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a b s t r a c t

Sandwich structures with metallic foam core are sensitive to local indentation because of the low
strength of the core and low bending stiffness of the thin face sheets. In this paper, local indentation
response of sandwich panels with metallic foam core under a flat/spherical indenter was analyzed. The
composite sandwich is modeled as an infinite, isotropic, plastic membrane on a rigid-plastic foundation.
For simplicity, a quadratic polynomial displacement field was employed to describe the deformation of
the upper face sheet. By using the principle of minimum work, explicit solutions for the indentation force
and the sizes of the deformation regions were derived. The analytical results were verified by those from
simulation by using the ABAQUS code, and they are in close agreement. Distribution of radial tensile
strain of the upper face sheet and the ratio of energy dissipation of foam core to that of the upper face
sheet were analyzed.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Owing to the low strength of the core and low bending stiffness
of the thin face sheets, sandwich structures with metallic foam
core are prone to causing local indentation under concentrated
loads such as handling, interaction with attached structures or im-
pact. Researches have indicated that indentation behavior of sand-
wich panels with foam cores is mainly affected by some factors
such as the foam core material, face sheet thickness and indenter
size [1–4]. Some analytical models focused on elastic response of
the whole sandwich structures [5–8], while some others studied
the sandwich structures composed of elastic face sheets and plastic
foam core [9,10]. The indentation response under a point or line
load was examined in the analytical models of Refs. [7] and [10],
whereas the influence of indenter size was introduced in the pa-
pers [5,6,8,9].

All of the solutions mentioned above are based on the assump-
tion of elastic behavior of the top face sheet, and no one gives a
clear description of the development of its plastic deformation. In
general, sandwich structures with metallic face sheets and metallic
foam core are prone to large indentation. Therefore, it is of great
importance to obtain concise solutions of plastic response of the
top face sheet. On the other hand, the typical compressive
stress–strain curve of metallic foams has a plateau that the stress
keeps almost constant in a large range of strain, so the foam core
ll rights reserved.
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can be modeled as an ideally plastic foundation with a constant
crushing resistance.

In this paper, the plastic indentation response of foam core
sandwich circular panels dented by a rigid indenter with a finite
radius was analyzed based on the principle of minimum potential
energy. Solutions for the indentation force and deformation profile
were derived. An FEA model was established by using the ABAQUS
code to verify the validity and applicability of the analytical
solutions.
2. Analytical modeling

Consider a sandwich circular panel with metallic foam indented
by a rigid flat/spherical indenter, as shown in Fig. 1. The radiuses of
the flat-end cylindrical indenter and the spherical indenter are
both R. The circular panel has an infinite radius and consists of
two face sheets and a foam core with thicknesses h and c, respec-
tively. The flow stress of the face sheet material is r0. The foam
core has a constant plateau stress rpl. There is an axisymmetic
deformation region in the panel indented by an axisymmetic in-
denter. The indentation displacement of the indenter is denoted
by d, and the radius of the deformation region is denoted by n.
The deformation field of the top face sheet in the loading direction
is described by w(r) with r being the radius.

The top face sheet of the composite structure can be considered
as a fully clamped circular plate under transverse deflection, and
radial displacements as well as circumferential membrane force
may be neglected [11]. Additionally, plastic work due to shear force
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Fig. 1. Schematic profiles of undeformed and deformed zones of sandwich circular
panels loading (a) under a flat indenter and (b) under a spherical indenter.
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may be also neglected when the ratio of radius of the plate to its
thickness exceeds 2 [12]. Hence, the plastic work of the top face
sheet are mainly contributed by the radial bending moment Mr,
the circumferential bending moment Mh and the radial membrane
Nr. Using the normality rule of the plasticity theory, Zaera et al.
[13] have proposed a yield criterion

Nr

N0

� �2

þ Mr

M0

� �2

þ Mh

M0

� �2

�MrMh

M2
0

¼ 1 ð1Þ

with N0 ¼ r0h and M0 ¼ r0h2
=4 being the fully plastic membrane

force and the bending moment of the face sheet, respectively. How-
ever, the influence of bending moment can be neglected when
transverse displacement exceeds h/2. We focus on this case in this
paper, so the top face sheet can be modeled as a plastic membrane
on a rigid-plastic foundation.

Based on the principle of minimum potential energy, solutions
for the indention response can be derived. The total potential en-
ergy of the system isY
¼ U þ D�W ð2Þ

where U is the plastic strain energy of the top face sheet, D the plas-
tic work due to compressive deformation of the foam core, and W
the external work calculated by

W ¼
Z d

0
Pdd ð3Þ

with P being the indentation force.

