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In this paper, a free vibration analysis of functionally graded nanocomposite plates reinforced by single-
walled carbon nanotubes (SWCNTs), using the element-free kp-Ritz method, is presented. Different types
of distributions of uniaxially aligned SWCNTs are considered. The material properties of functionally
graded carbon nanotube-reinforced composites (FG-CNTRCs) are assumed to be graded through the
thickness direction according to several linear distributions of the volume fraction of carbon nanotubes.
The governing equations are based on the first-order shear deformation plate theory and the two-dimen-
sional displacement fields are approximated by mesh-free kernel particle functions. Convergence and
comparison studies have been carried out to verify the stability and accuracy of the present method
for analysis of free vibration of various types of CNTRC plates. In computational simulation, several exam-
ples are presented to analyze the effects of carbon nanotue volume fraction, plate width-to-thickness
ratio, plate aspect ratio and temperature change on natural frequencies and mode shapes of various types
of FG-CNTRC plates, and results for uniformly distributed (UD) CNTRC plates are also provided for com-
parison. The effect of boundary conditions is also examined.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Carbon nanotubes (CNTs), a new advanced material of high
strength and stiffness with high aspect ratio and low density, have
attracted much attention of researchers. Many experimental and
theoretical investigations indicated that CNTs have extraordinary
high stiffness-to-weight and strength-to-weight ratio properties.
Treacy et al. [1] found that CNTs have exceptionally high Young’s
moduli in the terapascal (TPa) range. Wong et al. [2] discovered
that multi-walled CNTs were about two times as stiff as the silicon
carbide nanorods using atomic force microscopy. Salvetat et al. [3]
reported that the elastic and shear moduli of individual single-
walled nanotubes ropes were in the order of 1 TPa and 1 GPa.
Based on a first-principles cluster method within the framework
of local density approximation, Zhou et al. [4] examined the mor-
phology, mechanical properties and electronic structure of single-
walled carbon nanotubes (SWCNTs). The reported exceptional
properties of nanotubes have motivated researchers to investigate
experimentally of nanotube-based composites. Jin et al. [5] re-
ported a method to fabricate polymer-based composites with
aligned carbon nanotubes where the orientation and the degree
of alignment were determined by X-ray diffraction. Bower et al.
[6] fabricated and investigated polymer composites reinforced by
uniaxially oriented multi-walled carbon nanotubes by transmis-
sion electron microscopy. By using a combination of solvent cast-
ing and melt mixing method, Haggenmueller and co-workers [7]
dispersed aligned SWCNT in poly (methyl methacrylate) (PMMA).
Thostenson and Chou [8] investigated a scalable calendering ap-
proach for achieving dispersion of CVD-grown multi-walled carbon
nanotubes through intense shear mixing.

Motivated by their remarkable mechanical properties, carbon
nanotubes (CNTs) have potential for being used for reinforcement
of high strength and light-weight polymer composites. Many
researchers have paid much attention to the CNT-reinforced com-
posites [9–11]. Ajayan et al. [12] first studied composites rein-
forced by aligned CNT arrays and discovered that the reinforced
composites had excellent mechanical properties. Morphological
and mechanical properties of semicrystalline and amorphous poly-
mer composites reinforced by multi-walled CNTs were investi-
gated by Cadek et al. [13]. They found that the presence of
nanotubes nucleates crystallization of the polymer and this crystal
growth enhanced matrix-nanotube stress transfer. Since the
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interaction at the polymer and nanotube interface is highly depen-
dent on the local molecular structure and bonding, a constitutive
model has been proposed for carbon nanotube reinforced compos-
ites (CNTRCs) by using an equivalent-continuum modeling method
[14]. Griebel and Hamaekers [15] examined the elastic moduli of
CNTRCs using molecular dynamic simulations and found the re-
sults were in excellent agreement with solutions obtained by the
macroscopic rule of mixtures. Fidelus et al. [16] studied thermo-
mechanical properties of epoxy based nanocomposites with low
weight fractions of randomly oriented single-and multi-walled
CNTs. Although studies of mechanical, electrical and thermal prop-
erties of nanocomposites are quite useful, the ultimate purpose of
development of this advanced material is to explore potential
applications of CNTRCs in actual structures, such as CNT-reinforced
beams, plates or shells. Wuite and Adali [17] analyzed symmetric
cross-ply and angle-ply laminated beams stacked with multiple
transversely isotropic layers reinforced by CNTs in differently
aligned directions and isotropic beams. Analyses of pure bending
and bending-induced buckling of a nanocomposite beam based
on a continuum mechanical model were reported by Vodenitchar-
ova and Zhang [18]. The results demonstrated that in the thicker
matrix layers single-walled CNT buckled at smaller bending angles
and greater flattening ratios. By employing an equivalent contin-
uum model (the Mori–Tanaka scheme), Formica et al. [19] studied
vibration behaviors of cantilevered CNTRC plates. Based on the
classical laminated plate theory and third-order shear deformation
theory, Arani et al. [20] analytically and numerically investigated
buckling behaviors of laminated composite plates in which optimal
orientations of CNTs required to achieve the highest critical load
and the corresponding modes shape were calculated for different
kinds of boundary conditions, as well as aspect ratios of the plates.

