
Composite Structures 111 (2014) 205–212
Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct
Static and dynamic of carbon nanotube reinforced functionally graded
cylindrical panels
0263-8223/$ - see front matter � 2014 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compstruct.2013.12.035

⇑ Corresponding author. Tel.: +852 34426581.
E-mail address: kmliew@cityu.edu.hk (K.M. Liew).
L.W. Zhang a, Z.X. Lei b,c, K.M. Liew b,d,⇑, J.L. Yu c

a College of Information Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, PR China
b Department of Civil and Architectural Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
c CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, PR China
d City University of Hong Kong Shenzhen Research Institute Building, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, PR China

a r t i c l e i n f o
Article history:
Available online 8 January 2014

Keywords:
Functionally graded materials
Ritz method
Shells
Vibration
a b s t r a c t

The analysis of flexural strength and free vibration of carbon nanotube reinforced composite cylindrical
panels is carried out. Four types of distributions of uniaxially aligned reinforcements are considered, i.e.
uniform and three kinds of functionally graded distributions of carbon nanotubes along thickness direc-
tion of the panels. Material properties of nanocomposite panels are estimated by employing an equiva-
lent continuum model based on the Eshelby–Mori–Tanaka approach. The governing equations are
developed based on the first-order shear deformation shell theory. Detailed parametric studies have been
carried out to reveal the influences of volume fraction of carbon nanotubes, edge-to-radius ratio and
thickness on flexural strength and free vibration responses of the panels. In addition, effects of different
boundary conditions and types of distributions of carbon nanotubes are examined.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, Carbon nanotubes (CNTs) have been widely accepted
as a new advanced material with high strength and stiffness and
a high aspect ratio and low density. Numerous investigators have
reported remarkable physical and mechanical properties of this
new form of carbon and CNTs may be selected as an excellent can-
didate for reinforcement of polymer composites. Sun et al. [1] ana-
lytically studied the axial Young’s modulus of single-walled carbon
nanotube arrays with diameters ranging from nanometer to meter
scales. Their results confirmed that CNTs have mechanical proper-
ties superior than carbon fibers.

Researchers have analytically, experimentally and numerically
investigated the constitutive models and mechanical properties
of carbon nanotube polymer composites. Coleman et al. [2] re-
viewed and compared mechanical properties of single- and mul-
ti-walled carbon nanotube reinforced composites fabricated by
various processes, in which the composites based on chemically
modified nanotubes showed the best results since functionaliza-
tion significantly enhances both dispersion and stress transfer.
Tensile tests of CNT composites indicated that reinforcement with
only 1 wt% nanotubes results in 36–42% increase in elastic modu-
lus and 25% increase in breaking stress [3]. Odegard et al. [4] pre-
sented constitutive models of nanotubes-reinforced polymer
composites with the nanotube, the local polymer near the nano-
tube and the nanotube/polymer interface modeled as effective
continuum fibers, using an equivalent-continuum modeling meth-
od. By using molecular dynamic simulations, Griebel and Hamae-
kers [5] examined the elastic moduli of polymer-carbon
nanotube composites with a single-walled carbon nanotube
embedded in polyethylene. The results showed an excellent agree-
ment with the macroscopic rule of mixtures. Based on the Mori–
Tanaka effective-field method, Shi et al. [6] investigated effect of
nanotube waviness and agglomeration on elastic properties of car-
bon nanotube reinforced composites.

