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a b s t r a c t

A new elastic nonlocal stress model and analytical solutions are developed for torsional

dynamic behaviors of circular nanorods/nanotubes. Unlike the previous approaches

which directly substitute the nonlocal stress into the equations of motion, this new

model begins with the derivation of strain energy using the nonlocal stress and by

derive an infinite-order differential nonlocal equation of motion and the corresponding

higher-order boundary conditions which contain a nonlocal nanoscale parameter.

Subsequently, free torsional vibration of nanorods/nanotubes and axially moving

nanorods/nanotubes are investigated in detail. Unlike the previous conclusions of

reduced vibration frequency, the solutions indicate that natural frequency for free

torsional vibration increases with increasing nonlocal nanoscale. Furthermore, the

critical speed for torsional vibration of axially moving nanorods/nanotubes is derived

and it is concluded that this critical speed is significantly influenced by the nonlocal

nanoscale.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic characteristics of materials and structures at nanoscale are significantly different from their behaviors at
larger scales due to the influence of surfaces stress and size effects which are not present at macroscale. Therefore, a
thorough and in-depth understanding of the mechanical behaviors of nanostructures is of paramount importance in the
design and analysis of nano-electronic-mechanical-systems. Because the classical continuum mechanics is proved to fail at
nanoscale, some new continuum mechanics theories and atomic/molecular dynamic simulations are necessary. On the
other hand, due to the minute sizes which require extremely high precision, the conduct of experimental investigation is
not only difficult but they often yield significantly varying measurements, for instance, Young’s modulus for carbon
nanotubes.

The theory of nonlocal elasticity was first proposed and extensively investigated by Eringen [1–5]. Subsequently,
increasingly many studies in this field were reported especially in the past several decades [6–30]. The nonlocal stress
theories establish the stress at a point in a domain to depend not only on the classical local stress at that particular point,
but also on the spatial integrals that represent the weighted averages of the local stress contribution of all other points in
the domain. Most of these studies focused on statics and instability analyses of carbon nanotubes [6–13,22,24], nanobeams
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[14–20,23,25,26] and nanoplates [27–30], such as bending and buckling, and some on dynamics analyses on vibration and
wave propagation.

Virtually all previous studies [6,9–16,18] since Peddieson et al. [14] follows the similar approach which adopts the
classical equilibrium equations or equations of motion and replace the classical stress terms with the corresponding
nonlocal terms. These analyses yield a very common conclusion that an increased nonlocal nanoscale results in reduced
nanostructural stiffness, i.e., reduced bending deflection and increased vibration frequency, buckling load and wave
propagation velocity, with respect to the classical solutions. Such conclusions seem to go against the common belief either
from experiment or molecular dynamic simulation that the stiffness and toughness of structures tend to be significantly
enhanced at smaller scales due to size effects.

Recently, a new exact nonlocal stress model for bending [19,20], buckling [23], vibration [25,26] and wave propagation
[22,24] of nanobeams or nanotubes was developed by Lim and his associates. Unlike the previous approaches which
assumed direct replacement of stress quantities, this new model begins with the derivation of strain energy using the
nonlocal stress and by considering the nonlinear history of straining. The variational principle is then applied to derive an
infinite-order differential nonlocal equation of motion and the corresponding higher-order boundary conditions which
contain a nonlocal nanoscale parameter. The new approach and analyses concluded that the nanostructural stiffness
should be enhanced at nanoscale and significant increase in stiffness was reported for bending, buckling, vibration and
wave propagation.

Lim [19–21] further defined and derived effective nonlocal stress quantities, such as effective nonlocal moment, which
could be directly substituted into the classical equilibrium equations or equations of motion, instead of using the nonlocal
stress quantities as adopted by the previous studies [6,9–16,18]. The effective nonlocal stress quantities are related to the
normal nonlocal stress quantities via an infinite series. Without using these effective nonlocal stress quantities, Lim
[19–21] showed that the relevant previous models should be considered as partial nonlocal models because they are
derived via a mixture of the classical and nonlocal models. Lim [20] further discussed that the previous results yielded
three critical issues in nonlocal elastic stress field theory for nanobeams which were overlooked.