2.1. Under a flat indenter

A deformation field or a velocity field is generally assumed in
such problems. Turk et al. [9] proposed a shape-function to de-
scribe the deformation of the upper face sheet to study the case
of an infinite, orthotropic, elastic plate resting on a rigid-plastic
foundation. In our previous study [14], we employed a linear veloc-
ity field to study the indentation response of sandwich beams,
which leads to a closed-form deformation field in a quadratic poly-
nomial function. For simplicity, we consider the indenter contacts
closely to the top face sheet and the transverse displacement out of
the contact region is described by a quadratic polynomial function
with respect to the radial coordinate r, i.e.

wðrÞ ¼
d; r 6 R

d 1� r�R
n�R

� �2
; R < r 6 n

8<
: : ð4Þ

When the radial membrane force is evaluated as the fully plastic va-
lue, the plastic work owing to the radial membrane can be calcu-
lated by

U ¼
Z

A
N0erdA ¼ p

3
r0hd2 nþ 3R

n� R
: ð5Þ

where A is the deformation area of the upper face sheet and er the
radial tensile strain, which can be approximately calculated by

er ¼
1
2

@w
@r

� �2

: ð6Þ

The plastic work due to compressive deformation of foam core is
calculated by

D ¼
Z

V
rpldV ¼

Z n

0
rplwðrÞ � 2prdr ¼ p

6
rpldðn2 þ 2Rnþ 3R2Þ; ð7Þ

where V is the volume of the crushed foam. By summing up Eqs. 3,
5, and 7, the total potential energy is determined as

Y
¼ p

3
r0hd2 nþ 3R

n� R
þ p

6
rpldðn2 þ 2Rnþ 3R2Þ �

Z d

0
Pdd: ð8Þ

By minimizing p with respect to d, the indentation force can be
determined as

P ¼ 2p
3

r0hd
nþ 3R
n� R

þ p
6
rplðn2 þ 2Rnþ 3R2Þ: ð9Þ

Besides the undetermined parameter n, the above expression in-
cludes two key material parameters (r0 and rpl) and two geometric
parameters (h and R). A dimensionless parameter u, defined by

u ¼ rplR
r0h

; ð10Þ

is introduced to examine the effect of material and geometric
parameters on the indentation response. Some other dimensionless
parameters are defined by

P ¼ P
r0Rh

; �n ¼ n
R
; �d ¼ d

R
; �h ¼ h

R
: ð11Þ

Thereafter, the formulation of dimensionless indentation force can
be rewritten as

P ¼ 2p
3

�d
�nþ 3
�n� 1

þ p
6

uð�n2 þ 2�nþ 3Þ: ð12Þ

The principle of minimum work has been applied to determine the
extent of deformation and indentation force [15]. It requires that
the radius of deformation region �n should satisfy the condition of
the minimum force for a given indentation displacement, i.e.
@P=@�n ¼ 0. This results to a simple relationship between �n and �d, i.e.

�d ¼ u
8
ð�nþ 1Þð�n� 1Þ2: ð13Þ

By substituting Eq. (13) back into Eq. (12), the dimensionless inden-
tion force is determined as
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P ¼ pu
12
ð�n3 þ 5�n2 þ 3�nþ 3Þ: ð14Þ

From Eq. (13), we can determine the parameter of �n, i.e.

�n ¼ 1
3
þ 2

3
ð~d�1=3 þ ~d1=3Þ; ð15Þ

where

~d ¼ �1þ 27
2

�d
u
þ 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�d
2u

� �2

� 1
3

�d
u

s
: ð16Þ

And then, the dimensionless indention force can be rewritten as

P ¼ pu
81
½67þ 36ð~d�1=3 þ ~d1=3Þ þ 18ð~d�2=3 þ ~d2=3Þ þ 2ð~d�1

þ ~dÞ�: ð17Þ

It should be noted that, if ~d < 0, we need to use
~d�1=3 ¼ ½ð1� i

ffiffiffi
3
p
Þ=2�ð�~dÞ�1=3 and ~d�2=3 ¼ ½ð�1� i

ffiffiffi
3
p
Þ=2�ð�~dÞ�2=3

with i being the imaginary unit. At the initial indention when
�d ¼ 0, we have ~d ¼ �1, �n ¼ 1 and P ¼ pu, where the last relation
corresponds to P ¼ pR2rp. This means that for a finite flat indenter,
there is an initial indentation force.

