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ABSTRACT The torsional static and dynamic behaviors of circular nanosolids such as nanoshafts,
nanorods and nanotubes are established based on a new nonlocal elastic stress field theory. Based
on a new expression for strain energy with a nonlocal nanoscale parameter, new higher-order
governing equations and the corresponding boundary conditions are first derived here via the
variational principle because the classical equilibrium conditions and/or equations of motion can-
not be directly applied to nonlocal nanostructures even if the stress and moment quantities are
replaced by the corresponding nonlocal quantities. The static twist and torsional vibration of cir-
cular, nonlocal nanosolids are solved and discussed in detail. A comparison of the conventional and
new nonlocal models is also presented for a fully fixed nanosolid, where a lower-order governing
equation and reduced stiffness are found in the conventional model while the new model reports
opposite solutions. Analytical solutions and numerical examples based on the new nonlocal stress
theory demonstrate that nonlocal stress enhances stiffness of nanosolids, i.e. the angular displace-
ment decreases with the increasing nonlocal nanoscale while the natural frequency increases with
the increasing nonlocal nanoscale.
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I. INTRODUCTION
Mechanical behaviors of materials or structures at nanoscale are important in the designs of nano-

electronic-mechanical-systems (NEMS). Comparing with macro materials and structures, some effects
which are not observed atmacro-sizes appear at nanoscale, such as size-dependent phenomena.Because of
such effects, the classical continuum mechanics fails at nanoscale. For example, according to the classical
continuum theory, the stress is singular at a crack tip despite the weak external load. It is strange and
cannot be explained from physics because each material has limited fatigue strength. In fact, atomic
simulation and experiments have proved nonsingularity of stress at the crack tip[1].

Currently, three main approaches are used to investigate nanomechanics: experiment, molecular
dynamic (MD) simulation and the continuum theory. Due to the complexity of instruments, equipment
and technology, precise experiments at nanoscale are extremely difficult to be conducted. As MD simu-
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lation considers each individual molecule and its multiple mechanical or chemical web-interactions, its
use requires extremely fast computing facilities and thence it is largely confined to relatively restricted
systems with a limited number of molecules. That is why many researchers focus on the new continuum
theory in nanomechanics. To analytically investigate the size-dependent effect, nonlocal theory[2], sur-
face/interface stress theory[3,4] and strain gradient theory[5] have been proposed. The nonlocal stress
field theory states that the stress at a point in a domain is dependent not only on the classical local
strain at that particular point, but also on the spatial integrals that represent the weighted averages of
the local strain contribution of all other points in the domain. Eringen’s nonlocal elasticity[2] allows one
to account for the small scale effect that becomes significant when dealing with nanostructures. This
theory suits for the nanomechanics. For instance, stress at the crack tip is nonsingularity via nonlocal
theory[1]. Surface effect[3,4] is present due to the high surface-to-bulk ratio at nanoscale, and the me-
chanical properties of atoms at and near a surface differ significantly from those of the internal atoms
because of reduced coordination. The similar situation occurs at an interface between two dissimilar
media. Investigation of the effects of surface and interface stresses on the mechanical responses of thin
films and multilayers has been developing probably since the work by Stoney[3]. A very recent work of
Wang et al.[6] reviewed the advances in surface stress effect in mechanical behaviors of nanostructures.
The strain gradient theory[5] consists of two groups, the higher-order and lower-order sub-theories. For
example, in the higher-order theory, higher-order stresses are defined to be the work-conjugate to strain
gradient, thus leading to the necessity of using higher-order governing equations and boundary condi-
tions. These approaches are all available in nanostructures and in fact, some work was presented based
on different methods. For example, Maranganti and Sharma[7] characterized the mechanical property
of the nanostructured materials by using the surface stress model and nonlocal stress theory. They
explained the length scales at which nonlocal effects manifest for different materials. In this study, the
nonlocal stress theory is adopted to investigate the torsional behavior of nanosolids.