The new nonlocal stress model [19–21] and the variational principle are adopted in this paper to study free torsional
vibration of nanorods or nanotubes and axially moving nanorods/nanotubes. In the past, although the literature for
transverse vibration of nanobeams is aplenty, very few studies for the corresponding torsional vibration had been
presented, and, to the authors’ knowledge, no reported research on an axially moving nanorod/nanotube is found at
present. Torsional deformation and vibration are easily seen in nano-electro-mechanical systems. For efficient design of
such devices, the torsional dynamics of the nano-components are vital. Unlike the previous approach which concluded in
reduced free vibration frequency, the solutions here indicate that the natural frequency for free torsional vibration
increases with increasing nonlocal nanoscale. Furthermore, the critical speed for torsional vibration of axially moving
nanorods/nanotubes is derived and it is concluded that the critical speed is significantly influenced by the nonlocal
nanoscale. The conclusions are found to support the new exact nonlocal model, which led to reduced bending deflection
and increased transverse vibration frequency for nanobeams, presented by Lim et al. [19–26].

2. Nonlocal governing equation of motion for torsion and higher-order boundary conditions

According to the nonlocal elastic stress theory [1–4] which was developed based on the atomic theory of lattice
dynamics and experimental observations on phonon dispersion, the nonlocal stress sij(r) at a reference point r within a
homogeneous and isotropic solid V, depends not only on the classical local stress s0ij(r0) at r but also on stress at all other
points within the body. It is given by a spatial integration with weighted averages of the contributions of local stress of all
points within the body V. The spatial weight is represented by a specific nonlocal modulus a(9r0 �r9,t) which depends on a
dimensionless nano-length scale t of the material of V. Accordingly, the linear nonlocal stress within an elastic,
homogeneous and isotropic body can be expressed by [1–4]

sijðrÞ ¼
Z

V
að9r0�r9,tÞs0ijðr

0ÞdVðr0Þ (1)

where i,j¼1 or i,j¼1,2 or i,j¼1,2,3 depending on the relevant dimension. It is clear that for nonlocal elasticity, the classical
or local constitutive relation has to be replaced by the nonlocal constitutive relation (1).

The size effects of a nanostructure in a nonlocal stress model is represented through the presence of a nonlocal
nanoscale parameter

t¼ e0a

L
(2)

where a is an internal characteristic length (e.g., lattice parameter, C–C bond length, granular distance, etc.), L is an
external characteristic length (e.g. crack length, wavelength, etc.) and e0 is a material constant. The magnitude of e0 is
determined experimentally or approximated by matching the dispersion curves of plane waves with those of atomic
lattice dynamics. In a macroscopic analysis when the effects of nanoscale becomes infinitely insignificant in the limit t-0,
the effects of strains at points rar0 are negligible, the nonlocal modulus approaches the Dirac delta function and hence
sij(r)¼s0ij(r0). Consequently, the classical elasticity for continuum mechanics should be recovered in the limit of vanishing



Fig. 1. Torsion of a fixed-free nanorod subjected to an end torque T0, where a line AB is distorted to A0B, with angle of twist y and shear strain g.
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nonlocal nanoscale. It is noted that the magnitude of t is extremely small, and usually in most studies t is from 0 to 0.2
or so.

According to Eringen [4], the integral nonlocal stress in Eq. (1) can be represented by an equivalent differential
constitutive equation within a two-dimensional region and under certain conditions using Green’s function as

sxr�ðe0aÞ2
d2sxr

dx2
¼ s0xr (3)

where x is the axial coordinate, r is the distance to the center of nanorod/nanotube, while sxr and s0xr are the nonlocal and
classical shear stresses, respectively. For torsional vibration, the classical shear stress and shear strain are related by

s0xr ¼ Gg¼ Gr
dy
dx

(4)

where G is the shear modulus, g is the shear strain, y is the angular twist distribution along the nanorod/nanotube as
shown in Fig. 1.

For generality and brevity, the nonlocal constitutive relation is non-dimensionalized as

sxr�t2 d2sxr

dx2
¼ r

dy
dx

(5)

using the following dimensionless parameters:

sxr ¼
sxr

G
, t¼ e0a

L
, x¼

x

L
, r¼

r

L
(6)

