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This paper presents the buckling analysis of functionally graded carbon nanotube-reinforced composite
(FG-CNTRC) plates under various in-plane mechanical loads, using the element-free kp-Ritz method. The
first-order shear deformation plate theory is applied and a set of mesh-free kernel particle functions are
used to approximate two-dimensional displacement fields. Effective properties of materials of the plates
reinforced by single-walled carbon nanotubes (SWCNTs) are estimated through a micromechanical
model based on either the Eshelby–Mori–Tanaka approach or the extended rule of mixture. Comparison
study and numerical simulations with various parameters are conducted to assess efficacy and accuracy
of the present method for analysis of buckling of SWCNT-reinforced composite plates. Results demon-
strate that the change of carbon nanotube volume fraction, plate width-to-thickness ratio, plate aspect
ratio, loading condition and temperature have pronounced effects on buckling strength of CNTRC plates
as well as the boundary condition.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, carbon nanotubes (CNTs), as a new type of advanced
materials, have attracted a great deal of interest of researchers.
Due to their extremely attractive mechanical, electrical and
thermal properties, CNTs have promising applications in polymer
composites as a potential reinforcement and multi-functional ele-
ment [1,2]. Therefore, the introduction of CNTs into a polymer ma-
trix may greatly improve mechanical properties of the resulting
nanocomposites, such as tensile strength and elastic modulus [3].

Most investigations of carbon nanotubes-reinforced composites
(CNTRCs) have focused on material properties and researchers
have discovered that mechanical, electrical and thermal properties
of polymer composites can be considerably improved by adding
small amounts of CNTs. Odegard et al. [4] presented a constitutive
modeling of nanotubes-reinforced polymer composites with nano-
tubes/polymer interface modeled as an effective continuum fiber
by using an equivalent-continuum model. Gary et al. [5] obtained
the effective elastic properties of CNTRCs through a variety of
micromechanics techniques with the effective properties of CNTs
calculated utilizing a composite cylinders micromechanics tech-
nique as a first step in a two-step process. Fidelus et al. [6] exam-
ined the thermo-mechanical properties of epoxy-based
ll rights reserved.
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nanocomposites based on low weight fractions of randomly ori-
ented single- and multi-walled carbon nanotubes. Han and Elliot
[7] presented classical molecular dynamics (MD) simulations of
model polymer/CNT composites constructed by embedding a sin-
gle wall (10, 10) CNT into two different amorphous polymer matri-
ces. By using MD method, the stress–strain behavior of carbon
nanotube-reinforced Epon862 composites was also studied by
Zhu et al. [8].

Although these studies are quite useful, the ultimate purpose of
development of this advanced material is to explore potential
applications of CNTRCs in actual structures, such as CNT-reinforced
beams, plates or shells. Wuite and Adali [9] studied deflection and
stress behaviors of nanocomposite reinforced beams using a mul-
tiscale analysis. Their results showed that reinforcement by adding
a small proportion of nanotube leads to significant improvement in
beam stiffness. Vodenitcharova and Zhang [10] presented analyses
of pure bending and bending-induced local buckling of a nanocom-
posite beam based on a continuum mechanical model and found
that single-walled carbon nanotube (SWCNT) buckles at smaller
bending angles and greater flattening ratios in thicker matrix lay-
ers. Formica et al. [11] investigated vibration behaviors of CNTRC
plates by employing an equivalent continuum model based on
the Eshelby–Mori–Tanaka approach. Based on the classical lami-
nated plate theory and third-order shear deformation theory, Arani
et al. [12] analytically and numerically studied buckling behaviors
of laminated composite plates. The optimal orientation of CNTs to
achieve the highest critical load and corresponding mode shape
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were calculated for different kinds of boundary conditions as well
as aspect ratios of the plates. Shen [13,14] presented a postbuck-
ling analysis of cylindrical shells reinforced by SWCNTs subjected
to axial compression and lateral or hydrostatic pressure in thermal
environments. Results revealed that the mid-plane symmetric
functionally graded distribution of reinforcements can increase
the buckling load as well as postbuckling strength of the shells.
They also confirmed that the postbuckling equilibrium path for
both FG- and UD-CNTRC cylindrical shells under axial compression
is unstable.

