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A geometrically nonlinear large deformation analysis of SLGSs is presented using the element-free kp-
Ritz method. Classical plate theory (CLP) is applied to describe the geometrically nonlinear behavior of
SLGSs. Nonlocal elasticity theory is incorporated into CLP to take the small-scale effect into consideration.
The system nonlinear equations are derived from the Ritz procedure based on the total Lagrangian
formulation. The modified Newton–Raphson method and arc-length continuation are employed to solve
the nonlinear equations. The efficiency of the element-free kp-Ritz method is verified through com-
parison with results reported in previous research. Numerical cases are studied to examine the influence
of boundary conditions, aspect ratio, side length and nonlocal parameters on the nonlinear large
deformation behavior of SLGSs. An interesting phenomenon is observed in that the nonlocal parameter
effect is related to the mathematical expression of the transverse load.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Benzene-ring structure packed single layered carbon atoms,
known as single layered graphene sheets (SLGSs), have attracted
considerable attention in the scientific community since the
emergence of the groundbreaking paper written by Novoselov
et al. [1], due to its excellent mechanical, electronic, magnetic,
thermal, physical and chemical properties [2–5]. It has wide
applications in nano-electro-mechanical systems (NEMS) and
macro-electro-mechanical systems (MEMS), including the fields of
nanosensors, nanodevices, nanoelectronics etc. Many carbon-
based materials, including nanotubes, graphite, fullerenes, etc.,
can be recognized as derivations of SLGSs [6]. Thus, as mechanics
researchers, we are strongly motivated to gain a greater under-
standing of the mechanical properties of SLGSs.

While it is difficult to conduct experiments for the study of
nanoscale structures, simulations have become the dominant tool
with which to investigate the mechanical properties of nanoscale
structures. Generally, simulations contain three categories, i.e.
bottom-up simulations, the hybrid of bottom-up simulations and
top-down simulations. Atomistic lattice dynamics and molecular
dynamic simulations [7,8] belong to bottom-up simulations and
g).
require such a tremendous amount of computation that they are
limited to structures with small numbers of atoms and molecules.
In the case of hybrid simulations, although the complexity of the
problem processing increases, a lesser degree of computation is
demanded compared to bottom-up simulations. Continuum
modeling simulations [9–11] belong to top-down simulations,
offering the least computationally expensive option. Therefore,
continuum modelling simulations have been increasingly applied
in the study of nanoscale structures. However, original continuum
modelling cannot be used directly because it lacks the ability to
capture the small-scale effect. The small-scale effect results from
the not inconsiderable forces between individual atoms when the
structures are small in size. Consequently, modified continuum
modelling is needed to take the small-scale effect into account.
Generally, the nonlocal elasticity theory is incorporated to modify
continuum modelling. The nonlocal elasticity theory, developed by
Erigin [12,13], has the ability to capture the small-scale effect on
account of its assumption that the stress state at a given reference
point has a relationship with the strain of every point in the body,
rather than just with the reference point. Such nonlocal con-
tinuum modelling was first employed by Peddieson [14] to study
some representative problems of beams by formulating a nonlocal
version of the Bernoulli/Euler beam theory. Wave propagation in
CNTs was investigated by Wang [15], using the nonlocal Euler–
Bernoulli and Timoshenko beam models. Arash developed the
nonlocal finite element method to study the wave propagation
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behavior of graphene sheets [16]. Rouhi et al. [17] applied the
atomistic finite element model to an analysis of the axial buckling
behavior of SLGSs. Zhang et al. [18,19] adopted the nonlocal plate
model to investigate the vibration behavior and transient response
of SLGSs. It is indicated that nonlocal continuum modelling is
effective in dealing with various problems of nanoscale structures.

Nonlocal continuum modelling for a featured problem is fol-
lowed by a numerical solving process. As a notable numerical tool,
the element-free kp-Ritz method has proved effective and efficient
in analyzing extensive problems in the field of engineering [20–
25] due to its distinguished feature of not relying on mesh, a
feature which makes it especially good at processing nonlinear
problems (e.g. geometrically nonlinear problems [26]).

