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Abstract. Dynamic behavior of a semi-infinite elastic beam to a moving single sinusoidal pulse was 

theoretical investigated. An analytical model was developed based on the Bernoulli-Euler beam 

theory. The solutions of the deflection and stress of beam were obtained by using the superposition 

principle and applying the techniques of Fourier transform. It is found that when the moving pulse 

reaches a critical velocity for a given moving pulse duration, the maximal absolute value of stress in 

beam attains its maximum value. 

Introduction 

Aerodynamic problems of high-speed trains have become more and more important as trains speed 

up [1]. One of them is the air pressure pulse acting on the carriage structure occurring as trains pass 

each other, which may cause the instability of carriage structure [2]. However, the mechanism of 

interaction between moving pulse and stress wave in structure is still not clear. 

Raghunathan et al. [1] summarized the typical features of the air pressure pulse. One feature is that 

the air pressure pulse has alternating positive/negative amplitude values, similar to that of a single 

sinusoidal pulse. Thus, we focus on understanding the mechanism of dynamic response of a beam to a 

moving single sinusoidal pulse in this paper. The problems about moving loads extensively 

investigated are mainly in the fields of transportation, such as tunnel, rail and launcher. A beam to 

different kinds of moving loads, such as moving constant concentrated force [3, 4], moving harmonic 

concentrated force [5] and moving line load [6], have been investigated. An important phenomenon 

was extensively found, i.e. the moving load traveling at a critical velocity will cause significant 

vibration in a structure. The critical velocity is dependent on the properties of material and structure. 

A theoretical model of an elastic beam subjected to a moving single sinusoidal pulse is developed 

in this paper. The techniques of the cosine Fourier transform and its inverse transform are applied to 

obtain the solutions. The response of the deflection and stress of beam are studied. 

Theoretical model 

Consider an elastic beam with density ρ, Young’s modulus E, cross-section area A and moment of 

inertia I subjected to a moving single sinusoidal pulse with velocity v, as shown in Fig. 1. 
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Fig. 1. Semi-infinite elastic beam subjected to a moving single sinusoidal pulse. 

 

Based on the Bernoulli-Euler beam theory, the beam deflection, y, is governed by 
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where x is the position coordinate, t the time, F(x, t) moving pulse and a
2
=EI/(ρA). The single 

sinusoidal pulse can be expressed as 

 

 [ ]0 0( , ) H( 2 )H( )sin ( ) , 0F x t F x vt l vt x x vt xα= − − − − − ≥ , (2) 

 

where F0 is the peak amplitude of the moving pulse, l0 the half length of moving pulse, α wavenumber 

(equals to π/l0), and H(·) the Heaviside step function. The boundary conditions are given by yx(0, t) = 

0, yxxx(0, t) = 0, y(∞, t) = 0, yt(∞, t) = 0, and the initial conditions are written as y(x, 0) = 0, yt(x, 0) = 0, 

where the subscript represents the derivative of the variable with respect to the subscript. 

To obtain the solution of the above equations, we first consider the problem of the beam subjected 

to a moving continuous sinusoidal pulse and then apply the superposition principle. The single 

sinusoidal pulse in Eq. (2) can be rewritten as 
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with the moving continuous sinusoidal pulse defined as 

 

 c 0( , ) H( )sin[ ( )], 0F x t F vt x x vt xα= − − − ≥ , (4) 

 

where T is the pulse width (equals to 2l0/v). Applying the cosine Fourier transform and inverse cosine 

Fourier transform, we can obtain the solution of the deflection of beam subjected to the moving pulse 

Fc(x,t), 
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Thus, the solution of the deflection of beam subjected to the moving pulse in Eq. (3) is 

 

 [ ]c c 0( , ) ( , ) ( 2 , ) H( )y x t y x t y x l t x= − + . (6) 

 

We can further obtain the maximum bending stress in the beam subjected to the pulse in Eq. (3) 

 

 [ ]c c 0( , ) ( , ) ( 2 , ) H( )x t x t x l t xσ σ σ= − + , (7) 

 

with 
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where h is the beam thickness.  

Eq. (5) and (8) can be evaluated by using complex function techniques. Here, we directly evaluate 

the two expressions with the adaptive Gauss-Kronrod quadrature (function name: quadgk) in Matlab. 
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Results and discussion 

To illustrate some features of the deflection and stress of beam, we take the material properties of 

the beam  ρ = 2700 kg/m
3
 and E = 70 GPa. The cross-section of the beam is square with the side length 

c = 0.6 m. The pulse duration, T, is set to be 0.1 s. 

The typical profiles of deflection and absolute value of stress, σa, are shown in Fig. 2. It is observed 

that the vibration of beam is concentrated in front of the moving pulse. The stress in the region the 

moving pulse has passed is almost equal to zero.  

The maximal absolute values of stress, denoted as σa,max, varying with time for different velocities 

of moving pulse are shown in Fig. 3a. For a particular velocity of moving pulse, σa,max increases with 

time at first (stage I) and then tends to be constant (stage II). For different velocities of moving pulse, 

the distance between the maximal bending stress and the moving pulse front, D, is shown in Fig. 3b. It 

is found that the distance D remains a small value at the initial period, and then increases almost 

linearly with time. The transition time corresponds to the time when the stress σa,max transits from 

stage I to stage II. So, the position corresponding to σa,max stays in the moving pulse front before it 

attains the stress level of stage II, and then moves away from the moving pulse front.  

As shown in Fig. 3a, σa,max fluctuates with time in stage II. To evaluate the level of maximal 

absolute value of stress in stage II, we calculate the average value of maximal absolute value of stress 

in this stage, denoted as a,maxσ . As the velocity of moving pulse increases, a,maxσ  increases first before 

reaching its maximum value and then decreases, as shown in Fig. 4. a,maxσ  reaches its maximum 

value when the moving pulse moves at a certain velocity, which is termed as the critical velocity. In 

the case T = 0.1 s, the critical velocity is 221 m/s. 

-4

-2

0

2

4

0 100 200 300 400 500
0

2

4

6

 
 

y
 (

m
)

 

 

σ
a
 (

M
P

a
)

x (m)
 

Fig. 2 The deflection and absolute value of stress, σa, of beam at time 0.5 s for the case of v = 200 m/s 

and T = 0.1 s. 
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Fig. 3 (a) Maximal absolute values of stress, σa,max, vs. time and (b) distance between the maximal 

absolute values of stress and the moving pulse front, D, vs. time for different velocities of moving 

pulse. 
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Fig. 4 The average value of maximal absolute values of stress, a,maxσ , for different velocities of 

moving pulse. 

Summary 

In this paper, the techniques of Fourier transform and its inverse transform are applied to solve the 

problem of transient response of an elastic beam subjected to a moving single sinusoidal pulse. The 

maximal absolute value of the stress in the beam increases linearly with time at an initial period and 

then tends to be constant. For a particular pulse duration, there is a critical velocity at which the 

average of maximal absolute value of stress reaches its maximum.  
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