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A nonlinear analysis is presented for functionally graded carbon nanotube-reinforced composite (FG-
CNTRC) plates using the element-free kp-Ritz method. The nonlinear governing equations are developed
to investigate problems related to small strains and moderate rotations, based on the first-order shear
deformation plate theory and von Kármán strains. Two-dimensional displacement fields of the plates
are approximated by a set of mesh-free kernel particle functions. Single-walled carbon nanotubes
(SWCNTs) are selected as reinforcement and effective material properties of FG-CNTRC plates are
assumed to be graded through the thickness direction and are estimated through an equivalent contin-
uum model based on the Eshelby–Mori–Tanaka approach. For eliminating shear locking for a very thin
plate, a stabilized conforming nodal integration scheme is employed to evaluate the system bending stiff-
ness, and the membrane as well as shear terms are calculated by the direct nodal integration method.
Numerical simulations are carried out to investigate effects of various parameters on nonlinear behaviors
of FG-CNTRC plates and results for uniformly distributed (UD) CNTRC plates are provided for comparison.
Numerical results indicate that carbon nanotube content by volume, plate width-to-thickness ratio, plate
aspect ratio and boundary condition have pronounced effects on the nonlinear response of CNTRC plates.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, carbon nanotubes (CNTs) have attracted much
attention from researchers. Owing to their remarkable mechanical,
electrical and thermal properties, CNTs have been widely accepted
as a potential constituent of reinforcement and multi-functional
element for nanocomposites [1–3]. Extant research [4] has demon-
strated that addition of 1phr (part per hundred parts of resin) of
multi-walled CNTs in a styrene-butadiene copolymer results in a
45% increase in modulus and a 70% increase in tensile length. Qian
et al. [5] investigated load transfer and deformation mechanisms in
carbon nanotube-polystyrene composites and found that addition
of only 1 wt% nanotubes resulted in 36-42% and 25% increase in
elastic modulus as well as break stress. Pötschke et al. [6] exam-
ined rheological behavior of compression molded mixtures of poly-
carbonate and carbon nanotubes containing nanotube
concentrations of 0.5 wt% to 15 wt% using oscillatory rheometry
at 260�C. They discovered that 2 wt% nanotubes caused an obvious
change in electrical resistivity and complex viscosity. Therefore,
the introduction of CNTs into a polymer matrix may greatly im-
prove mechanical, electrical and thermal properties of the result-
ing nanocomposites.

Since the load transfer between the nanotube and the matrix is
less than perfect, several micromechanical models have been
developed to predict properties of CNT-reinforced nanocompos-
ites. Fidelus et al. [7] examined thermo-mechanical properties of
epoxy-based nanocomposites with low weight fractions (from
0.01 to 0.5 wt%) of randomly oriented single- and multi-walled car-
bon nanotubes with a rule-of-mixture type prediction of the mod-
ulus. Based on the rule of mixture, Anumandla and Gibson [8]
presented a comprehensive closed form micromechanics model
for estimating the elastic modulus of nanotube-reinforced compos-
ites. Han and Elliot [9] presented classical molecular dynamics
(MD) simulations of model polymer/CNT composites constructed
by embedding a single wall (10, 10) CNT into two different amor-
phous polymer matrices. The results showed that the MD results
matched very well with results obtained from the rule of mixture.
For most of the equivalent continuum approaches, Eshelby theory
[10,11] played a crucial role in modeling nanocomposites. Based on
Eshelby–Mori–Tanaka approach, Formica and Lacarbonara [12]
employed a continuum model for carbon nanotube-based compos-
ites as well as Shi et al. [13] investigated the effect of nanotube
waviness and agglomeration on elastic properties of CNTRCs. Li
et al. [14] studied reinforcing mechanisms of SWCNT-reinforced
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epoxy composites by several micromechanics models and found
that the modeling results obtained from both Halpin–Tsai and
Mori–Tanaka models were in good agreement with the experimen-
tal results.