Many researchers have employed nonlocal continuum model-
ling to investigate the nonlinear behavior of graphene sheets.
Naderi [27] employed nonlocal continuum modelling and the
Galerkin method to analyze the postbuckling of graphene sheets in
a nonlinear polymer medium. Nonlocal continuum modelling was
utilized by Jomehzadeh [28] to investigate the large amplitude
vibration characteristics of multilayered graphene sheets and a
numerical solution was obtained based on the harmonic balance
method. The nonlinear bending behavior of SLGSs has been
investigated in a few papers [29,30]. Jomehzadeh et.al [31] ana-
lytically calculated the softening and hardening bending stiffness
of a monolayer graphene sheet with an initial curvature and found
that the bending stiffness strongly depends on the initial config-
uration; however, to the author's best knowledge, no work exists
on the large deformation behavior of SLGSs employing the
element-free kp-Ritz method.

In this paper, we aim to provide a comprehensive investigation
of the large deformation behavior of SLGSs using nonlocal con-
tinuum modelling and the element-free kp-Ritz method. The
effect of the boundary conditions, aspect ratio, side length and
nonlocal parameters are studied.
2. Nonlocal continuum formulation for the large deformation
of SLGSs

2.1. Nonlocal elasticity theory

Inspired by experimental observation and the atomic theory of
lattice dynamics, Eringen [12,13] recognized that the stress state in
the prescribed point depends not only on the strain state of the
same point but also on that of all the other points in the body.
Thus, he presented the nonlocal elasticity theory to describe this
insight. The key issue of the nonlocal elasticity theory lies in the
distinct description of the constitutive relation. The most widely
applied constitutive relation is written in the following differential
form

ð1�ðe0aÞ2∇2Þ σ!nl ¼ C : ε!; ð1Þ
where e0a is the nonlocal parameter reflecting the small-scale
effect,∇2 denotes the Laplacian operator equaling ð∂=∂x2þ∂=∂y2Þ
and C is the modulus tensor.

2.2. Total potential energy

Based on the Von Karman theory and Ritz method, a for-
mulation for the large deformation analysis of SLGSs is derived.
The displacement field in Von Karman theory is expressed as [32]

uðx; y; zÞ ¼ u0ðx; yÞ�z
∂w0

∂x
;

vðx; y; zÞ ¼ v0ðx; yÞ�z
∂w0

∂y
;

wðx; y; zÞ ¼w0ðx; yÞ; ð2Þ

where ðu; v;wÞ are the displacements of arbitrary point ðx; y; zÞ in
the SLGSs and u0,v0,w0 denote the displacements of a point on the
mid-plane. For geometrically nonlinear analyses, the nonlinear
terms are considered through the nonlinear formulation of strains,
which are written as
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Thus, the nonlocal constitutive relation for SLGSs can be

expressed as

ð1�ðe0aÞ2∇2Þ σ!nl ¼ SU ε!; ð4Þ

S¼
E=ð1�υ2Þ υE=ð1�υ2Þ 0
υE=ð1�υ2Þ E=ð1�υ2Þ 0

0 0 E=ð2ð1þυÞÞ

2
64

3
75; ð5Þ

where E;υ denote Young's modulus and Poisson's ratio,
respectively.

The strain energy of SLGSs is expressed as

Uε ¼
1
2

Z
Ω
σ!T

nl U ε
!dΩ: ð6Þ

Taking the transverse load into consideration, the external
work is written as

W ¼∬wqdxdy; ð7Þ

and, thus, we can obtain the total potential energy of SLGSs

Π ¼ U�W ¼ 1
2

Z
Ω
σ!T

nl U ε
!dΩ�∬ qwdxdy: ð8Þ

Taking the variation of the total potential energy functional, the
following equilibrium equation is yieldedZ
Ω
σ!T

nl Uδ ε
!dΩ�∬ qδwdxdy¼ 0; ð9Þ

and by multiplying Eq. (9) with ð1�ðe0aÞ2∇2Þ and substituting Eqs.
(3) and (4) into (9), we can get

R
Ωð ε

!T
L Sδ ε

!
Lþ ε!T

L Sδ κ
!þ κ!T Sδ ε!Lþ κ!T

Sδ κ!ÞdΩþZ
Ω
ð ε!T

L Sδ ε
!

Nþ κ!T
Sδ ε!Nþ ε!T

NSδ ε
!

Lþ ε!T
NSδ κ

!þ ε!T
NSδ ε

!
NÞdΩ

�∬ ð1�ðe0aÞ2∇2Þqδwdxdy¼ 0: ð10Þ

2.3. Discretized nonlinear equations from the Ritz procedure

The displacement field of SLGSs can be expressed using N

displacement values of the scattered particles ðX!1; X
!