In traditional nanocomposites, the resulting mechanical, ther-
mal, or physical properties do not vary spatially at the macroscopic
level since nanotubes distribute either uniformly or randomly in
the composites. Stimulated by the concept of functionally graded
materials (FGMs) with properties that vary spatially according to
a certain non-uniform distribution of the reinforcement phase,
Shen [15] presented a non-linear bending analysis of functionally
graded carbon nanotube-reinforced composite (FG-CNTRC) plates
in thermal environments using a two-step perturbation technique.
The results showed that non-linear bending behaviors of CNTRC
plate can be considerably improved as CNTs distribute functionally
in the matrix. By using the finite element method (FEM), analyses
of bending and free vibration were carried out for various types of
functionally graded CNTRC plates by Zhu et al. [16]. They discov-
ered that CNT reinforcements distributed close to top and bottom
are more efficient than those distributed near the mid-plane for
increasing the stiffness of CNTRC plates. Based on the Timoshenko
beam theory, non-linear free vibrations of functionally graded
CNTRC beams were analyzed with the Ritz method and direct iter-
ative technique by Ke et al. [17]. They found linear and non-linear
frequencies of FG-CNTRC beam with symmetrical distribution of
CNTs higher than those of beams with uniform or asymmetrical
distribution of CNTs. For improving buckling and postbuckling
behaviors of CNTRC structures, Shen and Zhang [18] investigated
thermal buckling and postbuckling behaviors of FG-CNTRC plates
and found that CNTRC plate with intermediate nanotube volume
fraction does not have intermediate buckling temperature and ini-
tial thermal postbuckling strength.

In the present work, a buckling analysis of FG-CNTRC plates un-
der different in-plane loading conditions in thermal environment is
presented using the element-free kp-Ritz method, which has al-
ready been successfully applied in many fields [19–22]. Two kinds
Fig. 1. Configurations of carbon nanotube reinforced composite plates.
of CNTRC plates, namely, uniformly distributed (UD) and function-
ally graded (FG) CNTRC plates, are considered. The eigenvalue
equations of buckling analysis of CNTRC plates are obtained by
applying the Ritz procedure to the energy function of the system.
In order to improve computational efficiency and avoid shear lock-
ing for very thin plates, a stabilized conforming nodal integration
approach is used to calculate the plate bending stiffness, and the
shear and membrane terms are evaluated using a direct nodal inte-
gration method. Effects of CNT volume fraction, plate width-to-
thickness ratio, plate aspect ratio, boundary condition, in-plane
loading condition and temperature change on buckling strength
of CNTRC plates are examined in detail.
2. Carbon nanotube-reinforced composites

Three types of distributions of CNTs in CNTRC plates with length
a, width b and thickness h are considered (Fig. 1). UD denotes the
uniform distribution and the other two types of functionally
graded distributions of CNTs are represented by FG-O and FG-X.
The plates are assumed to be made of a mixture of SWCNTs and
the matrix. The matrix is assumed to be isotropic and material
properties of SWCNTs are chirality-, size- and temperature-depen-
dent [23–26]. Distributions of CNTs along the thickness direction of
UD- and the other two types FG- of CNTRC plates are assumed to be
as follows:

VCNTðzÞ ¼

V�CNT ðUD CNTRCÞ;

2 1� 2jzj
h

� �
V�CNT ðFG-O CNTRCÞ;

2 2jzj
h

� �
V�CNT ðFG-X CNTRCÞ;

8>>><>>>: ð1Þ

where

V�CNT ¼
wCNT

wCNT þ ðqCNT=qmÞ � ðqCNT=qmÞwCNT
; ð2Þ

where wCNT is the fraction of mass of CNTs and qm and qCNT are den-
sities of the matrix and CNTs, respectively. VCNT and V�CNT are the
CNT volume fractions of FG- and UD-CNTRCs and we assume
VCNT ¼ V�CNT , that means UD-CNTRC plate and the other two types
of FG-CNTRC plates have the same mass volume of CNTs.

As the load transfer between the nanotube and matrix is less
than perfect, several micromechanical models have been
(a) UD CNTRC plate; (b) FG-O CNTRC plate; (c) FG-X CNTRC plate.
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developed to predict properties of CNT-reinforced nanocomposites,
e.g. Mori–Tanaka scheme [27,28] and the rule of mixture [1,6]. A
synergism between the Mori–Tanaka scheme and the rule of mix-
ture for functionally graded ceramic–metal beams was reported in
[29] and a comparison study between Eshelby–Mori–Tanaka
scheme and the extended rule of mixture was also conducted for
the vibration analysis of continuously graded carbon nanotubes-
reinforced cylindrical panels in [30].

2.1. Eshelby–Mori–Tanaka approach

The proposed model is framed within the Eshelby for elastic
inclusions. Since the original theory of Eshelby [31,32] is restricted
to one single inclusion in a semi-infinite elastic, homogeneous and
isotropic medium, the theory, generalized by Mori–Tanaka [33], al-
lows to extend the original approach to the practical case of multi-
ple inhomogeneities embedded into a finite domain. The Eshelby–
Mori–Tanaka approach, known as the equivalent inclusion-average
stress method, is based on the equivalent elastic inclusion idea of
Eshelby and the concept of average stress in the matrix due to
Mori–Tanaka. According to Benveniste’s revision [34], effective
elastic moduli tensor C of CNTRCs is expressed as

C ¼ Cm þ VCNThðCCNT � CmÞ � Ai � ½VmIþ VCNThAi��1
; ð3Þ

where Cm and CCNT are the stiffness tensors of the matrix and CNT,
respectively and I is the fourth-order unit tensor. It should be note
that the brackets represent an average overall possible orientation
of the inclusions. A is the dilute mechanical strain concentration
tensor, and is given by

A ¼ Iþ S � C�1
m � ðCCNT � CmÞ

h i�1
; ð4Þ

where S is the fourth-order Eshelby tensor [31] that is specialized to
the case of cylindrical inclusions representative of the CNTs and de-
pends on their orientation by Mura [35].