Because it is mathematically difficult to obtain the solutions of nonlocal problems due to the spatial
integrals in the nonlocal relations proposed originally[2], Eringen[8] established an equivalent differential
constitutive equation within a two-dimensional region and under certain conditions using Green’s
function with a certain approximation error in the year 1983. Subsequently, there were many studies
on nonlocal field[9–25] and most of these studies focused on carbon nanotubes (CNTs)[11,12,20–22,25],
nanobeams[10,13,15,17,18,23,24] and nanoplates[16]. The main research interests include static behaviors
such as bending, buckling, and dynamic behaviors such as free vibration, wave propagation, etc. The
previous studies[10–13,15,16] adopted the classical equilibrium conditions and/or equations of motion for
nonlocal nanostructures and directly replaced the stress and moment quantities with the corresponding
nonlocal quantities. These conventional models are termed the partial nonlocal models by Lim[17–19]

and they are questionable because they predict intriguing solutions with respect to the new nonlocal
stress model and solutions for bending, buckling and vibration of nanobeams and tensile behavior of
nanostructures. For the partial nonlocal model, three critical issues for nanobeam solutions overlooked
in the previous studies were identified[17,18]. Yang and Lim[25] further made a convincing comparison
with the new, partial nonlocal models and the MD simulation. The conclusion by Yang and Lim[25] is
MD and the new nonlocal model showed stiffness enhancement effect while the partial nonlocal model
showed otherwise. According to the new nonlocal model, a new effective nonlocal bending moment is
defined which can be expressed as an infinite series in terms of the nonlocal bending moment and the
nonlocal nanoscale. This exact nonlocal model began to receive considerable attention recently[20–25].

Although there has been research for transverse bending or vibration of nonlocal nano-
structures[10–13,15–18,20–25], very limited studies on torsional behaviors are available at present. Torsional
deformation and vibration are easily seen in NEMS or some other nano-devices and a new torsional
model that considers the true nonlocal effect is necessary. In this paper, a new torsion model is proposed
via the variational principle and the angular deformation and free vibration of nanosolids are analyzed.
Conclusions of the new nonlocal model are consistent with the solutions for transverse bending, vibration
of nanobeams and CNTs presented by Lim et al.[17–25]. In addition, this paper also attempts to make
a comparison with the conventional partial nonlocal model, where the nonlocal stress and nonlocal
moment quantities are directly substituted into the classical equilibrium equation. Intriguing solutions
are concluded that nanostructural stiffness is reduced due to increasing nanoscale size effects. The
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intriguing conclusions could be removed if the partial nonlocal model is replaced by a new exact
nonlocal stress model as what is presented in this paper.

II. EXACT NONLOCAL SHEAR STRESS MODEL FOR TORSION
For a circular nanosolid with radius R, length L and at a point r from the center, the nonlocal and

classical shear stresses sxr and s′xr, respectively, are related through a differential constitutive equation

sxr − (e0a)
2 d2sxr

dx2
= s′xr (1)

where e0 is a constant dependent on material, a is an internal characteristic length and x is the
coordinate along the nanosolid. Further considering the relation between the classical shear stress s′xr

and the classical shear strain γ where s′xr = Gγ = Gr
dθ

dx
, we obtain

s̄xr − τ2 d2s̄xr

dx̄2
= r̄

dθ

dx̄
(2)

where s̄xr = sxr/G, x̄ = x/L, r̄ = r/L, nonlocal nanoscale τ = e0a/L, angular displacement θ, and
shear modulus G. This is a second-order ordinary differential equation and the general solution can be
expressed as

s̄xr =

∞
∑

n=1

τ2n−2r̄
d2n−1θ

dx̄2n−1
=

∞
∑

n=1

τ2n−2

(

r̄
dθ

dx̄

)

〈2n−2〉

=

∞
∑

n=1

τ2n−2γ〈2n−2〉 (3)

where ()
〈n〉

represents the n-order derivative with respect to x̄. The strain energy density can be written
as

u =

∫ γ

0

sxrdγ = G

∞
∑

n=1

τ2n−2

∫ γ

0

γ〈2n−2〉dγ (4)