Eq. (5) is a second-order ordinary differential equation and it has been shown by Lim et al. [31] that for a nanorod/
nanotube without initial shear stress the solution is

sxr ¼
X1
n ¼ 1

t2n�2g/2n�2S (7)

where g¼ r dy=dx and ðÞ/nS
¼ dn=dxn for nZ0. For n¼0, g/0S

¼g.
Applying Eq. (7), the nonlocal twisting moment is defined as

T ¼

Z
A

rsxr dA¼
GIP

L

X1
n ¼ 1

t2n�2y/2n�1S (8)

where IP¼
R

Ar2 dA is the polar moment of inertia, A is the cross sectional area, and for nanorods IP¼pR4/2 while for
nanotubes IP ¼ pðR4

1�R4
2Þ=2, in which R is the radius of a circular nanorod, and R1 and R2 are the outer and inner radii of a

nanotube, respectively. The nonlocal twisting moment in dimensionless terms is

T ¼
TL

GIP
¼
X1
n ¼ 1

t2n�2y/2n�1S
¼ y/1S

þt2y/3S
þt4y/5S

þt6y/7S
þt8y/9S

þ � � � (9)

Considering the straining of a nanorod/nanotube with respect to an unstrained state, the strain energy density at an
arbitrary point of a nanorod/nanotube under torsion can be expressed as [31]

u¼

Z g

0
sxr dg¼ G

X1
n ¼ 1

t2n�2

Z g

0
g/2n�2S dg¼ u1þu2þu3 (10)

where the nonlocal shear stresses sxr is work-conjugated to the shear strain g, and

u1 ¼
1

2
Gg2
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u2 ¼
1

2
G
X1
n ¼ 1

ð�1Þnþ1t2nðg/nSÞ
2

u3 ¼ G
X1
n ¼ 1

t2nþ2
Xn

m ¼ 1

½ð�1Þmþ1g/mSg/2n�mþ2S�

( )
(11)

Thus, the total strain energy for a deformed nanorod/nanotube under torsion is

U ¼

Z
V

udV ¼

Z
V
ðu1þu2þu3ÞdV ¼U1þU2þU3 (12)

Variation of the strain energy components according to the variational principle yields

dU ¼ dU1þdU2þdU3 (13)

Details of the variation in terms of y, equivalently, in terms of the nonlocal twisting moment T are available in Lim et al. [31].
The Hamilton’s principle requires that

d
Z t2

t1

ðE�UÞdt¼ 0 (14)

where (E�U) is a Lagrangian. With respect to free torsional vibration of a circular nanorod/nanotube in this paper, U is the
strain energy given in Eq. (12) and E is the kinetic energy given by

E¼

Z L

0

Z R

0

Z 2p

0

1

2
r r

@y
@t

� �2

r da dr dx¼
prR4L

4P2
e

Z 1

0

@y
@t

� �2

dx (15)

where t and t¼ t=Pe are the dimensional and dimensionless temporal variables, in which Pe is a characteristic time which
can be taken as the period of vibration. From Eqs. (14) and (15), the variation of time integral of kinetic energy is

d
Z t2

t1

Edt¼
prR4L

2Pe

Z 1

0

Z t2

t1

@y
@t

d
@y
@t

� �
dt dx¼

prR4L

2Pe

Z 1

0

@y
@t

dy
� �����

t2

t1

dx �
prR4L

2Pe

Z 1

0

Z t2

t1

@2y

@t
2
dydt dx (16)

and the dimensionless limits of integration are from t1 ¼ t1=Pe to t2 ¼ t2=Pe. According to Hamilton’s principle, the initial
and final configurations do not vary along the path, thus the first integral in the equation above vanishes automatically.

Substituting Eqs. (13) and (16) into Eq. (14) yields

0¼
GIPPe

L

Z t2

t1

Z 1

0

X1
n ¼ 0

ð2n�1Þt2ny/2nþ2S
þr @

2y

@t
2

" #
dydxdt

þ
GIPPe

L

Z t2

t1

�
X1
n ¼ 0

ð2n�1Þt2ny/2nþ1S

 !
dyþ

X1
n ¼ 1

ð2n�1Þt2ny/2nS

 !
dy/1S

þ �
X1
n ¼ 1

2nt2nþ2y/2nþ1S

 !
dy/2S

"