2.2. Extended rule of mixture

According to the extended rule of mixture, effective material
properties of CNTRC plates can be expressed as [15]:

E11 ¼ g1VCNT ECNT
11 þ VmEm; ð5Þ

g2

E22
¼ VCNT

ECNT
22

þ Vm

Em ; ð6Þ

g3

G12
¼ VCNT

GCNT
12

þ Vm

Gm ; ð7Þ

where ECNT
11 and ECNT

22 are Young’s moduli of CNTs in longitudinal and
transverse directions, respectively. GCNT

12 is the shear modulus of
CNTs. Em and Gm are Young’s modulus and shear modulus of the iso-
tropic matrix. CNT efficiency parameters gj (j = 1, 2, 3) are intro-
duced into Eqs. (1)–(3) to account load transfer between the
nanotubes and polymeric phases (e.g. the surface effect, strain gra-
dient effect, and intermolecular coupling effect) and other effects on
the effective material properties of CNTRCs. Shen [15] determined
the CNT efficiency parameter by matching Young’s moduli E11 and
E22 of CNTRCs obtained by the rule of mixture to MD results of
Han and Elliott [7]. VCNT and Vm are CNT and matrix volume frac-
tions and have the relationship:

VCNT þ Vm ¼ 1: ð8Þ

As Poisson’s ratio depends weakly on position, we assume v12 to be
constant through the thickness of CNTRC plates as follows:

v12 ¼ V�CNTv
CNT
12 þ Vmvm; ð9Þ
where vCNT
12 and vm are Poisson’s ratios of CNTs and the matrix,

respectively.
Similarly, thermal expansion coefficients can be calculated by

a11 ¼ VCNTaCNT
11 þ Vmam; ð10Þ

a22 ¼ 1þ vCNT
12

� �
VCNTaCNT

22 þ ð1þ vmÞVmam � v12a11; ð11Þ

where aCNT
11 and aCNT

22 are thermal expansion coefficients of CNTs in
longitudinal and transverse directions, respectively. am is the
expansion coefficient of the matrix.

3. Theoretical formulations

3.1. Total potential energy functional

Formulations of buckling of CNTRC plates are derived from the
Ritz method based on the first-order shear deformation theory
(FSDT) [36]. The displacement field can be expressed as

uðx; y; zÞ ¼ u0ðx; yÞ þ z/xðx; yÞ; ð12Þ
vðx; y; zÞ ¼ v0ðx; yÞ þ z/yðx; yÞ; ð13Þ
wðx; y; zÞ ¼ w0ðx; yÞ; ð14Þ

where (u, v, w) are the displacements of a generic point (x, y, z) in
the CNTRC plate, (u0, v0, w0) represent the displacements of a point
at the mid-plane of the plate and (/x, /y) denote rotations of a trans-
verse normal about positive y and negative x axes, respectively. The
strain components at a genetic point of the plate are given by

exx

eyy

cxy

8><>:
9>=>; ¼ e0 þ zj;

cyz

cxz

� �
¼ c0; ð15Þ

where

e0 ¼

@u0
@x
@v0
@y

@u0
@y þ

@v0
@x

8>><>>:
9>>=>>;; j ¼

@/x
@x
@/y

@y

@/x
@y þ

@/y

@x

8>><>>:
9>>=>>;; c0 ¼

/y þ @w0
@y

/x þ @w0
@x

( )
: ð16Þ

Then, the constitutive relations are expressed as

rxx

ryy

rxy

ryz

rxz

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

Q 11 Q12 0 0 0
Q 12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q 44 0
0 0 0 0 Q 55

26666664

37777775
exx

eyy

cxy

cyz

cxz

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
�

a11

a22

0
0
0

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
DT

0BBBBBB@

1CCCCCCA;
ð17Þ

where

Q11 ¼
E11

1� v12v21
; Q 22 ¼

E22

1� v12v21
; Q 12 ¼

v21E11

1� v12v21
; ð18Þ

Q66 ¼ G12; Q 44 ¼ G23; Q 55 ¼ G13; ð19Þ

and DT is the temperature change with respect to a reference state.
E11 and E22 are effective Young’s moduli of CNTRC plates in the prin-
cipal material coordinates, G12, G13 and G23 are the shear moduli, m12

and m21 are Poisson’s ratios and a11 and a22 are thermal expansion
coefficients.