Variation of the total strain energy is given by

δU =
GJ

L

∫ 1

0

∞
∑

n=0

(2n − 1) τ2nθ〈2n+2〉δθ dx̄ +
GJ

L

[(

−

∞
∑

n=0

(2n − 1) τ2nθ〈2n+1〉

)

δθ

+

(

∞
∑

n=1

(2n − 1) τ2nθ〈2n〉

)

δθ〈1〉 +

(

−

∞
∑

n=1

2nτ2n+2θ<2n+1>

)

δθ〈2〉

+

(

∞
∑

n=1

(2n − 1) τ2n+2θ<2n>

)

δθ〈3〉 +

(

−

∞
∑

n=1

2nτ2n+4θ<2n+1>

)

δθ〈4〉

+

(

∞
∑

n=1

(2n− 1) τ2n+4θ<2n>

)

δθ〈5〉 +

(

−

∞
∑

n=1

2nτ2n+6θ<2n+1>

)

δθ〈6〉 + · · ·

]1

0

(5)

where J =
∫

A r2dA is the polar moment of inertia over the cross-sectional area A.

III. TORSIONAL BEHAVIOR ANALYSIS
In this section, torsional statics and dynamics are presented and discussed. Various boundary con-

ditions are considered in the analysis of dynamic behaviors. In addition, results of the partial nonlocal
model, which has been existing extensively, is also presented for comparison.

3.1. Static Twist Analysis

For nanosolids, the twisting moment per unit length is T0, variation of the work done by the moment
is

δWT0
=

GJ

L
T̄0

∫ 1

0

δθdx̄ (6)
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where T̄0 = T0L
2/(GJ). For static equilibrium, the variational principle requires that

δ (U − WT0
) = 0 (7)

From Eqs.(5), (6) and (7), one obtains an equilibrium equation. Since δθ in the energy function does
not vanish, we have

∞
∑

n=0

(2n − 1) τ2nθ〈2n+2〉 = T̄0 (8)

and the following higher-order boundary conditions

−

∞
∑

n=0
(2n − 1) τ2nθ〈2n+1〉 = 0 or θ = 0

∞
∑

n=1
(2n − 1) τ2nθ〈2n〉 = 0 or θ〈1〉 = 0

−

∞
∑

n=1
2nτ2n+2θ<2n+1> = 0 or θ〈2〉 = 0

∞
∑

n=1

(2n − 1) τ2n+2θ<2n> = 0 or θ〈3〉 = 0

... or
...























































at x̄ = 0,1

(9)

Considering the most significant nonlocal terms in Eqs.(8) and (9) where n = 1, the governing
equation for a nanosolid fixed at both ends is

τ2θ〈4〉 − θ〈2〉 = T̄0 (10)

and the boundary conditions for a fully fixed nanosolid without angular displacement and higher-order
stress are

θ (0) = 0, θ〈2〉 (0) + 3τ2θ〈4〉 (0) = 0

θ (1) = 0, θ〈2〉 (1) + 3τ2θ〈4〉 (1) = 0
(11)

Solving Eq.(10) using the boundary conditions in Eqs.(11) yields the angular displacement as

θ (x̄) =
T̄0τ

2

4
(

1 + e1/τ
)ex̄/τ +

T̄0τ
2e1/τ

4
(

1 + e1/τ
)e−x̄/τ

−

T̄0

2
x̄2 +

T̄0

2
x̄ −

T̄0τ
2

4
(12)

The classical torsional solution[26] is recovered in the limit when τ → 0. The effect of τ on the maximum
angular displacement at mid-point x̄ = 0.5 is illustrated in Fig.1. It is observed that the angular
displacement decreases with increasing τ . Therefore, the classical continuum theory overestimates the
angular displacement at nanoscale and some new continuum theories, such as the nonlocal stress theory,
are necessary.

