
Composite Structures 113 (2014) 328–338
Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct
Dynamic stability analysis of carbon nanotube-reinforced functionally
graded cylindrical panels using the element-free kp-Ritz method
http://dx.doi.org/10.1016/j.compstruct.2014.03.035
0263-8223/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +852 34426581.
E-mail address: kmliew@cityu.edu.hk (K.M. Liew).
Z.X. Lei a,b, L.W. Zhang c, K.M. Liew b,d,⇑, J.L. Yu a

a CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, PR China
b Department of Civil and Architectural Engineering, City University of Hong Kong, Kowloon, Hong Kong
c College of Information Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, PR China
d City University of Hong Kong Shenzhen Research Institute Building, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, PR China

a r t i c l e i n f o
Article history:
Available online 26 March 2014

Keywords:
Functionally graded materials
kp-Ritz method
Panels
Dynamic stability
a b s t r a c t

In this paper, a first-known dynamic stability analysis of carbon nanotube-reinforced functionally graded
(CNTR-FG) cylindrical panels under static and periodic axial force by using the mesh-free kp-Ritz method
is presented. The cylindrical panels are reinforced by single-walled carbon nanotubes (SWCNTs) with
different types of distributions, i.e. uniform and three kinds of functionally graded distributions of carbon
nanotubes along thickness direction of the panels. Eshelby–Mori–Tanaka approach is employed to
estimate effective material properties of the resulting nanocomposite panels. By applying the Ritz
minimization procedure to the energy expressions, a system of Mathieu–Hill equations is formulated.
Then the principal instability regions are analyzed through Bolotin’s first approximation. Detailed para-
metric studies have been carried out to reveal the influences of volume fraction of carbon nanotubes,
edge-to-radius ratio and radius-to-thickness ratio. In addition, effects of different boundary conditions
and types of distributions of carbon nanotubes are examined in detail.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic stability or phenomenon of parametric resonance
in cylindrical shells under periodic loads has drawn considerable
attention from researchers due to its detrimental and de-
stabilizing effects in many engineering applications. The investiga-
tion about this phenomenon in elastic systems was first studied by
Bolotin [1], who found the dynamic instability regions. Vijayaragh-
avan and Evan-Iwanowski [2] analytically and experimentally
studied parametric instability of thin, circular cylindrical shells
subjected to in-plane longitudinal inertia loading arising from
sinusoidal base excitation. Srinivasan and Chellapandi [3] investi-
gated dynamic stability of laminated rectangular plates due to
periodic in-plane load. Moorthy and Reddy [4] studied the
parametric instability of plates with transverse shear deformation
under uniaxial, harmonically-varying, in-plane loads.

Based on the modified Donnell equations, which included the
transverse inertia force, Nagai and Yamaki [5] examined the
dynamic stability of circular cylindrical shells under both static
and periodic compressive forces, using Hsu’s method for different
boundary conditions. By using a perturbation technique, Argento
and Scott [6,7] studied the dynamic stability of layered anisotropic
circular cylindrical shells under axial loading. The dynamic stabil-
ity of stiffened isotropic and laminated composite plates and shells
was studied based on a finite element model with a 3-D degener-
ated shell element and a 3-D degenerated curved beam element by
Liao and Cheng [8]. Ng et al. [9] reported the dynamic stability of
cross-ply laminated composite cylindrical shells under combined
static and periodical axial forces using Love’s classical thin shell
theory. Ganapathi and Balamurugan [10] studied the dynamic
instability of laminated composite circular cylindrical shells
subjected to periodic load, using a C� shear flexible two-node
axisymmetric shell element. Park and Kim [11] analyzed the
dynamic stability of a completely free isotropic circular cylindrical
shell under a follower force.