With usual assumptions of FSDT, the relation between the
stress resultants and the strains can be written as

N
M
Qs

8><>:
9>=>; ¼

A B 0
B D 0
0 0 As

264
375 e0

j

c0

8><>:
9>=>;�

NT

MT

0

8><>:
9>=>;; ð20Þ

where the in-plane force resultants, moment resultants, transverse
force resultants and thermal stress resultants are defined as
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N ¼
Nxx

Nyy

Nxy

8><>:
9>=>; ¼

Z h=2

�h=2

rxx

ryy

rxy

8><>:
9>=>;dz;

M ¼
Mxx

Myy

Mxy

8><>:
9>=>; ¼

Z h=2

�h=2

rxx

ryy

rxy

8><>:
9>=>;zdz;

Qs ¼
Q y

Qx

� �
¼
Z h=2

�h=2

ryz

rxz

� �
dz; ð21Þ

NT ¼
Z h=2

�h=2
a11 a22 0½ �ðQ 11 þ Q 12ÞDTdz;

MT ¼
Z h=2

�h=2
a11 a22 0½ �ðQ 11 þ Q 12ÞDTzdz: ð22Þ

The extensional A, coupling B, bending D and transverse shear As

stiffness are given by

ðAij;Bij;DijÞ ¼
Z h=2

�h=2
Q ijð1; z; z2Þdz; As

ij ¼ K
Z h=2

�h=2
Q ijdz; ð23Þ

where Aij, Bij and Dij are defined for i, j = 1, 2, 6 and i, j = 4, 5 in As
ij. K

denotes the transverse shear correction coefficient and is suggested
to be K = 5/(6 � (v1V1 + v2V2)) for functionally graded materials by
Efraim and Eisenberger [37].

Strain energy of the CNTRC plate is expressed as

Ue ¼
1
2

Z
X
eTSedX; ð24Þ

where

e ¼
e0

j

c0

8><>:
9>=>;; S ¼

A B 0
B D 0
0 0 As

264
375: ð25Þ

The potential energy due to in-plane loading is given by

Wg ¼
Z

X

@w
@x

@w
@y

h i c1N0
x 0

0 c2N0
y

" #
@w
@x
@w
@y

" #
dX; ð26Þ

Thus the total potential energy function of the plate can be
expressed as

Ps ¼ Ue �Wg : ð27Þ
3.2. Discrete system equations

Based on the kernel particle Ritz method, for a plate discretized
by a set of nodes xI, I = 1, . . ., NP, the displacement field can be
expressed as

uh ¼
XNP

I¼1

wIðxÞuI; ð28Þ

where wI(x) and uI are the shape function and nodal parameter
associated with node I, respectively.

The shape function is expressed as

wIðxÞ ¼ Cðx; x� xIÞUaðx� xIÞ; ð29Þ

where Ua(x � xI) is the kernel function, and C(x;x � xI) is the correc-
tion function which can be expressed by a linear combination of
polynomial basis functions, as follows:

Cðx; x� xIÞ ¼ HTðx� xIÞbðxÞ; ð30Þ

where

bðxÞ ¼ ½b0ðx; yÞ; b1ðx; yÞ; b2ðx; yÞ; b3ðx; yÞ; b4ðx; yÞ; b5ðx; yÞ�T; ð31Þ
HTðx� xIÞ ¼ ½1; x� xI; y� yI; ðx� xIÞðy� yIÞ; ðx� xIÞ2; ðy� yIÞ
2�;
ð32Þ

where H is a vector of the quadratic basis and b(x) is a coefficient
function of x and y, to be determined. Then, the shape function
can be written as

wIðxÞ ¼ bTðxÞHðx� xIÞUaðx� xIÞ; ð33Þ

Substituting Eq. (33) into reproduction condition leads to

XNP

I¼1

wIðxÞx
p
I yq

I ¼ xpyq for pþ q ¼ 0;1;2: ð34Þ

We can obtain coefficient b(x) as

bðxÞ ¼M�1ðxÞHð0Þ; ð35Þ

where

MðxÞ ¼
XNP

I¼1

Hðx� xIÞHTðx� xIÞUaðx� xIÞ; ð36Þ

Hð0Þ ¼ ½1;0;0;0;0;0; �T; ð37Þ

For two-dimensional plate problem, the kernel function Ua(x � xI)
is defined as

Uaðx� xIÞ ¼ UaðxÞ �UaðyÞ; ð38Þ

where

UaðxÞ ¼ u
x� xI

a

� �
: ð39Þ

The cubic spline function is chosen as the weight function u(x), and
is given by

uzðzIÞ ¼

2
3� 4z2

I þ 4z3
I for 0 6 jzIj 6 1

2
4
3� 4zI þ 4z2

I � 4
3 z3

I for 1
2 < jzIj 6 1

0 otherwise

8><>:
9>=>;; ð40Þ

where zI ¼ x�xI
dI

and dI is the size of the support of node I, calculated
by

dI ¼ dmaxcI; ð41Þ

where distance cI is chosen by searching for a sufficient number of
nodes to avoid the singularity of matrix M and dmax is a scaling fac-
tor ranging from 2.0 to 4.0.