Functionally graded materials (FGMs) are a new breed of com-
posite materials with properties that vary spatially according to a
certain non-uniform distribution of the reinforcement phase. Much
work has been done on FGMs in a wide range of fields since the
concept of FGMs was first proposed in 1984 [21,22]. Stimulated
by the concept of FGMs, CNT-based composite plates were pro-
posed by Shen [23]; nonlinear bending analysis of functionally
graded carbon nanotube-reinforced composite (FG-CNTRC) plates
in thermal environments was studied. By using the finite element
method (FEM), bending and free vibration analyses were carried
out for various types of FG-CNTRC plates in [24]. Ke et al. [25] pre-
sented a nonlinear free vibration analysis of FG-CNTRC beams
based on the Timoshenko beam theory. They found that both linear
and nonlinear frequencies of FG-CNTRC beam with symmetrical
distribution of CNTs were higher than those of beams with uniform
or asymmetrically distributed CNTs. Then Shen and Zhang [26] re-
ported thermal buckling and postbuckling behaviors of FG-CNTRC
plates which were subjected to in-plane temperature variation.

In recent years, mesh-free methods have attracted attention of
many researchers. Compared to FEMs, mesh-free methods can
eliminate mesh distortion due to large deformation and avoid the
need for remeshing, which is time-consuming and computationally
intensive. The first mesh-free method, called smoothed particle
hydrodynamics (SPH), was developed and used by Lucy for model-
ing astrophysical phenomena without boundaries [27]. Based on
NURBS (Non-Uniform Rational B-Splines), Hughes et al. [28] re-
ported an isogeometric analysis to construct an exact geometric
model. Nayroles et al. [29] presented a diffuse approximation
method by using the moving least squares approximations in the
Galerkin method. Arroyo and Ortiz [30] reported local maximum-
entropy approximation schemes which can be considered as a con-
venient basis for the numerical solution of partial differential equa-
tions in the style of mesh-free Galerkin methods. Then Cyron et al.
[31] extended these schemes to second-order maximum-entropy
approximation schemes. With combination of concepts from opti-
mal transportation theory with material-point sampling and max-
imum-entropy mesh-free interpolation, Li et al. [32] developed an
optimal transportation mesh-free method for simulating general
solid and fluid flows, including fluid–structure interaction. Based
on the local maximum entropy approach, Fraternali et al. [33] pre-
sented a mesh-free method for the curvature estimation of mem-
brane networks. Belytschko et al. [34] refined and modified the
diffuse element method to simulate the static and dynamic crack
problems which is called the element free Galerkin method. Krysl
and Belytschko applied the element-free Galerkin method for anal-
yses of thin plates and shells [35,36] and Liew et al. employed it to
analyze the pseudoelastic behavior of a SMA beam [37] and buck-
ling behaviors of corrugated plates [38]. Through the FSDT mesh-
free method, Peng et al. [39] presented a free vibration analysis
of fold plates. Zhu and Liew [40] reported a free vibration analysis
of moderately thick functionally graded plates by local Kriging
meshless method. Other advanced mesh-free methods including
the reproducing kernel particle method and the meshless local Pet-
rov–Galerkin method have also been successfully used in a variety
of engineering problems [41–43].

This paper presents a free vibration analysis of various types of
CNTRC plates with arbitrary boundary conditions using the ele-
ment-free kp-Ritz method, which has already been successfully ap-
plied for many problems [44–47]. The single-walled carbon
nanotubes (SWCNTs) are assumed to be uniformly distributed or
functionally graded along the thickness direction of plates and
the effective material properties of CNTRCs can be estimated by
either the Eshelby–Mori–Tanaka approach or the extended rule
of mixture. The first-order shear deformation plate theory is used
to account for transverse shear deformation and rotary inertia.
Convergence and comparison studies are provided to verify the
stability and accuracy of the proposed method for free vibration
analysis of CNTRC plates. The effects of boundary condition, CNT
volume fraction, plate width-to-thickness ratio, plate aspect ratio
and temperature change on characteristics of the frequency are
also examined in detail.

2. Functionally graded CNTRC plates

Four types of distributions of CNTs in CNTRC plates with length
a, width b and thickness h are considered in this paper, as shown in
Fig. 1. UD represents the uniform distribution and the other three
types of functionally graded distributions of CNTs are denoted by
FG-V, FG-O and FG-X. For the type of FG-V, the top surface of the
CNTRC plate is CNT-rich. In FG-X, the mid-plane of the CNTRC plate
is CNT-rich and in case of FG-X, both top and bottom surfaces of
the CNTRC plate are CNT-rich. Distributions of CNTs along the
thickness direction of these four types of CNTRC plates are as-
sumed to be as

VCNTðzÞ ¼

V�CNT ðUD CNTRCÞ
1þ 2z

h

� �
V�CNT ðFG� V CNTRCÞ

2 1� 2jzj
h

� �
V�CNT ðFG� O CNTRCÞ

2 2jzj
h

� �
V�CNT ðFG� X CNTRCÞ

8>>>>>><>>>>>>:
; ð1Þ

where

V�CNT ¼
wCNT

wCNT þ ðqCNT=qmÞ � ðqCNT=qmÞwCNT
; ð2Þ

where wCNT is the fraction of mass of the CNTs, and qm and qCNT are
densities of the matrix and CNTs, respectively. The CNT volume
fraction of UD-CNTRC plate and other three types FG-CNTRC plates
are assumed to be VCNT ¼ V�CNT , that means UD-CNTRC plate and the
other three types FG-CNTRC plates have the same mass volume of
CNTs.