Motivated by the concept of functionally graded materials
[12,13], the pattern of the functionally graded distribution of
reinforcement has been successfully applied for carbon nano-
tube-reinforced functionally graded (CNTR-FG) cylindrical panels.
Based on the first order shear deformation plate theory, Zhu
et al. [14] carried out bending and free vibration analyses of func-
tionally graded carbon nanotube reinforced composite plates using
the finite element method. Employing a two-step perturbation
technique, Shen [15] reported an analysis of nonlinear bending of
functionally graded CNTRC plates in thermal environments. Based
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on Timoshenko beam theory and von Kármán geometric nonlinear-
ity, Ke et al. [16] examined nonlinear free vibration responses of
functionally graded nanocomposite beams. Based on three-dimen-
sional theory of elasticity, Alibeigloo [17] studied bending behavior
of functionally graded carbon nanotube reinforced composite plate
embedded in thin piezoelectric layers subjected to mechanical uni-
form load with simply supported boundary conditions. With the
same theory, a further study about bending behavior of function-
ally graded carbon nanotube-reinforced composite rectangular
plate subjected to thermo-mechanical loads was carried out [18].
By using the mesh-free kp-Ritz, Lei et al. [19] investigated post-
buckling behaviors of carbon nanotube-reinforced functionally
graded cylindrical panels. Alibeigloo [20] examined free vibration
behavior of functionally graded carbon nanotube reinforced com-
posite cylindrical panel embedded in piezoelectric layers with sim-
ply supported boundary conditions. Shen and Xiang [21] studied
the large amplitude vibration behavior of nanocomposite cylindri-
cal shells in thermal environments, by using a mesh-free method.
Moradi-Dastjerdi et al. [22] presented a dynamic analysis of nano-
composite cylinders reinforced by single-walled carbon nanotubes
subjected to an impact load.

In this paper, for the dynamic stability analysis of carbon
nanotube-reinforced functionally graded (CNTR-FG) cylindrical
panels under static and periodic axial force, an energy formula-
tion is first described. Then a system of Mathieu–Hill equations
is obtained via the Ritz minimization procedure and parametric
resonance responses are analyzed using Bolotin’s [1] method. In
the present kp-Ritz method, two-dimensional displacement fields
are approximated by a set of mesh-free kernel particle functions
and the boundary conditions are enforced by penalty method.
The CNTs are assumed to be uniaxially aligned in axial direction
and functionally graded in thickness direction of the panels and
effective material properties of CNTR-FG cylindrical panels are
estimated through a micromechanical model based on the
Eshelby–Mori–Tanaka approach. Several computational simula-
tion examples are presented to figure out the effects of volume
fraction of carbon nanotubes, edge-to-radius ratio and radius-to-
thickness ratio, boundary conditions and distribution types of
CNTs.

2. Carbon nanotube-reinforced functionally graded cylindrical
panels

The cylindrical panel considered in this paper (Fig. 1) has a
coordinate system (x, h, z) fixed on its middle surface. This panel
is assumed to be thin and of length L, radius R, span angle h0 and
thickness h. The CNTs are assumed to be uniaxially aligned in axial
direction and functionally graded in thickness direction of the
cylindrical panels with four different distributions denoted by
UD, FG-V, FG-O and FG-X. According to distributions of CNTs
(Fig. 2), CNT volume fractions VCNT(z) are given by
Fig. 1. Coordinate system and geometry properties of CNTR-FG cylindrical panel.
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where

V�CNT ¼
wCNT

wCNT þ ðqCNT=qmÞ � ðqCNT=qmÞwCNT
; ð2Þ

where wCNT is the fraction of mass of the CNTs and qm and qCNT are
densities of the matrix and CNTs, respectively.

It has bee well described that the structure of CNTs can signif-
icantly affect the effective material properties of CNT-reinforced
materials [23–26]; several micromechanical models have been
proposed to estimate the effective material properties of the
resulting nanocomposites, such as Eshelby–Mori–Tanaka scheme
[27–29] and the extended rule of mixture [15,30,31]. According
to Benveniste’s revision [32], effective elastic module tensor L is
expressed as

L ¼ Lm þ VCNThðLCNT � LmÞ � Ai � ½VmIþ VCNThAi��1
; ð3Þ

where angle brackets represent an average over all possible orien-
tation of the inclusions and Lm and LCNT are stiffness tensors of
the matrix and the CNT, respectively. I is the fourth-order unit ten-
sor and A is the diluted mechanical strain concentration tensor and
is expressed as

A ¼ Iþ S � L�1
m � ðLCNT � LmÞ

h i�1
; ð4Þ

where S is the fourth-order Eshelby tensor [33] and is well defined
for cylindrical inclusions in [34].