On the other hand, the normalized angular rotation displacement with respect to the maximum
classical solution is

θ

(θmax)classical
=

2
(

1 + e1/τ
) (

2x̄ − 2x̄2
− τ2

)

+ 2τ2
(

ex̄/τ + e1/τe−x̄/τ
)

1 + e1/τ
(13)

A comparison of normalized classical and nonlocal angular rotations is shown in Fig.2. The significant
effect of nonlocal nanoscale which yields as much as 5% reduction in angular displacement for τ = 0.15
is observed.

3.2. Torsional Vibration Analysis

The nonlocal torsional dynamics of nanosolids is presented and two kinds of higher-order boundary
conditions are taken into account. For comparison, a partial nonlocal model for torsional analysis is
also proposed.

For free vibration of a nanosolid, the kinetic energy for one complete vibration cycle is given by

∫ Pe

0

Ek dt =

∫ Pe

0

∫ L

0

1

2
ρπR2

(

R
∂θ

∂t

)2

dxdt =
πR4Lρ

2Pe

∫ 1

0

∫ 1

0

(

∂θ

∂t̄

)2

dx̄dt̄ (14)
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Fig. 1. The maximum angular displacement for varying
nonlocal nanoscale.

Fig. 2. Reduction of normalized angular displacement due
to nonlocal effect.

where ρ is mass density, t is time and t̄ = t/Pe is the dimensionless time, in which Pe is a characteristic
time. Variation of the kinetic energy yields

δ

∫ Pe

0

Ek dt =
πR4Lρ

Pe

∫ 1

0

∫ 1

0

∂θ

∂t̄
δ

(

∂θ

∂t̄

)

dx̄dt̄ =
πR4Lρ

Pe

[

∫ 1

0

∂θ

∂t̄
δθ

∣

∣

∣

∣

t̄=1

t̄=0

dx̄ −

∫ 1

0

∫ 1

0

∂2θ

∂t̄2
δθ dx̄dt̄

]

(15)
For equilibrium, the variational principle requires that

δ

∫ Pe

0

(U − Ek) dt = 0 (16)

Considering
∫ 1

0

∂θ

∂t̄
δθ

∣

∣

∣

∣

t̄=1

t̄=0

dx̄ = 0 (17)

because the motion is periodic and at t̄ = 0 and t̄ = 1, the quantity within the integration have the
same values, we have from Eq.(16)

0 =
GJPe

L

∫ 1

0

∫ 1

0

(

∞
∑

n=0

(2n − 1) τ2nθ〈2n+2〉 + ρ̄
∂2θ

∂t̄2

)

δθ dx̄dt̄

+
GJPe

L

[(

−

∞
∑

n=0

(2n − 1) τ2nθ〈2n+1〉

)

δθ

+

(

∞
∑

n=1

(2n − 1) τ2nθ〈2n〉

)

δθ〈1〉 +

(

−

∞
∑

n=1

2nτ2n+2θ<2n+1>

)

δθ〈2〉

+

(

∞
∑

n=1

(2n − 1) τ2n+2θ<2n>

)

δθ〈3〉 +

(

−

∞
∑

n=1

2nτ2n+4θ<2n+1>

)

δθ〈4〉

+

(

∞
∑

n=1

(2n − 1) τ2n+4θ<2n>

)

δθ〈5〉 +

(

−

∞
∑

n=1

2nτ2n+6θ<2n+1>

)

δθ〈6〉 + · · ·

]x̄=1

x̄=0

dt̄ (18)

where ρ̄ =
πR4L2

GJP 2
e

ρ is the dimensionless mass density. Because δθ do not vanish, we have

∞
∑

n=0

(2n − 1) τ2nθ〈2n+2〉 + ρ̄
∂2θ

∂t̄2
= 0 (19)
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and the following boundary conditions

−

∞
∑

n=0
(2n − 1) τ2nθ〈2n+1〉 = 0 or θ = 0

∞
∑

n=1
(2n − 1) τ2nθ〈2n〉 = 0 or θ〈1〉 = 0

−

∞
∑

n=1
2nτ2n+2θ<2n+1> = 0 or θ〈2〉 = 0

∞
∑

n=1
(2n − 1) τ2n+2θ<2n> = 0 or θ〈3〉 = 0

... or
...























































at x̄ = 0,1

(20)

Again, it is found that the governing equation (19) and boundary conditions (20) contain higher-order
terms. Note that the governing equation (19) is reduced to the classical torsional vibration case when
the nonlocal nanoscale vanishes[26].