Functionally graded materials (FGMs) in which material proper-
ties spatially vary according to a certain non-uniform distribution
of one of the constituents offer great potential for use in various
engineering applications. Numerous studies have been carried
out to examine usage of FGMs in a wide range of fields since the
concept of FGMs was first proposed in 1984 [15,16]. Stimulated
by the concept of functionally graded materials, the pattern of
the functionally graded distribution of reinforcement has been suc-
cessfully applied for CNTRCs. Zhu et al. [17] carried out bending
and free vibration analyses of various types of functionally graded
CNTRC plates using the finite element method (FEM). Using a two-
step perturbation technique, Shen [18] presented a nonlinear
bending analysis of functionally graded carbon nanotube-rein-
forced composite (FG-CNTRC) plates in thermal environments. Ke
et al. [19] investigated nonlinear free vibration responses of func-
tionally graded nanocomposite beams reinforced by SWCNTs.
Based on the Eshelby–Mori–Tanaka approach, natural frequency
characteristics of a continuously graded CNTs-reinforced cylindri-
cal panels were considered by Aragh et al. [20] and vibrational
properties of CNTRCs were also studied by Formica et al. [21].
Mehrabadi [22] investigated mechanical buckling of functionally
graded nanocomposites rectangular plates reinforced by aligned
and straight SWCNTs subjected to uniaxial and biaxial in-plane
loadings, in which the effective material properties of nanocom-
posites were estimated by either the Eshelby–Mori–Tanaka ap-
proach or the extended rule of mixture. For postbuckling
analyses, CNTRC cylindrical shells subject to axial compression
and lateral pressure in thermal environments were investigated
by Shen [23,24] as well as a similar analysis of functionally graded
nanocomposite plates subjected to in-plane temperature variation
was also presented by Shen and Zhang [25].

In the present work, a nonlinear bending analysis of FG-CNTRC
plates is presented using the element-free kp-Ritz method, which
has already been successfully applied in many fields [26–29]. The
nonlinear bending formulation is based on the first-order shear
deformation plate theory and the Von Kármán assumption
accounting for transverse shear strains, rotary inertia and moder-
ate rotations. Two kinds of CNTRC plates, namely, UD and FG dis-
tributions of the reinforcement are considered. The material
properties of FG-CNTRCs are assumed to be graded in the thickness
direction and are estimated through an equivalent continuum
model based on the Eshelby–Mori–Tanaka approach. In the present
meshfree method, plate bending stiffness is calculated using a sta-
bilized conforming nodal integration approach while the shear and
membrane stiffness are evaluated using a direct nodal integration
method to avoid shear locking for very thin plates. A combination
of the arc-length iterative algorithm and the modified Newton–
Raphson method is employed to obtain nonlinear response of FG-
CNTRC plates. The current formulation is verified by several studies
that compared the present results with solutions reported in the
literature. Detailed parametric studies are also carried out to inves-
tigate the effects of CNT content by volume, plate width-to-thick-
ness ratio, plate aspect ratio and boundary condition on the
nonlinear responses in detail.

2. Carbon nanotube-reinforced composites

As shown in Fig. 1, four types of CNTRC plates with length a,
width b and thickness h are considered. The CNTs are assumed
uniaxially aligned, that is, UD represents uniformly distributed
and FG-V, FG-O and FG-X denote the other three types of function-
ally graded distributions of CNTs. According to distributions of
uniaxially aligned SWCNTs, CNT content by volume VCNT are ex-
pressed as [17]

VCNTðzÞ ¼

V�CNT ðUDÞ;
1þ 2z

h

� �
V�CNT ðFG-VÞ;

2 1� 2jzj
h

� �
V�CNT ðFG-OÞ;

2 2jzj
h

� �
V�CNT ðFG-XÞ;

8>>>>>><>>>>>>:
ð1Þ

where UD represents the uniform distribution. For the type of FG-V,
the top surface of the CNTRC plate is CNT-rich. In FG-O, the mid-
plane of the CNTRC plate is CNT-rich and in case of FG-X, both
top and bottom surfaces of the CNTRC plate are CNT-rich, and

V�CNT ¼
wCNT

wCNT þ ðqCNT=qmÞ � ðqCNT=qmÞwCNT
; ð2Þ

in which wCNT is the mass fraction of CNTs and qm and qCNT are den-
sities of the matrix and CNTs, respectively. The overall CNT content
by volume of UD-CNTRC plate and those of the other three types of
FG-CNTRC plates are the same, which means the four types CNTRC
plates have the same mass and volume of CNTs. In this paper, an
equivalent continuum model based on the Eshelby–Mori–Tanaka
approach is employed to predict properties of carbon nanotube-
reinforced nanocomposites [10,11,30]. For two-phase composites,
effective elastic module tensor L of CNTRCs can be expressed as fol-
lows, according to Benveniste’s revision [31]:

L ¼ Lm þ VCNThðLCNT � LmÞ � Ai � ½VmIþ VCNThAi��1
; ð3Þ

where Lm and LCNT are stiffness tensors of the matrix and CNT,
respectively. I is the fourth-order unit tensor. The angle brackets
represent an average over all possible orientation of the inclusions.
A is the dilute mechanical strain concentration tensor, and is writ-
ten as

A ¼ Iþ S � L�1
m � ðLCNT � LmÞ

h i�1
; ð4Þ

where S is the fourth-order Eshelby tensor [11] and is well defined
for cylindrical inclusions by Mura [32].

