 2

) 3
2

.

(25)

The critical dynamic compression versus the nonlocal
nanoscale under some different static compression is shown
in figure 4, where α = υ = 0.5 is assumed. It implies
that stronger nonlocal effects increase the critical dynamic
compression while a larger static compression causes the
critical dynamic compression to decrease.

3.2. Stability analysis

To analyze the stability of the perturbed system, we expand the
complex function in equation (14) as

An(T̄1) = an(T̄1) exp(iβn(T̄1)) (26)

where an and βn , represent, respectively, amplitude and angle
of the response and they are real functions related to T̄1.

4
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Figure 4. Effects of nonlocal nanoscale on the critical dynamic
compression.

Figure 5. Effects of detuning parameter and nonlocal nanoscale on
an unstable region for the first mode sub-harmonic resonance with
N̄0 = 5.

Figure 6. Effects of detuning parameter and nonlocal nanoscale on
an unstable region for the second mode sub-harmonic resonance with
N̄0 = 5.

Substituting equation (26) into (20) yields

dan

dT̄1
= − N̄1

4ω̄n
n2π2an sin θn (27)

Figure 7. Effects of detuning parameter and static tension on an
unstable region for the first mode sub-harmonic resonance with
τ = 0.1.

Figure 8. Effects of detuning parameter and static tension on an
unstable region for the second mode sub-harmonic resonance with
τ = 0.1.

dθn

dT̄1
= υ − N̄1

2ω̄n
n2π2 cos θn (28)

where θn = υ T̄1 − 2βn is the new phase angle.
For the steady-state response, the amplitude and new

phase angle in equations (27) and (28) should be constant and
they result in

υ2 = N̄2
1

4ω̄2
n

n4π4. (29)

Therefore, the unstable regions are determined by the stability
boundaries as

υ = ± N̄1

2ω̄n
n2π2 (30)

where the areas surrounded by the two boundaries are the
unstable regions.

From figures 5 to 8, the unstable regions are shown to
reduce with increasing nonlocal nanoscale or static tension.
With respect to the nonlocal elasticity theory, it can be deduced
that stronger nonlocal nanoscale effects result in larger stable
regions for nanobeam structures.

5
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In fact, the sub-harmonic resonance can be extended
to summation or difference parametric resonance when the
variable frequency �̄ is related to any two natural frequencies
of the unperturbed system [28], namely

�̄ = ω̄m + ω̄n + αυ (31a)

�̄ = ω̄m − ω̄n + αυ. (31b)

In equation (31a), the summation parametric resonance may
occur for m �= n while the sub-harmonic resonance is
recovered for m = n. Similarly, equation (31b) may result
in a different parametric resonance assuming m > n without
loss of generality.

Taking the summation parametric resonance as an
example, the solution of equation (12a) may be expressed as

w̄0 = Am(T̄1) exp(iω̄m T̄0)ϕm(x̄) + An(T̄1)

× exp(iω̄n T̄0)ϕn(x̄) + cc. (32)

Through a similar process, the solvability condition for
summation parametric resonance is derived as〈
2iω̄n

dAn

dT̄1

(
τ 2 d2ϕn

dx̄2
− ϕn

)
+ N̄1

2
Âm

(
d2ϕm

dx̄2
− τ 2 d4ϕm

dx̄4

)

× exp(iυ T̄1), ϕn

〉
= 0 (33a)

〈
2iω̄m

dAm

dT̄1

(
τ 2 d2ϕm

dx̄2
− ϕm

)
+ N̄1

2
Ân

(
d2ϕn

dx̄2
− τ 2 d4ϕn

dx̄4

)

× exp(iυ T̄1), ϕm

〉
= 0. (33b)

Thus the unstable regions can be determined similarly.

4. Conclusions

By use of nonlocal elasticity theory, the dynamics and
stability of transverse vibrations of nanobeams with variable
initial axial forces are presented. The nonlocal nanoscale
and dimensionless axial static and dynamic forces induce
significant effects on vibration frequencies and the unstable
regions. Increases in nonlocal effects and axial tensile force
cause the vibration frequencies to increase, which imply
higher nanobeam stiffness. At the same time, they reduce
the unstable regions which implies larger stable regions for
the vibrating nanobeam. Additionally, an increase in axial
compression results in a lower natural frequency. The critical
dynamic compression is proved to increase with increasing
nonlocal nanoscale while it decreases with increasing static
compression. Although this paper only concerns simply
supported nanobeams, the identical approach is also applicable
to nanobeams with other boundary conditions. The nonlocal
elasticity approach is very efficient and, to a certain extent,
indispensable in the continuum approach to model, simulate
and analyze the dynamics and stability of size-dependent
nanostructures.
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