Structure elements (beam, plate and shell) play an important
role in actual structural applications. Carbon nanotube-reinforced
composite (CNTRC) is an advanced material that can be embedded
in beam, plate or shell as structural components. Bending behavior
of one-dimensional structures is an important consideration in the
design of structural components. Wuite and Adali [7] presented a
multiscale analysis of deflection and stress behavior of symmetric
cross-ply and angle-ply laminated CNTRC beams. Yas and Samadi
[8] analysed free vibration and buckling of nanocomposite Timo-
shenko beams reinforced by single-walled carbon nanotubes
(SWCNTs) resting on an elastic foundation using the generalized dif-
ferential quadrature method. By employing an equivalent contin-
uum model that follows the Eshelby–Mori–Tanaka approach,
Formica et al. [9] studied vibration behaviors of CNTRC plates. Arani
et al. [10] analytically and numerically investigated buckling behav-
iors of laminated composite plates in which optimal orientations of
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CNTs required to achieve the highest critical load and the corre-
sponding mode shapes were calculated for different kinds of bound-
ary conditions, as well as aspect ratios of the plates. Motivated by
the concept of functionally graded materials, some further investi-
gations about functionally graded carbon nanotube reinforced
composites (FG-CNTRC) have been conducted. With carbon nano-
tubes assumed graded in thickness direction of beams, Ke et al.
[11] investigated nonlinear free vibrations of functionally graded
nanocomposite beams. By using the mesh-free kp-Ritz, Lei et al.
[12] analysed buckling of FG-CNTRC plates under various in-plane
mechanical loads. Large deformation behaviors of FG-CNTRC plates
were investigated in [13]. Wang and Shen [14] studied large
amplitude vibration of FG-CNTRC plates resting on an elastic
foundation in thermal environments. Aragh et al. [15] studied natu-
ral frequency characteristics of a continuously graded CNT-
reinforced cylindrical panel, based on the Eshelby–Mori–Tanaka
approach. For FG-CNTRC cylindrical shells, Shen and Xiang [16]
examined the large amplitude vibration behavior of nanocomposite
cylindrical shells in thermal environments. With FG-CNTRC cylin-
drical shells subject to axial compression and lateral pressure, post-
buckling behaviors in thermal environments were analysed in
[17,18].

The present work analyses flexural strength and free vibration
of functionally graded carbon nanotube reinforced composite
(FG-CNTRC) cylindrical panels. The mesh-free kp-Ritz method
based on the first-order shear deformation shell theory is em-
ployed to derive the discretized governing equations. The CNTs
are assumed to be uniaxially aligned in axial direction and func-
tionally graded in thickness direction of the panels. The effective
material properties of FG-CNTRC cylindrical panels are estimated
through a micromechanical model based on the Eshelby–Mori–
Tanaka approach. Several computational simulation examples are
presented to figure out the effects of volume fraction of CNTs,
edge-to-radius ratio, thickness, boundary conditions and distribu-
tion types of CNTs on flexural strength and free vibration responses
of the panels.

2. Carbon nanotube reinforced composite panels

The configuration of the cylindrical panel considered in this pa-
per is shown in Fig. 1. This panel is assumed to be thin and of length
L, radius R, span angle h0 and thickness h. As shown in Fig. 2, the
CNTs are assumed to be uniaxially aligned in axial direction and
functionally graded in thickness direction of the cylindrical panels,
that is, UD is uniformly distributed; FG-V, FG-O and FG-X denote
the other three types of functionally graded distributions of CNTs.
For FG-V type panel, the top surface of the cylindrical panel is
CNT-rich. For FG-O type panel, the middle surface of the cylindrical
panel is CNT-rich and both top and bottom surfaces are CNT-rich for
FG-X type panel. According to distributions of CNTs in the thickness
direction of cylindrical panels, CNT volume fractions VCNT(z) are
expressed as
Fig. 1. Geometry properties of CNTRC panel.
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; ð1Þ

where

V�CNT ¼
wCNT

wCNT þ ðqCNT=qmÞ � ðqCNT=qmÞwCNT
; ð2Þ

where wCNT is the fraction of mass of the CNTs, and qm and qCNT are
densities of the matrix and CNTs, respectively.

Since the effective material properties of CNT-reinforced mate-
rials are sensitive to the structure of CNTs [19–22], several micro-
mechanical models have been proposed to predict the effective
material properties of CNT-reinforced nanocomposites, such as
Eshelby–Mori–Tanaka scheme [9,23,24] and the extended rule of
mixture [17,25,26]. According to Benveniste’s revision [27], effec-
tive elastic module tensor L can be expressed as

L ¼ Lm þ VCNThðLCNT � LmÞ � Ai � ½VmIþ VCNThAi��1
; ð3Þ

where I is the fourth-order unit tensor and Lm and LCNT are stiffness
tensors of the matrix and CNT, respectively. The angle brackets rep-
resent an average over all possible orientation of the inclusions. A is
the diluted mechanical strain concentration tensor and is written as

A ¼ ½Iþ S � L�1
m � ðLCNT � LmÞ�

�1
; ð4Þ

where S is the fourth-order Eshelby tensor [28] and is well defined
for cylindrical inclusions in [29].