3. Theoretical formulations

3.1. Energy formulation

The cylindrical panel described in Fig. 1 is bounded along its
edges by the lines x = 0, x = L, h = 0 and h = h0. The displacement
components in x, y and z directions are represented by u, v and
w, respectively. The extensional pulsating axial load is expressed as

Na ¼ N0 þ Ns cos Pt; ð5Þ

where P is the radian frequency of excitation per unit time.
The kinetic energy for the cylindrical panel is given by

H ¼ 1
2
qh
Z L

0

Z h0

0
ð _u2 þ _v2 þ _w2ÞRdhdx; ð6Þ

where _u; _v and _w are the linear velocities in x, h and z directions,
respectively.

The strain energy Ua due to the axial loading can be expressed
as

Ua ¼
1
2

Z L

0

Z h0

0
Na

@u
@x

� �2

þ @v
@x

� �2

þ @w
@x

� �2
" #

Rdhdx: ð7Þ

The strain energy of the cylindrical panel can be written as

Ue ¼
1
2

Z L

0

Z h0

0
eT SeRdhdx; ð8Þ

where

e ¼ e1 e2 c j1 j2 2sð Þ; ð9Þ



Fig. 2. Distribution types of CNTs of CNTR-FG cylindrical panels in the thickness direction. (a) UD panel; (b) FG-V panel; (c) FG-O panel; and (d) FG-X panel.
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in which the extensional Aij, coupling Bij and bending Dij stiffness
are given by

ðAij;Bij;DijÞ ¼
Z h=2

�h=2
Q ijð1; z; z2Þdz; ð11Þ

where Qij are the engineering constants related to material proper-
ties, which can be written as

Q 11 ¼
E11

1� v12v21
; Q 22 ¼

E22

1� v12v21
; Q 12 ¼

v21E11

1� v12v21
; ð12Þ

Q 66 ¼ G12; ð13Þ

and the middle surface strains e1, e2 and c and the middle surface
curvatures j1, j2 and s are defined according to Love’s thin shell
theory

e1 ¼
@u
@x
; e2 ¼

1
R

@v
@h
þw

� �
; ð14Þ

c ¼ @v
@x
þ 1

R
@v
@h

; j1 ¼ �
@2w

@2x
; ð15Þ
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1
R2

@2w

@2h
� @v
@h

 !
; s ¼ �1

R
@2w
@x@h

� @v
@x

 !
: ð16Þ

Therefore, the total energy functional of the panel is obtained as

Pf ¼ H� Ue � Ua: ð17Þ
3.2. Discrete system equations

For a cylindrical panel domain discretized by a set of nodes xI,
I = 1, . . . ,NP, the discrete displacement approximations are
expressed as

ðu;v ;wÞT ¼
XNP

I¼1

wIðxÞðuI;v I;wIÞT eixt ¼
XNP

I¼1

wIðxÞuIeixt; ð18Þ

where uI is the nodal parameter and wI(x) is the shape function of
displacements u, v and w, defined as [35,36]:

wIðxÞ ¼ Cðx; x� xIÞUaðx� xIÞ; ð19Þ

where Ua(x � xI) is the kernel function. C(x; x � xI) is the correction
function, defined as:
Cðx; x� xIÞ ¼ HTðx� xIÞbðxÞ; ð20Þ
bðxÞ ¼ ½b0ðx; hÞ; b1ðx; hÞ; b2ðx; hÞ; b3ðx; hÞ; b4ðx; hÞ; b5ðx; hÞ�T; ð21Þ
HTðx� xIÞ ¼ ½1; x� xI; h� hI; ðx� xIÞðh� hIÞ; ðx� xIÞ2; ðh� hIÞ2�:ð22Þ

The shape function thus is:

wIðxÞ ¼ bTðxÞHðx� xIÞUaðx� xIÞ; ð23Þ

and Eq. (23) can be rewritten as:

wIðxÞ ¼ bTðxÞBIðx� xIÞ; ð24Þ

where

bðxÞ ¼M�1ðxÞHð0Þ; ð25Þ
BIðx� xIÞ ¼ Hðx� xIÞUaðx� xIÞ; ð26Þ

in which

MðxÞ ¼
XNP

I¼1

Hðx� xIÞHTðx� xIÞUaðx� xIÞ; ð27Þ

Hð0Þ ¼ ½1;0;0;0;0;0; �T: ð28Þ

For the two-dimensional problem, the kernel function Ua(x � xI)
can be written as