Fig. 1. Configurations of carbon nanotube reinforced composite plates. (a) UD CNTRC plate; (b) FG-V CNTRC plate; (c) FG-O CNTRC plate; and (d) FG-X CNTRC plate.
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Several micromechanical models have been successfully devel-
oped to predict the effective material properties of CNT-reinforced
nanocomposites such as Eshelby–Mori–Tanaka scheme [19,48,49]
and the extended rule of mixture [23,26,50]. A comparison study
of Eshelby–Mori–Tanaka scheme and the extended rule of mixture
is also conducted for the vibration analysis of continuously graded
carbon nanotubes-reinforced cylindrical panels in [48].

2.1. Extended rule of mixture

According to the extended rule of mixture, effective material
properties of CNTRC plates can be expressed as [23]

E11 ¼ g1VCNT ECNT
11 þ VmEm; ð3Þ

g2

E22
¼ VCNT

ECNT
22

þ Vm

Em ; ð4Þ

g3

G12
¼ VCNT

GCNT
12

þ Vm

Gm ; ð5Þ

where ECNT
11 and ECNT

22 are the Young’s moduli of CNT in longitudinal
and transverse directions, respectively. GCNT

12 is the shear modulus
of CNT. Em and Gm are the corresponding properties of the isotropic
matrix. As the load transfer between the nanotube and matrix is
less than perfect, Shen [23] introduced gj(j = 1,2,3), called CNT effi-
ciency parameters, into Eqs. (3)–(5) to account load transfer be-
tween the nanotubes and polymeric phases (e.g. the surface
effect, strain gradient effect, and intermolecular coupled effect)
and other effects on the effective material properties of CNTRCs.
VCNT and Vm are the CNT and matrix volume fractions. Since Pois-
son’s ratio depends weakly on the position, we assume v12 to be

v12 ¼ V�CNTv
CNT
12 þ Vmvm; ð6Þ

where vCNT
12 and vm are Poisson’s ratios of CNTs and the

matrix, respectively. Similarly, thermal expansion coefficients are
also assumed to be graded in the thickness direction and are ex-
pressed as

a11 ¼ VCNTaCNT
11 þ Vmam; ð7Þ

a22 ¼ 1þ vCNT
12

� �
VCNTaCNT

22 þ ð1þ vmÞVmam � v12a11; ð8Þ
where aCNT
11 and aCNT

22 are thermal expansion coefficients of the CNTs
in the longitudinal and transverse directions, respectively. am is the
expansion coefficient of the matrix.

2.2. Eshelby–Mori–Tanaka approach

The Eshelby–Mori–Tanaka approach, known as the equivalent
inclusion-average stress method, is based on the equivalent elastic
inclusion idea of Eshelby [51,52] and the concept of average stress
in the matrix due to Mori–Tanaka [53]. According to Benveniste’s
revision [54], the tensor of effective elastic moduli C of CNTRCs is
given by

C ¼ Cm þ VCNThðCCNT � CmÞ � Ai � ½VmIþ VCNThAi��1
; ð9Þ

where I is the fourth-order unit tensor. Cm and CCNT are the stiffness
tensors of the matrix and CNT, respectively. It should be note that
the brackets represent an average overall possible orientation of
the inclusions. A is the dilute mechanical strain concentration ten-
sor and is given by

A ¼ Iþ S � C�1
m � ðCCNT � CmÞ

h i�1
; ð10Þ

where S is the fourth-order Eshelby tensor [52] which is specialized
to the case of cylindrical inclusions representative of the CNTs and
depends on their orientation by Mura [55].

3. Theoretical formulations

3.1. Energy functional

According to the first-order shear deformation theory [56], the
displacement field can be expressed as

uðx; y; zÞ ¼ u0ðx; yÞ þ z/xðx; yÞ; ð11Þ
vðx; y; zÞ ¼ v0ðx; yÞ þ z/yðx; yÞ; ð12Þ
wðx; y; zÞ ¼ w0ðx; yÞ; ð13Þ

where u0, v0 and w0 represent the respective translation displace-
ments of a point at the mid-plane of the plate in x, y and z
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directions; /x and /y denote rotations of a transverse normal about
positive y and negative x axes, respectively. The linear strain–dis-
placement relationships are given by

exx

eyy

cxy

8><>:
9>=>; ¼ e0 þ zj;

cyz

cxz

� �
¼ c0; ð14Þ

where

e0 ¼

@u0
@x
@v0
@y

@u0
@y þ

@v0
@x

8>><>>:
9>>=>>;; j ¼

@/x
@x
@/y

@y

@/x
@y þ

@/y

@x

8>><>>:
9>>=>>;; c0 ¼

/y þ @w0
@y

/x þ @w0
@x

( )
: ð15Þ

Then, the linear constitutive relations are expressed as

rxx

ryy

rxy

ryz

rxz

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

Q 11 Q 12 0 0 0
Q 12 Q 22 0 0 0

0 0 Q 66 0 0
0 0 0 Q 44 0
0 0 0 0 Q 55

26666664

37777775
exx

eyy

cxy

cyz

cxz

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
�

a11

a22

0
0
0

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
DT

0BBBBBB@

1CCCCCCA;
ð16Þ

where

Q 11 ¼
E11

1� v12v21
; Q 22 ¼

E22

1� v12v21
; Q12 ¼

v21E11

1� v12v21
; ð17Þ

Q 66 ¼ G12; Q 44 ¼ G23; Q55 ¼ G13; ð18Þ

and DT is the temperature change with respect to a reference state.
E11 and E22 are effective Young’s moduli of CNTRC plates in the prin-
cipal material coordinate; G12, G13 and G23 are the shear moduli;
and m12 and m21 are Poisson’s ratios.