3. Theoretical formulations

3.1. Displacement filed and strains of CNTRC panels

According to the first-order shear deformation shell theory [30],
the displacement field is expressed as

uðx; h; zÞ ¼ u0ðx; hÞ þ z/xðx; hÞ; ð5Þ

vðx; h; zÞ ¼ v0ðx; hÞ þ z/hðx; hÞ; ð6Þ

wðx; h; zÞ ¼ w0ðx; hÞ; ð7Þ

where ðu0;v0;w0;/x;/yÞ are displacement components at the mid-
dle surface of the panels (z = 0).

The strain–displacement equations are given as
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: ð9Þ
3.2. Energy functional of analysis of flexural strength and free
vibration of CNTRC cylindrical panels

For analysis of flexural strength, the panels are subjected to uni-
form transverse pressure loading q, the strain energy of CNTRC
cylindrical panels is given as

Ue ¼
1
2

Z L

0

Z h0

0
eT SeRdhdx; ð10Þ

where



Fig. 2. Distribution types of CNTs of FG-CNTRC panels. (a) UD panel; (b) FG-V panel; (c) FG-O panel; and (d) FG-X panel.
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in which the extensional Aij, coupling Bij, bending Dij and transverse
shear As

ij stiffness are given by

ðAij;Bij;DijÞ ¼
Z h=2

�h=2
Q ijð1; z; z2Þdz;As

ij ¼ K
Z h=2

�h=2
Q ij dz: ð13Þ

The stiffness Aij, Bij and Dij are defined for i, j = 1, 2, 6 whereas As
ij

is defined for i, j = 4.5. K denotes the transverse shear correction
coefficient, which can be computed such that the strain energy
due to the transverse shear stresses equals the strain energy due
to the true transverse stresses predicted by the 3-D elasticity the-
ory. Qij are the engineering constants related to the material prop-
erties, which are given as

Q 11 ¼
E11

1� v12v21
; Q 22 ¼

E22

1� v12v21
; Q12 ¼

v21E11

1� v12v21
; ð14Þ

Q 44 ¼ G23; Q 55 ¼ G13; Q66 ¼ G12: ð15Þ

The external work due to uniform transverse pressure loading q is
expressed as

We ¼
Z L

0

Z h0

0
uTqRdhdx: ð16Þ

Thus the total potential energy functional of the panels for analysis
of flexural strength is given by

Ps ¼ Ue �We: ð17Þ

For analysis of free vibration, the panels are assumed to under-
go a harmonic motion. The kinetic energy for the panels can be ex-
pressed as

H ¼ 1
2
qh
Z L

0

Z h0

0
_u2 þ _v2 þ _w2� �

Rdhdx: ð18Þ
Therefore, the total potential energy functional of the panels for
analysis of free vibration is obtained as

Pf ¼ Ue �H: ð19Þ
3.3. Discrete system equations

For a cylindrical panel domain discretized by a set of nodes xI,
I = 1, . . . , NP, displacement approximations are expressed in the
discrete form

û ¼
XNP

I¼1

wIðxÞuI; ð20Þ

where uI is the nodal parameter and wI(x) is the shape function, de-
fined as [31,32]

wIðxÞ ¼ Cðx; x� xIÞUaðx� xIÞ; ð21Þ

where Ua(x � xI) is the kernel function and C(x; x � xI) is the correc-
tion function which can be expressed by a linear combination of
polynomial basis functions as

Cðx; x� xIÞ ¼ HTðx� xIÞbðxÞ ð22Þ

bðxÞ ¼ b0ðx; hÞ; b1ðx; hÞ; b2ðx; hÞ; b3ðx; hÞ; b4ðx; hÞ; b5ðx; hÞ½ �T; ð23Þ

HTðx� xIÞ ¼ 1; x� xI; h� hI; ðx� xIÞðh� hIÞ; ðx� xIÞ2; ðh� hIÞ2
h i

:

ð24Þ

Thus, the shape function can be written as

wIðxÞ ¼ bTðxÞHðx� xIÞUaðx� xIÞ; ð25Þ

and Eq. (25) can be rewritten as

wIðxÞ ¼ bTðxÞBIðx� xIÞ; ð26Þ

where

bðxÞ ¼M�1ðxÞHð0Þ; ð27Þ

BIðx� xIÞ ¼ Hðx� xIÞUaðx� xIÞ; ð28Þ

in which

MðxÞ ¼
XNP

I¼1

Hðx� xIÞHTðx� xIÞUaðx� xIÞ; ð29Þ

Hð0Þ ¼ ½1;0;0;0;0;0�T: ð30Þ

For the two-dimensional problem, the kernel function Ua(x � xI) is
defined as
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Uaðx� xIÞ ¼ UaðxÞ �UaðhÞ; ð31Þ

where

UaðxÞ ¼ u
x� xI

a

� �
: ð32Þ

In the present study, the cubic spline function is selected as the
weight function, and is given by

uzðzIÞ ¼

2
3� 4z2

I þ 4z3
I for0 6 jzIj 6 1

2
4
3� 4zI þ 4z2

I � 4
3 z3

I for 1
2 < jzIj 6 1

0 otherwise

8><>:
9>=>;; ð33Þ

where zI ¼ x�xI
dI

and dI is the size of the support of node I, calculated
by

dI ¼ dmaxcI; ð34Þ

where distance cI is chosen by searching for a sufficient number of
nodes to avoid the singularity of matrix M and dmax is a scaling fac-
tor ranging from 2.0 to 4.0.

Therefore, the shape function can be expressed as

wIðxÞ ¼ HTð0ÞM�1ðxÞHðx� xIÞUaðx� xIÞ ð35Þ

Eq. (27) can be rewritten as

MðxÞbðxÞ ¼ Hð0Þ: ð36Þ

The vector b(x) can be determined by using the LU decomposition
of the matrix M(x), followed by the back substitution. Then by tak-
ing the first derivative of Eq. (35), we can obtain

M;xðxÞbðxÞ þMðxÞb;xðxÞ ¼ H;xð0Þ; ð37Þ

which can be rearranged as

MðxÞb;xðxÞ ¼ H;xð0Þ �M;xðxÞbðxÞ: ð38Þ

It is noted that the first derivative of b(x) can be derived again
using the LU decomposition procedure.

Thus, the first derivative of the shape function can be obtained
by taking the derivative of Eq. (35), i.e.

wI;xðxÞ ¼ bT
;xðxÞBIðx� xIÞ þ bTðxÞBI;xðx� xIÞ: ð39Þ

It is worth noting that the second derivative of the shape func-
tion can also be obtained by using the same procedure.

Since the shape function wI(x) does not possess Kronecker delta
property, the essential boundary conditions cannot be directly im-
posed. In this paper, the transformation method is employed to im-
pose the essential boundary conditions.

Based on the displacements defined in Eq. (20), ~u is constructed
as

~uJ ¼ ûðxJÞ ¼
XNP

I¼1

LIJuI; ð40Þ

where

LIJ ¼ wIðxJÞ: ð41Þ

Eq. (40) can be rewritten as

uI ¼
XNP

I¼1

L�T
IJ

~uI: ð42Þ

Substituting Eq. (42) into Eq. (40) leads to

ûJ ¼
XNP

I¼1

wIðxJÞuI ¼
XNP

I¼1

XNP

K¼1

wIðxÞL�T
KI

~uK ¼
XNP

K¼1

ŵKðxÞ~uK ; ð43Þ

where
ŵKðxÞ ¼
XNP

I¼1

L�T
KI wIðxÞ; ð44Þ

Note that

ŵIðxJÞ ¼
XNP

I¼1

L�T
IK wKðxJÞ ¼

XNP

I¼1

L�T
IK LkJ ¼ dIJ : ð45Þ

Therefore, the reconstruction shape function possesses Kronecker
delta property.