Uaðx� xIÞ ¼ UaðxÞ �UaðhÞ; ð29Þ

where

UaðxÞ ¼ u
x� xI

a

� �
: ð30Þ

In the present study, the cubic spline function is selected as the
weight function, given by

uzðzIÞ ¼

2
3� 4z2

I þ 4z3
I for 0 6 jzIj 6 1

2
4
3� 4zI þ 4z2

I � 4
3 z3

I for 1
2 < jzIj 6 1

0 otherwise

8><>:
9>=>;; ð31Þ

where zI ¼ x�xI
dI

and dI is the size of the support of node I, calculated
by

dI ¼ dmaxcI; ð32Þ

where distance cI is chosen by searching for a sufficient number of
nodes to avoid the singularity of matrix M and dmax is a scaling fac-
tor ranging from 2.0 to 4.0.

Therefore, the shape function can be expressed as

wIðxÞ ¼ HTð0ÞM�1ðxÞHðx� xIÞUaðx� xIÞ: ð33Þ

Eq. (25) can be rewritten as

MðxÞbðxÞ ¼ Hð0Þ: ð34Þ
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Followed by the back substitution, the vector b(x) can be deter-
mined by using the LU decomposition of the matrix M(x). Taking
the first derivative of Eq. (34), we can obtain

M;xðxÞbðxÞ þMðxÞb;xðxÞ ¼ H;xð0Þ; ð35Þ

which can be rearranged as

MðxÞb;xðxÞ ¼ H;xð0Þ �M;xðxÞbðxÞ: ð36Þ

It is noted that the first derivative of b(x) can be derived again
using the LU decomposition procedure.

Now, the first derivative of the shape function can be obtained
by taking the derivative of Eq. (33), i.e.

wI;xðxÞ ¼ bT
;xðxÞBIðx� xIÞ þ b TðxÞBI;xðx� xIÞ: ð37Þ

It is worth noting that the second derivative of the shape func-
tion can also be obtained by using the same procedure.

Since the shape function wI(x) in the present mesh-free method
does not possess Kronecker delta property, the essential boundary
conditions cannot be directly imposed. Several approaches have
been proposed to enforce essential boundary conditions for
mesh-free methods, such as the transformation method, Lagrange
multipliers approach, the penalty method, and modified varia-
tional principles. In this study, the penalty method [37,38] is
employed to implement essential boundary conditions.

Simply supported boundary conditions:
For the domain bounded by lu, the displacement boundary

condition is

u ¼ �u; ð38Þ

where �u is the prescribed displacement on the displacement bound-
ary lu. The variational form is expressed as

C�u ¼
�a
2

Z
lu

ðu� �uÞTðu� �uÞdl; ð39Þ

where �a is the penalty parameter which is taken as 103E11.
Clamped boundary conditions:
For the clamped boundary condition, in addition to the bound-

ary condition described by Eq. (34), the rotation boundary condi-
tion is also included

b ¼ �b; ð40Þ

where

b ¼ dw
dx

; ð41Þ

and �b is the prescribed rotation on the boundary. The variational
form due to the rotation can also be written as

C�b ¼
�a
2

Z
lu

ðb� �bÞTðb� �bÞdl: ð42Þ

Thus, the variational form due to the boundary conditions can be
given by

CB ¼ C�u þ C�b: ð43Þ

Eventually, the total energy functional for the present problem
becomes

C ¼ Ct þ CB: ð44Þ

Substituting Eq. (18) into the total energy functional applying the
Rayleigh–Ritz minimization procedure, we can obtain a system of
Mathieu–Hill equations asfM€qþ ðeK � cos PtQ Þq ¼ 0; ð45Þ

whereeK ¼ K�1KK�T; fM ¼ K�1MK�T: ð46Þ
Matrices K, K and M are given as follows:

KIJ ¼ wIðxJÞI; I is the identity matrix; ð47Þ
K ¼ Ke þ KA þ KB1 þ KB2 ; ð48Þ

Ke
IJ ¼

Z L

0

Z h0

0
Be

I

� �TSBe
J Rdhdx; ð49Þ

KA
IJ ¼

Z L

0

Z h0

0
BA

I

� �T
N0BA

J Rdhdx; ð50Þ

KB1
IJ ¼ �a

Z
u

B1B
I

� �T
B1B

J dl; ð51Þ

KB2
IJ ¼ �a

Z
u

B2B
I

� �T
B2B

J dl; ð52Þ

M ¼ qh
Z L

0

Z h0

0
MT

I MJRdhdx; ð53Þ

where

Bb
I ¼

@wI
@x 0 0

0 1
R
@wI
@x

wI
R

1
R
@wI
@h

@wI
@x 0

0 0 � @2wI
@x2

0 1
R2

@wI
@h � 1

R2
@2wI

@h2

0 2
R
@wI
@x � 2

R
@2wI
@x@h

2666666666664

3777777777775
; ð54Þ

B1B
I ¼

wI 0 0
0 wI 0
0 0 wI

264
375; ð55Þ

B2B
I ¼

@wI
@x 0 0

0 @wI
@x 0

0 0 @wI
@x

2664
3775; ð56Þ

MI ¼
wI 0 0
0 wI 0
0 0 wI

264
375: ð57Þ

The governing equation (Eq. (45)) is a second order differential
equation with periodic coefficients of the Mathieu–Hill type. The
instability regions are separated by the periodic solutions with peri-
ods T and 2T (T = 2p/P). Since the widths of the solutions with per-
iod 2T are usually larger than those associated with solutions
having period of T, the solutions with period 2T are of greater prac-
tical importance. By using Bolotin’s approach as a first approxima-
tion, the periodic solutions with period 2T can be sought in the form

�q ¼ �f sin
Pt
2
þ �g cos

Pt
2
; ð58Þ

where �f and �g are arbitrary vectors.
Substituting Eq. (58) into Eq. (45) and equating the coefficients

of sinPt = 2 and cosPt = 2 terms, we can obtain a set of linear
homogeneous algebraic equations in terms of �f and �g. The condi-
tions of non-trivial solutions are expressed as

det
� 1

4 P2fMIJ þ eK � 1
2 Q IJ 0

0 � 1
4 P2fMIJ þ eK þ 1

2 Q IJ

 !" #
¼ 0: ð59Þ

Since it is more complicated to solve the above nonlinear geometric
equations for P, the above expression is rearranged to the standard
form of a generalized eigenvalue problem

det
eK � 1

2 Q IJ 0

0 eK þ 1
2 Q IJ

 !
� P2

1
4
fMIJ 0

0 1
4
fMIJ

 !" #
¼ 0: ð60Þ
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The boundaries between the stable and unstable regions can be
defined by the generalized eigenvalues P2 of the above generalized
eigenvalue problem.

4. Numerical results

For CNTR-FG cylindrical panels considered in this paper, Poly
(methyl methacrylate), referred as PMMA, is selected as the matrix
with material properties vm = 0.34, am = 45(1 + 0.0005DT) � 10�6/K
and Em = (3.52 � 0.0034T) GPa, where T = T0 + DT and T0= 300 K
(room temperature). (10,10) SWCNTs are selected as reinforce-
ment. Han and Elliott [39] have reported that modulus of (10,10)
SWCNTs (ECNT

11 ¼ 600 GPa;ECNT
22 ¼ 10 GPa, GCNT

12 ¼ 17:2 GPaÞ. The
main cause of such a low value is that the effective thickness of
CNTs is assumed as 0.34 nm. However it is reported that the
effective thickness of SWCNTs should be smaller than 0.142 nm
and, therefore, material properties of SWCNTs used for the present
study are selected from MD simulation results reported by Shen
and Zhang [40] where effective wall thickness obtained for
(10,10) SWCNTs is 0.067 nm, which satisfies the Vodenitcharova-
Zhang criterion [41].