2;⋯; X
!

NÞ
according to the kernel particle Ritz method, as follows

w¼
XN
I ¼ 1

ψ Iðx; yÞwI ; ð11Þ

where N is the total number of nodes used to discretize the
domain. ψ I and wI denote the shape function and displacement
value associated with node I, respectively.

The shape function can be expressed by

ψ I ¼ CðX!; X
!� X

!
IÞΦðX!� X

!
IÞ; ð12Þ



Y. Zhang et al. / International Journal of Non-Linear Mechanics 79 (2016) 1–9 3
in which, ΦðX!� X
!

IÞ is the kernel function. The coefficient func-

tion CðX!; X
!� X

!
IÞ is defined as

CðX!; X
!� X

!
IÞ ¼HT ðX!� X

!
IÞKðX

!Þ; ð13Þ

HT ðX!� X
!

IÞ ¼ ½1; x�xI ; y�yI ; ðx�xIÞðy�yIÞ; ðx�xIÞ2; ðy�yIÞ2�T ;
ð14Þ

KðX!Þ¼ ½k0ðx; yÞ; k1ðx; yÞ; k2ðx; yÞ; k3ðx; yÞ; k4ðx; yÞ; k5ðx; yÞ�T ; ð15Þ

where H is the quadratic basis vector and KðX!Þ is the function of

X
!

which needs to be determined. Thus, we can rewrite the shape
function as

ψ IðX
!

; X
!� X

!
IÞ ¼ KT ðX!ÞHðX!� X

!
IÞΦðX!� X

!
IÞ ð16Þ

When we force the shape function to satisfy the reproduction
conditions

XN
I ¼ 1

ψ IðX
!ÞxpI yqI f or pþq¼ 0;1;2:; ð17Þ

we can obtain

KðX!Þ¼M�1ðX!ÞHð0Þ; ð18Þ
in which

MðX!Þ¼
XN
I ¼ 1

HðX!� X
!

IÞHT ðX!� X
!

IÞΦðX!� X
!

IÞ; ð19Þ

Hð0Þ ¼ ½1;0;0;0;0;0�T ð20Þ
In addition, the kernel function is expressed as

ΦðX!� X
!

IÞ ¼Φðx; xIÞUΦðy; yIÞ; ð21Þ
where

Φðx; xIÞ ¼ϕ
x�xIj j
aI

� �
ð22Þ

In the present study, the cubic spline function is employed for
the kernel function

φðzIÞ ¼
2
3�4z2I þ4z3I for 0rzIr1

2
4
3�4zIþ4z2I �4

3z
3
I for 1

2rzIr1
0 otherwise

;

8><
>: ð23Þ

in which zI ¼ jx�xIj=aI and aI ¼ aðxIÞ are the dilation parameters
used to control the size of the support area of node I, i.e. the
subdomain in which ΦðxJ ; xIÞa0 for all nodes xJ . Generally, aI is
defined as dmaxcI . dmax is the scaling factor spanning from 2.0 to
4.0, which should be appropriately selected so as to ensure the
support area contains a sufficient number of nodes, thereby
avoiding the singularity of the matrix M. cI is the larger of the
distances between the two neighbors and xI .

Based on the assumptions of displacements as described in Eq.
(11), the strain of SLGSs can be written as
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where

BL
I ¼

ψ I;x 0
0 ψ I;y

ψ I;y ψ I;x

2
64

3
75: ð25Þ

Substituting Eq. (24) into Eq. (10), we can obtain the discretized
equilibrium system equations

KsðuÞu¼ F; ð26Þ
in which u¼ ½u1; v1;w1;⋯uN ; vN ;wN� and Ks is the secant stiffness
matrix depending on the displacement. It contains two parts

KsðuÞ ¼ KLþKNðuÞ; ð27Þ
and
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ð28Þ

ðA;B;Q Þ ¼
Z h=2

�h=2
Sð1; z; z2Þdz; ð29Þ
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FI ¼∬ ð1�ðe0aÞ2∇2Þqψ Idxdy ð31Þ
The tangent stiffness matrix can be obtained from

Ktðw!Þ¼ KLþKNtþKG; ð32Þ

KNt
IJ ¼∬

0 ðBL
I ÞTABN

J

ðBN
I ÞTABL

J ðBN
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J
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IJ ¼∬GT

I NG
T
J dxdy; ð33Þ
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3. Solution of discretized nonlinear equations

For solving the nonlinear equations, incremental-iterative
methods should be employed. In the present work, the modified
Newton–Raphson iteration scheme, combined with the arc-length
method, is applied to obtain the nonlinear solutions [33,34]. A
detailed figure of the adopted method is presented as follows.