The strain energy of the plate is expressed by

Ue ¼
1
2

Z
X
eT SedX; ð19Þ

where

e ¼
e0

j

c0

8><>:
9>=>;; ð20Þ

S ¼

A11 A12 A16 B11 B12 B16 0 0
A12 A22 A26 B12 B22 B26 0 0
A16 A26 A66 B16 B26 B66 0 0
B11 B12 B16 D11 D12 D16 0 0
B12 B22 B26 D12 D22 D26 0 0
B16 B26 B66 D16 D26 D66 0 0
0 0 0 0 0 0 As

44 As
45

0 0 0 0 0 0 As
45 As

55

266666666666664

377777777777775
¼

A B 0
B D 0
0 0 As

264
375;

ð21Þ

in which the extensional Aij, coupling Bij, bending Dij, and transverse
shear As

ij stiffness are given by

ðAij;Bij;DijÞ ¼
Z h=2

�h=2
Q ijð1; z; z2Þdz; As

ij ¼ K
Z h=2

�h=2
Q ij dz; ð22Þ

where i, j = 1, 2, 6 in Aij, Bij and Dij and i, j = 4, 5 in As
ij. K denotes the

transverse shear correction coefficient, which is taken to be K = 5/6
for isotropic materials. For FGMs, the shear correction coefficient is
suggested as K = 5/(6 � (v1V1 + v2V2)), by Efraim and Eisenberger
[57].

Kinetic energy of the plates for free vibration analysis is given
by

H ¼ 1
2

Z
X

Z h=2

�h=2
qðzÞð _u2 þ _v2 þ _w2ÞdzdX: ð23Þ
Therefore, the total energy function for the plate can be ex-
pressed as

Ps ¼ Ue �H: ð24Þ
3.2. Two-dimensional kernel particle shape functions

Theoretical formulation of the reproducing kernel particle meth-
od (RKPM) has been given in detail by Liu et al. [58] and Chen et al.
[43]. Construction of the shape function in RKPM is briefly reviewed
here. For a domain discretized by a set of nodes xI, I = 1, . . . , NP, dis-
placement approximations are expressed in the discrete form

uh ¼
XNP

I¼1

wIðxÞuI; ð25Þ

where wI(x) and uI are the shape function and nodal parameter
associated with node I, respectively.

The two-dimensional shape function is expressed as

wIðxÞ ¼ Cðx; x� xIÞUaðx� xIÞ; ð26Þ

where Ua(x � xI) is the kernel function, and C(x; x � xI) is the cor-
rection function, which is used to satisfy the reproduction
conditionsXNP

I¼1

wIðxÞx
p
I yq

I ¼ xpyq for pþ q ¼ 0;1;2: ð27Þ

The correction function is expressed by a linear combination of
polynomial basis functions

Cðx; x� xIÞ ¼ HTðx� xIÞbðxÞ; ð28Þ
bðxÞ ¼ ½b0ðx; yÞ; b1ðx; yÞ; b2ðx; yÞ; b3ðx; yÞ; b4ðx; yÞ; b5ðx; yÞ�T; ð29Þ
HTðx� xIÞ ¼ ½1; x� xI; y� yI; ðx� xIÞðy� yIÞ; ðx� xIÞ2; ðy� yIÞ

2�;ð30Þ

where H is a vector of the quadratic basis and b(x) is a coefficient
function of x and y are to be determined. Then, the shape function
can be written as

wIðxÞ ¼ bTðxÞHðx� xIÞUaðx� xIÞ: ð31Þ

By substituting Eq. (31) into Eq. (27), we can obtain coefficient
b(x) as

bðxÞ ¼M�1ðxÞHð0Þ; ð32Þ

where

MðxÞ ¼
XNP

I¼1

Hðx� xIÞHTðx� xIÞUaðx� xIÞ; ð33Þ

Hð0Þ ¼ ½1;0;0;0;0;0; �T: ð34Þ

For this 2-D plate problem, kernel function Ua(x � xI) is defined
as

Uaðx� xIÞ ¼ UaðxÞ �UaðyÞ; ð35Þ

in which

UaðxÞ ¼ u
x� xI

a

� �
; ð36Þ

where u(x) is the weight function. The cubic spline function is cho-
sen as the weight function, and is given by

uzðzIÞ ¼

2
3� 4z2

I þ 4z3
I for 0 6 jzIj 6 1

2
4
3� 4zI þ 4z2

I � 4
3 z3

I for 1
2 < jzIj 6 1

0 otherwise

8><>:
9>=>;; ð37Þ

where zI ¼ x�xI
dI
; dI is the size of the support of node I, calculated by

dI ¼ dmaxcI; ð38Þ



Table 1
Material properties of (10,10) SWCNT L ¼ 9:26 nm;R ¼ 0:68 nm;h ¼ 0:067 nm; mCNT

12 ¼ 0:175
� �

.

Temperature (K) ECNT
11 (TPa) ECNT

22 (TPa) GCNT
12 (TPa) aCNT

11 (10�6/K) aCNT
22 (10�6/K)

300 5.6466 7.0800 1.9445 3.4584 5.1682
500 5.5308 6.9348 1.9643 4.5361 5.0189
700 5.4744 6.8641 1.9644 4.6677 4.8943
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where dmax is a scaling factor ranging from 2.0 to 4.0. Distance cI is
chosen by searching for enough nodes to avoid the singularity of
matrix M.