4.1. Isotropic cylindrical panel

To validate the present formulation, analysis of an isotropic
cylindrical panel under tensile and compressive loads is carried
out to assess the accuracy of the present methodology. The isotro-
pic cylindrical panel has parameters of b/R = 0.5, L/R = 2 and v = 0.3.
It is obvious that the compressive or tensile periodic axial load can-
not exceed the critical buckling load of the cylindrical shell panel.
In the present study, the buckling load for isotropic cylindrical
shell panel of intermediate length is given as [42]

Nbuc ¼
Eh2

½3ð1� m2Þ�1=2R
; ð61Þ

where E and v are the elastic modulus and Poisson’s ratio of the
isotropic cylindrical panel, respectively. The non-dimensional
frequency parameter P is defined as

P ¼ RP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1� m2Þ

E

r
: ð62Þ

Each unstable region is bounded by two curves originating from a
common point from the P axis with Ns = 0. The present numerical
solutions are tabulated in Table 1 which are compared with results
of Ng et al. [43] using classical shell theory (CST) and first order
shear deformation theory (FSDT). The first four modes of isotropic
Table 1
Comparisons of unstable regions for an isotropic cylindrical panel under tensile and comp

h/R Mode Point of origin

Compressive loading

CST [43] FSDT [43]

0.03 (1,1) 0.6533 0.6483
(2,1) 0.7182 0.7111
(3,1) 0.9172 0.9061
(4,1) 1.1958 1.1776

0.04 (1,1) 0.8854 0.874
(2,1) 0.9716 0.955
(3,1) 1.2024 1.1761
(4,1) 1.5495 1.5064

0.05 (1,1) 1.1183 1.0964
(2,1) 1.2347 1.203
(3,1) 1.5135 1.4632
(4,1) 1.9419 1.8595
cylindrical panel are (m = 1, n = 1), (m = 2, n = 1), (m = 3, n = 1) and
(m = 4, n = 1). It can be seen that the present results agree well with
those given by Ng et al. [43].

4.2. CNTR-FG cylindrical panels

The instability regions of CNTR-FG cylindrical panels having
different boundary conditions are investigated in this section.
The span angle of the panel is chosen to be h0 = 60�. The edge-to-
radius ratio, L/R, varies from 1.0 to 3.0. The CNT volume fraction
(VCNT) changes from 0.11 to 0.17, and the radius-to-thickness ratio
(R/H) is selected as 200–300. For CNTR-FG cylindrical panels, the
critical buckling load Ncr is approximated as

Ncr ¼
E22h2

½3ð1� m12m21Þ�1=2R
; ð63Þ

and the non-dimensional frequency parameter P is defined as

P ¼ RP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1� m12m21Þ

E22

s
: ð64Þ

The static axial force is selected as N0 = 0.5Ncr.
Fig. 3 shows the first four unstable regions of a UD CNTR-FG

cylindrical panel having radius-to-thickness ratio R/H = 200 under
simply supported boundary conditions. The CNT volume fraction
VCNT is assumed to be 0.11 and the edge-to-radius ratio is selected
as L/R = 1.0. These first four modes correspond to (m = 1, n = 1),
(m = 1, n = 2), (m = 1, n = 3) and (m = 1, n = 4). It is found that the
first mode (m = 1, n = 1) has the largest instability region, followed
in descending order by modes (m = 1, n = 2), (m = 1, n = 3) and
(m = 1, n = 4); the last has the smallest instability region. The
corresponding first four unstable regions for other three types
CNTR-FG cylindrical panels FG-V, FG-O and FG-X are depicted in
Figs. 4–6. Some similar phenomenon about the order of the region
size is observed. In our earlier studies about CNTR-FG plate and
panel [19,44–47], we found that CNTs distributed close to top
and bottom surfaces are more efficient in increasing the stiffness
of the plate or panel than CNTs distributed near the mid-surface.
In the present dynamic stability analysis, it is also discovered that
the non-dimensional frequency parameter for FG-X and FG-O type
panels have the maximum and minimum value, and those of UD
and FG-V panels lie between FG-X and FG-O. As the radius-to-
thickness ratio (R/H) increases from 200 to 300, the first four unsta-
ble regions of these four types CNTR-FG cylindrical panels are
shown in Figs. 7–10. It can be seen that the instability regions of
modes 1 and 2 are overlapping as Ns/N0 exceeds 0.35 for UD and
FG-V type panels, 0.43 for FG-O type panel and 0.28 for FG-X panel.
ressive loads with simply supported boundary condition.