A simple and unadorned supposition emerges that the non-
linear equations can be solved step by step, as follows

Kt UΔw!m ¼ΔFm; ð35Þ
where Kt is the tangent stiffness matrix. However, the solution is
not converged. To guarantee solutions on the true equilibrium
curve, the Newton–Raphson (NR) iteration scheme is required.
Further, in order to reduce the computation load, a modified NR
iteration scheme is employed, in which the tangent stiffness
matrix is only calculated at the beginning of each step. Fig. 1
illustrates the difference that exists between the standard NR and
a modified NR, using a one-dimensional case for simplicity. We



Fig. 1. The comparison between Newton–Raphson and modified Newton–Raphson
method.

Fig. 2. The process of arc-length method.
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can obtain the incremental displacement

Δwn
m ¼ Ktðwm�1Þ½ ��1 ΔFm� Ksðwn�1

m Þwn�1
m �Fm�1

� �� � ð36Þ
However, the deficiency of this method rests in its lack of

ability and/or the considerable computation cost required to
obtain a response curve with a singular point. To overcome such
shortcomings, the arc-length method is introduced in which the
response path through a converged solution is achieved at
each step.

The basic idea of the arc-length method is to make the con-
vergence controllable by introducing the load scaling factor λ as
follows

Ksðw!Þw!¼ λF0 ð37Þ
In this method, both the load and the displacement vary.
According to Liew [33], the incremental displacement is

expressed as

Δw!n
m ¼ Ktðw!m�1Þ

h i�1
ΔλnmF0� Ksðw!

n�1
m Þw!n�1

m �λn�1
m F0

� 	
 �

¼Δλnmðw
!

f Þm� Ktðw!m�1Þ
h i�1

gn�1
m ; ð38Þ

where m denotes the load step (the process from the last point of
converged equilibrium on the response curve to the current one is
known as one load step) number and n refers to the nth iteration
cycle. gn�1

m is the residual function, and

ðw!f Þm ¼ Ktðw!m�1Þ
h i�1

F0;

gn�1
m ¼ Ktðw!m�1Þ

h i�1
Ksðw!

n�1
m Þw!n�1

m �λn�1
m F0

� 	
;

w!m ¼
Xm
i ¼ 1

Δw!i;Δw!i ¼
XN
j ¼ 1

Δw!j
i; w
!n

m ¼ w!m�1þ
Xn
k ¼ 1

Δw!k
m;

λm ¼
Xm
i ¼ 1

Δλi; Δλi ¼
XN
j ¼ 1

Δλji; λnm ¼ λm�1þ
Xn
k ¼ 1

Δλkm; ; ð39Þ

in which N is the total iteration number in the ith load step.
Thus, the key issue lies in solving Δλnm. An additional constraint

equation is required to obtain Δλnm. According to Crisfield [35], the
arc-length constraint equation, which guarantees the solution of
each iteration located on the “circular arc”, is written as

ðΔw!n
mþ

Xn�1

k ¼ 1

Δw!k
mÞT ðΔw!n

mþ
Xn�1

k ¼ 1

Δw!k
mÞ ¼ l2m ð40Þ
Substituting Eq. (37) into Eq. (39), we can get Δλnm. Since Eq.
(39) may have two roots, the appropriate selection is made
according to the least positive cosine value of the angle betweenPn�1

k ¼ 1
Δw!k

m and
Pn
k ¼ 1

Δw!k
m.

The procedure contains two parts, i.e. load step-load step
evolution and inner load step iteration, which are illustrated in
Fig. 2 using a two-dimensional case as an example.

To start the procedure, we need to know the first load incre-
ment Δλ11. This is usually selected at 20–40% of the anticipated
maximum load.