The simplified governing equation and boundary conditions considering only the most significant
nonlocal term n = 1 in Eqs.(19) and (20) are given by, respectively

τ2θ〈4〉 − θ〈2〉 + ρ̄
∂2θ

∂t̄2
= 0 (21)

θ〈1〉 − τ2θ〈3〉 = 0 or θ = 0
θ〈2〉 + 3τ2θ〈4〉 = 0 or θ〈1〉 = 0

}

at x̄ = 0,1
(22)

For linear torsional vibration of a nanosolid, the modes are harmonic in time. Hence the time-
dependent angular rotation can be represented by

θ (x̄, t̄) = Θ (x̄) eiω̄nt̄ (23)

where i =
√

−1, Θ is the time-independent angular amplitude, ω̄n = ωnPe (n = 1, 2, 3 · · ·) is the
dimensionless natural frequency in which ωn is the dimensional frequency.

Substituting Eq.(23) into Eqs.(21) and (22) yields

−Θ〈2〉 + τ2Θ〈4〉
− ρ̄ω̄2

nΘ = 0 (24)

and the higher-order boundary conditions are

Θ〈1〉
− τ2Θ〈3〉 = 0 or Θ = 0

Θ〈2〉 + 3τ2Θ〈4〉 = 0 or Θ〈1〉 = 0

}

at x̄ = 0,1
(25)

Since Eq.(24) is a fourth-order ordinary differential equation, its solution can be written as

Θn (x̄) = C1neiλ1nx̄ + C2neiλ2nx̄ + C3neiλ3nx̄ + C4neiλ4nx̄ (26)

where Cjn (j = 1, 2, 3, 4) are coefficients and λjn (j = 1, 2, 3, 4) are the four roots of the dispersion
relation in Eq.(24), or

τ2λ4
n + λ2

n − ρ̄ω̄2
n = 0 (27)

Equation (27) can also be obtained by substituting Θn (x̄) = Cneiλnx̄ into Eq.(24), where Cn is a nonzero
constant.

3.2.1. Fully fixed nanosolids

The boundary conditions for a fully fixed nanosolid are given by

Θ (0) = 0, Θ〈2〉 (0) + 3τ2Θ〈4〉 (0) = 0

Θ (1) = 0, Θ〈2〉 (1) + 3τ2Θ〈4〉 (1) = 0
(28)

Substituting Eq.(26) into Eq.(28) yields
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1 1 1 1
eiλ1n eiλ2n eiλ3n eiλ4n

k1n k2n k3n k4n

k1neiλ1n k2neiλ2n k3neiλ3n k4neiλ4n























C1n

C2n

C3n

C4n















=















0
0
0
0















(29)

where kjn = −λ2
jn + 3τ2λ4

jn, (j = 1, 2, 3, 4). To obtain a nonzero solution of Cjn, the coefficient deter-
minant of the matrix should be zero, or

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
eiλ1n eiλ2n eiλ3n eiλ4n

k1n k2n k3n k4n

k1neiλ1n k2neiλ2n k3neiλ3n k4neiλ4n

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (30)

From Eqs.(27) and (30), the relation between dimensionless natural frequency and nonlocal nanoscale
is thus derived. Figures 3 and 4 show the first three mode dimensionless natural frequencies containing the
nonlocal effect, where the dotted curves are nonlocal results while solid lines represent the corresponding
classical solutions, which can be obtained by dropping the nonlocal terms containing τ in Eqs.(27) and
(30). It is observed that the nonlocal nanoscale enhances natural frequency, especially the higher-mode
frequencies. The classical solution undervalues the torsional vibration frequency and it fails to predict
the free vibration behavior of a nanosolid. It also demonstrates that higher dimensionless density causes
lower natural frequency from Figs.3 and 4.

