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Abstract: Dynamic stress-strain states in Voronoi honeycombs are investigated by using cell-based 

finite element models. Two different loading scenarios are considered: the high-constant-velocity 

compression and the direct impact. The 2D local engineering strain fields are calculated. According 

to the feature of shock front propagation, the 1D distribution of local engineering strain in the loading 

direction is deduced from the 2D strain fields, which provide evidences of the existence of 

discontinuities at shock front in cellular materials and thus enhance the basis of the continuum-based 

shock models. A method to quantitatively clarify the local stress-strain states ahead of and behind the 

shock front is developed. The results show that the dynamic stress-strain states in the densification 

stage obtained from both loading scenarios are different from the quasi-static stress-strain relation. 

The stress ahead of the shock front obtained from the high-constant-velocity compression scenario is 

slightly smaller than the quasi-static yield stress, but that obtained from the direct impact scenario is 

larger than the quasi-static yield stress. The possible mechanisms of deformation and wave 

propagation are explored. 

 

Introduction 

Nominal stress-strain curves are commonly used to represent the constitutive behaviour of materials. 

However, this is not appropriate for cellular metals when subjected to high-velocity 

impact/compression, because their deformation is localized and the stresses at the two ends of a 

specimen are very different [1-3]. To represent the dynamic constitutive behaviour of cellular metals, 

it is needed to define and measure the ‘local’ strain. 

Several methods have been developed to calculate the ‘local’ strain. Zou et al. [4] presented a 

definition of local engineering strain for regular honeycombs based on the relative displacement 

between two neighboring cross-sections. However, this method is more suitable for high-velocity 

impact than for low-velocity impact because the definition of local strain masked the gross behavior 

over the transverse direction. Moreover, the strain behind the shock front suffers high fluctuations and 

thus is difficult for quantitative analysis. Mangipudi and Onck [5] proposed a local strain map 

algorithm for Voronoi honeycombs by triangulating Voronoi cells into triangles, but the local strain in 

this approach was defined by Cauchy strain formula and thus is only appropriate for small-strain 

states. Most recently, Liao et al. [6, 7] developed a strain field calculation method based on the 

optimal local deformation gradient technique to quantitatively characterize the deformation and strain 

localization for cellular materials. The strain field calculation method allows considering general 

finite-strain states of both regular and irregular cellular materials. 

In this paper, the strain field calculation method is employed to investigate the dynamic 

stress-strain states in cellular materials using a 2D cell-based finite element model. Different loading 

scenarios with different compression/impact velocities are considered. 
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Numerical models 

Voronoi honeycombs, constructed by 2D random Voronoi technique [8] with cell irregularity of 0.5, 

are used to model cellular metals in this study, as illustrated in Fig. 1. The specimen of Voronoi 

honeycomb is generated in an area of 400×100 mm
2
 with 1600 nuclei. The relative density of the 

specimen is taken to be ρ0/ρs = 0.1, where ρ0 is the initial density of the Voronoi honeycomb and ρs the 

density of the cell-wall material. Two typical loading scenarios, as illustrated in Fig. 1, are considered 

in this study. One is the constant-velocity compression, i.e. a rigid surface with a constant velocity V 

strikes the stationary Voronoi honeycomb rod supported by another rigid surface. The other is the 

direct impact, i.e. the Voronoi honeycomb rod with an initial velocity V0 directly strikes at a rigid 

stationary target. 

The finite element code ABAQUS/Explicit is employed to perform the numerical simulations. The 

cell-wall material is assumed to be elastic, perfectly plastic with Young’s modulus E = 69 GPa, yield 

stress Y = 170 MPa, density ρs = 2770 kg/m
3
 and Poisson’s ratio v = 0.3. The cell walls of Voronoi 

honeycombs are modeled with S4R (a 4-node doubly curved, reduced integration) shell elements, of 

which the size was set to be about 0.6 mm in-plane and 1 mm out-of-plane through a mesh sensitivity 

analysis. All possible contacts are considered by defining general contact with slight friction as used 

in [8]. To simulate an in-plane strain state, all the nodes are constrained in the out-of-plane direction. 

 

 
Fig. 1. Finite element models of Voronoi honeycombs:  

(a) under the constant-velocity compression and (b) under the direct impact. 

 

Deformation patterns and strain fields 

Deformation patterns for Voronoi honeycombs under loadings are shown in Figs. 2 and 3. The 

deformation is localized close to the proximal end of the specimen for both loading scenarios. Cells 

collapse layer-by-layer and a deformation front propagates from the proximal end to the distal end.  

To characterize the deformation features, the strain field calculation method developed by Liao et 

al. [7] is employed to calculate the local strain in the X-direction. This method is briefly described 

here. Two nodal configurations, namely the reference (undeformed) configuration Ω0 and the current 

(deformed) configuration Ω1, are needed to calculated the local deformation gradient. For node i and 

its neighboring node j, their relative position vectors are Uij = Xj − Xi and uij = xj − xi in configurations 

Ω0 and Ω1, respectively, where X and x are the position vectors of a node in Ω0 and Ω1, respectively. 

All these vectors are considered in column. For node i, its optimal local deformation gradient can be 

calculated by 
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node i with a cut-off radius Rc as discussed in [7], and superscript T denotes the transpose of a matrix. 

Large deformation can then be represented by the Lagrangian/Green strain tensor 
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2
i i i

= ⋅ −E F F I , (2) 

 

where I is the identity matrix. A numerical scheme performing scattered data interpolation based on 

an underlying Delaunay triangulation is used to achieve continuous strain field from the data of 

discrete strains. 

 

 
Fig. 2. Deformation patterns (left) and their corresponding local strain fields (right) for the Voronoi 

honeycomb under constant-velocity compression with V = 100 m/s. 