3. Theoretical formulations

3.1. Total potential energy functional

The nonlinear bending formulations of CNTRC plate are derived
here from the Ritz method. The displacement field of the first-order
shear deformation theory (FSDT) is of the form [33]

uðx; y; zÞ ¼ u0ðx; yÞ þ z/xðx; yÞ; ð5Þ
vðx; y; zÞ ¼ v0ðx; yÞ þ z/yðx; yÞ; ð6Þ
wðx; y; zÞ ¼ w0ðx; yÞ; ð7Þ

where u, v and w are displacements of a point in question within the
CNTRC plate along the x, y and z directions, respectively, and u0, v0

and w0 represent the displacements of a point on the plate z = 0. It is
worth to note that

/x ¼
@u
@z
; /y ¼

@v
@z

; ð8Þ

which indicate that /x and /y are transverse normal rotations about
positive y and negative x axes, respectively. Based on the above dis-
placement field, the strain components can be expressed by

exx

eyy

cxy

8><>:
9>=>; ¼ e0 þ zj;

cyz

cxz

� �
¼ c0; ð9Þ



Fig. 1. Configurations of carbon nanotube reinforced composite plates: (a) UD CNTRC plate, (b) FG-V CNTRC plate, (c) FG-O CNTRC plate, (d) FG-X CNTRC plate.
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where

e0 ¼ e0L þ e0N; ð10Þ

j ¼

@/x
@x
@/y

@y

@/x
@y þ

@/y

@x

8>><>>:
9>>=>>;; c0 ¼

/y þ @w0
@y

/x þ @w0
@x

( )
; ð11Þ

where the linear and nonlinear terms are expressed as:

e0L ¼

@u0
@x
@v0
@y

@u0
@y þ

@v0
@x

8>><>>:
9>>=>>;; e0N ¼

1
2 ð

@w0
@x Þ

2

1
2 ð

@w0
@y Þ

2

@w0
@x

@w0
@y

0BB@
1CCA: ð12Þ

Then, the constitutive relations are given by

rxx

ryy

rxy

ryz

rxz

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

Q 11 Q 12 0 0 0
Q 12 Q 22 0 0 0

0 0 Q 66 0 0
0 0 0 Q 44 0
0 0 0 0 Q 55

26666664

37777775
exx

eyy

cxy

cyz

cxz

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
�

a11

a22

0
0
0

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
DT

0BBBBBB@

1CCCCCCA;
ð13Þ

where

Q 11 ¼
E11

1� v12v21
; Q 22 ¼

E22

1� v12v21
; Q12 ¼

v21E11

1� v12v21
;

Q 66 ¼ G12; Q 44 ¼ G23; Q55 ¼ G13; ð14Þ

and a11 and a22 are thermal expansion coefficients in x and y direc-
tions, respectively, and D T is the temperature change from a refer-
ence stress free state.

The relationship between the resultant stresses and the strains
can be written as

N
M
Q s

8><>:
9>=>; ¼

A B 0
B D 0
0 0 As

264
375 e0

j

c0

8><>:
9>=>;�

NT

MT

0

8><>:
9>=>;; ð15Þ
where the total in-plane force resultants, total moment resultants,
transverse shear force resultants and thermal stress resultants are
defined as

N ¼
Nxx

Nyy

Nxy

8><>:
9>=>; ¼

Z h=2

�h=2

rxx

ryy

rxy

8><>:
9>=>;dz; ð16Þ

M ¼
Mxx

Myy

Mxy

8><>:
9>=>; ¼

Z h=2

�h=2

rxx

ryy

rxy

8><>:
9>=>;zdz; ð17Þ

Q s ¼
Q y

Qx

� �
¼
Z h=2

�h=2

ryz

rxz

� �
dz; ð18Þ

NT ¼
Z h=2

�h=2
a11 a22 0½ �ðQ 11 þ Q 12ÞDTdz; ð19Þ

MT ¼
Z h=2

�h=2
a11 a22 0½ �ðQ11 þ Q 12ÞDTzdz: ð20Þ

The stiffness matrixes A, B, D and As are given as

ðAij;Bij;DijÞ ¼
Z h=2

�h=2
Q ijð1; z; z2Þdz; As

ij ¼ K
Z h=2

�h=2
Q ijdz; ð21Þ

where Aij, Bij and Dij are defined for i,j = 1,2,6 and i,j = 4,5 in As
ij. For

isotropic materials, the transverse shear correction coefficient K is
taken to be 5/6, and is suggested to be K = 5/(6 � (v1V1 + v2V2)) for
functionally graded materials by Efraim and Eisenberger [34].

The strain energy of the CNTRC plate is expressed as

Ue ¼
1
2

Z
X
eT SedX; ð22Þ

where

e ¼
e0

j

c0

8><>:
9>=>;; S ¼

A B 0
B D 0
0 0 As

264
375: ð23Þ
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The external work is given by

We ¼
Z

X
uT�fdXþ

Z
C

uT�tdC; ð24Þ

where �f represents the external load and �t is the prescribed traction
on the natural boundary. u is the displacement vector.