Eventually, the shape function is expressed as

wIðxÞ ¼ HTð0ÞM�1ðxÞHðx� xIÞUaðx� xIÞ: ð39Þ

The boundary conditions cannot be directly imposed because
the shape function does not have Kronecker delta property. Several
methods, such as the transformation method [43], Lagrange multi-
pliers [34] and the penalty method, are useful for enforcing the
essential boundary conditions.

3.3. Discrete system equations

For a plate discretized by a set of nodes xI, I = 1, . . . , NP, approx-
imations of displacements are expressed as

uh
0 ¼

uh
0

vh
0

wh
0

/h
x

/h
y

0BBBBBBB@

1CCCCCCCA ¼
XNP

I¼1

wI

uI

v I

wI

/xI

/yI

0BBBBBB@

1CCCCCCAeixt ¼
XNP

I¼1

wIðxÞuIeixt : ð40Þ

The transformation method is employed to enforce the essential
boundary conditions in this paper. By substituting Eq. (40) into Eq.
(24) and taking the variation in the energy function yields the free
vibration eigen-equation

eK �x2fM� �
~u ¼ 0; ð41Þ

whereeK ¼ K�1KK�T; fM ¼ K�1MK�T; ~u ¼ KTu; ð42Þ
K ¼ Kb þ Km þ Ks; ð43Þ

in which K denotes the linear stiffness matrix and K is the transfor-
mation matrix.

Matrices K, Kb, Km, Ks, u, and M are given as follows:

KIJ ¼ wIðxJÞI; I is the identity matrix ð44Þ
u ¼ ½u1 u2 � � � un�T; ð45Þ

Kb
IJ ¼

Z
X

Bb
I

� �T
DBb

J dX; ð46Þ

Km
IJ ¼

Z
X

Bm
I

� �TABm
J dXþ

Z
X

Bm
I

� �TBBb
J dXþ

Z
X

Bb
I

� �T
BBm

J dX; ð47Þ

Ks
IJ ¼

Z
X

Bs
I

� �TAsBs
J dX; ð48Þ

M ¼
Z

X
GT

I
�mGJ dX; ð49Þ

where

Bb
I ¼

0 0 0 @wI
@x 0

0 0 0 0 @wI
@y

0 0 0 @wI
@y

@wI
@x

2664
3775; Bm

I ¼

@wI
@x 0 0 0 0

0 @wI
@y 0 0 0

@wI
@y

@wI
@x 0 0 0

2664
3775;

Bs
I ¼

0 0 @wI
@x wI 0

0 0 @wI
@y 0 wI

" #
; ð50Þ
GI ¼

wI 0 0 0 0
0 wI 0 0 0
0 0 wI 0 0
0 0 0 wI 0
0 0 0 0 wI

26666664

37777775; �m ¼

I0 0 0 I1 0
0 I0 0 0 I1

0 0 I0 0 0
I1 0 0 I2 0
0 I1 0 0 I2

26666664

37777775; ð51Þ

Matrices A; B; D and As can be calculated using either an ana-
lytical or a numerical method. Matrices Kb and Km are evaluated
with a 4 � 4 Gauss integration and shear stiffness Ks is obtained
by a one-point Gauss integration. I0, I1 and I2 are normal, coupled
normal-rotary and rotary inertial coefficients, which are defined by

ðI0; I1; I2Þ ¼
Z h=2

�2=h
qðzÞð1; z; z2Þdz: ð52Þ
4. Numerical results

In this section, several numerical examples are presented to
explicate free vibration frequency characteristics of FG-CNTRC
plates. Poly{(m-phenylenevinylene)-co-[(2,5-dioctoxy-p-pheny-
lene) vinylene]} referred as PmPV [59] is selected for the matrix.
Material properties of PmPV are assumed to be vm = 0.34 and
Em = (3.51 � 0.0047T) GPa, where T = T0 + DT and T0 = 300 K (room
temperature). When T = 300 K, Em = 2.1 GPa. The (10,10) SWCNTs
are selected as reinforcement for the present study. As reported
in the literature, charity, size and temperature of SWCNT can sig-
nificantly affect material properties of SWCNTs [60–63]. Also the
effective thickness of CNT plays an important role in estimating
the effective material properties of CNTs. With the effective thick-
ness of CNTs is assumed to be 0.34 nm, Han and Elliott [49] ob-
tained a low value of modulus for (10,10) SWCNTs

ECNT
11 ¼ 600 GPa; ECNT

22 ¼ 10 GPa;GCNT
12 ¼ 17:2 GPa

� �
. However, Wang

and Zhang [64] reported recently that the effective thickness of
SWCNTs should be smaller than 0.142 nm. Thus, all material prop-
erties of SWCNTs used for present analysis of FG-CNTRC plates are
selected from MD simulation results reported by Zhang and Shen
[18] where the effective wall thickness obtained for (10,10)
SWCNTs is 0.067 nm, which satisfies the Vodenitcharova–Zhang
criterion.[64]. Typical values of effective material properties of
(10,10) SWCNTs are listed in Table 1. The effective material prop-
erties of CNTRCs can be estimated by either the Eshelby–Mori–Ta-
naka approach or the extended rule of mixture. In this paper, the
extended rule of mixture is applied to predict the effective material
properties of CNTRCs for the convergence and comparison studies
and the Eshelby–Mori–Tanaka approach is used for detailed para-
metric study. The shape function of 2-D displacement approxima-
tions is constructed with the kernel particle function. Each of the
edges of the plates may be simply supported (S), fully clamped
(S) or free (F). A sequence of letters containing ‘‘S’’, ‘‘C’’ or ‘‘F’’ is
used to denote the essential boundary conditions of four edges.
The non-dimensional frequency parameter is defined as