2.2. Under a spherical indenter

The contact radius remains as the indenter radius for the inden-
tation under a flat indenter, but for the indentation under a spher-
ical indenter, the contact radius, a, may vary with indentation. The
top face sheet within the contact region would conform to the
spherical shape of the indenter. Generally, the contact radius is
much smaller than the indenter radius R, and the displacement
field of the top face sheet could be approximated by

w ¼
d� ðR�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p
Þ � d� r2

2R ; r 6 a

ðd� a2

2RÞ 1� r�a
n�a

� �2
; a < r 6 n

8<
: ð18Þ

Similar to the derivations in Section 2.1, the plastic strain energy of
the top face sheet U is calculated as

U ¼ p
4

N0
a4

R2 þ
p
3

N0 d� a2

2R

� �2
nþ 3a
n� a

ð19Þ

and the plastic work due to compressive deformation of foam core
D is given by

D ¼ 1
6
prpl 3da2 þ d� a2

2R

� �
ðn2 þ 2anÞ

� �
: ð20Þ

Thereafter, the dimensionless indenter force can be determined as

P ¼ 2p
3

�d� 1
2

�a2
� � �nþ 3�a

�n� �a
þ p

6
uð�n2 þ 2�a�nþ 3�a2Þ ð21Þ

where �a ¼ a=R. There are two unknown parameters (�n and �a) in the
above expression. Using the condition that partial derivatives of
indentation force with respect to the two unknown parameters
equals zero, we have

�d� 1
2

�a2
	 


�a� 1
8 uð�nþ �aÞð�n� �aÞ2 ¼ 0

2�a2ð�nþ 3�aÞ �uð�n� �aÞð�n2 þ 2�n�aþ 3�a2Þ ¼ 0

(
ð22Þ

Here, we introduce two parameters, u and v, defined by

u ¼ �n=�a and v ¼ �d=�a2; ð23Þ

respectively. Thus, Eq. (22) can be transformed to

2ðuþ3Þ
ðu�1Þðu2þ2uþ3Þ ¼ u

v ¼ 1
2þ 1

8 uðuþ 1Þðu� 1Þ2

8<
: ð24Þ
The above relations show that the two parameters, u and v, depend
on the only parameter u. Solving the first relation with u > 0, we
have a positive solution

u ¼ 1
3
½�1þ 2ð3�uÞw�1=3 þu�1w1=3�

with

w ¼ 72u2 þ 44u3 � 6
ffiffiffi
6
p
ð�u3 þ 25u4 þ 29u5 þ 9u6Þ1=2

:

The dimensionless indentation force can be simplified as

P ¼ p
3

uðu2 þ 2uþ 3Þ�d: ð25Þ

It is interesting that the indenter load increases linearly with the in-
crease of the displacement and its slope is only relative to the
dimensionless parameter u. In fact, the dimensionless parameter
u is a small parameter, so we can obtain asymptotic solutions for
the parameters u and v

u ¼ 2ffiffiffiffiffi
2u
p þ 3

5þ Oð ffiffiffiffiup Þ

v ¼ 1
2
ffiffiffiffiffi
2u
p þ 7

10þ Oð ffiffiffiffiup Þ

8<
: ; ð26Þ

and for the parameters �a, �n and P

�a ¼
ffiffiffiffiffiffiffiffi
�d=v

q
¼ 23=4u1=4 1� 7

10

ffiffiffiffiffiffiffi
2u

p
þ OðuÞ

� �
�d1=2; ð27Þ

�n ¼ u
ffiffiffiffiffiffiffiffi
�d=v

q
¼ 25=4u�1=4 1� 2

5

ffiffiffiffiffiffiffi
2u

p
þ OðuÞ

� �
�d1=2; ð28Þ

P ¼ 2p
3

1þ 8
5

ffiffiffiffiffiffiffi
2u

p
þ OðuÞ

� �
�d: ð29Þ

Eqs. (27) and (28) show that �a and �n are proportional to the square
root of �d, but the proportionality coefficients are in the order of
O(u1/4) and O(u�1/4), respectively.

In the analytical modeling, the parabolic approximation of the
shape of the spherical indenter used is valid when the contact ra-
dius, a, is much less than the indenter radius, R, i.e. �a� 1. From Eq.
(27), the analytical solutions is valid when the indentation dis-
placement satisfy

�d� 2�3=2u�1=2: ð30Þ

Since the parameter u is a small parameter, the parabolic approxi-
mation is valid for a deep indentation. For example, the analytical
solutions may be applied until the dimensionless indentation dis-
placement is no longer much smaller than 1.58 when u = 0.05.