Substituting Eq. (20) into the total potential energy functional
of analysis of flexural strength and free vibration of the panels
and taking the variation of the total potential energy functional
lead to the discrete system equations

eKu ¼ F; ð46Þ

ðeK �x2fMÞu ¼ 0; ð47Þ

whereeK ¼ K�1KK�T; F ¼ K�1F; fM ¼ K�1MK�T; ~u ¼ Ku: ð48Þ

Matrices K, K, F, M and u are given as follows:

KIJ ¼ wIðxJÞI; I is the identity matrix ð49Þ

u ¼ ½u1 u2 � � � un�T; ð50Þ

K ¼ Kb þ Km þ Ks; ð51Þ

Kb
IJ ¼

Z L

0

Z h0

0
Bb

I

� �T
DBb

J Rdhdx; ð52Þ

Km
IJ ¼

Z L

0

Z h0

0
Bm

I

� �TABm
J Rdhdxþ

Z L

0

Z h0

0
Bm

I

� �TBBb
J Rdhdx

þ
Z L

0

Z h0

0
Bb

I

� �T
BBm

J Rdhdx; ð53Þ

Ks
IJ ¼

Z L

0

Z h0

0
Bs

I

� �TAsBs
J Rdhdx; ð54Þ

M ¼
Z L

0

Z h0

0
GT

I
�mGJR dhdx; ð55Þ

FI ¼
Z L

0

Z h0

0
wT

I qRdhdx; ð56Þ

where

Bb
I ¼

0 0 0 @wI
@x 0

0 0 0 0 1
R
@wI
@h

0 0 0 1
R
@wI
@h

@wI
@x

26664
37775; ð57Þ

Bm
I ¼

@wI
@x 0 0 0 0

0 1
R
@wI
@h

wI
R 0 0

1
R
@wI
@h

@wI
@x 0 0 0

2664
3775; ð58Þ

Bs
I ¼

0 0 @wI
@x wI 0

0 � wI
R

1
R
@wI
@h 0 wI

" #
; ð59Þ



Table 1
Central deflection (mm) of isotropic cylindrical panel under uniformly distributed
loading.

Nodes dmax Reddy
[30]

Palazatto and
Dennis [37]

2.2 2.5 2.8 3.1

9 � 9 0.2819 0.2831 0.2922 0.2954
11 � 11 0.2849 0.2842 0.2904 0.2919
13 � 13 0.2866 0.2854 0.2900 0.2914
15 � 15 0.2875 0.2861 0.2899 0.2908
17 � 17 0.2880 0.2865 0.2887 0.2905 0.288 0.289

Table 2
Non-dimensional central deflection w/h of FG-CNTRC panels with different volume
fractions of CNTs.

VCNT

0.11 0.14 0.17 2.0

SSSS UD 1.1156 0.8888 0.7270 0.6256
FG-V 1.5515 1.2536 1.0171 0.8826
FG-O 2.0221 1.6421 1.3287 1.1567
FG-X 0.7708 0.6114 0.5009 0.4299

CCCC UD 0.2500 0.2024 0.1625 0.1410
FG-V 0.3482 0.2815 0.2281 0.1975
FG-O 0.4477 0.3613 0.2935 0.2539
FG-X 0.1800 0.1472 0.1165 0.1016

Fig. 3. Central deflection w/h of FG-CNTRC panels along centerline (x,h0/2).
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wT
I ¼

wI 0 0 0 0
0 wI 0 0 0
0 0 wI 0 0
0 0 0 wI 0
0 0 0 0 wI

26666664

37777775; ð60Þ

�m ¼

I0 0 0 I1 0
0 I0 0 0 I1

0 0 I0 0 0
I1 0 0 I2 0
0 I1 0 0 I2

26666664

37777775; ð61Þ

where I0, I1 and I2 are normal, coupled normal-rotary and rotary
inertial coefficients, defined as

ðI0; I1; I2Þ ¼
Z h=2

�2=h
qðzÞð1; z; z2Þdz: ð62Þ

To calculate the integrations for Eqs. (52)–(56), the stabilized nodal
integration and direct nodal integration are employed, instead of
Gauss integration, which may reduce computational cost and elim-
inate errors due to the mismatch between the quadrature cells and
the shape function supports [33].