Thus the total potential energy functional of the plate can be ex-
pressed as

Ps ¼ Ue �We: ð25Þ
3.2. Discrete system equations

In the present work, CNTRC plates are discretized by a group of
nodes xI, I = 1, . . . ,NP. The displacement field of CNTRC plates can be
expressed according to the reproducing kernel particle method

û ¼
XNP

I¼1

wIðxÞuI; ð26Þ

where uI is and displacement associated with node I. wI(x) is the
two-dimensional shape function defined as [35,36]:

wIðxÞ ¼ Cðx; x� xIÞUaðx� xIÞ; ð27Þ

where Ua(x � xI) is the kernel function. Correction function
C(x;x � xI) is constructed as a linear combination of polynomial ba-
sis functions to satisfy reproducing conditions

Cðx; x� xIÞ ¼ HTðx� xIÞbðxÞ; ð28Þ

where

bðxÞ¼ ½b0ðx;yÞ;b1ðx;yÞ;b2ðx;yÞ;b3ðx;yÞ;b4ðx;yÞ;b5ðx;yÞ�T; ð29Þ
HTðx�xIÞ¼ ½1;x�xI;y�yI;ðx�xIÞðy�yIÞ;ðx�xIÞ2;ðy�yIÞ

2�; ð30Þ

where H is a quadratic basis vector. b(x) is a coefficient function of x
and y to be determined.

Now, the shape function can be written as

wIðxÞ ¼ bTðxÞHðx� xIÞUaðx� xIÞ; ð31Þ

The coefficient b(x) can be obtained by substituting Eq. (28) into
reproduction conditionsXNP

I¼1

wIðxÞx
p
I yq

I ¼ xpyq for pþ q ¼ 0;1;2: ð32Þ

bðxÞ ¼ M�1ðxÞHð0Þ; ð33Þ

where

MðxÞ ¼
XNP

I¼1

Hðx� xIÞHTðx� xIÞUaðx� xIÞ; ð34Þ

Hð0Þ ¼ ½1;0;0;0;0;0; �T; ð35Þ

The two-dimensional kernel function Ua(x � xI) is defined as

Uaðx� xIÞ ¼ UaðxÞ �UaðyÞ; ð36Þ

where

UaðxÞ ¼ u
x� xI

a

� �
: ð37Þ

The cubic spline function is employed as the weight function u(x)

uzðzIÞ ¼

2
3� 4z2

I þ 4z3
I for 0 6 jzIj 6 1

2 ;
4
3� 4zI þ 4z2

I � 4
3 z3

I for 1
2 < jzIj 6 1;

0 otherwise;

8><>:
9>=>; ð38Þ

where zI ¼ x�xI
dI

, dI is the size of the support of node I, calculated by

dI ¼ dmaxcI; ð39Þ
in which dmax is a scaling factor ranging from 2.0 to 4.0, and dis-
tance cI is chosen by searching a sufficient number of nodes to avoid
the singularity of the matrix M.

The shape function can be expressed as

wIðxÞ ¼ HTð0ÞM�1ðxÞHðx� xIÞUaðx� xIÞ: ð40Þ

As the shape function wI(x) does not possess Kronecker delta prop-
erty, the essential boundary conditions cannot be directly imposed.
Several methods, such as the transformation method [35], Lagrange
multipliers and the penalty method can be applied to enforce the
essential boundary conditions. In this paper, the transformation
method is employed to impose the essential boundary conditions.
For the transformation approach, a transformation matrix is intro-
duced to the reconstruction of the present shape functions that pos-
sess Kronecker delta property. Then direct treatment of boundary
conditions is allowed and hence the kinematically admissible test
and trial functions can be formed.

Based on the displacements defined in Eq. (26), the ‘generalized’
displacement u is constructed as

~uJ ¼
XNP

I¼1

wIðxJÞuI ¼
XNP

K¼1

LIJuI; ð41Þ

where ~uJ ¼ ûðxJÞ is the nodal value at xJ and LIJ = wI(xJ).
Then we can obtain

uI ¼
XNP

K¼1

L�T
IK

~uI: ð42Þ

Substituting Eq. (42) into Eq. (41) leads to

ûI ¼
XNP

I¼1

wIðxÞuI ¼
XNP

I¼1

XNP

K¼1

wIðxÞL�T
IK

~uK ¼
XNP

K¼1

ŵKðxÞ~uK ; ð43Þ

where

ŵKðxÞ ¼
XNP

I¼1

L�T
KI wIðxÞ: ð44Þ

Note that

ŵIðxJÞ ¼
XNP

I¼1

L�T
IK wKðxJÞ ¼

XNP

I¼1

L�T
IK LKJ ¼ dIJ: ð45Þ

Therefore, the reconstruction shape function possesses Kronecker
delta property.