Tensile loading

Present CST [43] FSDT [43] Present

0.6411 0.7651 0.7606 0.7592
0.7004 1.0722 1.0665 1.0699
0.9081 1.5076 1.4988 1.4953
1.1571 1.9976 1.9832 1.9974

0.8821 0.9977 0.987 0.9765
0.9517 1.3375 1.3236 1.3241
1.1607 1.8313 1.8103 1.8195
1.5138 2.4111 2.3769 2.4163

1.0798 1.2308 1.2106 1.2108
1.2005 1.6063 1.5791 1.5877
1.4757 2.1621 2.1209 2.1483
1.8993 2.8345 2.7679 2.8317



Fig. 3. Unstable regions for the first four modes of UD CNTR-FG cylindrical panel
with R/H = 200 under SSSS boundary conditions.

Fig. 4. Unstable regions for the first four modes of FG-V CNTR-FG cylindrical panel
with R/H = 200 under SSSS boundary conditions.

Fig. 5. Unstable regions for the first four modes of FG-O CNTR-FG cylindrical panel
with R/H = 200 under SSSS boundary conditions.

Fig. 6. Unstable regions for the first four modes of FG-X CNTR-FG cylindrical panel
with R/H = 200 under SSSS boundary conditions.

Fig. 7. Unstable regions for the first four modes of UD CNTR-FG cylindrical panel
with R/H = 300 under SSSS boundary conditions.

Fig. 8. Unstable regions for the first four modes of FG-V CNTR-FG cylindrical panel
with R/H = 300 under SSSS boundary conditions.
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Fig. 9. Unstable regions for the first four modes of FG-O CNTR-FG cylindrical panel
with R/H = 300 under SSSS boundary conditions.

Fig. 10. Unstable regions for the first four modes of FG-X CNTR-FG cylindrical panel
with R/H = 300 under SSSS boundary conditions.

Fig. 11. Unstable regions for the first four modes of UD CNTR-FG cylindrical panel
with VCNT = 0.14 under SSSS boundary conditions.

Fig. 12. Unstable regions for the first four modes of FG-V CNTR-FG cylindrical panel
with VCNT = 0.14 under SSSS boundary conditions.

Fig. 13. Unstable regions for the first four modes of FG-O CNTR-FG cylindrical panel
with VCNT = 0.14 under SSSS boundary conditions.

Fig. 14. Unstable regions for the first four modes of FG-X CNTR-FG cylindrical panel
with VCNT = 0.14 under SSSS boundary conditions.
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Fig. 15. Unstable regions for the first four modes of UD CNTR-FG cylindrical panel
with VCNT = 0.17 under SSSS boundary conditions.

Fig. 16. Unstable regions for the first four modes of FG-V CNTR-FG cylindrical panel
with VCNT = 0.17 under SSSS boundary conditions.

Fig. 17. Unstable regions for the first four modes of FG-O CNTR-FG cylindrical panel
with VCNT = 0.17 under SSSS boundary conditions.

Fig. 18. Unstable regions for the first four modes of FG-X CNTR-FG cylindrical panel
with VCNT = 0.17 under SSSS boundary conditions.

Fig. 19. Unstable regions for the first four modes of UD CNTR-FG cylindrical panel
with L/R = 2.0 under SSSS boundary conditions.

Fig. 20. Unstable regions for the first four modes of FG-V CNTR-FG cylindrical panel
with L/R = 2.0 under SSSS boundary conditions.
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Fig. 21. Unstable regions for the first four modes of FG-O CNTR-FG cylindrical panel
with L/R = 2.0 under SSSS boundary conditions.

Fig. 22. Unstable regions for the first four modes of FG-X CNTR-FG cylindrical panel
with L/R = 2.0 under SSSS boundary conditions.

Fig. 23. Unstable regions for the first four modes of UD CNTR-FG cylindrical panel
with L/R = 3.0 under SSSS boundary conditions.

Fig. 24. Unstable regions for the first four modes of FG-V CNTR-FG cylindrical panel
with L/R = 3.0 under SSSS boundary conditions.

Fig. 25. Unstable regions for the first four modes of FG-O CNTR-FG cylindrical panel
with L/R = 3.0 under SSSS boundary conditions.