þ
X1
n ¼ 1

ð2n�1Þt2nþ2y/2nS

 !
dy/3S

þ �
X1
n ¼ 1

2nt2nþ4y/2nþ1S

 !
dy/4S

þ
X1
n ¼ 1

2n�1ð Þt2nþ4y/2nS

 !
dy/5S

þ �
X1
n ¼ 1

2nt2nþ6y/2nþ1S

 !
dy/6S

þ � � �

#x ¼ 1

x ¼ 0

dt (17)

or

0¼
GIPPe

L

Z t2

t1

Z 1

0
�T

/1S
þ2

X1
n ¼ 1

t2nT
/2nþ1S

þr @
2y

@t
2

 !
dydxdt

þ
GIPPe

L

Z t2

t1

T�2
X1
n ¼ 1

t2nT
/2nS

 !
dyþ

X1
n ¼ 1

t2 T
/1S
þ2

X1
n ¼ 1

t2nT
/2nþ1S

 !
dy/1S

�2
X1
n ¼ 0

t2nþ4T
/2nþ2S

dy/2S

"

þt4 T
/1S
þ2

X1
n ¼ 1

t2nT
/2nþ1S

 !
dy/3S

�2
X1
n ¼ 0

t2nþ6T
/2nþ2S

dy/4S
þt6 T

/1S
þ2

X1
n ¼ 1

t2nT
/2nþ1S

 !
dy/5S

�2
X1
n ¼ 0

t2nþ8T
/2nþ2S

dy/6S
þ � � �

#x ¼ 1

x ¼ 0

dt (18)

where r¼ ðpR4L2=2GIPP2
e Þr is the dimensionless mass density. Because dy cannot vanish, according to the variational

principle, we have

X1
n ¼ 0

ð2n�1Þt2ny/2nþ2S
þr @

2y

@t
2
¼ 0 (19)



C.W. Lim et al. / Journal of Sound and Vibration 331 (2012) 2798–28082802
or

�T
/1S
þ2

X1
n ¼ 1

t2nT
/2nþ1S

þr @
2y

@t
2
¼ 0 (20)

where T is given in Eq. (9). For vanishing nonlocal effect in the limit t-0 and neglecting the higher-order terms associated
with t, the governing Eqs. (19) and (20) are reduced into the classical torsional vibration of a rod or a tube [32,33].

According to Lim et al. [31], a dimensionless effective nonlocal torque is defined as

Tef ¼ T�2
X1
n ¼ 1

t2nT
/2nS
¼�

X1
n ¼ 0

ð2n�1Þt2ny/2nþ1S
¼ y/1S

�t2y/3S
�3t4y/5S

�5t6y/7S
�7t8y/9S

� � � � (21)

where Tef ¼ Tef L=GIP in which Tef is the corresponding dimensional quantity. Hence Eq. (20) above can be expressed as

T
/1S
ef ¼ r

@2y

@t
2

(22)

and the corresponding boundary conditions are

�
X1
n ¼ 0

ð2n�1Þt2ny/2nþ1S
¼ T�2

X1
n ¼ 1

t2nT
/2nS
¼ 0 or y¼ 0

X1
n ¼ 1

ð2n�1Þt2ny/2nS
¼
X1
n ¼ 1

t2 T
/1S
þ2

X1
n ¼ 1

t2nT
/2nþ1S

 !
¼ 0 or y/1S

¼ 0

�
X1
n ¼ 1

2nt2nþ2y/2nþ1S
¼�2

X1
n ¼ 0

t2nþ4T
/2nþ2S

¼ 0 or y/2S
¼ 0

X1
n ¼ 1

ð2n�1Þt2nþ2y/2nS
¼ t4 T

/1S
þ2

X1
n ¼ 1

t2nT
/2nþ1S

 !
¼ 0 or y/3S

¼ 0

�
X1
n ¼ 1

2nt2nþ4y/2nþ1S
¼�2

X1
n ¼ 0

t2nþ6T
/2nþ2S

¼ 0 or y/4S
¼ 0

X1
n ¼ 1

ð2n�1Þt2nþ4y/2nS
¼ t6 T

/1S
þ2

X1
n ¼ 1

t2nT
/2nþ1S

 !
¼ 0 or y/5S

¼ 0

�
X1
n ¼ 1

2nt2nþ6y/2nþ1S
¼�2

X1
n ¼ 0

t2nþ8T
/2nþ2S

¼ 0 or y/6S
¼ 0

^ ^

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

at x ¼ 0,1

(23)

Eq. (22) is similar to the classical equation of motion for torsional vibration of a rod/tube except that the twisting
moment is replaced by the effective torsion torque in this case. It is clear here that for analysis of a nanostructure based on
the nonlocal stress field theory, the classical equilibrium condition or equation of motion cannot be directly applied by
replacing the twisting moment with the nonlocal twisting moment but rather it should be replaced by an effective
nonlocal twisting moment as in Eq. (21).