 

 
Fig. 3. Deformation patterns (left) and their corresponding local strain fields (right) for the Voronoi 

honeycomb under direct impact with V0 = 100 m/s. 

 

0.8 mst =

2.0 mst =

3.2 mst =

0.8 mst =

2.0 mst =

3.2 mst =

Applied Mechanics and Materials Vol. 566 565



 

 

The 2D fields of local engineering strain in the X-direction are also shown in Fig. 2 and 3. In each 

loading scenario, there exists an apparent discontinuity that separates the region of large plastic strain 

near the proximal end and the region of low strain near the distal end. The discontinuity propagates 

through the Voronoi honeycomb from the proximal end to the distal end as the impact continues. Thus, 

the local strain fields clearly capture the shock front propagation in the Voronoi honeycombs. 

 

Strain distributions 

According to the feature of shock front propagation, the 1D distributions of local engineering strain in 

the loading direction are deduced from the 2D strain fields as done in Ref. [6]. Fig. 4 shows the 1D 

strain distributions, which provide evidences of the existence of discontinuities at shock front in 

cellular materials. Thus, these results based on cell-based finite element models enhance the basis of 

the continuum-based shock models. 
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Fig. 4. Local strain distributions of Voronoi honeycombs:  

(a) under the constant-velocity compression and (b) under the direct impact. 

 

Stress-strain states 

Measuring the local strain in cellular materials, which is much difficult in experiments, is achieved in 

the numerical ‘test’ by the strain field calculation method. Therefore, it provides an essential method 

to quantitatively clarify the dynamic stress-strain states in cellular materials. 

For the constant-velocity compression scenario, the stresses ahead of and behind the shock front 

are taken as the plateau stresses at the distal end and the proximal end, respectively, and calculated as 

in [6]. The strain behind the shock front is calculated by averaging the local strain over the compacted 

region. For the direct impact scenario, the stress at the proximal end shows large oscillation, as shown 

in Fig. 5a which displays the time history of the stress at V0 = 100 m/s. The strain behind the shock 

front, calculated as in [9], is also shows data oscillation, as shown in Fig. 5b. In order to ignore the 

influence of the data oscillation, the time history of the stress at the proximal end and the strain behind 

the shock front are both fitted by using 

 

 ( ) ( )1 2 3/ 1f t tα α α= + + , (3) 

 

where f is dependent variable, t is independent variable, i.e. impact time, and α1, α2, α3 are coefficients. 

The fitted results are also shown in Fig. 5. The stress ahead of the shock front σA can be obtained by 

the Rankine-Hugoniot relations across the shock front as 
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where σB is the stress behind the shock front, εB the strain behind the shock front, ρ0 the initial density 

of the Voronoi honeycomb, and v the impact velocity. 
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Fig. 5. (a) The stress at the proximal end and (b) the strain behind the shock front for the direct impact 

scenario. 

 

The stresses ahead of the shock front for the two loading scenarios at different impact velocities 

are shown in Fig. 6a. It is demonstrated that the stress ahead of the shock front obtained from the 

constant-velocity compression scenario is smaller than the quasi-static yield stress, but that obtained 

from the direct impact scenario is larger than the quasi-static yield stress. 

The stress-strain states behind the shock front for the two loading scenarios at different impact 

velocities are shown in Fig. 6b, similarly as the phenomenon found in a 3D Voronoi structure [9]. It 

transpires that the dynamic stress-strain states in the densification stage are different from the 

quasi-static stress-strain relation. 
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Fig. 6. (a) The stress ahead of the shock front versus the impact velocity; (b) The stress-strain 

relations for the constant-velocity compression and the direct impact scenarios. 

 

Under quasi-static compression, the deformation occurs as shear bands which are randomly 

distributed in the Voronoi honeycomb, as shown in Fig. 7. This indicates that a Voronoi honeycomb 

deformed with shear bands needs less energy than that collapsed in a layer-wise manner under the 

direct impact scenario shown in Fig. 3. In fact, the stress ahead of the shock front in the specimen 

under direct impact always corresponds to the dynamic initial crush stress, but that in the specimen 

under constant-velocity compression only corresponds to the initial crush stress at a particular time 

and after this time its value reduces. 
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The randomly distributed shear bands under quasi-static compression may meet and interact with 

each other as the overall compression continues, as shown in Fig. 7. Such interaction leads to an 

increase of compression resistance. This deformation feature explains the slight plastic 

strain-hardening characteristic of the quasi-static nominal stress-strain curve. However, under 

high-velocity compression/impact, cells collapse in a layer-wise manner at a relatively stable stress 

level and the interaction between the collapsed layers is very weak. Therefore, high loading rate leads 

to a more compact deformed pattern with a larger densification strain. This discrepancy of 

deformation feature is believed to make the dynamic stress-strain states different from the quasi-static 

nominal stress-strain relation in the densification stage, as shown in Fig. 6b. 

 

 
Fig. 7. Deformation patterns of a Voronoi honeycomb under quasi-static compression (V = 1 m/s). 

 

Summary 

Dynamic local stress-strain states in Voronoi honeycombs are investigated by using cell-based finite 

element models. The 2D fields and 1D distributions of local engineering strain in the loading 

direction of Voronoi honeycombs under two different loading scenarios are obtained by the strain 

field calculation method. These results provide evidences of the existence of discontinuities at shock 

front in cellular materials and thus enhance the basis of the continuum-based shock models. The 

stress ahead of the shock front obtained from the constant-velocity compression scenario is smaller 

than the quasi-static yield stress, while that obtained from the direct impact scenario is larger than the 

quasi-static yield stress. The dynamic stress-strain states obtained from both impact scenarios are 

different from the quasi-static stress-strain relation. Finally, the possible mechanisms of deformation 

and wave propagation are explored. 
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