Substituting Eqs. (26) into (22), the strain energy can be written
as

Ue ¼ UL þ UN

¼ 1
2

Z Z
X

eT
0LAe0L þ eT

0LBjþ jT Be0L þ jT Djþ cT Asc
� �

dxdy

þ
Z Z

X
eT

0LAe0N þ eT
0NAe0L þ eT

0NBe0N þ jT De0N þ eT
0NAe0N

� �
dxdy:

ð46Þ

Taking the variation of the total potential energy functional, it
yields the nonlinear bending equilibrium equation

KsðuÞu ¼ F; ð47Þ

where the nonlinear stiffness matrix Ks(u) is decomposed into two
terms

KsðuÞ ¼ KL þ KNðuÞ; ð48Þ

in which KL and KN(u) represent the linear and nonlinear parts of
the stiffness matrix, respectively, and are calculated by
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KL ¼ Kb þ Km þ Ks þ Kt; ð49Þ

Kb
IJ ¼

Z
X

BbT

I DBb
J dX; ð50Þ

Km
IJ ¼

Z
X

BmT

I ABm
J dXþ

Z
X

BmT

I BBb
J dXþ

Z
X

BbT

I BBm
J dX; ð51Þ

Ks
IJ ¼

Z
X

BsT

I AsBs
J dX; ð52Þ

Kt ¼
Z

X
GT

I NGJdX; ð53Þ

FI ¼
Z

X
wI

�fdXþ
Z

C
wI

�tdCþ
Z

X
BmT

I BbT

I

h i NT

MT

" #
dX; ð54Þ

KN
IJ ¼

Z
X

1
2

BLT

I SBN
J þ BNT

I SBL
J þ

1
2

BNT

I SBN
J

� 	
dX; ð55Þ

BL
I ¼

Bm
I

Bb
I

Bs
I

264
375; BN

I ¼ HG: ð56Þ

Compared with the Gauss integration, the stabilized nodal integra-
tion and direct nodal integration may reduce the high computa-
tional cost and eliminate the errors due to the mismatch between
the quadrature cells and the shape function supports [37]. Then
the bending stiffness matrices in Eq. (50) are evaluated via the sta-
bilized nodal integration [38] while the shear and membrane terms
in Eqs. (51)–(55) are calculated using direct nodal integration [39]
instead of the Gauss integration which are commonly used in
mesh-free methods. Approximations of Eqs. (50)–(55) are given as
follows:

Kb
IJ ¼

XNP

L¼1

eBbT

I ðxLÞDeBb
J ðxLÞAL; ð57Þ

Km
IJ ¼

XNP

L¼1

BmT

I ðxLÞABm
J ðxLÞþBmT

I ðxLÞBBb
J ðxLÞþBbT

I ðxLÞBBm
J ðxLÞ

h i
AL; ð58Þ

Ks
IJ ¼

XNP

L¼1

BsT

I ðxLÞAsBs
J ðxLÞAL; ð59Þ

Kt ¼
XNP

L¼1

GT
I ðxLÞNGJðxLÞAL; ð60Þ

KN
IJ ¼

XNP

L¼1

1
2

BLT

I ðxLÞSBN
J ðxLÞþBNT

I ðxLÞSBL
J ðxLÞþ

1
2

BNT

I ðxLÞSBN
J ðxLÞ


 �
AL;

ð61Þ

FI ¼
XNP

L¼1

wIðxLÞ�fðxLÞALþ
XNPb

L¼1

wIðxLÞ�tðxLÞsL

þ
XNP

L¼1
BmT

I ðxLÞ BbT

I ðxLÞ
h i NT

MT

" #
AL; ð62Þ

where xL and AL indicate the nodal coordinate and representative
area, respectively, as well as NP and sL represent the number of
nodes on the natural boundary and the weights associated with
the boundary point, respectively. Here matrices eBb

I ðxLÞ, Bb
I ðxLÞ,

Bm
I ðxLÞ, Bs

I ðxLÞ, GðxLÞ and N are calculated by:
Fig. 2. The flowchart of the proposed method for nonlinear analysis of CNTRC
plates.
eBb
I ðxLÞ ¼

0 0 0 ~bIxðxLÞ 0

0 0 0 0 ~bIyðxLÞ
0 0 0 ~bIyðxLÞ ~bIxðxLÞ

2664
3775; ð63Þ

~bIxðxLÞ ¼
1
AL

Z
CL

wIðxLÞnxðxLÞdC; ~bIyðxLÞ

¼ 1
AL

Z
CL

wIðxLÞnyðxLÞdC; ð64Þ
Bb
I ðxLÞ ¼

0 0 0 @wIðxLÞ
@x 0

0 0 0 0 @wIðxLÞ
@y

0 0 0 @wIðxLÞ
@y

@wIðxLÞ
@x

2664
3775; ð65Þ
Bm
I ðxLÞ ¼

@wIðxLÞ
@x 0 0 0 0

0 @wIðxLÞ
@y 0 0 0

@wIðxLÞ
@y

@wIðxLÞ
@x 0 0 0

2664
3775; ð66Þ
Bs
I ðxLÞ ¼

0 0 @wIðxLÞ
@x wIðxLÞ 0
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 �
: ð69Þ

A brief flowchart of the proposed method is shown in Fig. 2, in
which a combination of the arc-length iterative algorithm and the
modified Newton–Raphson method is employed to obtain nonlinear
responses of FG-CNTRC plates.