It has been shown by Lim and his associates [19–26,31] that, by direct replacement of classical stress quantities by the
corresponding nonlocal quantities, the solutions yield a nanostructure with reduced stiffness while by replacing with an
effective nonlocal quantity, the stiffness of the nanostructure is greatly enhanced, i.e., lower nanobeam deflection [19,20],
higher transverse nanobeam vibration frequency [25] and buckling load [23] and higher wave propagation velocity [22,24].

For torsional vibration of a nanorod/nanotube, the truncated governing equation of motion considering only the most
significant terms of nonlocal effect t from Eq. (19) is

t2y/4S
�y/2S

þr @
2y

@t
2
¼ 0 (24)

and the corresponding boundary conditions are

y/1S
�t2y/3S

¼ 0 or y¼ 0

y/2S
þ3t2y/4S

¼ 0 or y/1S
¼ 0

)
at x ¼ 0,1

(25)

where the first two are the natural (left) and geometric (right) classical boundary conditions while the other two are the
natural (left) and geometric (right) higher-order boundary conditions, respectively. It has been defined and discussed at
length by Lim [21] that the two choices of higher-order boundary conditions can be classified as soft and hard boundary
conditions with respect to the natural and geometric conditions, respectively. Such definitions are adopted here.

For linear torsional vibration of a nanorod/nanotube, the modes are harmonic in time. Hence the time-dependent
angular rotation can be represented by

yðx,tÞ ¼YðxÞeiont (26)
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where i¼(�1)1/2, Y is the time-independent angular amplitude, and onðn¼ 1,2,3,. . .Þ is the dimensionless natural
frequency. Substituting Eq. (26) into (24) and (25) yields

t2Y/4S
�Y/2S

�ro2
nY¼ 0 (27)

Y/1S
�t2Y/3S

¼ 0 or Y¼ 0

Y/2S
þ3t2Y/4S

¼ 0 or Y/1S
¼ 0

)
at x ¼ 0,1

(28)

Since Eq. (27) is a fourth-order ordinary differential equation, its solution can be expressed as

YnðxÞ ¼ C1n eib1nxþC2n eib2nxþC3n eib3nxþC4n eib4nx (29)

where Cjn(j¼1,2,3,4) are the coefficients and bjn(j¼1,2,3,4) are the four roots of the dispersion relation of Eq. (27), or

t2b4
nþb

2
n�ro

2
n ¼ 0 (30)

Eq. (30) can also be obtained by substituting YnðxÞ ¼ Cn eibnx into Eq. (27), where Cn is a nonzero constant.
It should be emphasized here that Eq. (30) should be applied with extreme care. As discussed in Lim and Yang [22] and

Yang and Lim [24], the nonlocal elasticity model is constructed based on a continuum model which simulates a lattice
dynamics model with discrete atoms/molecules. For extremely high wavenumber, all the continuum models including the
strain gradient model, couple stress model, etc., may not be valid because in such cases, the wavelength could be in the
sub-nano scales and spans only a few atoms/molecules. A different and revolutionary continuum model should be devised.

3. Torsional vibration analysis

3.1. Doubly fixed nanorods/nanotubes

For a nanorod/nanotube fixed at both ends, the governing equation of motion considering the most significant terms of
nonlocal effect t is given by Eq. (27) and the general solution by Eq. (29). Considering soft higher-order boundary
conditions, the constraints from Eq. (28) are [21,31]

Yjx ¼ 0 ¼ 0; Yjx ¼ 1 ¼ 0

ðY/2S
þ3t2Y/4S

Þ

���
x ¼ 0
¼ 0; ðY/2S

þ3t2Y/4S
Þ

���
x ¼ 1
¼ 0 (31)

Substituting Eq. (29) into Eq. (31) yields

1 1 1 1

eib1n eib2n eib3n eib4n

k1n k2n k3n k4n

k1neib1n k2neib2n k3neib3n k4neib4n

0
BBBB@

1
CCCCA

C1n

C2n

C3n

C4n

0
BBBB@

1
CCCCA¼ 0 (32)

where kjn ¼�b
2
jnþ3t2b4

jn ðj¼ 1,2,3,4Þ. For nontrivial solution of Cjn, the determinant of coefficient matrix should be zero, or