As for load step-load step evolution, the value of lm is required

l2m ¼ ðΔλ1mÞ2ðw
!

f ÞTmðw
!

f Þm ð41Þ
Then the recursion formula of arc-length can be written

lm ¼ lm�1
Jdes
Jm�1

� �t

; ð42Þ

where, usually, t is (0.5�1). Jdes denotes the desired number of
current inner load step iterations, which is usually taken as (3–5),
and Jm�1 is the number of the previous inner load step iteration.

Δλ1m is required to get the current inner load step iterations
started

Δλ1m ¼ lmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw!f ÞTmðw

!
f Þm

q U
signðKtðw!m�1Þ
signðKtðw!m�2Þ

UsignðΔλ1m�1Þ ð43Þ

When ‖gnm‖2rβ‖λnmF0‖2, the inner load step iteration ends.
4. Numerical results and discussion

4.1. Convergence and verification study

Firstly, in order to determine the suitable nodes, and verify the
present element-free kp-Ritz method, a convergence and com-
parison study is carried out. The scaling factor is taken as 2.3. An
isotropic, square plate subjected to a uniformly distributed load q
is considered. This example was investigated by Reddy [36] using
the finite element method. The side length and thickness are a¼
b¼ 10 in and h¼ 1 in, respectively. Young's modulus and Poisson's
ratio are E¼ 7:8� 106 psi and υ¼ 0:3, respectively. The non-
dimensional deflection is defined as w1 ¼w=h and the non-
dimensional load is q1 ¼ qa4=ðEh4Þ. The boundary conditions of the



Fig. 3. Center deflection versus the uniformly distributed load for simply sup-
ported, isotropic, square plate with different nodes.

Fig. 4. Center deflection curves of an SSSS square isotropic plate under uniformly
distributed load solved by different methods.

Fig. 5. SLGSs with uniformly circular distributed transerve loads.

Fig. 6. Center deflection versus uniformly circular distributed load of the SSSS
square SLGSs for different radii.
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plate are simply supported for all four edges (SSSS). For compar-
ison, we reduce the above Von Karman theory to classical plate
theory which is also used by Reddy in that case. Fig. 3 depicts the
nonlinear large deformation response for different nodes. Com-
parisons between the deflection–load curves solved by the present
method and by the finite element method are shown in Fig. 4.
From Figs. 3 and 4, we can see that it is suitable to set the particle
distribution as 16�16, and that the agreement is reasonably good,
although a slight difference exists between the solutions.

4.2. Numerical cases

Fig. 5 illustrates the SLGSs under uniformly circular distributed
transverse loads. The radius of the circle is R. To examine the
influence of R on the nonlinear large deformation response of
SLGSs, a case study is carried out on a square SLGS with the fol-
lowing geometrical and material properties

a¼ b¼ 15 nm; h¼ 0:34 nm; E¼ 1:02 Tpa; υ¼ 0:16:
For boundary conditions of the four sides of the SLGSs, a
sequence of letters containing “S” and “C” is used to denote simply
supported (S) and fully clamped (C), respectively. The boundary
conditions are given as follows:

� Simply supported (S): outside-layer nodes along the X
axis,u0 ¼w0 ¼ 0, outside-layer nodes along the Y axis,
v0 ¼w0 ¼ 0; and

� Clamped (C): both the outside-layer nodes and the adjacent
inside-layer nodes are set to be “S” to simulate the “C” [37].

Figs. 6–8 plot the center deflection curves of the SLGSs for SSSS,
CSCS and CCCC boundary conditions, respectively. It is shown that,
for specific boundary conditions, the center deflection increases
with the increasing of the load radius R. It can also be found that,
for an identical load radius and load value, the center deflection
decreases following the sequence of the boundary conditions SSSS,
CSCS and CCCC. As a result of this, there is an increase in edge
constraints as the boundary conditions shift from SSSS to CSCS
to CCCC.

The aspect ratio, which is defined as width=length, also influ-
ences the nonlinear large deformation response of SLGSs. SLGSs
with a constant length a¼ 15 nm and variable width (i.e. variable
aspect ratios) are simulated to study the influence of aspect ratio
on the nonlinear behavior of SLGSs. Figs. 9–11 display center
deflection variation along with the variation of uniformly dis-
tributed load for different aspect ratios of SSSS, CSCS and CCCC
SLGSs, respectively. As we can see from Fig. 9, center displacement



Fig. 7. Center deflection versus uniformly circular distributed load of the CSCS
square SLGSs for different radii.

Fig. 8. Center deflection versus uniformly circular distributed load of the CCCC
square SLGSs for different radii.