�xmn ¼ xmn
b2

h

ffiffiffiffiffiffiffi
qm

Em

r
; ð53Þ

where xmn is the natural frequency of the CNTRC plates. Subscripts
m and n are the number of half-waves of mode shapes in x and y
directions, respectively.



(a) (b) 

(c) (d) 
Fig. 2. Convergence properties of various types of CNTRC plates in terms of the number of nodes with different support sizes. (a) UD; (b) FG-V; (c) FG-O; and (d) FG-X.
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4.1. Convergence and comparison studies

Convergence properties for free vibration analysis of CNTRC
plates are studied in terms of the number of nodes with differ-
ent support sizes to verify the accuracy and efficiency of the pro-
posed method. The extended rule of mixture is applied to predict
effective material properties of CNTRCs. Determining the CNT
efficiency parameter is very important to apply the rule of mix-
ture to estimate effective material properties of CNTRCs. Shen
[23] determined the CNT efficiency parameter by matching
Young’s moduli E11 and E22 of CNTRCs obtained by the extended
rule of mixture to MD results of Han and Elliott [59]. The bound-
ary condition of CNTRC plates is four edges simply supported
(SSSS). As shown in Fig. 2, it can be seen that the present
non-dimensional fundamental frequency (m = n = 1) matches
very well with ANSYS results (SHELL181 element for UD-CNTRC
plates and SHELL99 element for FG-CNTRC plates) [24]. When
plates are represented by 17 � 17 nodes and a scaling factor



Table 2
Non-dimensional natural frequency for simply supported and four edges fully clamped various types of CNTRC plates.

Boundary condition Mode UD FG-V FG-O FG-X

Present FEM [24] Present FEM [24] Present FEM [24] Present FEM [24]

SSSS 1 13.495 13.532 12.416 12.452 11.514 11.550 14.578 14.616
2 17.629 17.700 16.984 17.060 16.187 16.265 18.579 18.646
3 19.399 19.449 19.448 19.499 19.449 19.499 19.449 19.499
4 19.404 19.449 19.452 19.499 19.454 19.499 19.454 19.499
5 27.307 27.569 27.069 27.340 26.240 26.513 28.261 28.519
6 32.466 32.563 31.309 31.417 30.163 30.280 33.510 33.598

CCCC 1 17.587 17.625 17.171 17.211 16.667 16.707 18.045 18.083
2 22.933 23.041 22.704 22.818 22.138 22.253 23.498 23.606
3 33.170 33.592 32.939 33.070 32.237 32.378 33.915 34.338
4 33.612 33.729 33.121 33.552 32.424 32.857 34.361 34.467
5 36.905 37.011 36.405 36.528 35.674 35.809 37.367 37.447
6 37.238 37.317 37.357 37.437 37.367 37.447 37.693 37.786

Table 3
Non-dimensional natural frequency for simply supported various types of CNTRC plates in different temperature environments.

Temperature Mode UD FG-V FG-O FG-X

Present Wang [66] Present Wang [66] Present – Present –

300 K 1 12.1261 12.2696 11.3095 11.3074 10.4535 – 13.1289 –
2 16.5545 16.8071 16.2611 16.1790 15.3530 – 17.1045 –
3 16.9835 – 17.0406 – 17.0365 – 17.3901 –
4 26.0723 – 25.9239 – 17.0417 – 26.9635 –
5 28.3715 29.4399 27.8895 28.3821 26.5257 – 29.6804 –
6 30.6458 – 29.9585 – 29.0558 – 31.5033 –

500 K 1 10.9644 11.0402 10.2442 10.2068 9.5378 – 11.6675 –
2 14.4941 14.7052 14.2264 14.1873 13.4627 – 14.5948 –
3 14.5494 – 14.5404 – 14.5394 – 15.1371 –
4 22.4220 – 22.2866 – 21.6279 – 23.1611 –
5 25.0803 25.8619 24.4494 25.1033 23.4080 – 25.6915 –
6 26.5461 – 26.0737 – 25.4096 – 27.1711 –

700 K 1 9.2518 9.3611 8.7751 8.8190 8.2728 – 9.6982 –
2 11.5159 12.0533 11.5436 11.6928 11.1033 – 11.5519 –
3 11.8279 – 11.5514 – 11.5090 – 12.2867 –
4 17.9433 – 17.8435 – 17.3375 – 18.4932 –
5 20.3060 21.3606 19.9708 20.9137 19.2831 – 20.6604 –
6 21.3761 – 21.1273 – 20.7209 – 21.7653 –

Table 4
Non-dimensional natural frequency of various types of simply supported CNTRC plates with different estimations of effective material properties.