1 1 1 1

eib1n eib2n eib3n eib4n

k1n k2n k3n k4n

k1neib1n k2neib2n k3neib3n k4neib4n

���������

���������
¼ 0 (33)

From Eqs. (30) and (33), the relation of dimensionless natural frequency and nonlocal nanoscale can be established.
Figs. 2 and 3 show the first three modes of onðn¼ 1,2,3Þ, which are significantly enhanced by the presence of t. The dotted
lines represent the corresponding classical solutions, which can be obtained by omitting the nonlocal terms containing t in
Eqs. (30) and (33). It is observed that the presence of t enhances the natural frequency, and the effect is greater for higher-
mode frequencies. The classical solution undervalues the torsional vibration frequency and it fails to be applicable at
nanoscale. It also demonstrates that higher density causes lower onðn¼ 1,2,3Þ from Figs. 2 and 3.

3.2. Doubly free nanorods/nanotubes

For a doubly free nanorod/nanotube, the governing equation of motion is again given by Eq. (27) and the general
solution by Eq. (29). Considering hard higher-order boundary conditions, the constraints from Eq. (28) are [21,31]

ðY/1S
�t2Y/3S

Þ

���
x ¼ 0
¼ 0; ðY/1S

�t2Y/3S
Þ

���
x ¼ 1
¼ 0

Y/1S
���
x ¼ 0
¼ 0; Y/1S

���
x ¼ 1
¼ 0 (34)



Fig. 2. Effects of t on onðn¼ 1,2,3Þ for a doubly soft fixed nanorod/nanotube with r¼ 0:2.

Fig. 3. Effects of t on onðn¼ 1,2,3Þ for a doubly soft fixed nanorod/nanotube with r¼ 0:8.
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or in simplified form

Y/3S
���
x ¼ 0
¼ 0; Y/3S

���
x ¼ 1
¼ 0

Y/1S
���
x ¼ 0
¼ 0; Y/1S

���
x ¼ 1
¼ 0 (35)

Following the same solution method, the relation between t and onðn¼ 1,2,3Þ is shown in Fig. 4. Again, it is observed
that increasing t causes the natural frequencies to increase.
3.3. Fixed-free nanorods/nanotubes

For a nanotube fixed at x¼ 0 and free at x¼ 1, the soft-fixed hard-free boundary conditions are

Yjx ¼ 0 ¼ 0; ðY/1S
�t2Y/3S

Þ

���
x ¼ 1
¼ 0

ðY/2S
þ3t2Y/4S

Þ

���
x ¼ 0
¼ 0; Y/1S

���
x ¼ 1
¼ 0 (36)

or in simplified form

Yjx ¼ 0 ¼ 0; Y/3S
���
x ¼ 1
¼ 0

ðY/2S
þ3t2Y/4S

Þ

���
x ¼ 0
¼ 0; Y/1S

���
x ¼ 1
¼ 0 (37)

Similarly, the relation between nonlocal nanoscale and natural frequencies is shown in Fig. 5.



Fig. 4. Effects of t on onðn¼ 1,2,3Þ for a doubly hard free nanorod/nanotube with r¼ 0:2.

Fig. 5. Effects of t on onðn¼ 1,2,3Þ for a soft-fixed hard-free nanorod/nanotube with r¼ 0:2.
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4. Torsional vibration of an axially moving nanorod/nanotube

For a moving nanorod/nanotube, the kinetic energy due to the axial velocity v should be taken into consideration. For
simplicity, a nanorod with radius R is considered here. The total kinetic energy is

Z Pe

0
Edt¼

rpR2

2

Z Pe

0

Z L

0
R
@y
@t
þvy

� �2

þv2

" #
dxdt¼

prR4L

2Pe

Z 1

0

Z 1

0

@y
@t

� �2

þv2y2
þ2vy

@y
@t
þv2

" #
dxdt (38)

where t¼ t=Pe, v¼ vPe=R. Variation of the kinetic energy above is given by

d
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0
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prR4L
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Z 1

0
�

Z 1

0

@2y

@t
2
dydxþ
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��1
0

 !
dt (39)

Similarly, the variational principle requires that
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where r¼ ðpR4L2=P2
e GIPÞr. Since dy cannot vanish, hence the higher-order governing equation and higher-order boundary

conditions are, respectively,
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at x ¼ 0,1