The shape function can be expressed as

wIðxÞ ¼ HTð0ÞM�1ðxÞHðx� xIÞUaðx� xIÞ: ð42Þ

As the shape function does not have Kronecker delta property, the
essential boundary conditions cannot be directly imposed. The
transformation method [38] is employed to enforce the essential
boundary conditions in this paper.

Substituting Eq. (28) into Eq. (27) and performing the Ritz min-
imization procedure, we can obtain eigenvalue equations of plate
buckling, as follows:

ðKþ kKgÞu ¼ 0: ð43Þ

where k is the critical buckling load of CNTRC plates and K and Kg

represent the linear stiffness matrix and geometric stiffness matrix,
respectively, and are given by



Table 1
Comparison of Young’s moduli for PmPV/CNT composites reinforced by (10, 10)
SWCNT under T = 300 K.

V�CNT MD [7] Rule of mixture

E11 (GPa) E22 (GPa) E11 (GPa) g1 E22 (GPa) g2

0.11 94.8 2.2 94.57 0.149 2.2 0.934
0.14 120.2 2.3 120.09 0.150 2.3 0.941
0.17 145.6 3.5 145.08 0.149 3.5 1.381
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K ¼ Kb þ Km þ Ks; ð44Þ

Kb
IJ ¼

Z
X

BbT

I DBb
J dX; ð45Þ

Km
IJ ¼

Z
X

BmT

I ABm
J dXþ

Z
X

BmT

I BBb
J dXþ

Z
X

BbT

I BBm
J dX; ð46Þ

Ks
IJ ¼

Z
X

BsT

I AsBs
J dX; ð47Þ

Kg ¼
Z

X
GT

I NGJdX: ð48Þ

Stiffness matrices in Eqs. (45)–(48) are evaluated via the stabilized
nodal integration [39] and direct nodal integration (instead of Gauss
integration) commonly used in mesh-free methods. Compared with
Gauss integration, the stabilized nodal integration and direct nodal
integration may reduce the high computational cost and eliminate
the errors caused by the mismatch between quadrature cells and
shape function supports [40]. Approximations of Eqs. (45)–(48)
are given as follows:

Kb
IJ ¼

XNP

L¼1

eBbT

I ðxLÞDeBb
J ðxLÞAL; ð49Þ

Km
IJ ¼

XNP

L¼1

BmT

I ðxLÞABm
J ðxLÞ þ BmT

I ðxLÞBBb
J ðxLÞ þ BbT

I ðxLÞBBm
J ðxLÞ

h i
AL;

ð50Þ

Ks
IJ ¼

XNP

L¼1

BsT

I ðxLÞAsBs
J ðxLÞAL; ð51Þ

Kg ¼
XNP

L¼1

GT
I ðxLÞNGJðxLÞAL; ð52Þ

where xL and AL denote the node coordinate and nodal representa-
tive area, respectively. Matrices eBb

I ðxLÞ, Bb
I ðxLÞ, Bm

I ðxLÞ, Bs
I ðxLÞ, GðxLÞ

and N are calculated by

eBb
I ðxLÞ ¼

0 0 0 ~bIxðxLÞ 0

0 0 0 0 ~bIyðxLÞ

0 0 0 ~bIyðxLÞ ~bIxðxLÞ

26664
37775; ð53Þ

~bIxðxLÞ ¼
1
AL

Z
CL

wIðxLÞnxðxLÞdC; ~bIyðxLÞ ¼
1
AL

Z
CL

wIðxLÞnyðxLÞdC;

ð54Þ

Bb
I ðxLÞ ¼

0 0 0 @wIðxLÞ
@x 0

0 0 0 0 @wIðxLÞ
@y

0 0 0 @wIðxLÞ
@y

@wIðxLÞ
@x

26664
37775;

Bm
I ðxLÞ ¼

@wIðxLÞ
@x 0 0 0 0

0 @wIðxLÞ
@y 0 0 0

@wIðxLÞ
@y

@wIðxLÞ
@x 0 0 0

26664
37775; ð55Þ

Bs
I ðxLÞ ¼

0 0 @wIðxLÞ
@x wIðxLÞ 0

0 0 @wIðxLÞ
@y 0 wIðxLÞ

" #
; ð56Þ

GðxLÞ ¼
0 0 @wIðxLÞ

@x 0 0

0 0 @wIðxLÞ
@y 0 0

" #
; N ¼ c1Nxx 0

0 c2Nyy

" #
: ð57Þ
4. Numerical results

In this section, several numerical examples are presented to
study buckling behaviors of CNTRC plates under various in-plane
mechanical loading conditions in thermal environment. Poly{(m-
phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene) vinylene]},
referred as PmPV, is selected as the matrix, material properties of
which are assumed to be vm = 0.34, am = 45(1 + 0.0005DT) � 10�6 K
and Em = (3.51 � 0.0047T) GPa, where T = T0 + DT and T0 = 300 K
(room temperature). For the Eshelby–Mori–Tanaka approach, the
representative values of the properties of SWCNTs are taken from
the analytical results of Popov et al. [41], while for the extended rule
of mixture, properties of SWCNTs are obtained from MD simulation
results reported by Zhang and Shen [10]. Unless otherwise speci-
fied, the Eshelby–Mori–Tanaka approach is applied to predict effec-
tive material properties of CNTRCs. The shape function of two-
dimensional displacement approximations is constructed with the
kernel particle function, and a scaling factor of 3.2, that represents
the size of the support, is used for all cases in this paper. A regular
nodal distribution 21 � 21 is chosen following convergence studies.