Fig. 4. Non-dimensional central deflection for simply supported square orthotropic
plate.

Fig. 5. Non-dimensional central deflection for clamped functionally graded square
alumina/aluminum plates with different values of the volume fraction index n.
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4. Numerical results

This section first reports the outcome of nonlinear analyses of
isotropic, orthotropic and functionally graded alumina/aluminum
plates for comparison and verification of accuracy as well as effec-
tiveness of the present method. Then detailed parametric studies
are presented to illustrate the linear and nonlinear responses of
CNTRC plates. Poly{(m-phenylenevinylene)-co-[(2,5-dioctoxy-p-
phenylene) vinylene]}, referred as PmPV, is selected as the matrix
with isotropic material properties vm = 0.34 and Em =
(3.51 � 0.0047T) GPa, where T = T0 + DT and T0 = 300 K (room tem-
perature). As material properties of SWCNTs are charity-, size- and
temperature-dependent [40–43], typical values are taken from
analytical results of Popov et al. [44]. In this paper, properties of
the matrix and CNTs are given as at temperature T = 300 K (room
temperature) unless otherwise specified. For the present ele-
ment-free method, a scaling factor of 2.2 that represents the size
of the support is used in construction of shape functions and a reg-
ular nodal distribution 15 � 15 is chosen, following convergence
studies.

4.1. Nonlinear analysis of isotropic, orthotropic and functionally
graded alumina/aluminum plates

To verify the present formulation, several comparisons are car-
ried out. A convergence study is carried out first for nonlinear
bending analysis of simply supported square isotropic plate
(v = 0.316) subjected to a uniform distributed transverse load in
terms of the number of nodes. The non-dimensional load–deflec-
tion curves are shown in Fig. 3. It can be seen that the result ob-
tained by the present element-free method with 15 � 15 nodes
agrees well with solution of Shen [45] using a two-step perturba-
tion technique. Therefore, a discretization with 15 � 15 nodes is
used for all further analyses. Secondly, we carried out a nonlinear
analysis of a simply supported square orthotropic plate. Geometric
properties of this plate are a = b = 12 in. and h = 0.138 in. as well as
its material properties are Young’s modulus E1 = 3.0 � 106 psi,
E2 = 1.28 � 106 psi, G12 = G13 = G23 = 0.37 � 106 psi, and Poisson ra-
tio v12 = 0.32. As shown in Fig. 4, the result of Shen [45] and solu-
tion of Zaghloul using classical plate theory (CPT) [46] differ from
experimental results of Zaghloul and Kennedy [46], while the pres-
ent result is in good agreement with Zaghloul and Kennedy. It is
believed that the discrepancies of present results between other
Fig. 3. Convergence property for simply supported square isotropic plate
(v = 0.316) under a uniformly distributed transverse load.
solutions are caused by different plate theories employed and the
solution strategies used in the respective studies. Fig. 5 gives the
non-dimensional load–deflection curves for a clamped functionally
graded square alumina/aluminum plate with different values of
the volume fraction index n of ceramic. Width-to-thickness ratio
(b/h) of the plate is set to 100 and material properties of the alu-
mina/aluminum plate are Ec = 380 GPa, Em = 70 GPa, and Poisson
ratio is taken to be v = 0.3. It can be seen that the present results
also match well with solutions of Wu et al. [47].

4.2. Linear analysis of CNTRC plates

In this section, a linear analysis of various types of CNTRC plates
with different boundary conditions under a transversely uniformly
distributed load q0 = �0.1 MPa is considered. For boundary condi-
tions of the four edges of a plate, a sequence of letters containing
‘‘S’’, ‘‘C’’ or ‘‘F’’, is used to denote simply supported (S), fully
clamped (C) or free (F), respectively. The thickness of the plates
is taken to be 2.0 mm. Table 1 shows the non-dimensional central
deflection w ¼ w0

h for the UD and the other three types of FG-CNTRC
square plates subjected to a uniform transverse load q0 with differ-



Table 1
Effects of width-to-thickness ratio (b/h) on the non-dimensional central deflection �w ¼ w0=h for linear analysis of various types of CNTRC plates under different boundary
conditions.