4. Numerical results

In this section, flexural strength and free vibration responses of
FG-CNTRC cylindrical panels are investigated by using the mesh-
free kp-Ritz method. Poly (methyl methacrylate), referred as
PMMA, with material properties vm = 0.34, am = 45(1 +
0.0005DT) � 10�6/K and Em = (3.52� 0.0034T) GPa, where T = T0 +
DT and T0 = 300 K (room temperature) is selected as the matrix.
By using molecular dynamics simulations, Han and Elliott [34] ob-
tained modulus of (10,10) SWCNTs (ECNT

11 ¼ 600 GPa, ECNT
22 ¼ 10 GPa,

GCNT
12 ¼ 17:2 GPa). The main cause of such a low value is that the

effective thickness of CNTs is assumed as 0.34 nm. It is reported
that the effective thickness of SWCNTs should be smaller than
0.142 nm and the effective wall thickness obtained for (10,10)
SWCNTs is 0.067 nm, which satisfies the Vodenitcharova–Zhang
criterion [35]. Thus the material properties used for the present
study are selected from MD simulation results reported by Zhang
and Shen [25]. For the present element-free method, a scaling
factor of 3.1 that represents the size of the support is used for
construction of shape functions and a regular nodal distribution
17 � 17 is chosen, following convergence studies.

4.1. Analysis of flexural strength of FG-CNTRC cylindrical panels

Several numerical examples are provided for analysis of flexural
strength of FG-CNTRC panels under mechanical loading. The effects
of volume fraction of carbon nanotubes, edge-to-radius ratio,
thickness, boundary conditions and distribution types of CNTs
are examined in detail. Two kinds of boundary conditions, i.e. all
edges simply supported and clamped, are considered. The bound-
ary conditions are defined as

x ¼ 0; L : v0 ¼ w0 ¼ /h ¼ 0
h ¼ 0; h0 : u0 ¼ w0 ¼ /x ¼ 0

�
ðSimply supportedÞ; ð63Þ

x ¼ 0; L : u0 ¼ v0 ¼ w0 ¼ /x ¼ /h ¼ 0
h ¼ 0; h0 : u0 ¼ v0 ¼ w0 ¼ /x ¼ /h ¼ 0

�
ðClampedÞ: ð64Þ

To validate the present formulation, an analysis of isotropic cylin-
drical panel is carried out in terms of the number of nodes with dif-
ferent support sizes. Geometry and material properties of the panel
are: h0 = 0.2 rad, R = 2.54 m, L/R = 0.2, h/R = 0.00125, E = 3.1 Gpa,
v = 0.3 and q0 = 275.8 Pa. The boundary condition of the panel is
four edges clamped. The central deflection (mm) is shown in Table 1.
It can be seen that the present results agree well with other solu-
tions available in the literature. According to the accuracy and effi-
ciency, a discretization with 17 � 17 nodes and a scaling factor
dmax = 3.1 are used for all further analyses.

Table 2 shows the non-dimensional central deflection w/h of
FG-CNTRC panels with different volume fractions of CNTs under
uniformly distributed load q0 = 0.1 MPa. The geometry of the pan-
els is h0 = 0.1 rad, h = 0.002 m, h/R = 0.002 and L/R = 0.1. It can be
seen that the central deflection decreases with increase of volume
fraction of CNTs. Since the constraint of clamped boundary condi-
tion is stronger than simply supported boundary condition, the
central deflection of the panels with four edges simply supported
is higher than that with four edges clamped. We can also observe
that the central deflection for FG-O cylindrical panel has the high-
est value, while that of FG-X cylindrical panel is the lowest. There-
fore, it is concluded that CNTs distributed close to top and bottom



Table 3
Non-dimensional central deflection w/h of FG-CNTRC panels for different edge-to-
radius ratios (L/R).