3. Numerical modeling

The numerical modeling was performed by using the ABAQUS/
Explicit finite element code. The indenter was modeled as a rigid
body. The foam core and the face sheets were simulated using 8-
node linear brick (C3D8R) finite elements and four-node shell ele-
ments (S4R) with reduced integration, respectively. The finite ele-
ment mesh of the sandwich structures was condensed towards
center of circular panels. The contact with no separation between
the face sheet and foam core was modeled through the TIE interac-
tion. The indenter has a constant vertical velocity of 1 m/s, and the
lower and edge boundary of the sandwich circular panels were
fully clamped. Recent experimental study has revealed that inden-
tation force–displacement relations for quasi-static indentation
and low-velocity impact are virtually equivalent [16,17], so a large
velocity of the indenter was selected to decrease the computing
time.



Table 1
Simulation cases to verify the analytical solutions.

qf/qs rpl (MPa) r0 (MPa) h (mm) R (mm) u

0.05 1.245 602.5 2 5 0.0052
0.1 3.523 602.5 2 5 0.0146
0.1 3.523 602.5 2 10 0.0292
0.1 3.523 602.5 1 10 0.0584
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Fig. 2. Distributions of face sheet deformation for u = 0.0292: (a) under a flat
indenter and (b) under a spherical indenter.
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The mechanical properties of face sheet material were taken
from Ref. [18] for stainless steel Cr18Ni8. Mechanical properties
of metallic foams can be described by those of its matrix material
and relative density, which is defined by the ratio of the density of
foam qf to that of its matrix material qs. More details can be re-
ferred to our previous study [14] and relative literature [19,20].
In the numerical models, the crushable foam model with volumet-
ric hardening was used to model the foam material.

The effects of the radius of sandwich circular panels, R0, and the
thickness of foam cores, h, are ignored in the analytical models. In
the numerical models, we choose R0 = 100 mm and h = 25 mm to
ensure a reasonable degree of approximations.

From the analytical results, it can be found that the key factor,
which determines the deformation and load-carry capacity of
indentation response, is the combined parameter u rather than
the separate four ones, i.e. r0, rpl, h and R. Hence, four cases for
u are chosen in this paper, as listed in Table 1.

4. Results and discussion

4.1. The profiles of the deformation zone

The form of the displacement field of the dented zone is the key
of theoretical modeling, which directly determines its operability
and validity. Its validity could be verified by comparing the profiles
of the deformation zone from theoretical model with those from
simulations.

The results for the case of flat indenter with u = 0.0292 are
shown in Fig. 2a. It can be found that, the predicted profiles are
in close agreement with those from simulation outside of the in-
denter. However, the part of face sheet under the flat indenter sep-
arates from indenter in the denting process, which was not
considered in the analytical model. In fact, the edge of the contact
region cannot rotate freely due to flexible rigidity of the face sheet,
which leads to appearance of a dent under the indenter.

Under a spherical indenter, a similarly close agreement is dem-
onstrated, see Fig. 2b, however the radius of the deformation zone
has a small difference. In analyzing an infinite, orthotropic, elastic
plate on a rigid-plastic foundation under a hemispherical-nose in-
denter, Turk et al. [9] used a constant effective radius, 0.4R, to
approximate the contact radius in terms of experimental results
of other researcher [21], but Eq. (27) in the present model indicates
that the contact radius increases linearly with indenter
displacement.

4.2. The distribution of the stretching strain of the face sheets

Substituting Eqs. (4) into (6), we obtain the plastic tensile strain
of the top face sheet dented by a flat cylinder

er ¼
2d2

ðn� RÞ2
1� r � R

n� R

� �2

;R < r 6 n ð31Þ

which shows that the plastic strain demonstrates the same distribu-
tion law as the displacement outside of the indenter. The maximum
strain arises at radius r = R. When the indenter is of spherical shape,
the maximum value appears at the edge of contact region instead.
Of course, while the maximum strain achieves the ultimate fracture
strain of upper face sheet material, the upper face sheet would rup-
ture and fail. Our attention is mostly paid to the structural response,
and the material rupture effect was not considered in the models.

4.3. Indentation force

It can be found that the dimensionless indentation force of the
flat indenter has an initial value pu when the indenter displace-
ment is zero, as mentioned above. This initial value is due to com-
pressive deformation of foam core just under the indenter, which
would remain constant during denting. Since u is a small parame-
ter, this initial value does not seem obvious in Fig. 3a. Fig. 3a shows
that for the case u = 0.0052, there is some difference between the
predicted load and the simulated result, but with u increasing,
they go very close to each other.