b/h SSSS CCCC SCSC SFSF

Present FEM [17] Present FEM [17] Present FEM [17] Present FEM [17]

10 UD 3.751 � 10�3 3.739 � 10�3 2.233 � 10�3 2.228 � 10�3 3.333 � 10�3 3.325 � 10�3 3.449 � 10�3 3.444 � 10�3

FG-V 4.479 � 10�3 4.466 � 10�3 2.360 � 10�3 2.351 � 10�3 3.860 � 10�3 3.853 � 10�3 4.191 � 10�3 4.186 � 10�3

FG-O 5.245 � 10�3 5.230 � 10�3 2.517 � 10�3 2.512 � 10�3 4.441 � 10�3 4.433 � 10�3 4.973 � 10�3 4.967 � 10�3

FG-X 3.188 � 10�3 3.177 � 10�3 2.114 � 10�3 2.109 � 10�3 2.874 � 10�3 2.867 � 10�3 2.910 � 10�3 2.905 � 10�3

20 UD 3.638 � 10�2 3.628 � 10�2 1.339 � 10�2 1.339 � 10�2 3.400 � 10�2 3.393 � 10�2 3.344 � 10�2 3.341 � 10�2

FG-V 4.892 � 10�2 4.879 � 10�2 1.593 � 10�2 1.593 � 10�2 4.387 � 10�2 4.381 � 10�2 4.549 � 10�2 4.544 � 10�2

FG-O 6.172 � 10�2 6.155 � 10�2 1.860 � 10�2 1.860 � 10�2 5.397 � 10�2 5.389 � 10�2 5.803 � 10�2 5.797 � 10�2

FG-X 2.709 � 10�2 2.701 � 10�2 1.152 � 10�2 1.150 � 10�2 2.592 � 10�2 2.587 � 10�2 2.488 � 10�2 2.484 � 10�2

50 UD 1.157 1.155 0.2614 0.2618 1.101 1.099 1.069 1.068
FG-V 1.657 1.653 0.3643 0.3649 1.506 1.504 1.542 1.540
FG-O 2.163 2.157 0.4719 0.4719 1.912 1.909 2.033 2.030
FG-X 0.7921 0.7900 0.1892 0.1894 0.7728 0.7728 0.7338 0.7338

Fig. 6. Non-dimensional axial stress �rxx ¼ rxxh2
=ðjq0ja2Þ in the CNTRC plates under

a uniform load q0 = �1.0 � 105 N/m2. Fig. 7. Non-dimensional central deflection for various types of simply supported
square CNTRC plates with plate width-to-thickness ratio of b/h = 10.

Fig. 8. Non-dimensional central deflection for various types of simply supported
square CNTRC plates with plate width-to-thickness ratio of b/h = 20.
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ent values of plate width-to-thickness ratio (b/h) and different
boundary conditions. It is found that the present results agree very
well with solutions given by Zhu et al. using the finite element
method [17]. Fig. 6 depicts the non-dimensional central axial stres-
ses �rxx ¼ rxxh2

jq0 ja2 distributed along the non-dimensional thickness
�z ¼ z

h of various types of CNTRC plates with four edges simply sur-
ported subjected to a uniform transverse load q0 with volume frac-
tion V�CNT ¼ 0:11 and width-to-thickness ratio b/h = 10. It can be
found that the central axial stress distributions in UD, FG-O and
FG-X CNTRC plates are zero at mid-plane and anti-symmetric
about the mid-plane due to the symmetric reinforcements with re-
spect to the mid-plane.

4.3. Nonlinear analysis of CNTRC plates

In this section, detailed parametric studies are carried out to
investigate nonlinear behaviors of various types of CNTRC plates
under transversely uniformly distributed loads. Non-dimensional
parameters including �w ¼ w0

h , �z ¼ z
h, �rxx ¼ rxxh2

jq0 ja2, and �q ¼ q0a4

Emh4 are de-
fined to describe the results. Several numerical examples are pre-
sented to reveal the effects of the CNT volume fraction, plate
width-to-thickness, plate aspect ratio and boundary condition on
the nonlinear response of various types of CNTRC plates.

Figs. 7–9 show variation in the non-dimensional central deflec-
tion with load for simply supported square UD- and the other three
types of FG-CNTRC plates with different width-to-thickness ratios
(b/h = 10, 20, 50) under a uniform transverse load. The CNT content
by volume V�CNT is taken to be 0.11. It can be seen that the central
deformation is smaller for the moderately thick CNTRC plate (b/



Fig. 9. Non-dimensional central deflection for various types of simply supported
square CNTRC plates with plate width-to-thickness ratio of b/h = 50.

Fig. 10. Non-dimensional central deflection for simply supported square UD CNTRC
plate with different values of CNT content by volume.

Fig. 11. Non-dimensional central deflection for simply supported square FG-V
CNTRC plate with different values of CNT content by volume.