L/R

0.1 0.15 0.2 0.25 0.3

SSSS UD 1.1156 4.8888 11.585 19.275 25.985
FG-V 1.5515 6.1967 13.391 20.761 26.752
FG-O 2.0221 7.8261 16.278 24.350 30.502
FG-X 0.7708 3.5468 8.9446 15.797 22.318

CCCC UD 0.2500 1.0878 2.4977 3.8725 4.8105
FG-V 0.3482 1.4453 3.0325 4.3310 5.0786
FG-O 0.3613 1.7831 3.5187 4.7848 5.4368
FG-X 0.1016 0.7908 1.9349 3.2184 4.2268

Table 4
Non-dimensional central deflection w/h of FG-CNTRC panels for different edge-to-
radius ratios (L/R) with h = 0.004 m.

L/R

0.1 0.15 0.2 0.25 0.3

SSSS UD 0.0787 0.3307 0.7764 1.2834 1.7157
FG-V 0.1073 0.4234 0.9166 1.4130 1.8001
FG-O 0.1345 0.5293 1.1022 1.6374 2.0278
FG-X 0.0567 0.2428 0.5995 1.0481 1.4679

CCCC UD 0.0236 0.0854 0.1868 0.2917 0.3699
FG-V 0.0297 0.1081 0.2240 0.3274 0.3939
FG-O 0.0361 0.1310 0.2614 0.3674 0.4294
FG-X 0.0191 0.0665 0.1485 0.2423 0.3210

Table 5
Comparison for the first six frequencies (Hz) for a clamped cylindrical panel.

Mode Node number Au and Cheung [36]

11 � 11 13 � 13 15 � 15 17 � 17

1 881 874 869 867 869
2 939 944 951 956 957
3 1310 1300 1293 1291 1287
4 1387 1375 1367 1362 1363
5 1454 1444 1438 1435 1439
6 1714 1735 1740 1748 1751

Table 6
Non-dimensional frequency parameters �x ¼ x a2

h

ffiffiffiffiffi
qm

Em

q
of various FG-CNTRC panels

with four edges simply supported and four edges clamped boundary conditions.

Mode CNT distributions

UD FG-V FG-O FG-X

SSSS 1 17.850 15.273 13.444 21.243
2 22.073 20.183 18.482 25.096
3 33.285 32.257 30.587 35.939
4 51.778 51.410 48.702 54.535
5 65.121 55.300 49.430 76.758
6 67.264 58.006 51.505 78.556

CCCC 1 36.849 31.690 28.172 42.937
2 40.924 36.567 33.213 46.640
3 51.825 48.692 45.593 56.946
4 70.638 68.671 65.505 75.394
5 91.445 79.804 71.419 101.72
6 93.611 82.583 74.350 104.00

Table 7
Non-dimensional frequency parameters �x ¼ x a2

h

ffiffiffiffiffi
qm

Em

q
of various FG-CNTRC panels

with different thickness.

h Mode CNT distributions

UD FG-V FG-O FG-X

0.004 1 23.773 14.524 12.888 19.618
2 29.904 19.495 18.014 23.573
3 45.691 31.329 29.863 34.331
4 68.042 48.230 43.958 48.236
5 68.158 48.313 46.677 48.317
6 71.165 48.658 47.895 52.202

0.008 1 28.524 12.792 11.650 15.778
2 37.405 17.645 16.635 19.867
3 48.113 24.115 24.118 24.118
4 48.195 24.156 24.158 24.158
5 58.931 28.592 27.559 30.208
6 75.339 35.430 33.503 39.486

Fig. 4. Effect of volume fraction of CNTs on frequency parameters of FG-CNTRC
panels with four edges simply supported boundary conditions.
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surfaces are more efficient in increasing the stiffness of the
cylindrical panels than CNTs distributed near the mid-surface.
Furthermore, the central deflection for the various types of
FG-CNTRC panels along centerline (x,h0/2) is shown in Fig. 3.