Types Mode

1 2 3 4 5 6

UD Extended rule of mixture 13.1507 17.9875 19.8236 19.9500 28.9201 32.7653
Eshelby–Mori–Tanaka 12.7824 17.5016 19.0806 19.1034 27.9322 31.3902

FG-V Extended rule of mixture 12.0357 17.4121 19.7355 19.9088 28.9056 31.0341
Eshelby–Mori–Tanaka 11.6600 16.8445 19.0811 19.1044 27.6270 29.9925

FG-O Extended rule of mixture 11.2171 16.8332 19.7047 19.7846 28.1450 29.7256
Eshelby–Mori–Tanaka 10.8016 16.1833 18.9034 18.9061 27.0305 28.7640

FG-X Extended rule of mixture 14.2839 19.0014 19.9876 20.0054 30.9261 33.8798
Eshelby–Mori–Tanaka 13.8742 18.3303 19.0834 19.1061 29.6183 32.4900
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dmax = 2.2 is used, the maximum difference is only 0.55%.
According to its effectiveness and efficiency, discretization with
17 � 17 nodes and a scaling factor dmax = 2.2 have been used
for all further analyses. The first comparison study is carried
out for simply supported and four edges fully clamped various
types of CNTRC plates, and typical results are shown in Table 2.
It can be seen that the present results agree well with FEM re-
sults reported by Zhu et al. [24]. Table 3 shows a further com-
parison for simply supported various types of CNTRC plates in
different temperature environments. A good agreement is also
obtained between the present results and the solutions given
by Wang and Shen [65].

4.2. Parameter studies

Several numerical examples showing the applicability of the
element-free kp-Ritz method on free vibration analysis of CNTRC
plates are presented in this section. The effective material



Fig. 3. Variation of non-dimensional fundamental frequency �x ¼ x b2
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simply supported various types of CNTRC plates versus the CNT volume fraction.

Fig. 4. Variation of non-dimensional fundamental frequency �x ¼ x b2
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Fig. 5. Variation of non-dimensional fundamental frequency �x ¼ x b2
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simply supported various types of CNTRC plates versus the plate width-to-thickness
ratio.

Fig. 6. Variation of non-dimensional fundamental frequency �x ¼ x b2
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Fig. 7. Variation of non-dimensional fundamental frequency �x ¼ x b2
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simply supported various types of CNTRC plates versus the plate aspect ratio.
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properties of CNTRCs are estimated by the Eshelby–Mori–Tanaka
approach. Here detailed parametric studies are carried
out to investigate the effects of CNT volume fraction, plate
width-to-thickness ratio, plate aspect ratio, and boundary condi-
tion on frequency characteristics of various types of CNTRC plates.

Table 4 shows the non-dimensional fundamental frequency of
various types of simply supported CNTRC plates with the effective
material properties of CNTRCs plates estimated by both the ex-
tended rule of mixture and Eshelby–Mori–Tanaka approach. The
plate width-to-thickness ratio b/h is assumed to be 10. The CNT
volume fraction V�CNT is selected as 0.17. It can be seen that the
non-dimensional fundamental frequency obtained by the extended
rule of mixture agrees well with solution of Eshelby–Mori–Tanaka
approach. Compared with the results, we also found that results
obtained by the extended rule of mixture are a little higher than
those of Eshelby–Mori–Tanaka approach.

Figs. 3 and 4 show the effect of CNT volume fraction on non-
dimensional fundamental frequency of various types of CNTRC
plates with simply supported and four edges fully clamped bound-
ary conditions. It is found that the non-dimensional fundamental
frequency of the plates has a higher value with a larger volume



Fig. 8. Variation of non-dimensional fundamental frequency �x ¼ x b2
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edges fully clamped various types of CNTRC plates versus the plate aspect ratio.
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fraction of CNT since the stiffness of CNTRC plates is larger when
the value of CNT volume fraction is higher. It is worth to note that
FG-X plates have the highest value of frequency and FG-O plates
have the lowest value of frequency among the plates due to rein-
forcements distributed close to top and bottom are more efficient
than those distributed near the mid-plane for increasing the stiff-
ness of CNTRC plates [24]. Some similar observations can also be
discerned from Figs. 5 and 6, which depict the variation of non-
dimensional fundamental frequency of simply supported and four
edges fully clamped various types of CNTRC plates with plate
width-to-thickness ratio. It can be found that as the plate width-
to-thickness ratio increases, the non-dimensional fundamental
natural frequency becomes less sensitive to the change of plate
Table 5
Effect of boundary conditions on non-dimensional natural frequency for various types of

Mode Boundary conditions

SSSS CCCC

UD 1 11.580 16.627
2 16.720 22.616
3 19.057 31.876
4 19.059 33.500
5 27.442 35.646
6 29.889 38.604

FG-V 1 10.474 15.961
2 16.118 22.200
3 19.056 30.880
4 19.057 33.271
5 27.175 34.871
6 28.161 38.596

FG-O 1 9.6642 15.334
2 15.557 21.714
3 19.058 30.003
4 19.060 32.850
5 26.711 34.122
6 26.723 37.612

FG-X 1 12.737 17.204
2 17.510 23.086
3 19.058 32.740
4 19.060 33.917
5 28.001 36.391
6 31.320 38.612
width-to-thickness ratio for UN-CNTRC plates and the other three
types of FG-CNTRC plates.