Fig. 12. Non-dimensional central deflection for simply supported square FG-O
CNTRC plate with different values of CNT content by volume.

Fig. 13. Non-dimensional central deflection for simply supported square FG-X
CNTRC plate with different values of CNT content by volume.
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h = 10). It is worth to note that for these four types of CNTRC plates
that have the same mass fraction of CNTs, FG-O plates have the
largest values of the non-dimensional central deflection and the
minimum values of the non-dimensional central deflection occurs
for FG-X plates. We can conclude that CNTs distributed close to top
and bottom surfaces are more efficient in increasing the stiffness of
the plate than CNTs distributed near the mid-plane. Therefore,
designers can obtain desired stiffness of CNTRC plates by regulat-
ing distributions of CNTs.

Figs. 10–13 show the non-dimensional load–deflection curves
for simply supported square UD- and the other three types of
FG-CNTRC plates with different values of the CNT content by vol-
ume (V�CNT ¼ 0:11, 0.14, 0.17, 0.2) under a uniform transverse load.
The width-to-thickness ratios (b/h) of the plates are set to 20. It can
be observed that the non-dimensional central deflections of vari-
ous types of CNTRC plates with different CNT content by volume
rise as the load increases. We can also find that the non-dimen-
sional central deflections for CNTRC plates that have a larger value
of CNT content by volume increase at a lower rate since stiffness of
CNTRC plate increases when the CNT content by volume increases.



Fig. 14. Non-dimensional central deflection for simply supported UD CNTRC plate
with different plate aspect ratios.

Fig. 15. Non-dimensional central deflection for simply supported FG-V CNTRC plate
with different plate aspect ratios.

Fig. 16. Non-dimensional central deflection for simply supported FG-O CNTRC plate
with different plate aspect ratios.

Fig. 17. Non-dimensional central deflection for simply supported FG-X CNTRC plate
with different plate aspect ratios.

Fig. 18. Non-dimensional central deflection of various types of CNTRC plates with
four edges fully clamped (CCCC).
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Compared the results in Figs. 7–9, a similar effect of the distribu-
tion types of CNTs in the plate can also obtained.

Figs. 14–17 present the effect of plate aspect ratio (b = a/b = 1.0,
1.5, 2.0, 2.5) on the nonlinear response of simply supported UD-
and the other three types of FG-CNTRC plates under a uniform
transverse load. The CNT content by volume V�CNT ¼ 0:17 is consid-
ered and width-to-thickness ratio (b/h) of the plates is chosen to be
20. It can be seen that central deflections are increased as plate as-
pect ratio b rises from 1.0 to 2.5. That is to be expected, because it
is obvious that larger plate is easy to deform under transverse load.
Compared the effect of CNT content by volume and plate width-to-
thickness ratio, we can discover that the central deflection is more
sensitive of plate aspect ratio than CNT content by volume and
plate width-to-thickness ratio.

Figs. 18 and 19 depict non-dimensional load–deflection curves
of square UD- and the other three types of FG-CNTRC plates sub-
jected to a uniform transverse load with other two boundary con-
ditions: four edges fully clamped (CCCC), two edges simply
supported and two edges clamped (SCSC). The CNT content by vol-
ume V�CNT

� �
and the width-to-thickness ratio (b/h) are the same as



Fig. 19. Non-dimensional central deflection of various types of CNTRC plates with
two edges simply supported and two edges clamped (SCSC).
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those used before. The results show that the non-dimensional cen-
tral deflections of four edges fully clamped (CCCC) CNTRC plates
are larger than those of two edges simply supported and two edges
clamped (SCSC) CNTRC plates, and values of the non-dimensional
central deflections of SCSC CNTRC plates are higher than four edges
simply supported CNTRC plates. The reason is that the constraint of
clamped boundary condition is stronger than the simply supported
boundary condition.

5. Conclusions

In this paper, nonlinear responses of various types of FG-CNTRC
plates are studied using the element-free kp-Ritz method. Material
properties of the plates are assumed to be graded in the thickness
direction and effective material properties are estimated by Eshel-
by–Mori–Tanaka approach based on an equivalent continuum
model. The nonlinear formulation is based on the FSDT, including
von Kármán nonlinear terms, to account for small strains and mod-
erate rotations. A set of kernel particle function is used to approx-
imate two-dimensional displacement fields. The stabilized
conforming nodal integration and direct nodal integration are em-
ployed to evaluate the bending stiffness and the shear as well as
membrane stiffness so as to eliminate shear locking effect for very
thin plates. Results reveal that the change of CNT content by vol-
ume, plate width-to-thickness, plate aspect ratios and boundary
condition have pronounced effects on nonlinear responses of vari-
ous types of CNTRC plates. The results also demonstrate that distri-
bution types of CNTs significantly affect nonlinear behavior of
CNTRC plates.
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