Fig. 3. Effects of nonlocal nanoscale on the first three mode
dimensionless frequencies of fully fixed nanosolids for ρ̄ =
0.5, where the dotted curves and solid lines are the nonlocal
and classical results, respectively.

Fig. 4. Effects of nonlocal nanoscale on the first three mode
dimensionless frequencies of fully fixed nanosolids for ρ̄ =
1.0, where the dotted curves and solid lines are the nonlocal
and classical results, respectively.

For comparison and to illustrate the major differences, the conventional partial nonlocal theory for
torsional analysis of a nanosolid is derived. Firstly, the correlation between nonlocal twisting moment
and relative angular rotation is obtained from Eq.(1), as

T − (e0a)
2 ∂2T

∂x2
= GJ

∂θ

∂x
(31)

where T =
∫ ∫

A rsxrdA is the nonlocal twisting moment. The conventional nonlocal theory combines
the nonlocal relation and classical equilibrium. Subsequently, force equilibrium is analysis applied to
an element dx of the nanosolid, and the equilibrium equation is derived based on D’ Alembert principle
as

ρJ
∂2θ

∂t2
dx =

∂T

∂x
dx (32)

Therefore, the conventional nonlocal governing equation of torsional vibration is derived from Eqs.(31)
and (32) as

ρ
∂2θ

∂t2
− (e0a)

2
ρ

∂4θ

∂x2∂t2
= G

∂2θ

∂x2
(33)



Vol. 24, No. 6 Cheng Li et al.: Twisting Statics and Dynamics for Circular Elastic Nanosolids · 491 ·

It is clearly seen that the governing equation (33) is a lower-order equation comparing to that of
the new nonlocal stress theory in Eq.(19). Following Eq.(33), one obtains the partial nonlocal effects
on natural frequency of a fully fixed nanosolid as shown in Fig.5.

Therefore, the partial (conventional) nonlocal effects cause natural frequency to decrease and the
nonlocal frequencies are lower than the corresponding classical solutions. In other words, the partial
nonlocal model results in lower stiffness for nanostructures. However, opposite conclusion has been
found in the analysis above where a new nonlocal shear stress model was employed.

Fig. 5. Effects of nonlocal nanoscale (conventional nonlocal
model) on the first three mode natural frequencies for a
fully fixed nanosolid, where solid and dotted curves are the
classical and nonlocal results, respectively.

Fig. 6. Effects of nonlocal nanoscale on the first three mode
frequencies for completely free nanosolids for ρ̄ = 2.0,
where the dotted curves and solid lines are nonlocal and
classical results, respectively.

3.2.2. Completely free nanosolids

Similarly, for a completely free nanosolidwithout end torsion but with higher-order angular condition,
the simplified boundary conditions from Eq.(25) are

Θ〈3〉 (0) = 0, Θ〈1〉 (0) = 0
Θ〈3〉 (1) = 0, Θ〈1〉 (1) = 0

(34)

Following the same procedure, the relation between ω̄n and τ can be obtained. Figure 6 shows the
nonlocal effect on the first three mode natural frequencies for ρ̄ = 2.0. The solid lines represent the
corresponding classical solutions[26].

ωcn =
nπ

L

√

G

ρ
(n = 1, 2, 3, · · ·) (35)

or in non-dimensional form as

ω̄cn =
nπ

L

√

G

ρ
Pe =

nπ

L

√

G

ρ

√

πR4L2ρ

2GJ
= nπ (n = 1, 2, 3, · · ·) (36)

where ρ̄ = 2.0 and J = πR4/2 for a circular nanosolid. Again, it is observed that τ enhances the natural
frequency especially for higher-mode frequency. Note that the classical solutions (solid lines) in Fig.6,
as given in Eq.(36), are identical to the nonlocal solutions when τ = 0. This example proves again the
validity and correctness of the nonlocal shear stress model presented in this work.