Fig. 26. Unstable regions for the first four modes of FG-X CNTR-FG cylindrical panel
with L/R = 3.0 under SSSS boundary conditions.
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Fig. 27. Unstable regions for the first four modes of UD CNTR-FG cylindrical panel
under FFFF boundary conditions (L/R = 1.0, VCNT = 0.14 and R/H = 200).

Fig. 28. Unstable regions for the first four modes of FG-V CNTR-FG cylindrical panel
under FFFF boundary conditions (L/R = 1.0, VCNT = 0.14 and R/H = 200).

Fig. 29. Unstable regions for the first four modes of FG-O CNTR-FG cylindrical panel
under FFFF boundary conditions (L/R = 1.0, VCNT = 0.14 and R/H = 200).

Fig. 30. Unstable regions for the first four modes of FG-X CNTR-FG cylindrical panel
under FFFF boundary conditions (L/R = 1.0, VCNT = 0.14 and R/H = 200).
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It is also noted that the size of overlapping area for FG-X panel is
the largest and that of FG-V panel is the lowest.

Figs. 11–14 show the first four unstable regions of UD, FG-V, FG-
O and FG-X CNTR-FG cylindrical panels having CNT volume
fraction VCNT = 0.14 under simply supported boundary conditions.
The edge-to-radius ratio L/R and the radius-to-thickness ratio R/H
is selected as 1.0 and 200, respectively. Comparing the results in
Figs. 2 and 5, it can be seen there is no big difference and some
similar conclusions can also be derived for the order of the unsta-
ble region size and effect about CNT distributions. As CNT volume
fraction increases to 0.17, in the first four unstable regions of these
four types CNTR-FG cylindrical panels (Figs. 15–18) it can be seen
that the change of CNT volume fraction does not affect the
responses a lot, but it can also observed that the value of the
non-dimensional frequency parameter increases with the increase
of CNT volume fraction. That is obvious because CNTR-FG cylindri-
cal panels have larger stiffness when value of CNT volume fraction
is larger.

Figs. 19–26 show the first four unstable regions of UD, FG-V, FG-
O and FG-X CNTR-FG cylindrical panels having the edge-to-radius
ratio, L/R = 2.0 and 3.0 under simply supported boundary condi-
tions. It can be seen that as the edge-to-radius ratio L/R increases
to 2.0 and 3.0, the instability region of mode 4 is the widest which
is almost twice the other three modes. It can also be seen that the
instability regions of modes 1 and 2 are overlapping for CNTR-FG
cylindrical panels with L/R = 2.0, while there is no overlapping for
CNTR-FG cylindrical panels with L/R = 3.0. In addition to simply
supported boundary conditions, Figs. 27–30 show the first four
unstable regions of completely free UD, FG-V, FG-O and FG-X
CNTR-FG cylindrical panels. The edge-to-radius ratio L/R is chosen
to be 1.0. The CNT volume fraction VCNT is selected as 0.14. The
radius-to-thickness ratio is assumed to be R/H = 200. It can be seen
that there is no big difference between the sizes of unstable regions
for the four modes. As Ns/N0 exceeds 0.34 for UD and FG-V type
panels, 0.45 for FG-O type panel and 0.32 for FG-X panel, it can also
observed that the instability regions of modes 1 and 2 are
overlapping.

5. Conclusions

In this paper, the mesh-free kp-Ritz is utilized for dynamic sta-
bility analysis of carbon nanotube-reinforced functionally graded
(CNTR-FG) cylindrical panels under static and periodic axial force.
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The cylindrical panels are reinforced by single-walled carbon
nanotubes (SWCNTs) with different types of distributions along
thickness direction and effective material properties of the result-
ing nanocomposite panels are evaluated by Eshelby–Mori–Tanaka
approach. A system of Mathieu–Hill equations is obtained via the
Ritz minimization procedure and parametric resonance responses
are analyzed using Bolotin’s method. The 2-D transverse displace-
ment field is approximated by the mesh-free kernel particles
estimate. Detailed parametric studies have been carried out and
results reveal the influence of volume fraction of carbon
nanotubes, edge-to-radius ratio and radius-to-thickness ratio on
dynamic stability responses of CNTR-FG cylindrical panels. In
addition, effects of different boundary conditions and types of
distributions of carbon nanotubes are also examined.
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