4.1. Comparison study

To verify the present formulation, a comparison is carried out
for simply supported isotropic plate under uniaxial compressive
pressure (c1 = �1, c2 = 0). Geometric properties of this plate are
a = b = 10 in., h = 0.2 in., and its material properties are Young’s
modulus E = 3.0 � 106 psi and Poisson ratio v = 0.3. A convergence
study in terms of number of nodes is carried out to verify the accu-
racy and efficiency of the present method. Buckling load parame-
ters Ncr ¼ Ncra2=D0ðD0 ¼ Eh3

=12ð1� v2ÞÞ for the first four modes
are listed in Table 2 and analytical solutions given by Timoshenko
and Geer [42] are also provided for comparison. It can be found
that the present results agree well with analytical solutions for
all modes.

4.2. Parameter studies

In this section, detailed case studies are carried out to investi-
gate effects of plate width-to-thickness ratio, CNT volume fraction,
plate aspect ratio, in-plane loading condition, boundary condition
and temperature change on buckling load parameter Ncr ¼
Ncrb

2
=Emh3 of various types of CNTRC plates (see Table 3).

Buckling load parameters are as in Tables 4–6 for various types
of CNTRC plates subjected to uniaxial compression (c1 = �1, c2 = 0),
biaxial compression (c1 = �1, c2 = �1) and biaxial compression and
tension (c1 = �1, c2 = 1) with different boundary conditions.
Width-to-thickness ratio of the plates is set to be b/h = 10 and
CNT volume fraction is taken to be V�CNT ¼ 0:11. In each table, three
types of CNTRC plates and six different boundary conditions are
considered. The boundary conditions are given as follows:

Simply supported ðSÞ : At x ¼ 0; a : v0 ¼ w0 ¼ /y ¼ 0;

At y ¼ 0; b : u0 ¼ w0 ¼ /x ¼ 0:
Clamped ðCÞ : At x ¼ 0; a : v0 ¼ w0 ¼ /x ¼ /y ¼ 0;

At y ¼ 0; b : u0 ¼ w0 ¼ /x ¼ /y ¼ 0:



Table 2
Buckling load parameter Ncr ¼ Ncra2=D0 for simply supported isotropic plate under uniaxial compressive pressure (c1 = �1, c2 = 0).

Mode Present Analytical [42]

13 � 13 15 � 15 17 � 17 19 � 19 21 � 21

1 39.4717 39.3541 39.2327 39.1898 39.1744 39.4761
2 59.5340 59.9442 60.2003 60.3336 60.4874 61.6814
3 100.628 102.703 103.810 104.739 105.391 109.656
4 146.802 149.578 150.867 151.558 152.501 157.904

Table 3
Effect of boundary conditions on buckling load parameter Ncr ¼ Ncrb

2
=Emh3 for

various types of CNTRC plates under uniaxial compression (c1 = �1, c2 = 0).

Mode Boundary conditions

SSSS CCCC SCSC SFSF CCCF SSSF

UD
1 14.1073 25.7329 17.2424 12.0697 22.6030 12.3145
2 23.3149 26.2788 24.0481 13.0216 24.8135 16.6801
3 25.6506 29.6661 26.0993 20.3912 26.4696 22.5393
4 27.0498 29.7356 27.4953 22.4198 26.9602 24.1999

FG-O
1 9.8306 21.1221 12.9407 7.5979 17.7447 7.8954
2 18.6106 22.8513 19.3502 8.7307 21.3317 12.5971
3 23.0443 27.4064 23.9445 16.5875 22.1059 17.7061
4 23.5067 27.7713 24.4292 17.5352 23.6396 19.7792

FG-X
1 17.0631 27.8882 20.2230 15.1414 24.9924 15.3520
2 25.6219 27.9271 26.3162 15.9786 26.4526 19.5212
3 26.6656 30.4525 27.0017 23.0097 28.5261 24.9021
4 28.6004 30.6129 28.9246 24.8098 28.5546 25.9519

Table 4
Effect of boundary conditions on buckling load parameter Ncr ¼ Ncrb

2
=Emh3 for

various types of CNTRC plates under biaxial compression (c1 = �1, c2 = �1).