When the indenter is of the sphere shape, the indentation force
increases linearly with the indenter displacement, see Eq. (25), and
this linear function can be rewritten in a unified form, as shown in
Fig. 3b. However, the numerical results display an initial non-linear
stage, which is caused by the elastic property in the numerical
models. Additionally, for very small u such as 0.0052 or 0.0146,
the theoretical models are not so close to the numerical results,
but this situation is changed when u increases.

4.4. Characteristics of energy absorption

It is well-known that the total internal energy absorption com-
prises of two parts: energy dissipated by plastic deformation and



0

1

2

3

4

5

6

7

ϕ = 0.0052
ϕ = 0.0146
ϕ = 0.0292
ϕ = 0.0584
 Theoretical

P

δ

(a) 

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

ϕ =0.0052
ϕ =0.0146
ϕ =0.0292
ϕ =0.0584
 Theoretical

P
/(

πϕ
 (

u2 +
2u

+
3)

/3
)

δ

(b) 

Fig. 3. Indentation force–displacement curves: (a) under a flat indenter and (b)
under a spherical indenter.
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Fig. 5. Ratio of energy dissipation of foam core to that of the upper face sheet: (a)
under a flat indenter and (b) under a spherical indenter.
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recoverable strain energy from elastic deformation. The latter was
not considered in the present analytical solutions, but the numer-
ical results can reveal its effect. For facility, we define a parameter
a as

a ¼ Plastic dissipation
Internal energy

: ð32Þ

Obviously, when the value of a comes closer to 1, plastic dissipation
approaches more to internal energy and elastic strain energy could
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 Flat indenter
 Spherical indenter
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Fig. 4. Energy absorption characteristic from FE simulation for the case u = 0.0292.
be neglected. The development of a with indenter displacement for
the case u = 0.0292 was shown in Fig. 4, and other cases display the
similar characteristic. It can be found that plastic dissipation ap-
proaches to internal energy with indenter displacement increasing.
The foam core is dominated by plastic deformation after a short dis-
placement due to its low rigidity and yield stress.

Using the analytical solutions, we can calculate the ratio of en-
ergy dissipation due to the compressive deformation of foam to
that due to the radial membrane deformation of the upper face
sheet. This ratio for the case of a flat indenter is

b ¼ D
U
¼ 4ð�n2 þ 2�nþ 3Þ
ð�n2 � 1Þðnþ 3Þ

; ð33Þ

and that of a spherical indenter is

b ¼ 2u
3v þ v � 1

2

	 

ðu2 þ 2uÞ

3þ 4 v � 1
2

	 
2 uþ3
u�1

� 2
ffiffiffiffiffiffiffi
2u

p
ð1�

ffiffiffiffiffiffiffi
2u

p
þ OðuÞÞ: ð34Þ

Under a flat indenter, the ratio of energy absorption decreases with
increasing displacement and increases with increasing u, see
Fig. 5a. When the displacement is small, a > 1, in other words, the
energy absorption mostly derives from the compressive deforma-
tion of the foam core, whereafter contribution of face sheet would
become larger and larger. Under a spherical indenter, the ratio
keeps constant in the denting process, but increases with increasing
u likewise, as shown in Fig. 5b. The plastic dissipation ratio of foam
core to that of face sheet has much discrepancy from analytical
solutions, either under flat indenter or under spherical one, while



Z. Xie et al. / Composites: Part B 44 (2013) 212–217 217
internal energy ratio comes closer to them. This discrepancy may be
mostly caused by elastic strain energy outside the deformed zone,
which was not considered in the analytical models. When elastic
strain energy is small, plastic dissipation ratio may approaches to
internal energy one and analytical solutions.

5. Conclusions

Local indentation response of sandwich circular panels on a ri-
gid base is analyzed based on the principle of minimum potential
energy. In the analytical models, elastic response of the composite
structure was neglected, and the upper face sheet was modeled as
an infinite, ideally plastic thin plate resting on a rigid-plastic foun-
dation, which gives a constant crushing resistance by the foam
core. A quadratic polynomial displacement field was proposed to
describe the deformation of the top face sheet. An FEA model
was established using the ABAQUS code to verify the validity and
applicability of the analytical solutions. In terms of the analytical
solutions, distribution of radial tensile strain of the upper face
sheet and the ratio of energy dissipation of foam core to that of
the upper face sheet were analyzed.
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