(42)

If only the most significant nonlocal terms having t are considered, the simplified governing equation for a nanorod/
nanotube is

t2y/4S
�y/2S

þr @
2y

@t
2
�rv2y¼ 0 (43)

and the corresponding higher-order boundary conditions are

y/1S
�t2y/3S

¼ rvy or y¼ 0

t2y/2S
þ3t4y/4S

¼ 0 or y/1S
¼ 0

)
at x ¼ 0,1

(44)

Applying Eq. (26), one obtains

t2Y/4S
�Y/2S

�rðo2
nþv2

ÞY¼ 0 (45)

Y/1S
�t2Y/3S

¼ rvY or Y¼ 0

t2Y/2S
þ3t4Y/4S

¼ 0 or Y/1S
¼ 0

)
at x ¼ 0,1

(46)

The general form of solution as expressed in Eq. (29) is still available where bjn(j¼1,2,3,4) are the four roots of the
following dispersion relation:

t2b4
þb2
�rðo2

nþv2
Þ ¼ 0 (47)

while the coefficients Cjn(j¼1,2,3,4) can be solved from the boundary conditions. For a doubly soft-fixed nanorod/
nanotube, the higher-order boundary conditions are

Yjx ¼ 0 ¼ 0; Yjx ¼ 1 ¼ 0

ðY/2S
þ3t2Y/4S

Þ

���
x ¼ 0
¼ 0; ðY/2S

þ3t2Y/4S
Þ

���
x ¼ 1
¼ 0 (48)

Substituting Eq. (29) into Eq. (30) above yields a similar Eq. (32) where kjn ¼�b
2
jnþ3t2b4

jn ðj¼ 1,2,3,4Þ. For nontrivial
solution, the vibration frequency for an axially moving nanorod/nanotube can be obtained by solving the characteristic
equation given in Eq. (33). The relationship between the three mode frequencies onðn¼ 1,2,3Þ and t is illustrated Fig. 6
while the effects of v for t¼0.1 is presented in Fig. 7.

In Fig. 6, it is again noted that the natural frequency increases with increasing t, or equivalently, stronger nonlocal
effects result in higher shear stiffness. In Fig. 7, meanwhile, the natural frequency drops with increasing axial velocity v.
There exist certain values of v where there is no vibration. The axial velocity that corresponds to zero first mode frequency
o1 is called the critical speed vcr. For instance, when t¼0.1 and r¼ 0:2, the critical speed is given by vcr ¼ 7:37 as shown in
Fig. 7. At the critical speed, the angular rotation is independent on time, or the governing equation in Eq. (45) becomes

t2Y/4S
�Y/2S

�pv2
crY¼ 0 (48)

The relation between vcr and t is presented in Fig. 8. It is observed that larger t results in higher vcr.



Fig. 6. Effects of t on onðn¼ 1,2,3Þ for a doubly soft-fixed nanorod/nanotube with v¼ 0:5 and r¼ 0:2.

Fig. 7. Effects of dimensionless axial velocity v on onðn¼ 1,2,3Þ of a doubly soft-fixed nanorod/nanotube with t¼0.1 and r¼ 0:2.

Fig. 8. Relation between critical speed and nonlocal nanoscale of a doubly soft-fixed nanorod/nanotube.
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5. Conclusions

Torsional vibration of nanorods/nanotubes and the dynamics of axially moving nanorods/nanotubes are developed based on
the nonlocal elastic shear stress theory and the variational principle. This new approach is virtually different from all previous
methods where, instead of directly replacing the stress terms in the classical equations of motion by the corresponding nonlocal
stress terms, new higher-order governing equations of motion and the higher-order boundary conditions are derived by
considering the history of nonlinear straining with reference to an undeformed state. New analytical expressions and numerical
solutions for various examples are presented and the effects of various geometric and natural boundary conditions are
investigated. It is concluded that the nonlocal nanoscale is found to induce higher torsional stiffness and hence to cause
increased free vibration frequency. In addition, the critical velocity of axially moving nanorods/nanotubes is also analyzed where
the critical velocities increases with increasing nonlocal nanoscale. In all cases, the solutions are reduced to the classical solutions
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of continuum mechanics in the limit of vanishing nonlocal nanoscale effect in which the higher-order terms associated with the
nonlocal nanoscale are neglected. The validity of this new nonlocal shear stress model and solutions are verified.
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