Mode Boundary conditions

SSSS CCCC SCSC SFSF CCCF SSSF

UD
1 5.8831 9.2830 7.4017 3.1893 8.1646 3.4105
2 6.9772 9.8992 7.7597 3.7162 9.1245 6.0466
3 7.8892 13.1796 10.8992 7.1140 9.8911 7.8034
4 10.6318 13.5820 13.0521 7.7648 11.2443 7.9533

FG-O
1 4.8946 8.6006 5.7889 2.6628 7.7420 2.8174
2 5.1057 9.0925 7.0471 3.0824 8.2474 5.0733
3 7.4827 12.0069 10.1848 5.4130 9.3315 6.3872
4 10.3448 13.1827 12.2440 7.2015 10.8971 7.2482

FG-X
1 6.4384 9.6510 8.2764 3.5390 8.3985 3.7579
2 8.1924 10.2682 8.3625 4.0248 9.5378 6.7678
3 8.4092 13.7356 11.5431 8.0983 10.2331 8.1427
4 10.8848 13.8683 13.3630 8.2506 11.4406 8.2934

Table 5
Effect of boundary conditions on buckling load parameter Ncr ¼ Ncrb2

=Emh3 for
various types of CNTRC plates under biaxial compression and tension (c1 = �1, c2 = 1).

Mode Boundary conditions

SSSS CCCC SCSC SFSF CCCF SSSF

UD
1 28.4768 31.1006 28.5901 22.4705 26.4640 24.0547
2 28.8410 31.2469 29.1082 26.7125 26.5452 27.5122
3 29.5768 31.2907 29.6525 28.3144 29.6448 28.6198
4 30.1219 31.3367 30.1596 28.5690 29.8224 29.0144

FG-O
1 24.0474 27.9340 25.0796 17.5847 21.4325 18.9241
2 26.1762 28.1397 26.5121 23.2046 22.7898 23.9607
3 27.7905 29.7081 27.9939 24.1482 27.5293 26.5443
4 28.0947 29.9150 28.2740 26.0577 27.6694 27.4088

FG-X
1 29.1897 31.3870 29.2382 24.8624 28.3064 26.5559
2 29.8851 31.5879 29.9561 28.1899 28.5949 28.9456
3 30.2610 31.6207 30.3072 28.8976 30.4639 29.1912
4 30.6195 31.6568 30.6433 29.5367 30.6519 29.9469

Table 6
Effect of temperature on buckling load parameter Ncr ¼ Ncrb

2
=Emh3 for various types

of CNTRC plates under uniaxial compression (c1 = �1, c2 = 0).

Mode Type of CNTRC

UD FG-O FG-X

300
1 30.9076 18.7534 40.8005
2 46.9779 34.4733 57.3978
3 69.3855 48.4971 82.0077
4 74.5610 54.0994 86.8162

500
1 24.9500 15.6500 31.7259
2 33.4917 24.0892 40.4903
3 47.8115 36.3066 52.5178
4 50.0545 39.0459 54.1447

700
1 9.9080 7.8312 10.9229
2 11.0824 9.2321 11.6558
3 11.5691 10.4122 12.5167
4 12.4589 11.4780 12.8683
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It is observed that for six different boundary conditions, plates with
four fully clamped edges (CCCC) have the maximum buckling load
values, whereas the plates with two edges simply supported and
two edges free (SFSF) have the minimum buckling load values since
constraints of boundary conditions become weaker with the order
of clamped (C), simply supported (S) and free (F) edges.

Figs. 2–4 show the variation of buckling load parameters of var-
ious types of simply supported square CNTRC plates under differ-
ent loading conditions versus CNT volume fraction. The results
show that buckling load parameter of the plates has a higher value
when the volume fraction of CNT is larger since the stiffness of
CNTRC plates is larger when the value of CNT volume fraction is
higher. Moreover, for all different distributions of CNTs, FG-X
plates have larger buckling load values than UD plates and values
of FG-O plates are smaller than UD plates. That is expected since
CNT reinforcements distributed close to top and bottom are more
efficient than those distributed near the mid-plane for increasing
the stiffness of CNTRC plates [16].

Figs. 5–7 show the variation of buckling load parameters of var-
ious types of simply supported square CNTRC plates under differ-
ent loading conditions versus plate width-to-thickness ratio. CNT
volume fractions of the plates are taken to be V�CNT ¼ 0:11. It can
be seen that as the width-to-thickness ratio of the plate increases,
the non-dimensional buckling load parameters increase and buck-
ling load parameters for UN-CNTRC plates and the other two types
of FG-CNTRC plates increase more slowly. The results also show
that effect of distribution of CNTs becomes weaker for moderately
thick CNTRC plates, as shown in Fig. 7.



Fig. 2. Variation of the buckling load parameter of simply supported various types
of CNTRC plates versus the CNT volume fraction under uniaxial compression
(c1 = �1, c2 = 0).

12

Fig. 3. Variation of the buckling load parameter of simply supported various types
of CNTRC plates versus the CNT volume fraction under biaxial compression (c1 = �1,
c2 = �1).

Fig. 4. Variation of the buckling load parameter of simply supported various types
of CNTRC plates versus the CNT volume fraction under biaxial compression and
tension (c1 = �1, c2 = 1).

Fig. 5. Variation of the buckling load parameter of simply supported various types
of CNTRC plates versus the plate width-to-thickness ratio under uniaxial compres-
sion (c1 = �1, c2 = 0).