Fig. 9. Center deflection versus uniformly distributed load of the SSSS SLGSs for
different aspect ratios.

Fig. 10. Center deflection versus uniformly distributed load of the CSCS SLGSs for
different aspect ratios.
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increases with the increasing of aspect ratio for specific loads.
Similar observations are found in Figs. 10 and 11. In comparing
Figs. 9–11, it can be concluded that the boundary conditions can be
ranked as CCCC, CSCS and SSSS in descending order of the
enhancement effect. In order to examine the influence of side
length on the nonlinear large deformation response of SLGSs, we
simulate isotropic, square SLGSs with different side lengths. Five
values of side length are taken: 10 nm, 15 nm, 20 nm, 25 nm and
30 nm. All of these simulated SLGSs are subjected to transverse
load uniformly distributed on the whole area. We define another
nondimensional load q2 ¼ q� 106=E to demonstrate the impact of
the side length on the nonlinear large deformation response
clearly. The variation trend of the center deflection, along with the
increase in uniformly distributed loads of SSSS SLGSs for different
side lengths, is plotted in Fig. 12–14 present the same variation
trend of center deflection of CSCS and CCCC SLGSs, respectively. It
is evident from the results that, for specific load and boundary
conditions, as the side length increases, the center displacement
increases. These curves also indicate that the constraint effects of
these three kinds of boundary conditions can be ranked as CCCC,
CSCS and SSSS in descending order.

It is worth considering nonlocal parameters in simulating
nanostructures, as they have a manifest influence on the
mechanical behaviors of small-size structures. To examine such
influences, we simulate isotropic, square SLGSs with constant side
lengths of 15 nm and consider only CCCC boundary conditions. We
assume that the transverse load applied to the SLGSs has the fol-
lowing mathematical expression

q¼ q0e
kx ð44Þ

In addition, the corresponding nondimensional load is defined
as q1 ¼ q0a

4=ðEh4Þ. Three cases are studied, i.e. (1) k¼ 0:5� 108;



Fig. 11. Center deflection versus uniformly distributed load of the CCCC SLGSs for
different aspect ratios.

Fig. 12. Center deflection versus uniformly distributed load of the square SSSS
SLGSs for different side lengths.

Fig. 13. Center deflection versus uniformly distributed load of the square CSCS
SLGSs for different side lengths.

Fig. 14. Center deflection versus uniformly distributed load of the square CCCC
SLGSs for different side lengths.
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(2) k¼ 2� 108; and (3) k¼ 3:5� 108. Corresponding to these
three cases, the plots of center deflection versus transverse load
for different nonlocal parameters are shown in Figs. 15–17,
respectively. Taking Fig. 17 as an example, it can be seen that the
center deflection decreases as the nonlocal parameter increases.
The same phenomenon can be observed from Figs. 15 and 16,
although the trend is less obvious than in Fig. 17. When we con-
sider the different values of k in these three figures, we can draw
the conclusion that the larger the values of k, the more remark-
able the influence of nonlocal parameters on the nonlinear
large deformation response is. This phenomenon is consistent
with Eq. (31).
5. Conclusions

In this paper, the element-free kp-Ritz method has been
applied for the geometrically nonlinear analysis of SLGSs. The
mechanical behavior is described using the classical plate theory
combined with the nonlocal elasticity theory, which has the ability
to capture the small size effect. Based on total Lagrangian for-
mulation, the system nonlinear equations are derived from the
Ritz procedure. The equations are then solved using the modified
Newton–Raphson method and arc-length continuation. Compar-
ison study shows that the results are in excellent agreement with
those reported by previous researchers, indicating that the
element-free kp-Ritz method is efficient in solving large defor-
mation problems. Many numerical studies are conducted to
examine the influence of boundary conditions, aspect ratio, side



Fig. 15. Center deflection versus exponentially distributed load of the square CCCC
SLGSs for different nonlocal parameters ðk¼ 0:5� 108Þ.

Fig. 16. Center deflection versus exponentially distributed load of the square CCCC
SLGSs for different nonlocal parameters ðk¼ 2� 108Þ.

Fig. 17. Center deflection versus exponentially distributed load of the square CCCC
SLGSs for different nonlocal parameters ðk¼ 3:5� 108Þ.
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length and nonlocal parameters on the nonlinear large deforma-
tion response of SLGSs.
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