Table 3 shows the non-dimensional central deflection w/h of
FG-CNTRC panels for different edge-to-radius ratios (L/R) with four
edges simply supported and four edges clamped boundary condi-
tions. It can be observed that the edge-to-radius ratio (L/R) has sig-
nificant influence on the central deflection of the panels, as
manifest in rapid increase of the central deflection caused when
the edge-to-radius ratio (L/R) increases. A similar effect of the dis-
tribution types of CNTs in the panels is also observed with the
change of edge-to-radius ratio (L/R). Subsequently, moderately
thicker FG-CNTRC panels with h = 0.004 m are considered. Typical
results are shown in Table 4. Some similar responses are obtained;
the central deflections for thicker FG-CNTRC panels are relatively
small.

4.2. Analysis of free vibration of FG-CNTRC cylindrical panels

The dynamic characteristics of various FG-CNTRC panels are
presented in this section. Material and geometric properties are
the same as those for analysis of flexural strength. Firstly, a com-
parative study is carried out for a clamped cylindrical panel. The
panel has geometric properties as h = 0.33 mm, L = 76.2 mm,
h0 = 0.133 rad and R = 762 mm. Table 5 shows comparison of the
present mesh-free results and solutions of Au and Cheung [36]



Fig. 5. Effect of volume fraction of CNTs on frequency parameters of FG-CNTRC
panels with four edges clamped boundary conditions.

Fig. 6. Effect of edge-to-radius ratio (L/R) on frequency parameters of FG-CNTRC
panels with four edges simply supported boundary conditions.

Fig. 7. Effect of edge-to-radius ratio (L/R) on frequency parameters of FG-CNTRC
panels with four edges clamped boundary conditions.
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for first six frequencies, using isoparametric spline finite strip
method. It can be seen that a good agreement is obtained.

Table 6 shows non-dimensional frequency parameters
�x ¼ x a2

h

ffiffiffiffiffi
qm

Em

q
of various FG-CNTRC panels with four edges simply

supported and four edges clamped boundary conditions. It can be
seen that the frequency parameters of panels with four edges sim-
ply supported are lower than those of panels with four edges
clamped. It is noted that FG-X panels have the highest frequency
parameters and FG-O panels have the lowest frequency parameters
among the panels. A further study is conducted to investigate the
effect of thickness on frequency parameters of FG-CNTRC panels.
Table 7 shows some similar observations.

Figs. 4 and 5 depict the effect of the volume fraction of CNTs on
frequency parameters of FG-CNTRC panels with four edges simply
supported and four edges clamped boundary conditions, respec-
tively. It is found that frequency parameters of the panels have
higher values when volume fraction of CNTs is higher since the
stiffness of CNTRC panels is larger when the CNT volume fraction
is higher. Compared with effect of volume fraction of CNTs, an
opposite effect is observed for edge-to-radius ratio (L/R), as de-
picted in Figs. 6 and 7. It can be seen that frequency parameters de-
crease when the edge-to-radius ratios (L/R) increase. We can also
observe that when the edge-to-radius ratio (L/R) increases from
0.1 to 0.3, at the beginning, the frequency parameters decrease
quickly and the rate becomes gentler with further increase of the
edge-to-radius ratio (L/R).

5. Conclusions

In this paper, the mesh-free kp-Ritz is employed for analysis of
flexural strength and free vibration of functionally graded carbon
nanotube-reinforced composite (FG-CNTRC) cylindrical panels.
The formulations are based on the first-order shear deformation
shell theory. The 2-D transverse displacement field is approxi-
mated by the mesh-free kernel particles estimate. The CNTs are as-
sumed to be graded in thickness direction symmetric about the
middle surface of the cylindrical panel and the effective material
properties are estimated through a micromechanical model based
on the Eshelby–Mori–Tanaka approach. Convergence and compar-
ison studies are provided to assess the accuracy and efficiency of
the present mesh-free method. Numerical examples are provided
to present the static and dynamic characteristics of FG-CNTRC pan-
els. Results reveal that volume fractions of carbon nanotubes, edge-
to-radius ratios, thickness, boundary conditions and distribution
type of CNTs have significant influences on the flexural strength
and free vibration responses of the panels.
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