3.2.3. Torsional vibration of nanosolids subjected to an initial twisting moment

Considering a nanosolid with an initial twisting moment per unit length T0, the variational principle
requires

δ

∫ Pe

0

(U + WT0
− Ek) dt = 0 (37)
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By substituting Eqs.(5), (6) and (15) into Eq.(37), one obtains

0 =
GJPe

L

∫ 1

0

∫ 1

0

(

∞
∑

n=0

(2n − 1) τ2nθ〈2n+2〉 + T̄0 + ρ̄
∂2θ

∂t̄2

)

δθ dx̄dt̄

+
GJPe

L

[(

−

∞
∑

n=0

(2n − 1) τ2nθ〈2n+1〉

)

δθ

+

(

∞
∑

n=1

(2n − 1) τ2nθ〈2n〉

)

δθ〈1〉 +

(

−

∞
∑

n=1

2nτ2n+2θ<2n+1>

)

δθ〈2〉

+

(

∞
∑

n=1

(2n − 1) τ2n+2θ<2n>

)

δθ〈3〉 +

(

−

∞
∑

n=1

2nτ2n+4θ<2n+1>

)

δθ〈4〉

+

(

∞
∑

n=1

(2n − 1) τ2n+4θ<2n>

)

δθ〈5〉 +

(

−

∞
∑

n=1

2nτ2n+6θ<2n+1>

)

δθ〈6〉 + · · ·

]x̄=1

x̄=0

dt̄ (38)

which results in the higher-order governing equation as

∞
∑

n=0

(2n − 1) τ2nθ〈2n+2〉 + ρ̄
∂2θ

∂t̄2
+ T̄0 = 0 (39)

The simplified governing equation which considers the most significant nonlocal term in Eq.(39) is
given by

τ2θ〈4〉 − θ〈2〉 + ρ̄
∂2θ

∂t̄2
+ T̄0 = 0 (40)

Using Eq.(23), the simplified governing equation becomes

τ2Θ〈4〉
− Θ〈2〉

− ρ̄ω̄2
nΘ + T̄0 = 0 (41)

and the dispersion relation is

τ2λ4
n + λ2

n − ρ̄ω̄2
n + T̄0 = 0 (42)

Taking a nanosolid with completely free ends as an example, the boundary conditions are shown in
Eq.(34). Following the same procedure, the nonlocal nanoscale effect on ω̄n is shown in Figs.7 and 8.

Fig. 7. Effects of nonlocal nanoscale on the first three mode
ω̄n for completely free nanosolids subjected to an initial
twisting moment for ρ̄ = 2.0 and T̄0 = 5. The dotted curves
and solid lines are nonlocal and classical results, respec-
tively.

Fig. 8. Effects of nonlocal nanoscale on the first three mode
ω̄n for completely free nanosolids subjected to an initial
twisting moment for ρ̄ = 2.0 and T̄0 = 15. The dotted
curves and solid lines are nonlocal and classical results, re-
spectively.
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IV. CONCLUSIONS
The torsional static deformation and free vibration of nanosolids are investigated in this paper. Unlike

the conventional nonlocal models, the new nonlocal stress theory reflects the exact nonlocal effects and it
is expected to provide better understanding than the partial (conventional) nonlocal model. A nonlocal
shear stress model for torsion is derived first and a new higher-order governing equation with the
corresponding higher-order non-classical boundary conditions is established by means of the variational
and Hamilton’s principle. The nonlocal nanoscale is found to enhance the stiffness of nanostructures,
thence it yields reduced angular displacement and increased natural frequency for nanosolids. The
conclusion is consistent with other studies for transverse bending behavior based on the new nonlocal
stress theory. The classical solutions are recovered in the limit of vanishing nonlocal nanoscale and the
validity of the new nonlocal stress model is validated.
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