Fig. 6. Variation of the buckling load parameter of simply supported various types
of CNTRC plates versus the plate width-to-thickness ratio under biaxial compres-
sion (c1 = �1, c2 = �1).

Fig. 7. Variation of the buckling load parameter of simply supported various types
of CNTRC plates versus the plate width-to-thickness ratio under biaxial compres-
sion and tension (c1 = �1, c2 = 1).
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Fig. 10. Variation of the buckling load parameter of simply supported various types
of CNTRC plates versus plate aspect ratio under biaxial compression and tension
(c1 = �1, c2 = 1).
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Figs. 8–10 show buckling load parameters for simply supported
square UD- and the other two types of FG-CNTRC plates with plate
aspect ratio (b = a/b) changing from 1.0 to 2.0. The plate width-to-
thickness ratio (b/h) is set to be 20. It can be seen that buckling load
parameters decrease as plate aspect ratio changes from 1.0 to 2.0.
It is worth noting that the change of plate aspect ratio has a very
small effect on buckling load parameter for CNTRC plates under
biaxial compression and tension (c1 = �1, c2 = 1), as shown in
Fig. 10.

Effects of temperature change (T = 300, 500 and 700 K) on buck-
ling load parameters of simply supported square CNTRC plates of
various types under different loading conditions are shown in Ta-
bles 6–8. For this study, the extended rule of mixture is used to
predict effective material properties of CNTRCs. As shown in Table
1, Young’s moduli E11 and E22 of CNTRCs (obtained by the rule of
mixture) match very well with molecular simulation results [7].
Width-to-thickness ratio (b/h) of the plates is set to be 20 and
CNT volume fraction V�CNT is taken to be 0.11. It can be seen that
buckling load parameters decrease as temperature increases be-
cause with increase of temperature, elastic moduli of CNTRC plates
are reduced and stiffness of nanocomposites becomes weaker since
Fig. 8. Variation of the buckling load parameter of simply supported various types
of CNTRC plates versus plate aspect ratio under uniaxial compression (c1 = �1,
c2 = 0).

Fig. 9. Variation of the buckling load parameter of simply supported various types
of CNTRC plates versus plate aspect ratio under biaxial compression (c1 = �1,
c2 = �1).

Table 7
Effect of temperature on buckling load parameter Ncr ¼ Ncrb

2
=Emh3 for various types

of CNTRC plates under biaxial compression (c1 = �1, c2 = �1).

Mode Type of CNTRC

UD FG-O FG-X

300
1 9.3805 6.9161 11.4231
2 10.3981 8.9197 11.6524
3 14.0470 9.3380 15.0540
4 15.3108 12.7496 19.6846

500
1 6.4261 4.8122 7.2278
2 6.6468 5.3809 7.9999
3 8.1205 7.2727 8.7376
4 10.6318 7.7577 11.1593

700
1 1.6662 1.4421 1.7938
2 1.7822 1.6040 1.8869
3 2.1605 1.8075 2.2538
4 2.1979 1.9780 2.3949

Table 8
Effect of temperature on buckling load parameter Ncr ¼ Ncrb

2
=Emh3 for various types

of CNTRC plates under biaxial compression and tension (c1 = �1, c2 = 1).

Mode Type of CNTRC

UD FG-O FG-X

300
1 89.9909 63.4215 104.9802
2 101.0670 81.0655 108.9411
3 107.7075 92.2314 113.8593
4 109.0635 95.2431 117.1884

500
1 60.3588 47.1796 63.0943
2 61.4624 54.2048 65.6711
3 63.9377 58.2656 66.7473
4 65.8997 58.6951 67.8585

700
1 12.7391 12.3343 12.9951
2 13.1208 12.8971 13.2835
3 13.2501 13.0608 13.4060
4 13.3643 13.1740 13.5197
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material properties of the matrix and SWCNTs are assumed to be
temperature-dependent. We also found that FG-X and FG-O CNTRC
plates have the highest and lowest values of buckling load param-
eters, respectively, in different temperature environments.

5. Conclusion

In this paper, the element-free kp-Ritz method is successfully
applied to buckling analysis of CNTRC plates. The plates are rein-
forced by SWCNTs and effective material properties of CNTRC
plates are estimated either by the Eshelby–Mori–Tanaka approach
or the extended rule of mixture. The first-order shear deformation
theory is employed and a kernel particle estimate is used to
approximate the two-dimensional displacement field. Comparison
studies were performed to verify the accuracy and efficiency of the
present method and the results were found to be in good agree-
ment with solutions available in literature. Detailed case studies
are conducted and it is concluded that the change of CNT volume
fraction, plate width-to-thickness ratio, plate aspect ratio, temper-
ature, boundary conditions and loading conditions have pro-
nounced effects on buckling strength of various types of CNTRC
plates. Moreover, it is noteworthy that distribution type of CNT
also significantly affects buckling strength of CNTRC plates.
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