Figs. 7 and 8 show the variation of non-dimensional funda-
mental natural frequency of simply supported and four edges
fully clamped various types of CNTRC plates with the plate as-
pect ratio (b = a/b) changing from 1.0 to 2.0. The plate
width-to-thickness ratio is set to be b/h = 10 and CNT volume
fraction V�CNT ¼ 0:11 is considered. It can be seen that the non-
dimensional fundamental frequency decreases as b increases
for UN-CNTRC plates and the other three types of FG-CNTRC
plates. A similar effect of the distribution types of CNTs in
the plate can also obtained when we change the plate aspect
ratio.

Table 5 lists results of various types of CNTRC plates with differ-
ent boundary conditions. It can be seen that the value of non-
dimensional fundamental natural frequency of CNTRC plates with
CCCC boundary condition is the highest and the minimum non-
dimensional fundamental natural frequency is occurred for CNTRC
plates with SFSF boundary condition. That is to be expected, be-
cause the constraint of boundary condition clamped (C) is stronger
than boundary condition supported (S) and boundary condition
free (F) has no constraint of the edges.

Fig. 9 shows the first six mode shapes of four edges fully
clamped FG-V CNTRC plate V�CNT ¼ 0:11; b=h ¼ 50

� �
. Mechanical

properties of CNTRC plates are much higher in the longitudinal
direction (in x axis) than in the transverse direction (in y axis) since
CNTs only align in x direction. Then the mode sequence of this
CNTRC plate is dissimilar to that of an isotropic plate, compared
with mode shapes of isotropic Mindlin/Reissner plate given in
[41]. For isotropic Mindlin/Reissner plate mode (m = 2, n = 1) and
mode (m = 2, n = 2) are in the lower order than mode (m = 1,
n = 3) and mode (m = 1, n = 4). For present CNTRC plates, we can
discovered that mode (m = 2, n = 1) and mode (m = 2, n = 2) become
of higher order over mode (m = 1, n = 3) and mode (m = 1, n = 4)
due to the much higher mechanical properties of CNTRC plates in
the longitudinal direction.
CNTRC plates.

SCSC SFSF CCCF SSSF

12.905 10.699 15.166 10.849
19.061 10.991 16.675 13.286
20.371 13.723 23.044 19.209
30.428 18.281 25.242 21.078
32.256 19.209 30.857 24.761
34.503 21.824 31.958 29.332

11.937 9.4116 14.400 9.6145
19.060 9.8096 16.060 12.426
19.870 12.989 22.683 19.211
28.751 18.239 25.212 20.663
32.012 19.210 29.780 24.723
33.210 21.512 31.019 27.535

11.192 8.4737 13.707 8.7069
19.062 8.9714 15.477 11.761
19.364 12.367 22.221 19.211
27.303 18.282 25.246 20.184
31.584 19.210 28.846 24.765
32.048 21.045 30.187 25.996

13.975 11.992 15.794 12.104
19.062 12.189 17.220 14.256
21.080 14.604 23.493 19.211
31.844 18.282 25.246 21.724
32.788 19.210 31.774 24.765
35.676 22.405 32.782 30.824



(a) (b) 

(c) (d)

(e) (f)

Fig. 9. Free vibration modal shapes of four edges fully clamped FG-V CNTRC plate.
(a) 1st Mode (m = 1, n = 1); (b) 2nd Mode (m = 1, n = 2); (c) 3rd Mode (m = 1, n = 3);
(d) 4th Mode (m = 1, n = 4); (e) 5th Mode (m = 2, n = 1); and (f) 6th Mode (m = 2,
n = 2).
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5. Conclusions

CNTs are regarded as promising for application in excellent can-
didate of the reinforcement of polymer composites such as CNTRC
plates, due to their superior mechanical properties, i.e. high
strength and stiffness. In this paper, we aim to investigate the free
vibration of various types of CNTRC plates using the element-free
kp-Ritz method. The effective material properties of CNTRCs can
be estimated by either the Eshelby–Mori–Tanaka approach or the
extended rule of mixture. The first-order shear deformation theory
is employed to account for the transverse shear effect and rotary
inertia and a kernel particle estimate is used to approximate the
two-dimensional displacement field. Several numerical examples
are provided to verify the accuracy of the present mesh-free meth-
od and the results agree well with solutions available in the liter-
ature. Detailed parametric studies are conducted to investigate
effects of several parameters including CNT volume fraction, plate
width-to-thickness ratio, plate aspect ratio, temperature, boundary
condition and distribution type of CNTs on natural frequencies and
vibration mode shapes of CNTRC plates. Some typical conclusions
are given as.

(a) For CNT volume fraction, it is found that an increase in the
CNT volume fraction increases the non-dimensional funda-
mental frequency of various types of CNTRC plates.

(b) We also discover that the non-dimensional fundamental fre-
quency of various types of CNTRC plates increase when the
plate width-to-thickness ratio increases. It is worth to note
that the non-dimensional fundamental natural frequency
becomes less sensitive to the change of plate width-to-thick-
ness ratio with the increase of plate width-to-thickness
ratio.

(c) For plate aspect ratio, it can be seen that the non-dimen-
sional fundamental frequency decreases as plate aspect ratio
increases for UN-CNTRC plates and the other three types of
FG-CNTRC plates.
(d) For various types of CNTRC plates with different boundary
conditions, the highest and lowest values of non-dimen-
sional fundamental natural frequency are occurred for
CNTRC plates with CCCC and SFSF boundary conditions,
respectively.

(e) For distribution types of CNTs in the plates, we conclude that
reinforcements distributed close to top and bottom are more
efficient than those distributed near the mid-plane for
increasing the stiffness of CNTRC plates.
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